
Chapter 4

Integration

4.1 Simple functions

Often, it is necessary to use the symbols �1 or 1 in calculations. In these cases we work

with the extended real line, i.e., R̄ := R [ {�1} [ {1} = [�1,1]. Functions that take

values in R̄ are called numerical functions. The Borel sets associated with the extended

real line are denoted by B̄ := B(R̄) and are defined as the collection of sets B̄ such that

B̄ = B[S where B 2 B(R) and S 2 {;, {�1}, {1}, {�1,1}}. It can be verified that B̄ is

a �-algebra and that B(R) = R\B(R̄) := {R[B : B 2 B(R)}. In addition, B̄ is generated

by a collection of sets of the form [a,1] (or (a,1], [�1, a], [�1, a)) where a 2 R.

Theorem 4.1. B̄ = �(C), where C := {[a,1] : a 2 R} .

Proof. Let C := {[a,1] : a 2 R} and G := � (C). Note that since [a,1] = [a,1) [ {1},

[a,1] 2 B̄ and C ⇢ B̄. Then, since B̄ is a �-algebra �(C) := G ⇢ B̄. Now, let C1 =

{[a, b) : �1 < a  b < 1} and note that [a, b) = [a,1] � [b,1] 2 G. Hence, C1 ⇢ G and

�(C1) = B(R) ⇢ G since G is a �-algebra.

Note that {1} =
T
n2N

[n,1], {�1} =
T
n2N

[�1,�n) =
T
n2N

[�n,1]c and, consequently,

{1}, {�1} 2 G. Then, for all B 2 B(R) and S 2 {;, {�1}, {1}, {�1,1}} we have

B [ S 2 G, showing that B̄ ⇢ G. ⌅
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Let (X,F) and (R,B) be measurable spaces. Since the indicator function of a measurable

set is a measurable function, it follows from Theorem 3.5 that if {Aj}nj=1 with n 2 N is a

pairwise disjoint collection in F and aj 2 R for j = 1, · · · , n, the linear combination

f(x) =
nX

j=1

ajIAj(x) (4.1)

is a F � B-measurable function.

Definition 4.1. A real-valued function on a measurable space (X,F) is said to be simple if

it has the representation (4.1). A standard representation of a simple function is given by

f(x) =
nX

j=0

ajIAj(x) with a0 = 0 and A0 = ([n

j=1Aj)c. (4.2)

Remark 4.1. 1. If f : (X,F) ! (R,B) is measurable and takes on finitely many values,

say {aj}nj=1 then it is a simple function. To see this, note that Bj = {x : f(x) = aj} is

measurable, since Bj = {x : f(x)  aj} � {x : f(x) < aj} and f is measurable. Also,

note that the collection {Bj}nj=1 is pairwise disjoint. Hence,

f(x) =
nX

j=1

ajIBj(x) =
nX

j=1

ajI{x:f(x)=aj}(x). (4.3)

Conversely, if f is simple it takes on finitely many values.

2. Representation (4.2) is not unique, but a simple function has at least one representation

such as (4.2) .

The next theorem shows that certain functions of simple functions are simple functions.

Theorem 4.2. Let f : (X,F) ! (R,B) and g : (X,F) ! (R,B) be simple functions. Then,

f ± g, cf for c > 0, fg, f+ = max{f, 0}, f� = �min{f, 0} and |f | are simple functions.
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4.2 Integral of simple functions

Definition 4.2. Let f : (X,F , µ) ! (R,B) be a non-negative simple function with standard

representation (4.2). The integral of f with respect to µ, denoted by
R
X
fdµ, is given by

Z

X

fdµ :=
nX

j=0

ajµ(Aj) 2 [0,1]. (4.4)

By definition aj 2 R for j = 0, 1, · · · , n, but since µ takes values in [0,1] we can have
R
X
fdµ = 1. If µ is a finite measure, e.g., a probability measure P , then it must be that

R
X
fdµ 2 R. When X := ⌦ an outcome space, f := X is a random variable and µ := P

is a probability measure we write EP (X) :=
R
⌦ XdP and call it the expectation of X given

probability P .

It will be convenient, in the case of simple functions, to write Iµ(f) :=
R
X
fdµ.

Remark 4.2. Since the representation (4.2) is not unique, for uniqueness, the definition

of integral requires that it be invariant to the representation used. To see this, suppose that

f(x) =
P

n

j=0 ajIAj(x) =
P

m

k=0 bkIBk
(x). Then, X = [n

j=0Aj = [m

k=0Bk and

Aj = [m

k=0(Aj \Bk), Bk = [n

j=0(Aj \ Bk).

Since µ is finitely additive and the sets in the above unions are disjoint we have that

nX

j=0

ajµ(Aj) =
nX

j=0

aj

mX

k=0

µ(Aj \Bk) =
nX

j=0

mX

k=0

ajµ(Aj \ Bk).

Similarly,
mX

k=0

bkµ(Bk) =
mX

k=0

bk

nX

j=0

µ(Aj \ Bk) =
nX

j=0

mX

k=0

bkµ(Aj \ Bk).

But aj = bk whenever Aj \ Bk 6= ;, and when Aj \ Bk = ;, µ(Aj \ Bk) = 0. Thus,

ajµ(Aj \Bk) = bkµ(Aj \Bk) for all pairs (j, k), and Iµ(f) is invariant to the representation

of the simple function.
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Theorem 4.3. Let f : (X,F , µ) ! (R,B) and g : (X,F , µ) ! (R,B) be simple non-negative

functions. Then,

1.
R

X

cfdµ = c
R

X

fdµ for c � 0 and
R

X

IEdµ = µ(E) for E 2 F .

2.
R

X

(f + g)dµ =
R

X

fdµ+
R

X

gdµ,

3. If for E 2 F , we define m(E) =
R

X

fIEdµ, then m is a measure on F .

4. f  g =)
R

X

fdµ 
R

X

gdµ.

Proof. For 1., note that c � 0 =) cf � 0 with representation cf(x) =
P

n

j=0 cajIAj(x).

Therefore,
R
X
cfdµ =

P
n

j=0 cajµ(Aj) = c
P

n

j=0 ajµ(Aj) = c
R
X
fdµ. For the second part,

note that IE(x) = IE(x) + 0IEc(x). Hence,
R

X

IEdµ = µ(E).

For 2., let f(x) =
P

n

j=0 ajIAj(x) and g(x) =
P

m

k=0 bkIBk
(x). Then, f(x) + g(x) =

P
n

j=0

P
m

k=0(aj + bk)IAj\Bk
(x) with (Aj \ Bk) \ (Aj0 \ Bk0) = ; whenever (j, k) 6= (j0, k0).

Then,
Z

X

(f + g) dµ =
nX

j=0

mX

k=0

(aj + bk)µ(Aj \Bk)

=
nX

j=0

aj

mX

k=0

µ(Aj \Bk) +
mX

k=0

bk

nX

j=0

µ(Aj \ Bk)

=
nX

j=0

ajµ(Aj) +
mX

k=0

bkµ(Bk),

since X is the union of both {Aj} and {Bk}. Then, by definition
R
X
(f + g)dµ =

R
X
fdµ +

R
X
gdµ.

For 3., note that f(x)IE(x) =
P

n

j=0 ajIAj\E(x). From parts 2. and 1.,

m(E) =

Z

X

fIEdµ =
nX

j=0

aj

Z

⌦

IAj\E(x)dµ =
nX

j=0

ajµ(Aj \ E).

But µ(Aj\E) is a measure, and we have expressed m(E) as a linear combination of measures

on F , hence m is a measure on F .
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For 4., write g = f + (g � f). Note that g � f is simple and non-negative since g � f .

Hence, Iµ(g) = Iµ(f) + Iµ(g � f) � Iµ(f). ⌅

4.3 Integral of non-negative functions

We start with the following fundamental theorem.

Theorem 4.4. Let f : (⌦,F) ! (R̄, B̄) be a non-negative measurable function. Then, there

exists a sequence 'n : (⌦,F) ! (R,B) of simple non-negative functions such that:

1. 'n(!)  'n+1(!), for all ! 2 ⌦ and n 2 N

2. lim
n!1

'n(!) = f(!), for all ! 2 ⌦.

Proof. 1. For each n = 1, 2, · · · define the sets

Ek,n =

(�
! 2 ⌦ : k

2n  f(!) < k

2n + 1
2n

 
= f�1([ k

2n ,
k

2n + 1
2n )) for k = 0, 1, · · · , n2n � 1

{! 2 ⌦ : f(!) � n} = f�1([n,1]) for k = n2n.

For each n, the sets {Ek,n : k = 0, 1, · · · , n2n} are disjoint by construction, belong to F since

f is measurable and [n2n
k=0Ek,n = ⌦. Now, let

'n(!) =
n2nX

k=0

k

2n
IEk,n

(!).

Fix ! 2 ⌦ and for any n 2 N we note that ! 2 Ek0,n for some k0. By definition

'n(!) =

(
k0
2n if k0 = 0, 1, · · · , n2n � 1

n if k0 = n2n.

First, let k0 2 {0, 1, · · · , n2n�1} and consider n+1. The lower bound on [ k02n ,
k0
2n+

1
2n ) must co-

incide with k

2n+1 , which gives k = 2k0. Thus, Ek,n+1 = E2k0,n+1 = f�1
�
[ 2k0
2n+1 ,

2k0
2n+1 +

1
2n+1 )

�
=

f�1
�
[ k02n ,

k0
2n + 1

2n+1 )
�

and

Ek+1,n+1 = E2k0+1,n+1 = f�1

✓
[
k0
2n

+
1

2n+1
,
k0
2n

+
2

2n+1
)

◆
= f�1

✓
[
k0
2n

+
1

2n+1
,
k0
2n

+
1

2n
)

◆
.
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Consequently, Ek0,n = Ek,n+1[Ek+1,n+1 = E2k0,n+1[E2k0+1,n+1. If ! 2 E2k0,n+1 ⇢ Ek0,n then

'n+1(!) =
2k0
2n+1 and 'n+1(!)� 'n(!) =

2k0
2n+1 � k0

2n = 0. Alternatively, if ! 2 E2k0+1,n+1 then

'n+1(!) =
2k0+1
2n+1 and 'n+1(!) � 'n(!) =

2k0+1
2n+1 � k0

2n = 1
2n+1 > 0. Consequently, if ! 2 Ek0,n

then 'n+1(!)� 'n(!) � 0.

Second, if k0 = n2n then Ek0,n = f�1([n,1]). Now, if ! 2 f�1([n+1,1]) then 'n+1(!) =

n + 1 and 'n(!) = n. Consequently, 'n+1(!) � 'n(!) = 1 > 0. If ! 2 f�1([n, n + 1]) then

'n(!) = n and 'n+1(!) = k

2n+1 if ! 2 f�1([ k

2n+1 ,
k

2n+1 + 1
2n+1 )). Setting the lower bound

of the interval equal to n gives k = n2n+1 and 'n+1(!) = n if ! 2 f�1([n, n + 1
2n+1 )),

giving 'n+1(!) � 'n(!) = 0. If ! 2 f�1([n + 1
2n+1 , n + 2

2n+1 )) then 'n+1(!) = n2n+1+1
2n+1

and consequently 'n+1(!) � 'n(!) = 1
2n+1 > 0. Continuing in this fashion for subsequent

sub-intervals of [n, n+ 1] gives 'n+1(!)� 'n(!) � 0.

2. From item 1, we have that '1(!)  '2(!)  · · ·  f(!) for all ! 2 ⌦. Hence, lim
n!1

'n(!) =

sup
n2N

'n(!). But 0  f(!) � 'n(!)  1
2n and taking limits as n ! 1 we have f(!) =

lim
n!1

'n(!) = sup
n2N

'n(!). ⌅

Definition 4.3. Let f : (X,F , µ) ! (R̄, B̄) be a non-negative measurable function. The

integral of f with respect to µ is given by
Z

X

fdµ := sup
'

Z

X

'(x)dµ := sup
'

Iµ(') 2 [0,1], (4.5)

where the sup is taken over all simple functions ' which are non-negative satisfying '(x) 

f(x) for all x 2 X.

Remark 4.3. If f is a non-negative simple function
R
X
fdµ = Iµ(f).

Theorem 4.5. (Beppo-Levi Theorem) Let (X,F , µ) be a measure space and {fj}j2N be

an increasing sequence of non-negative measurable functions fj : (X,F) ! (R̄, B̄). Then

f = sup
j2N

fj is a non-negative measurable function and

Z

X

fdµ :=

Z

X

sup
j2N

fjdµ = sup
j2N

Z

X

fjdµ.
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Proof. That f is a non-negative measurable function follows from Theorem 3.6. Note that

if g and h are non-negative measurable functions, we have by definition that

Z

X

gdµ := sup
'

Z

X

'dµ where '  g, ' a simple function.

But if g  h, Z

X

gdµ  sup
'

Z

X

'dµ =

Z

X

hdµ where '  h.

Now, fj  f := sup
j2N

fj. By the monotonicity of integrals, which we just established,

Z

X

fjdµ 
Z

X

fdµ.

Taking sup
j2N

on both sides gives sup
j2N

R
X
fjdµ 

R
X
fdµ.

Now, we establish the reverse inequality, i.e., sup
j2N

R
X
fjdµ �

R
X
fdµ. Let '(x) be a simple

non-negative function such that '  f . If we can show that

Iµ(') =

Z

X

'dµ  sup
j2N

Z

X

fjdµ (4.6)

we will have the desired inequality since we can take sup over all simple functions on both

sides of (4.6) to give

sup
'

Z

X

'dµ :=

Z

X

fdµ  sup
j2N

Z

X

fjdµ.

Let ' be a simple non-negative function such that '  f . Since f(x) := sup
j2N

fj(x), for every

x 2 X and ✏ 2 (0, 1), there exists N(x,✏) such that

fj(x) � ✏'(x) whenever j � N(x,✏).

Now, if Aj = {x : fj(x) � ✏'(x)} we note that the sets Aj increase as j ! 1 since

f1  f2 · · · . Furthermore, these sets are measurable by measurability of fj and '. By

definition of Aj

✏IAj(x)'(x)  IAj(x)fj(x)  fj(x). (4.7)
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Since ' is a simple function it has a standard representation '(x) =
P

m

i=0 yiIBi(x) and

✏IAj(x)
mX

i=0

yiIBi(x) = ✏
mX

i=0

yiIBi\Aj(x).

Thus, the integral of the simple function in this expression is given by ✏
P

m

i=0 yiµ(Bi \ Aj).

By monotonicity of integrals and using (4.7) we have

✏
mX

i=0

yiµ(Bi \ Aj) 
Z

X

fjdµ  sup
j2N

Z

X

fjdµ.

Since '  f , the collection {Aj} grows toX as j ! 1. Thus, by the fact that µ is continuous

from below

µ(Bi \ Aj) " µ(Bi \X) = µ(Bi) as j ! 1

and

✏
mX

i=0

yiµ(Bi) = ✏

Z

X

'dµ  sup
j2N

Z

X

fjdµ.

Now, just let ✏ be arbitrarily close to 1 to finish the proof. ⌅

Remark 4.4. 1. If we take fj = 'j where 'j are non-negative simple functions and

f = sup
j2N

'j, then
Z

X

fdµ = sup
j2N

Z

X

'jdµ.

Note that sup can be replaced with lim
j!1

.

2. If E 2 F , then IE(x)f(x) is a non-negative measurable function if f � 0. We define

Z

E

fdµ =

Z

X

IEfdµ. (4.8)

Theorem 4.6. Let (X,F , µ) be a measure space and f, g : (X,F , µ) ! (R̄, B̄) be numerical

non-negative measurable functions. Then

1.
R

X

afdµ = a
R

X

fdµ for a � 0,
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2.
R

X

(f + g)dµ =
R

X

fdµ+
R

X

gdµ,

3. If E,F 2 F and E ⇢ F , then
R
E
fdµ 

R
F
fdµ.

Proof. 1. If a > 0, let 'n be an increasing sequence of measurable non-negative simple

functions converging to f (such sequence exists by Theorem 4.4). Then, a'n is an increasing

sequence converging point wise to af . By Theorem 4.5 and the fact that Iµ(a'n) = aIµ('n)
Z

X

afdµ = lim
n!1

Z

X

a'ndµ = a lim
n!1

Z

X

'n(!)dµ = a

Z

X

fdµ

2. Let 'n, n be non-negative increasing simple functions converging to f and g. Then

'n +  n is an increasing sequence converging to f + g. Again, by Theorem 4.5
Z

X

(f + g)dµ = lim
n!1

Z

X

('n +  n)dµ by Beppo-Levi’s Theorem

= lim
n!1

Z

X

'ndµ+ lim
n!1

Z

X

 ndµ by Theorem 4.3

=

Z

X

fdµ+

Z

X

gdµ. by Beppo-Levi’s Theorem

3. Since f is non-negative fIE  fIF therefore
Z

E

fdµ =

Z

X

fIEdµ 
Z

X

fIFdµ =

Z

F

fdµ.

⌅

Corollary 4.1. Let {fj}j2N be a sequence of measurable non-negative numerical functions,

i.e., fj : (X,F , µ) ! (R̄, B̄). Then,
P

1

j=1 fj is measurable and
Z

X

 
1X

j=1

fj

!
dµ =

1X

j=1

Z

X

fjdµ.

Proof. Let Sm =
P

m

j=1 fj, S = lim
m!1

P
m

j=1 fj =
P

1

j=1 fj and note that 0  S1  S2  · · · .

Then, by Theorem 4.6.3 we have that
Z

X

Smdµ =
mX

j=1

Z

X

fjdµ.
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Taking limits as m ! 1 and using Theorem 4.5, we have

lim
m!1

Z

X

Smdµ = lim
m!1

mX

j=1

Z

X

fjdµ =
1X

j=1

Z

X

fjdµ =

Z

X

Sdµ =

Z

X

 
1X

j=1

fj

!
dµ.

⌅

Theorem 4.7. (Fatou’s Lemma): Let {fj}j2N be a sequence of measurable non-negative

numerical functions fj : (X,F , µ) ! (R̄, B̄). Then, f := lim inf
j!1

fj is measurable and

Z

X

fdµ  lim inf
j!1

Z

X

fjdµ.

Proof. First, f is measurable by Theorem 3.6. Let gn = inf{fn, fn+1, · · · } for n = 1, 2, · · · ,

and note that g1  f1, g1  f2, · · · . Also, g2  f2, g2  f3 · · · . Thus, gn  fj for all n  j.

Furthermore, g1  g2  · · · . Now, recall that f := lim inf
j!1

fj := sup
n2N

inf
j�n

fj and

lim
n!1

gn = lim inf
j!1

fj := f.

Also,
R
X
gndµ 

R
X
fjdµ for all n  j and

Z

X

gndµ  lim inf
j!1

Z

X

fjdµ.

Since the sequence gn " lim inf
j!1

fj, by Theorem 4.5

lim
n!1

Z

X

gndµ =

Z

X

fdµ  lim inf
j!1

Z

X

fj(!)dµ.

⌅

4.4 Integral of functions

Let f : (X,F , µ) ! (R̄, B̄) be a measurable numerical function and f+ = max{f, 0} and

f� = �min{f, 0}.
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Definition 4.4. Let f : (X,F , µ) ! (R̄, B̄) be a measurable numerical function such that
R
X
f+dµ < 1 and

R
X
f�dµ < 1. In this case, we say that f is µ-integrable and we write

Z

X

fdµ :=

Z

X

f+dµ�
Z

X

f�dµ.

We note that
R
X
fdµ 2 R and denote by LR the set of integrable real functions and LR̄

the set of integrable numerical functions. A non-negative function f is said to be integrable

if, and only if,
R
X
fdµ < 1. If (X,F , µ) := (Rn,Bn,�n) we call

R
Rn fd�n the Lebesgue

integral.

Theorem 4.8. Let f : (X,F , µ) ! (R̄, B̄) be a measurable function. Then, the following

statements are equivalent:

1. f 2 LR̄,

2. |f | 2 LR̄,

3. there exists 0  g 2 LR̄ such that |f |  g.

Proof. (1 =) 2) Since, |f | = f+ + f� and since integrability of f implies
R
X
f+dµ < 1

and
R
X
f�dµ < 1 we have

R
X
|f |dµ =

R
X
f+dµ+

R
X
f�dµ < 1.

(2 =) 3) Just take g = |f |.

(3 =) 1) Since f+  |f |  g and f�  |f |  g, we have by the monotonicity of the integral

of non-negative functions and the integrability of g that f+, f� 2 LR̄. Hence, f 2 LR̄. ⌅

Theorem 4.9. Let Let f : (X,F , µ) ! (R̄, B̄) be a measurable function and assume that µ

is a finite measure. Then,
Z

X

|f |dµ < 1 () 8 ✏ > 0 9 � > 0 3
Z

X

|f |IEdµ < ✏, 8E 3 µ(E) < �.

Proof. ((=) Let Ab = {x : |f(x)|  b} for b > 0. Since X = Ab [ Ac

b
, choose b such that

µ(Ac

b
) < �. Then, since µ(Ac

b
) < � and µ is finite

Z

X

|f |dµ =

Z

Ab

|f |dµ+

Z

Ac
b

|f |dµ  bµ(Ab) + ✏ < 1.
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( =) ) Since
R
X
|f |dµ < 1, for any ✏ > 0, there exists b > 0 such that

R
X
|f |IAc

b
dµ < ✏.

Now, for any measurable set E,

E = (Ab [ Ac

b
) \ E = (Ab \ E) [ (Ac

b
\ E) ⇢ (Ab [ E) [ Ac

b
.

Hence, IE  I(Ab[E)[Ac
b
= I(Ab[E) + IAc

b
, where the equality follows from the fact that the

two sets in the union are disjoint. Then,
Z

X

|f |IEdµ 
Z

X

|f |IAb[E
dµ+

Z

X

|f |IAc
b
dµ < bµ(E) + ✏ < 2✏

where the last inequality follows if µ(E) < � = ✏

b
. ⌅

Theorem 4.10. Let f, g : (X,F , µ) ! (R̄, B̄) be measurable functions such that f, g 2 LR̄

and a 2 R. Then,

1. af 2 LR̄ and
R
X
afdµ = a

R
X
fdµ,

2. (f + g) 2 LR̄ and
R
X
(f + g)dµ =

R
X
fdµ+

R
X
gdµ,

3. max{f, g}, min{f, g} 2 LR̄,

4. if f  g then
R
X
fdµ 

R
X
gdµ.

Proof. Homework. Use Theorems 4.8 and 4.6. ⌅

Remark 4.5. Note that
����
Z

X

fdµ

���� 
����
Z

X

f+dµ

����+
����
Z

X

f�dµ

���� =
Z

X

f+dµ+

Z

X

f�dµ =

Z

X

(f+ + f�)dµ =

Z

X

|f |dµ.

Theorem 4.11. Let f : (X,F , µ) ! (R̄, B̄) be a non-negative measurable function such that

f 2 LR̄ and

m(E) =

Z

E

fdµ for all E 2 F .

Then, m is a measure on F .
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Proof. Since f � 0, m(E) � 0. If E = ;, then fIE = 0 and

m(;) =
Z

;

fdµ =

Z

X

fI;dµ =

Z

X

0dµ = 0.

Now, let {Ej}j2N be a disjoint collection of sets in F such that [1

j=1Ej = E and let

fn(x) =
P

n

j=1 f(x)IEj(x). By Theorem 4.6
R
X
fndµ =

P
n

j=1

R
X
fIEjdµ. Thus,

R
X
fndµ =

P
n

j=1 m(Ej). Note that f1  f2  · · · and converges to fIE. Hence, by Theorem 4.5

m(E) =

Z

X

fIEdµ = lim
n!1

Z

X

fndµ = lim
n!1

nX

j=1

m(Ej) =
1X

j=1

m(Ej).

⌅

Remark 4.6. 1. Suppose X : (⌦,F , P ) ! (R,B(R)) is a random variable and PX is the

probability measure induced by X on B(R) as in Example 3.2. Then, in Theorem 4.11

letting (X,F , µ) = (R,B(R), PX), we conclude that

mX(B) =

Z

B

fdPX for all B 2 B(R)

is a measure on B(R). In particular, if B = (�1, x] for x 2 R, mX((�1, x]) =
R
(�1,x] fdPX .

2. m is called the measure with density function f with respect to µ and is denoted by

m = fµ. If m has a density with respect to µ it is traditional in mathematics to

write dm/dµ for the the density function. We note that with a little more work we can

recognize f as the Radon-Nikodým derivative of m with respect to the measure µ.

4.5 Exercises

1. Prove Theorem 4.2.

2. Show that if f is a non-negative measurable simple function, its integral, as defined in

Definition 4.3 is equal to Iµ(f).
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3. Let (X,F) be a measurable space and {µn}n2N be a sequence of measures defined on

it. Noting that µ =
P

n2N µn is also a measure on (X,F) (you don’t have to prove

this), show that Z

X

fdµ =
X

n2N

Z

X

fdµn

for f non-negative and measurable.

4. Let (X,F , µ) be a measure space and f : (X,F , µ) ! (R,B) be measurable and

non-negative. For every F 2 F consider
R
IFfdµ. Is this a measure?

5. Let (⌦,F , P ) be a probability space and {Fn}n2N ⇢ F .

(a) Prove that Ilim inf
n!1

Fn = lim inf
n!1

IFn and Ilim sup
n!1

Fn = lim sup
n!1

IFn .

(b) Prove that P
⇣
lim inf
n!1

Fn

⌘
 lim inf

n!1

P (Fn).

(c) Prove that lim sup
n!1

P (Fn)  P

✓
lim sup
n!1

Fn

◆
.
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