
Chapter 5

Lebesgue’s convergence theorems and Lp

spaces

In this chapter we study two important convergence theorems and some of their uses and

applications.

5.1 Convergence theorems

Theorem 5.1. (Lebesgue’s Monotone Convergence Theorem) Let fn : (X,F , µ) ! (R̄, B̄)

for n 2 N be integrable functions such that f1  f2  · · · and f := lim
n!1

fn = sup
n2N

fn. Then,

f 2 LR̄(µ) () sup
n2N

Z

X

fndµ < 1.

In this case,

sup
n2N

Z

X

fndµ =

Z

X

sup
n2N

fndµ =

Z

X

fdµ.

Proof. Since fn 2 LR̄ and f1  f2  · · · we have that 0  fn � f1 2 LR̄ forms an increasing

sequence of nonnegative measurable functions. Hence, by Theorem 4.5

0  sup
n2N

Z

X

(fn � f1)dµ =

Z

X

sup
n2N

(fn � f1)dµ. (5.1)
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Now, suppose f 2 LR̄ and note that from the left side of equation (5.1)

sup
n2N

Z

X

fndµ�
Z

X

f1dµ =

Z

X

(f � f1)dµ, or

sup
n2N

Z

X

fndµ =

Z

X

f1dµ+

Z

X

(f � f1)dµ

=

Z

X

f1dµ+

Z

X

fdµ�
Z

X

f1dµ =

Z

X

fdµ < 1.

If sup
n2N

R
X
fndµ < 1, then from equation (5.1) we have

R
X
(f � f1)dµ < 1 and since f1 is

integrable f = (f � f1) + f1 is integrable. Therefore,
Z

fdµ =

Z
(f � f1)dµ+

Z
f1du = sup

n2N

Z

X

fndµ < 1.

⌅

We now prove Markov’s Inequality, which is useful in many settings is useful in many

settings. Our immediate use of this inequality is on the following Theorem 5.3.

Theorem 5.2. (Markov’s Inequality) Let (X,F , µ) be a measure space and f 2 LR̄. Then,

for all E 2 F and a > 0

µ ({x : |f(x)| � a} \ E)  1

a

Z

E

|f |dµ.

Proof. Note that, aI{x:|f(x)|�a}\E = aI{x:|f(x)|�a}IE  |f(x)|IE and consequently, integrating

both sides, aµ({x : |f(x)| � a} \ E) 
R
E
|f |dµ. Therefore,

µ({x : |f(x)| � a} \ E)  1

a

Z

E

|f |dµ.

⌅

Remark 5.1. Note that if E = X we have µ({x : |f(x)| � a})  1
a

R
X
|f |dµ. When

(X,F , µ) = (⌦,F , P ) a probability space and f := X a random variable, we have

P ({! : |X(!)| � a})  1

a
EP (|X|).
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Also, note that if f(!) := (X(!)� EP (X))2 we have

P ({! : (X(!)�EP (X))2 � a}) = P ({! : |X(!)�EP (X)| � a1/2})  1

a
EP ((X �EP (X))2),

and letting b = a1/2 we have

P ({! : |X(!)� EP (X)| � b})  1

b2
EP ((X � EP (X))2),

which is known as Chebyshev’s Inequality.

Recall that for a measure space (X,F , µ), N is a null set if N 2 F and µ(N) = 0. If a

certain property P(x) that depends on x 2 X holds for all x 2 X except x 2 NP ⇢ N , where

N is a null set, we say that the property is true almost everywhere (ae) or almost surely

(as). Note the set NP where the property does not hold need not be a measurable set.

Theorem 5.3. Let (X,F , µ) be a measure space and f 2 LR̄. Then,

1. if N is a null set
R
N
fdµ = 0,

2.
R
X
|f |dµ = 0 () |f | = 0 ae.

Proof. 1. For j 2 N, let fj = min{|f |, j} and note 0  f1  f2  · · · with limj!1 fj = |f |.

Hence, by Theorem 4.5

0 
����
Z

N

fdµ

���� =

����
Z

X

INfdµ

���� 
Z

X

IN |f |dµ

= lim
j!1

Z

X

INfjdµ = lim
j!1

Z

X

IN min{|f |, j}dµ  lim
j!1

Z

X

jINdµ

= lim
j!1

j

Z

X

INdµ = lim
j!1

jµ(N) = 0.

2. (()
R
X
|f |dµ =

R
{|f |=0} |f |dµ+

R
{|f | 6=0} |f |dµ =

R
{|f | 6=0} |f |dµ = 0 by item 1.

()) Note that by the fact that µ is a measure

µ({|f | > 0}) = µ

 
[

j2N

{|f | � 1/j}
!


X

j2N

µ({|f | � 1/j})


X

j2N

j

Z

X

|f |dµ = 0
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by Markov’s Inequality and the assumption that
R
X
|f |dµ = 0. ⌅

Remark 5.2. 1. If f, g � 0 are measurable, integrable and f = g µ-ae then
R
X
fdµ =

R
{x:f(x) 6=g(x)} fdµ +

R
{x:f(x)=g(x)} fdµ. But by Theorem 5.3.1, the first integral in this

sum is equal to zero. Consequently,
R
X
fdµ =

R
{x:f(x)=g(x)} fdµ =

R
{x:f(x)=g(x)} gdµ =

R
{x:f(x) 6=g(x)} gdµ+

R
{x:f(x)=g(x)} gdµ =

R
X
gdµ.

2. If f 2 LR̄ and f = g µ-ae then g 2 LR̄. To see this, note that f = g µ-ae implies

f+ = g+ and f� = g� µ-ae. Using the previous remark on f+ and f� we have
R
X
f+dµ =

R
X
g+dµ and

R
X
f�dµ =

R
X
g�dµ. Hence, g 2 LR̄ and

R
X
fdµ =

R
X
gdµ.

3. If f is measurable and 0  g 2 LR̄ with |f |  g ae, then

f+  |f |  g ae and f�  |f |  g ae .

Hence,
R
X
f+dµ 

R
X
gdµ,

R
X
f�dµ 

R
X
gdµ and f is integrable.

Theorem 5.4. Let f : (X,F , µ) ! (R̄, B̄) be integrable. Then f is real valued almost

everywhere.

Proof. Note that N := {x : |f(x)| = 1} = {x : f(x) = 1}[{x : f(x) = �1} 2 F . Also, if
T
n2N

{x : |f(x)| � n} :=
T
n2N

Bn with B1 � B2 � · · · , then lim
n!1

Bn =
T
n2N

Bn = N . Also, note

that by Markov’s Inequality and integrability of f

µ(B1) = µ({x : |f(x)| � 1}) 
Z

X

|f |dµ < 1.

Hence, by continuity of measures from above, and Markov’s Inequality

µ(N) = lim
n!1

µ(Bn) = lim
n!1

µ({x : |f(x)| � n})  lim
n!1

1

n

Z

X

|f |dµ = 0.

⌅
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Theorem 5.5. (Lebesgue’s Dominated Convergence Theorem) Let (X,F , µ) be a measure

space and {fn}n2N be a sequence of integrable functions such that |fn|  g for all n, almost

everywhere, where g is some integrable nonnegative function. If limn!1 fn(x) = f(x) exists

almost everywhere in R̄, then f is integrable and

lim
n!1

Z

X

fndµ =

Z

X

lim
n!1

fndµ :=

Z

X

fdµ.

Proof. We start by observing that since the fn and g are measurable, the set

N = {x : lim
n!1

fn(x) does not exist} [
 
[

n2N

{x : |fn(x)| > g(x)}
!

is measurable and µ(N ) = 0. Thus, we proceed by taking N = ; as it does not contribute

to any of the integrals in the proof of the theorem. By the point wise limit of the sequence

fn, for any ✏ > 0 there exists N(✏,x) 2 N such that for all n > N(✏,x)

|f | = |f � fn + fn|  |fn|+ |f � fn|

 g + |f � fn| by |fn| < g

 g + ✏.

Therefore,
R
X
fdµ < 1 provided g 2 LR̄(µ). Also, |fn|  g () �g  fn  g. Hence,

fn + g � 0. By Fatou’s Lemma,

Z
lim inf
n!1

(fn + g)dµ =

Z
(f + g)dµ  lim inf

n!1

Z
(fn + g)dµ

= lim inf
n!1

Z
fndµ+

Z
gdµ.

Therefore,
Z

fdµ  lim inf
n!1

Z
fndµ. (5.2)
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Also, g � fn � 0 and again by Fatou’s Lemma,

0 
Z

lim inf
n!1

(g � fn)dµ =

Z
gdµ�

Z
fdµ

 lim inf
n!1

Z
(g � fn)dµ

=

Z
gdµ+ lim inf

n!1

�
Z

fndµ

=

Z
gdµ� lim sup

n!1

Z
fndµ.

The second inequality together with the last equality imply that
Z

fdµ � lim sup
n!1

Z
fndµ. (5.3)

Combining (5.2) and (5.3) completes the proof. ⌅

We now consider a measurable function that is indexed by a parameter ✓ 2 (a, b) for

a < b. As such, we define f(x, ✓) : (X,F , µ)⇥ (a, b) ! (R,B) where f is measurable for all

✓ 2 (a, b).

Theorem 5.6. Let f(x, ✓) : (X,F , µ) ⇥ (a, b) ! (R,B) where f is measurable and f 2 LR

for all ✓ 2 (a, b). Also, assume that f(x, ✓) is continuous for every x 2 X and |f(x, ✓)|  g(x)

for all (x, ✓) 2 X ⇥ (a, b) and some nonnegative integrable function g. Then, the function

h : (a, b) ! R given by

h(✓) :=

Z

X

f(x, ✓)dµ

is continuous.

Proof. The function h is well defined because of integrability of f(x, ✓). It suffices to show

that for any sequence {✓n}n2N ⇢ (a, b) such that ✓n ! ✓ we have h(✓n) ! h(✓). By

continuity of f(x, ✓), for every x, we have f(x, ✓n) ! f(x, ✓) and |f(x, ✓n)|  g(x). By

Lebesgue’s Dominated Convergence Theorem,

lim
n!1

h(✓n) =

Z

X

lim
n!1

f(x, ✓n)dµ =

Z

X

f(x, ✓)dµ = h(✓).
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⌅

Theorem 5.7. Let f(x, ✓) : (X,F , µ) ⇥ (a, b) ! (R,B) where f is measurable and f 2 LR

for all ✓ 2 (a, b). Also, assume that f(x, ✓) is differentiable on (a, b) for every x 2 X and

| d

d✓
f(x, ✓)|  g(x) for all (x, ✓) 2 X ⇥ (a, b) and some nonnegative integrable function g.

Then, the function h : (a, b) ! R given by

h(✓) :=

Z

X

f(x, ✓)dµ

is differentiable and its derivative is given by

d

d✓
h(✓) =

Z

X

d

d✓
f(x, ✓)dµ.

Proof. For ✓, ✓n 2 (a, b) with ✓n ! ✓ as n ! 1 and ✓n 6= ✓ for all n

d

d✓
f(x, ✓) = lim

n!1

f(x, ✓n)� f(x, ✓)

✓n � ✓

for all x 2 X and consequently d

d✓
f(x, ✓) is measurable. By the Mean Value Theorem, there

exists ✓c,n = c✓n + (1� c)✓ with c 2 (0, 1) such that f(x, ✓n)� f(x, ✓) = d

d✓
f(x, ✓c,n)(✓n � ✓).

Consequently, ����
f(x, ✓n)� f(x, ✓)

✓n � ✓

���� =
����
d

d✓
f(x, ✓c,n)

����  g(x),

and since g is integrable and f is measurable by assumption, we have by Theorem 4.8 that
f(x,✓n)�f(x,✓)

✓n�✓
is integrable. Thus,

h(✓n)� h(✓)

✓n � ✓
=

Z

X

f(x, ✓n)� f(x, ✓)

✓n � ✓
dµ.

Hence, by the Lebesgue’s Dominated Convergence Theorem

lim
n!1

h(✓n)� h(✓)

✓n � ✓
=

d

d✓
h(✓) =

Z

X

lim
n!1

f(x, ✓n)� f(x, ✓)

✓n � ✓
dµ =

Z

X

d

d✓
f(x, ✓)dµ.

⌅
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5.2 Lp spaces

Definition 5.1. The collection of measurable functions f : (X,F , µ) ! (R,B) such that
R
X
|f |pdµ < 1 for p 2 [1,1) is denoted by Lp

R, Lp

R(µ) or Lp

R(X,F , µ).

Let f, g 2 Lp

R(X,F , µ) and define s : (X,F , µ) ! (R,B) as s(x) = f(x) + g(x) for all

x 2 X. Then, |s(x)|  |f(x)|+ |g(x)|  2max{|f(x)|, |g(x)|} and

|s(x)|p  2p max{|f(x)|, |g(x)|}p = 2p max{|f(x)|p, |g(x)|p}  2p(|f(x)|p + |g(x)|p).

Consequently,
R
X
|s|pdµ  2p(

R
X
|f |pdµ+

R
X
|g|pdµ) < 1. Also, if a 2 R and m : (X,F , µ) !

(R,B) is defined as m(x) = af(x) for all x 2 X, m is measurable and we have |m(x)|p =

|a|p|f(x)|p and
R
X
|m|pdµ = |a|p

R
X
|f |pdµ < 1. Lastly, if we take ✓(x) = 0 for all x 2 X to

be the null vector in Lp

R(X,F , µ), then Lp

R(X,F , µ) is a vector space.

If f 2 Lp

R(X,F , µ) we define the function k · kp : Lp

R(X,F , µ) ! [0,1) as kfkp =
�R
X
|f |pdµ

�1/p and prove the following inequality.

Theorem 5.8. (Hölder’s Inequality) If 1 < p < 1, p�1 + q�1 = 1, f 2 Lp

R, g 2 Lq

R, then

fg 2 LR and
R
X
|fg|dµ  kfkpkgkq.

Proof. If kfkp = 0 then, by Theorem 5.3 |f | = 0 ae, so |fg| = 0 ae. Hence,
R
|fg|dµ = 0 and

the inequality holds. Likewise for kgkq = 0. So, assume kfkp, kgkq 6= 0. Let x = f/kfkp,

y = g/kgkq and note that kxkp = 1 and kykq = 1. It suffices to prove
R
|xy|dµ  1.

Now, note that for any a, b > 0 and 0 < ↵ < 1,

a↵b1�↵  ↵a+ (1� ↵)b.

To see this, divide by b to obtain (a
b
)↵  ↵a

b
+(1�↵). It suffices to show u↵  ↵u+(1�↵),

for u > 0.

The inequality holds for u = 1. Now, d

du
u↵ = ↵u↵�1 = ↵ 1

u1�↵ . Since ↵ 2 (0, 1) we have

that u1�↵ < 1 if u < 1. Consequently, in this case, u↵�1 > 1 and d

du
u↵ > ↵. Also, using
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the same arguments, if u > 1 we have that d

du
u↵ < ↵. By the Mean Value Theorem, for

� 2 (0, 1)

u↵ � 1 = ↵(�u+ (1� �))↵�1(u� 1) < ↵(u� 1) =) u↵ < 1� ↵ + ↵u if u > 1.

Also,

u↵ � 1 = ↵(�u+ (1� �))↵�1(u� 1) < ↵(u� 1) =) u↵ < 1 + ↵u� ↵, if u < 1.

Thus, u↵  ↵u+ (1� ↵) for u > 0.

Now, let ↵ = 1/p, a(!) = |x(!)|p, b(!) = |y(!)|q and 1� ↵ = 1/q. Then,

(|x(!)|p)1/p(|y(!)|q)1/q  ↵|x(!)|p + (1� ↵)|y(!)|q, or

|x(!)y(!)|  ↵|x(!)|p + (1� ↵)|y(!)|q.

Thus, integrating both sides of the inequality we obtain
R
|xy|dµ  ↵kxkp+(1�↵)kykq = 1.

⌅

Theorem 5.9. (Minkowski-Riez Inequality) For 1  p < 1, if f and g are in Lp we have

kf + gkp  kfkp + kgkp.

Proof. By the triangle inequality

kf + gkp
p
=

Z
|f + g||f + g|p�1dµ 

Z �
|f ||f + g|p�1 + |g||f + g|p�1

�
dµ

=

Z
|f ||f + g|p�1dµ+

Z
|g||f + g|p�1dµ, and if p = 1 the proof is complete.

If p > 1, by Hölder’s Inequality

 kfkpk|f + g|p�1kq + kgkpk|f + g|p�1kq,

where 1/p+ 1/q = 1 which implies 1/q = 1� 1/p =) q = p

p�1 . Thus,

kf + gkp
p
 kfkpk|f + g|p/qkq + kgkpk|f + g|p/qkq = (kfkp + kgkp)k|f + g|p/qkq. (5.4)
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Now,

k|f + g|p/qkq =
✓Z

(|f + g|p/q)qdµ
◆1/q

=

✓Z
|f + g|pdµ

◆1/q

=

✓Z
|f + g|pdµ

◆ p�1
p

= kf + gkp�1
p

Using this in inequality (5.4) we obtain kf + gkp�(p�1)
p = kf + gkp  kfkp + kgkp. ⌅

Remark 5.3. 1. The Minkowski-Riez Inequality and the fact that for a 2 R, kafkp =

|a|kfkp and kfkp � 0 shows that k · kp has almost all of the properties of a norm. The

exception is that kfkp = 0 does not imply that f(x) = 0 for all x 2 X. It only implies

that f(x) = 0 almost everywhere.

2. f, g 2 Lp

R(X,F , µ) are taken to be equivalent if they differ at most on a set of µ-

measure zero (null set), i.e., f ⇠ g if {x : f(x) 6= g(x)} is a null set. Then, for

every f 2 Lp

R(X,F , µ) we can define an equivalence class (reflexive, symmetric and

transitive) of Lp

R functions induced by f , which will be denoted by [f ]p. The space of

all equivalence classes [f ]p of functions f 2 Lp

R is denoted by Lp

R with norm k[f ]pkp :=

inf{kgkp : g 2 Lp

R and g ⇠ f}. (Lp, kf[p]kp) is a norm vector space and in what follows

we will dispense with these technicalities and identify [f ]p with f .

A commonly encountered case, treated in the next theorem, has p = 2 and X, Y :

(⌦,F , P ) ! (R,B) being random variables such that X, Y 2 L2
R(⌦,F , P ).

Theorem 5.10. Let X, Y : (⌦,F , P ) ! (R,B) be random variables such that X, Y 2

L2(⌦,F , P ).

1. XY 2 L(⌦,F , P ) and |
R
⌦ XY dP | 

�R
⌦ X2dP

�1/2 �R
⌦ Y 2dP

�1/2,

2. If X 2 L2(⌦,F , P ) then X 2 L(⌦,F , P ) and
�R

⌦ XdP
�2 

R
⌦ X2dP ,

3. L2(⌦,F , P ) is a vector space.
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Proof. 1. This is just a special case of Hölder’s Inequality with p = q = 2. 3. follows from the

comments after Definition 5.1. 2. Let X 2 L2 and note that I⌦ 2 L2 with
R
⌦ I⌦dP =

R
⌦ dP .

Then, ����
Z

⌦

XI⌦dP

���� 
✓Z

⌦

X2dP

◆1/2✓Z

⌦

dP

◆1/2

.

Since
R
⌦ dP = 1, we have

����
Z

⌦

XdP

���� 
✓Z

⌦

X2dP

◆1/2

or
✓Z

⌦

XdP

◆2


Z

⌦

X2dP.

⌅

Remark 5.4. If X 2 L2 we define VP (X) =
R
⌦(X � EP (X))2dP =

R
⌦ X2dP � (

R
⌦ XdP )2

and call it the variance of X (under P ).

Theorem 5.11. Let X be a random variable defined on the probability space (⌦,F , P ) taking

values in (R,B) and h : (R,B) ! (R,B) be measurable.

1. f := h �X is integrable in (⌦,F , P ) if, and only if, h is integrable in (R,B(R), PX),

where PX is as defined in Example 3.2.

2. EP (h(X)) :=
R
⌦ fdP =

R
R
hdPX .

Proof. First, let h be a non-negative simple function. Then we have that f(!) =
P

m

j=0 yjIAj(!)

where Aj 2 F . Consequently,

IP (f) =

Z

⌦

fdP =
mX

j=0

yjP (Aj) =
mX

j=0

yjP (X�1(Bj)) where Bj = {x 2 R : h(x) = yj}

=
mX

j=0

yj(P �X�1)(Bj) =
mX

j=0

yjPX(Bj) =

Z

R

hdPX = IPX (h).

Second, let h � 0, not necessarily simple. Then, by Theorem 4.4 there exists a sequence

of increasing non-negative simple function �n such that �n ! h as n ! 1. Hence, if we
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define fn(!) = �n(X(!)) = (�n �X)(!), it is a sequence of increasing simple function that

converges to f .

Z

⌦

fdP =

Z

⌦

(h �X)dP =

Z

⌦

lim
n!1

(�n �X)dP

= lim
n!1

Z

⌦

(�n �X)dP by Beppo-Levi’s Theorem

= lim
n!1

Z

R

�ndPX by the first part of the argument for simple functions

=

Z

R

hdPX , by Beppo-Levi’s Theorem.

This proves 2. for simple and non-negative h. If h takes values in R, consider |h| and let

�n be a sequence of increasing non-negative simple function such that �n ! |h| as n ! 1.

Then, we have from above that

Z

⌦

|f |dP =

Z

R

|h|dPX .

But from Remark 4.5, if |h| is integrable in (R,B, PX) then h is integrable in (R,B, PX),

establishing 1. Now, for arbitrary h we can prove the rest of part 2 by applying the same

arguments to h+ and h� and using the fact that h = h+ � h�. ⌅

Clearly, taking h(x) = x in the previous theorem gives EP (X) :=
R
⌦ XdP =

R
R
xdPX(x)

where in the last integral we emphasize that the “variable” in integration is taking values in

R. In this proof, there is no requirement that P (⌦) = 1. Hence, we can take (⌦,F , P ) to

be an arbitrary measure space.

Definition 5.2. The density of a probability measure PX associated with a random variable

X defined on a probability space (⌦,F , P ) is a non-negative Borel measurable function fX

that satisfies

PX((�1, a]) =

Z

(�1,a]

fXd� =

Z

R

I(�1,a]fXd�

where � is Lebesgue measure on R.
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Theorem 5.12. fX is a density ()
R
R
fXd� = 1, fX is unique almost everywhere.

Proof. ( =) ) fX a density implies FX(a) = PX((�1, a]) =
R
(�1,a] fXd�. lima!1 PX((�1, a]) =

1 = lima!1

R
(�1,a] fXd�, where the first equality follows from Definition 2.4 and continuity

of probability measures.

( (= ) Suppose fX is a non-negative Borel measurable function such that
R
R
fXd� = 1. For

all A 2 B, we put

PX(A) =

Z

A

fXd� =

Z

R

IAfXd�.

By Theorem 4.11, PX is a measure on B with PX(R) = 1, by assumption. Taking A =

(�1, a],

PX((�1, a]) =

Z

(�1,a]

fXd�

and fX is a density for FX .

Now, suppose gX is another density for FX . Then, PX(A) =
R
A
gXd� =

R
R
gXIAd�.

Let An = {x : gX(x) � fX(x) + 1/n}. For all n 2 N,
R
An

gXd� �
R
An
(fX + 1

n
)d� =

R
An

fXd�+ 1
n
�(An). Since

R
An

fXd� =
R
An

gXd� it must be that �(An) = 0.

Note that A1 ⇢ A2 ⇢ · · · . limn!1 An = [1

n=1An = A = {x : gX(x) > fX(x)} and

�(A) = limn!1 �(An) = 0. Similarly, we have �(B) = 0 for B = {x : gX(x) < fX(x)}. So,

�({x : gX = fX}) = 1. ⌅

Theorem 5.13. Let X : (⌦,F , P ) ! (R,B) be a random variable with density fX and

h : (R,B) ! (R,B) be a measurable function such that
R
⌦ |h �X|dP < 1, i.e., f = h �X is

integrable. Then,
Z

⌦

(h �X)dP =

Z

R

hdPX =

Z

R

h(x)fX(x)d�(x)

Proof. Homework. ⌅
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5.3 Stieltjes measure

Consider the measurable space (R,B(R)) and a measure µ : B(R) ! [0,1] such that for

every n 2 N, µ([�n, n)) < 1. Define Fµ : R! R as

Fµ(x) =

8
<

:

µ([0, x)) if x > 0
0 if x = 0
�µ([x, 0)) if x < 0

.

Theorem 5.14. Fµ : R! R is monotonically increasing and left-continuous.

Proof. Given that µ([�n, n)) < 1, Fµ takes values in R. First, we show that for all x < x0,

Fµ(x)  Fµ(x0). There are three cases to be considered

1. (0  x < x0): if 0 < x < x0, Fµ(x0) � Fµ(x) = µ([0, x0)) � µ([0, x)). Since [0, x0) =

[0, x) [ [x, x0), �-additivity of µ gives µ([0, x0)) = µ([0, x)) + µ([x, x0)) or µ([x, x0)) =

µ([0, x0))� µ([0, x)) = Fµ(x0)� Fµ(x) � 0. If x = 0, Fµ(x0)� Fµ(0) = µ([0, x0)) � 0.

2. (x < 0  x0): If x0 > 0, Fµ(x0) � Fµ(x) = µ([0, x0)) + µ([x, 0)) � 0. If x0 = 0,

Fµ(0)� Fµ(x) = µ([x, 0)) � 0.

3. (x < x0 < 0): Fµ(x0)� Fµ(x) = �µ([x0, 0)) + µ([x, 0)). Since [x, 0) = [x, x0)[ [x0, 0), �-

additivity of µ gives µ([x, 0)) = µ([x, x0))+µ([x0, 0)) or µ([x, 0))�µ([x0, 0)) = Fµ(x0)�

Fµ(x) = µ([x, x0)) � 0.

Second, we must show that for h1 > 0 and h1 � h2 � h3 � · · · with hn # 0 as n ! 1,

lim
n!1

Fµ(x� hn) = Fµ(x) for all x 2 R. There are three cases to consider.

1. (x > 0): Choose h1 2 (0, x) and define An = [0, x � hn). Then, A1 ⇢ A2 ⇢ · · · and

lim
n!1

An =
S
n2N

An = [0, x). By continuity of measure from below,

lim
n!1

Fµ(x� hn) = lim
n!1

µ([0, x� hn)) = µ([0, x)) = Fµ(x).
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2. (x = 0): Define An = [�hn, 0). Then, A1 � A2 � · · · and lim
n!1

An =
T
n2N

An = ;. By

continuity of measures from above, and given that µ([�h1, 0)) < 1,

lim
n!1

Fµ(�hn) = lim
n!1

µ([�hn, 0)) = µ(;) = 0 = Fµ(0).

3. (x < 0): Define An = [x�hn, 0). Then, A1 � A2 � · · · and lim
n!1

An = \1

n=1An = [x, 0).

By continuity of measures from above and given that µ([x� h1, 0)) < 1,

lim
n!1

Fµ(x� hn) = lim
n!1

� µ([x� hn, 0)) = �µ([x, 0)) = Fµ(x).

⌅

Remark 5.5. Note that Fµ is not right-continuous. Let x � 0, hn > 0 and An = [0, x+hn).

Then A1 � A2 � · · · and lim
n!1

An = \1

n=1An = [0, x] = [0, x)[{x}. Hence, lim
n!1

Fµ(x+hn) =

µ([0, x]) = Fµ(x) + µ({x}). Also, if x < 0, 0 < hn < �x and An = [x + hn, 0). Then,

A1 ⇢ A2 ⇢ · · · and lim
n!1

An =
S
n2N

An = (x, 0) = [x, 0) � {x}. Hence, lim
n!1

Fµ(x + hn) =

�µ((x, 0)) = Fµ(x) + µ({x}). Hence, unless µ({x}) = 0 we have lim
n!1

Fµ(x + hn) 6= Fµ(x).

In fact, for any x 2 R, a point of continuity of Fµ,

µ({x}) = µ

 
\

n2N


x, x+

1

n

◆!
= lim

n!1

µ

✓
x, x+

1

n

◆◆

= lim
n!1

Fµ

✓
x+

1

n

◆
� Fµ(x) = 0 by right continuity of Fµ.

Thus, Fµ is continuous at x if, and only if, µ({x}) = 0. Monotonically increasing, left-

continuous functions are called Stieltjes functions.1

Remark 5.6. It follows directly from the proof of Theorem 5.14 and Remark 5.5 that if

µ((�n, n]) < 1. for every n 2 N and we define Fµ : R! R as

Fµ(x) =

8
<

:

µ((0, x]) if x > 0
0 if x = 0
�µ((x, 0]) if x < 0

,

then Fµ(x) is monotonically increasing and right-continuous.
1
In honor of Dutch mathematician Thomas Stieltjes (1856-1894).
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Theorem 5.15. Let Fµ be defined as in Theorem 5.14 and ⌫Fµ (([a, b)) = Fµ(b)� Fµ(a) for

all a  b, a, b 2 R. Then, ⌫Fµ extends uniquely to a measure on B(R) and ⌫Fµ = µ.

Proof. 1. Recall that S = {[a, b) : a  b, a, b 2 R} is a semi-ring (if a = b, [a, a) = ;).

Given Fµ, we define ⌫Fµ : S ! [0,1) as ⌫Fµ([a, b)) = Fµ(b) � Fµ(a) for all a  b. Since Fµ

is monotonically increasing, Fµ(b) � Fµ(a) � 0 and ⌫Fµ([a, a) = ;) = Fµ(a) � Fµ(a) = 0.

Also, ⌫Fµ is finitely additive since for a < c < b, we have that [a, b) = [a, c) [ [c, b) and

⌫Fµ([a, b)) = Fµ(b) � Fµ(a) = Fµ(c) � Fµ(a) + Fµ(b) � Fµ(c) = ⌫Fµ([a, c)) + ⌫Fµ([c, b)). We

now show that ⌫Fµ is �-additive, i.e., for [an, bn), n 2 N a disjoint collection such that

[a, b) = [
n2N

[an, bn), we have ⌫Fµ([a, b)) =
P
n2N

⌫Fµ([an, bn)). Fix ✏n, ✏ > 0 and note that

(an � ✏n, bn) � [an, bn). Hence, [
n2N

(an � ✏n, bn) � [
n2N

[an, bn) = [a, b) � [a, b � ✏]. Since

[
n2N

(an � ✏n, bn) is an open cover for the compact set [a, b� ✏], by the Heine-Borel Theorem,

there exists N 2 N such that

[N

n=1 [an � ✏n, bn) � [N

n=1(an � ✏n, bn) � [a, b� ✏] � [a, b� ✏). (5.5)

Now, since [n2N[an, bn) = [a, b) we have [N

n=1[an, bn) ⇢ [a, b) and

⌫Fµ([a, b)) � ⌫Fµ

�
[N

n=1[an, bn)
�
=

NX

n=1

⌫Fµ ([an, bn)) by finite additivity.

Hence, we have

0  ⌫Fµ([a, b))�
NX

n=1

⌫Fµ ([an, bn))

= ⌫Fµ([a, b� ✏)) + ⌫Fµ([b� ✏, b))�
NX

n=1

�
⌫Fµ([an � ✏n, bn))� ⌫Fµ([an � ✏n, an))

�

= ⌫Fµ([a, b� ✏))�
NX

n=1

⌫Fµ([an � ✏n, bn)) this term < 0 by (5.5)

+ ⌫Fµ([b� ✏, b)) +
NX

n=1

⌫Fµ([an � ✏n, an))

 ⌫Fµ([b� ✏, b)) +
NX

n=1

⌫Fµ([an � ✏n, an)) = Fµ(b)� Fµ(b� ✏) +
NX

n=1

(Fµ(an)� Fµ(an � ✏n)).
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By left-continuity of Fµ, we can choose ✏ such that Fµ(b)�Fµ(b� ✏) < ⌘/2 and ✏n such that

Fµ(an)� Fµ(an � ✏n) < 2�n ⌘/2. Hence,

0  ⌫Fµ([a, b))�
NX

n=1

⌫Fµ ([an, bn)) 
⌘

2

 
1 +

NX

n=1

2�n

!
.

Letting N ! 1 we have that ⌫Fµ([a, b)) =
P

1

n=1 ⌫Fµ ([an, bn)).

Since ⌫Fµ is a pre-measure on a semi-ring, by Carathéodory’s Theorem, it has an extension

to �(S) = B(R). Furthermore, since for n 2 N, [�n, n) " R and ⌫Fµ([�n, n)) = Fµ(n) �

Fµ(�n) = µ([0, n)) + µ([�n, 0))) < 1, this extension is unique.

To verify that ⌫Fµ = µ, it suffices to verify that ⌫Fµ = µ on S, since ⌫Fµ extends uniquely to

B(R). There are three cases:

Case 1 (0  a < b): ⌫Fµ([a, b)) = Fµ(b)�Fµ(a) = µ([0, b))�µ([0, a)) = µ([0, a))+µ([a, b))�

µ([0, a)) = µ([a, b)), since [0, b) = [0, a) [ [a, b),

Case 2 (a < 0 < b): ⌫Fµ([a, b)) = Fµ(b) � Fµ(a) = µ([0, b)) + µ([a, 0)) = µ([a, b)), since

[a, b) = [a, 0) [ [0, b),

Case 3 (a < b  0): ⌫Fµ([a, b)) = Fµ(b) � Fµ(a) = �µ([b, 0)) + µ([a, 0)) = µ([a, b)), since

[a, b) = [a, 0)� [b, 0), which completes the proof. ⌅

Example 5.1. 1. Let µ := � the Lebesgue measure. Then, F�(x) =

⇢
x if x 6= 0
0 if x = 0

and

⌫F�
([a, b)) = F�(b)� F�(a) = b� a.

2. Let µ := �0 the Dirac measure. Then, F�0(x) =

⇢
�0([0, x)) = 1 if x > 0
0 if x  0

and

⌫F�0
([a, b)) = F�0(b)� F�0(a) =

⇢
1 if 0 2 [a, b)
0 otherwise.

Remark 5.7. Since µ = ⌫Fµ, for f measurable we can write
R
R
fdµ =

R
R
fd⌫Fµ or simply

R
R
fdµ =

R
R
fdFµ.
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5.4 Abstract and Riemann integrals

The proper Riemann integral is defined for bounded functions over a compact interval [a, b] ⇢

R with �1 < a < b < 1. We start with the following definition.

Definition 5.3. 1. Let [a, b] ⇢ R and a = t0 < t1 < · · · < tk(P )�1 < tk(P ) = b where

k(P ) 2 N. The set P = {ti}k(P )
i=0 is called a partition of [a, b].

2. If P and P 0 are partitions of [a, b] and P ⇢ P 0, we say that P 0 is finer than P or a

refinement of P .

3. The mesh of P is m(P ) := max
1ik(P )

(ti � ti�1).

If f : [a, b] ! R is bounded and P = {tj}k(P )
j=0 is a partition of [a, b], let

mj := inf
tj�1xtj

f(x) and Mj := sup
tj�1xtj

f(x) for j = 1, . . . , k(P ). (5.6)

Then, the lower and upper Darboux sums are given by

SP [f ] :=
k(P )X

j=1

mj(tj � tj�1) and SP [f ] :=
k(P )X

j=1

Mj(tj � tj�1). (5.7)

It is easy to show that if P 0 is finer than P , then

SP [f ]  SP 0 [f ]  SP
0
[f ]  SP [f ].

Furthermore, since f is bounded on [a, b], there exists 0 < C < 1 such that for all x 2 [a, b]

we have that |f(x)|  C. Consequently, for any P , |SP [f ]| 
P

k(P )
j=1 |mj|(tj � tj�1) 

C
P

k(P )
j=1 (tj � tj�1) = C(b� a), and in similar fashion we conclude that |SP [f ]|  C(b� a).

Since lower and upper Darboux sums are bounded collections of real numbers, they have

suprema and infima. Hence, we provide the following definitions.
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Definition 5.4. Let f : [a, b] ! R be bounded. The lower and upper Riemann integrals of f

over [a, b] are defined as
Z

b

a

f := sup
P

SP [f ] and
Z

b

a

f := inf
P

SP [f ], (5.8)

where the supremum and the infimum are taken over all finite partitions of [a, b].

Definition 5.5. A bounded function f : [a, b] ! R is said to be Riemann integrable if its

upper and lower integrals are the same. The common value is denoted by
Z

b

a

f(x)dx :=

Z
b

a

f =

Z
b

a

f

and called the Riemann integral of f over the interval [a, b]. The collection of all Riemann

integrable functions on [a, b] will be denoted R[a, b].

We will show if f is measurable, f 2 R[a, b] =) f 2 L(�) and
R
[a,b] fd� =

R
b

a
f(x)dx.

To this end, we provide some auxiliary definitions and results.

Lemma 5.1. Let P = {t0, · · · , tk(P )} be a partition of [a, b], �P

f
(x) :=

P
k(P )
i=1 miI[ti�1,ti)

and ⌃P

f
(x) :=

P
k(P )
i=1 MiI[ti�1,ti). Then, if P1 ⇢ P2 ⇢ · · · the sequences {�Pj

f
(x)}j2N and

{⌃Pj

f
(x)}j2N are respectively monotonically increasing and decreasing in [a, b). Furthermore,

for all x 2 [a, b), �P

f
(x)  f(x)  ⌃P

f
(x).

Proof. First, we note that [a, b) =
S

k(P )
i=1 [ti�1, ti). Consider P 0 = P [ {t} and, without loss

of generality, assume t 2 [t0, t1). Then,

�P
0

f
(x) :=

k(P )X

i=2

miI[ti�1,ti) + inf
t0x<t

f(x)I[t0,t) + inf
tx<t1

f(x)I[t,t1).

Since m1  inf
t0x<t1

f(x) = min

⇢
inf

t0x<t

f(x), inf
tx<t1

f(x)

�
,

�P
0

f
(x) �

k(P )X

i=2

miI[ti�1,ti) +m1(I[t0,t) + I[t,t1)) =
k(P )X

i=2

miI[ti�1,ti) +m1(I[t0,t)[[t,t1)) = �P

f
(x).
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Similarly, noting that M1 � sup
t0x<t1

f(x) = max

⇢
sup

t0x<t

f(x), sup
tx<t1

f(x)

�
, we have ⌃P

0
f
(x) 

⌃P

f
(x). Hence, associated with partitions P1 ⇢ P2 ⇢ · · · there exist increasing and decreasing

monotone sequences of simple functions given by {�Pj

f
(x)}j2N and {⌃Pj

f
(x)}j2N. Note that

by definition, if x 2 [a, b)c, �Pj

f
(x) = ⌃

Pj

f
(x) = 0.

Furthermore, since mi  f(x)  Mi for any x 2 [ti�1, ti) we have that for any P and for

all x 2 R

I[ti�1,ti)(x)mi  f(x)I[ti�1,ti)(x)  MiI[ti�1,ti)(x).

Note that if x /2 [ti�1, ti), I[ti�1,ti)(x) = 0 and both inequalities hold with equality. Hence,

we have

�P

f
(x)  f(x)

k(P )X

i=1

I[ti�1,ti)  ⌃P

f
(x), for all x 2 R. (5.9)

But since {[ti�1, ti)}k(P )
i=1 is a collection of disjoint sets,

P
k(P )
i=1 I[ti�1,ti) = 1 if x 2 [a, b), and

P
k(P )
i=1 I[ti�1,ti) = 0 if x 2 [a, b)c. Thus,

�P

f
(x)  f(x)  ⌃P

f
(x) for all x 2 [a, b),

and all members of the inequalities are zero if x 2 [a, b)c.⌅

Remark 5.8. 1. We note that

|�P

f
(x)| 

k(P )X

i=1

|mi|I[ti�1,ti) =

⇢
|mi|, if x 2 [ti�1, ti) for some i
0, if x 2 [a, b)c

,

and consequently |�P

f
(x)|  C. In similar fashion, we have that |⌃P

f
(x)|  C. Since,

bounded increasing (decreasing) sequences converge do their supremum (infimum), for

P1 ⇢ P2 ⇢ · · · we put

�f (x) := lim
i!1

�Pi
f
(x) = sup

i2N

�Pi
f
(x) and ⌃f (x) := lim

i!1

⌃Pi
f
(x) = inf

i2N
⌃Pi

f
(x).

2. Since [ti�1, ti) is a measurable set for any i, i.e., [ti�1, ti) 2 BR, both �P

f
and ⌃P

f
are

measurable functions for any P . In addition,
Z

[a,b)

�P

f
d� =

Z

R

k(P )X

i=1

miI[ti�1,ti)I[a,b)d� =
k(P )X

i=1

mi

Z

R

I[ti�1,ti)d� =
k(P )X

i=1

mi(ti�ti�1) = SP [f ].
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Similarly,
R
[a,b) ⌃

P

f
d� = SP [f ].

Theorem 5.16. Let f be measurable and f 2 R[a, b]. Then, f 2 L and
R
[a,b] fd� =

R
b

a
f(x)dx.

Proof. Since f 2 R[a, b], there exists P1 ⇢ P2 ⇢ · · · such that

Z
b

a

f := sup{SPi [f ]}i2N = lim
i!1

SPi [f ] = lim
i!1

SPi [f ] = inf{SPi [f ]}i2N :=

Z
b

a

f.

Now, from Lemma 5.1 and Remark 5.8.1,

�f (x) := lim
i!1

�Pi
f
(x)  f(x)  lim

i!1

⌃Pi
f
(x) := ⌃f (x).

By Lebesgue’s monotone convergence theorem, given that sup
i2N

R
�Pi
f
d� = sup{SPi [f ]}i2N =

R
b

a
f < 1 and from Remark 5.8, we have

Z
b

a

f = sup
i2N

Z
�Pi
f
d� =

Z
sup
i2N

�Pi
f
d� =

Z
�fd�. (5.10)

Following the same argument, we have
Z

b

a

f =

Z
⌃fd�. (5.11)

By Riemann integrability of f and (5.10) and (5.11), we have that
R
�fd� =

R
⌃fd�. Con-

sequently, Z
(⌃f � �f )d� = 0.

Now, note ⌃f � �f � 0, hence by Theorem 5.3.2, ⌃f = �f �-almost everywhere. Given that

{x : f(x) 6= ⌃f (x)} [ {x : f(x) 6= �f (x)} ⇢ {x : �f (x) < ⌃f (x)} 2 N�

and that f , �f and ⌃f are measurable, {x : f(x) 6= ⌃f (x)}, {x : f(x) 6= �f (x)} 2 B. Hence,

we have that f = �f = ⌃f (x) almost everywhere, and since �f (and ⌃f ) is integrable so is

f . Furthermore, by Remark 5.2.2
R
fd� =

R
�fd� =

R
b

a
f(x)dx.⌅
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An extension of the proper Riemann integral to intervals of the form [a,1) for a 2 R

is called the improper Riemann integral. As we will verify later, there are functions that

are improperly Riemann integrable but are not Lebesgue integrable. Hence, although the

Lebesgue integral extends proper Riemann integration, it does not include improper Riemann

integration.

Definition 5.6. If f 2 R[a, b] for all b 2 (a,1) and if lim
b!1

R
b

a
f(x)dx exists and is finite, we

say that f is improperly Riemann integrable on [a,1) and we write f 2 R[a,1). This limit

is denoted by
R

1

a
f(x)dx. Similarly, if f 2 R[a, b] for all a 2 (�1, b] and if lim

a!�1

R
b

a
f(x)dx

exists and is finite, we say that f is improperly Riemann integrable on (�1, b] and we write

f 2 R(�1, b].

Theorem 5.17. Let f : [0,1) ! R be measurable and f 2 R[0, N ] for all N 2 N. Then,

f 2 L () lim
N!1

Z
N

0

|f(x)|dx < 1.

In this case,
R

1

0 f(x)dx =
R
[0,1) fd�.

Proof. ((=) f 2 R[0, N ] =) f+, f� 2 R[0, N ]. Furthermore, since f is measurable, so

are f+, f�. Then, by Theorem 5.16

Z
N

0

f+(x)dx =

Z

[0,N ]

f+d� =

Z
f+I[0,N ]d� and

Z
N

0

f�(x)dx =

Z

[0,N ]

f�d� =

Z
f�I[0,N ]d�.

Since,
R

N

0 |f(x)|dx =
R

N

0 (f+(x) + f�(x))dx =
R

N

0 f+(x)dx+
R

N

0 f�(x)dx, we have that

lim
N!1

Z
N

0

|f(x)|dx = lim
N!1

Z
N

0

f+(x)dx+ lim
N!1

Z
N

0

f�(x)dx < 1,

which implies that lim
N!1

R
N

0 f+(x)dx, lim
N!1

R
N

0 f�(x)dx < 1. Consequently,

lim
N!1

Z
f+I[0,N ]d� < 1 and lim

N!1

Z
f�I[0,N ]d� < 1.
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Now, {f+I[0,N ]}N2N and {f�I[0,N ]}N2N form increasing sequences of integrable function with

lim
N!1

f+I[0,N ] = f+ and lim
N!1

f�I[0,N ] = f�. Then, by the monotone convergence theorem,

lim
N!1

Z
f+I[0,N ]d� =

Z
f+d� and lim

N!1

Z
f�I[0,N ]d� =

Z
f�d�.

Since f+, f� 2 L () f 2 L, the first part of the proof is complete.

( =) ) f 2 R[0, N ] =) |f | 2 R[0, N ], and since f is measurable, by Theorem 5.16
R

N

0 |f(x)|dx =
R
[0,N ] |f |d� =

R
R
|f |I[0,N ]d� =

R
R
(f+I[0,N ]+f�I[0,N ])d�. By Theorem 4.10, for

any a 2 R, f 2 L implies f+, f�, fI[0,a], f+I[0,a], f�I[0,a] 2 L. Hence,

Z
N

0

|f(x)|dx =

Z

R

f+I[0,N ]d�+

Z

R

f�I[0,N ]d�.

By the monotone convergence theorem,

lim
N!1

Z
f+I[0,N ]d� =

Z

[0,1)

f+d� and lim
N!1

Z
f�I[0,N ]d� =

Z

[0,1)

f�d�.

Hence,

lim
N!1

Z
N

0

|f(x)|dx =

Z

[0,1)

f+d�+

Z

[0,1)

f�d� =

Z

[0,1)

|f |d� < 1.

Finally, note that since f 2 R[0, N ] for every N 2 N, f, f+, f� 2 R[0, an] for all an 2 R

such that an " 1. Hence, using the same arguments we have

Z
1

0

f(x)dx := lim
n!1

Z
an

0

f(x)dx =

Z

[0,1)

|f |d� < 1.

⌅

We now give an example of a function that is improperly Riemann integrable, but is not

Lebesgue integrable.

Example 5.2. Let

f(x) =

⇢
sinx

x
for x 2 (0,1)

1 for x = 0
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and for any a > 0 consider
R

a

0 f(x)dx. Note that, for any a > 0 there exists Na 2 N such

that Na⇡  a < (Na +1)⇡ and
R

a

0 f(x)dx =
R

a

Na⇡
f(x)dx+

P
Na�1
n=0

R (n+1)⇡

n⇡
f(x)dx. Hence, by

the triangle inequality, the fact that | sin x| < 1 and given that a < (Na + 1)⇡
�����

Z
a

0

f(x)dx�
Na�1X

n=0

Z (n+1)⇡

n⇡

f(x)dx

����� 
Z

a

Na⇡

|f(x)|dx 
Z

a

Na⇡

1

|x| |dx  1

Na⇡
(a�Na⇡) <

1

Na

.

Hence, as Na ! 1 as a ! 1 we can write lim
a!1

R
a

0 f(x)dx = lim
Na!1

P
Na�1
n=0 an where an =

R (n+1)⇡

n⇡
f(x)dx. Letting x = n⇡ + y and changing variables in integration, we have an =

R
⇡

0
sin(n⇡+y)

i⇡+y
dy. Note that if n is even sin(n⇡+y)

i⇡+y
= sin(y)

i⇡+y
and if n is odd sin(n⇡+y)

i⇡+y
= � sin(y)

i⇡+y
.

Thus,

sin(n⇡ + y)

i⇡ + y
= (�1)n

sin(y)

i⇡ + y
, and an = (�1)n

Z
⇡

0

sin y

n⇡ + y
dy for n = 0, 1, · · · , N � 1.

Then, |an| =
R

⇡

0
sin y

n⇡+y
dy 

R
⇡

0
sin y

ny+y
dy = 1

n+1

R
⇡

0
sin y

y
dy. Also, since n < n+ 1,

|an| � |an=1| :=
Z

⇡

0

sin y

(n+ 1)⇡ + y
dy �

Z
⇡

0

sin y

(n+ 1)⇡ + ⇡
dy =

1

(2 + n)⇡

Z
⇡

0

sin ydy =
2

(2 + n)⇡
.

Note that sin y, y ! 0 as y # 0. By L’Hôpital’s rule, lim
y#0

sin y

y
= lim

y#0
cos y = 1. Hence, f(x) is

continuous on [0, ⇡], and consequently f 2 R[0, ⇡]. Then, setting C =
R

⇡

0 sin ydy, we have

2

⇡

1

2 + n
 |an+1|  |an| 

1

n+ 1
C.

Now,
P

Na�1
n=0 an =

P
Na�1
n=0 (�1)n

R
⇡

0
sin y

n⇡+y
dy =

P
Na�1
n=0 (�1)n|an|. Since |an| > 0,

P
1

n=0(�1)n|an|

is called an alternating series. This is a convergent series if |an| is decreasing and |an|
n!1

= 0.2.

Hence, lim
Na!1

P
Na�1
n=0 an is finite and we can write

R
1

0
sin y

y
dy = C < 1, establishing the im-

proper integrability of f(x) over [0,1).

Now, Z

[0,a]

|f |d� =
Na�1X

n=0

Z

[n⇡,(n+1)⇡]

����
sin y

y

���� d�+

Z

[Na⇡,a]

����
sin y

y

���� d�.

2
See Leibniz convergence test (Apostol, 1974, p. 188).
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As above,
Na�1X

n=0

Z

[n⇡,(n+1)⇡]

����
sin y

y

���� d� =
Na�1X

n=0

Z
⇡

0

sin y

n⇡ + y
dy �

Na�1X

n=0

2

⇡

✓
1

2 + n

◆
,

which diverges. Hence, the Lebesgue integral does not exist.

5.5 Exercises

1. Prove Theorem 4.2.

2. Prove Theorem 4.10.

3. Use Markov’s inequality to prove the following for a > 0 and g : (0,1) ! (0,1) that

is increasing:

P (|X(!)| � a)  1

g(a)

Z
g(|X|)dP

4. Let X be a random variable defined in the probability space (⌦,F , P ) with E(X2) < 1.

Consider a function f : R ! R. What restrictions are needed on f to guarantee that

f(X) is a random variable with E(f(X)2) < 1?

5. Let X : (⌦,F , P ) ! (R,B) be a random variable. Show that if V (X) := E ((X � E(X)))2 =

0 then X is a constant with probability 1.

6. Consider the following statement:f is continuous almost everywhere if, and only if, it

is almost everywhere equal to an everywhere continuous function. Is this true or false?

Explain, with precise mathematical arguments.

7. Adapt the proof of Lebesgue’s Dominated Convergence Theorem in your notes to show

that any sequence {fn}n2N of measurable functions such that limn!1 fn(x) = f(x)

and |fn|  g for some g with gp nonnegative and integrable satisfies

lim
n!1

Z
|fn � f |pdµ = 0.
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8. Let � be the one-dimensional Lebesgue measure for the Borel sets of R. Show that for

every integrable function f , the function

g(x) =

Z

(0,x)

f(t)d�, for x > 0

is continuous.

9. Show that if X is a random variable with E(|X|p) < 1 then |X| is almost everywhere

real valued.

10. Suppose X : (⌦,F , P ) ! (R,B) is a random variable with E(|X|) < 1. Let N 2 F

be such that P (N) = 0 and define

Y (!) =

⇢
X(!) if ! /2 N
c if ! 2 N

,

where c 2 R. Is Y integrable? Is E(X) = E(Y )?
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