Chapter 7

Convergence of random variables

7.1 Convergence almost surely and in probability

Since random variables are measurable functions from a probability space (Ω, \mathcal{F}, P) to $(\mathbb{R}, \mathcal{B})$, i.e., $X : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$, the most natural way to define convergence of a sequence ${X_n}_{n \in \mathbb{N}}$ is pointwise. In this case, we say that the sequence X_n converges to *X* for some $\omega \in \Omega$ if

$$
\lim_{n \to \infty} X_n(\omega) = X(\omega).
$$

That $X(\omega)$ is a random variable follows from Theorem [3.6.](#page-0-0) If the limit holds for all $\omega \in \Omega$ we say that X_n converges to X on Ω and write $X_n \to X$ on Ω . A weaker convergence concept requires

$$
P\left(\{\omega: \lim_{n\to\infty}X_n(\omega)=X(\omega)\}\right)=1.
$$

Note that $\{\omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\}\$ must be an event $(\neq \Omega)$ for the statement to make sense. In this case we say that X_n converges to X almost surely (or almost everywhere) and we write $X_n \stackrel{as}{\to} X$ (or $X_n \stackrel{ae}{\to} X$). Alternatively, we can require the the existence of a set $N \in \mathcal{F}$ with $P(N) = 0$ where if $\omega \in N^c$

$$
\lim_{n \to \infty} X_n(\omega) = X(\omega).
$$

Note that since *N* is an event, N^c is an event and $P(N^c) = 1$ since $P(N) = 0$ and $P(\Omega) = 1$. Hence, we give the following definition.

Definition 7.1. *(Convergence as)* Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables defined on the probability space (Ω, \mathcal{F}, P) . Then, if there exists $N \in \mathcal{F}$ with $P(N) = 0$ such that $\lim_{n\to\infty} X_n(\omega)$ exists for all $\omega \in N^c$, we denote this limit by $X(\omega)$ and say that $\lim_{n\to\infty} X_n(\omega) =$ $X(\omega)$ almost surely (as) and write $X_n \stackrel{as}{\to} X$.

The limit statement in the definition is equivalent to stating that for all $\epsilon > 0$ there exists $N(\epsilon) \in \mathbb{N}$ such that for all $n \geq N(\epsilon)$,

$$
P(\{\omega: |X_n(\omega) - X(\omega)| > \epsilon\}) = 0.
$$

Letting $E_n(\epsilon) = {\omega : |X_n(\omega) - X(\omega)| > \epsilon}$, we see that

$$
P\left(\bigcup_{j\geq n} E_j(\epsilon)\right) \leq \sum_{j\geq n} P\left(E_j(\epsilon)\right) \text{ by sub-additivity of } P
$$

$$
= 0 \text{ since } P(E_j(\epsilon)) = 0 \text{ for } j \geq n.
$$

Recall that $\bigcap_{n=1}^{\infty} \bigcup_{j \geq n} E_j(\epsilon) = \limsup_{n \to \infty} E_n(\epsilon)$, and

$$
P\left(\limsup_{n\to\infty} E_n(\epsilon)\right) = \lim_{n\to\infty} P\left(\bigcup_{j\geq n} E_j(\epsilon)\right)
$$
 by continuity of P
= 0.

Hence, $X_n \stackrel{as}{\rightarrow} X$ is often stated as *P* $\sqrt{2}$ lim sup $\limsup_{n \to \infty} {\{\omega : |X_n(\omega) - X(\omega)| > \epsilon\}}$ ◆ $= 0$ for all $\epsilon > 0$.

What follows is an example of a sequence of random variables that converges to 0 *as*.

Example 7.1. *Let* $(\Omega = [0, 1], \mathcal{B}_{[0,1]}, \lambda)$ *where* λ *is Lebesgue measure.*

$$
X_n(\omega) = \begin{cases} n & \text{if } 0 \le \omega \le 1/n \\ 0 & \text{if } 1/n < \omega \le 1 \end{cases}
$$

Let $N = \{0\}$ *and note that* $\lambda(N) = 0$ *. If* $\omega \in N^c$ *then* $X_n(\omega) \to 0$ *as* $n \to \infty$ *, but* $X_n(\omega) \to 0$ *everywhere on* Ω *since at* $\omega = 0$ *,* $X_n(\omega) \to \infty$ *.*

An even less demanding convergence concept is that of convergence in probability (convergence *ip* or convergence in measure *im*), which is given in the following definition.

Definition 7.2. Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables and X be a random variable *defined in the same probability space* (Ω, \mathcal{F}, P) *. We say that* $X_n \stackrel{p}{\to} X$ *if for all* $\epsilon > 0$

$$
\lim_{n \to \infty} P(\{\omega : |X_n(\omega) - X(\omega)| > \epsilon\}) = 0.
$$

Alternatively, we can state that for all $\epsilon > 0$ and $\delta > 0$ there exists $N(\epsilon, \delta) \in \mathbb{N}$ such that for all $n \ge N(\epsilon, \delta)$, $P(\{\omega : |X_n(\omega) - X(\omega)| > \epsilon\}) < \delta$.

Theorem 7.1. Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables and X be a random variable *defined in the same probability space* (Ω, \mathcal{F}, P) *. Then,* $X_n \stackrel{as}{\to} X \implies X_n \stackrel{p}{\to} X$ *.*

Proof. Let $E_n(\epsilon) = {\omega : |X_n(\omega) - X(\omega)| > \epsilon}$ for any $\epsilon > 0$. $X_n \stackrel{as}{\to} X$ implies that there exists a natural number $N(\epsilon)$ such that for all $n \geq N(\epsilon)$ we have $P(E_n(\epsilon)) = 0$. Then, from the comments following Definition [7.1](#page-1-0)

$$
P\left(\limsup_{n\to\infty} E_n(\epsilon)\right) = 0 = P\left(\lim_{n\to\infty} \cup_{m=n}^{\infty} E_m(\epsilon)\right)
$$

=
$$
\lim_{n\to\infty} P(\cup_{m=n}^{\infty} E_m(\epsilon))
$$
 by continuity of P

$$
\geq \lim_{n\to\infty} P(E_n(\epsilon)).
$$

Consequently, $\lim_{n\to\infty} P(E_n(\epsilon)) = 0$.

The following theorem, known as the Borel-Cantelli Lemma is the main device used to establish almost sure convergence.

Theorem 7.2. *(Borel-Cantelli Lemma) Let* ${E_n}_{n \in \mathbb{N}}$ *be a sequence of events. If*

$$
\sum_{n=1}^{\infty} P(E_n) < \infty
$$

then P $\sqrt{ }$ lim sup $n\rightarrow\infty$ *Eⁿ* ◆ = 0*.* *Proof.*

◼

$$
P\left(\limsup_{n\to\infty} E_n\right) = P\left(\lim_{n\to\infty} \cup_{m\ge n} E_m\right)
$$

=
$$
\lim_{n\to\infty} P\left(\cup_{m\ge n} E_m\right)
$$
 by continuity of P

$$
\leq \limsup_{n\to\infty} \sum_{m=n}^{\infty} P(E_m)
$$
 by sub-additivity of P
=
$$
0 \text{ since } \sum_{n=1}^{\infty} P(E_n) < \infty \text{ implies } \sum_{m=n}^{\infty} P(E_m) \to 0 \text{ as } n \to \infty.
$$

Theorem 7.3. Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables and X be a random variable *defined in the same probability space* (Ω, \mathcal{F}, P) *.*

- 1. $X_n \stackrel{p}{\rightarrow} X \iff X_r X_s \stackrel{p}{\rightarrow} 0$ *as n, r, s* $\rightarrow \infty$ *(Cauchy in probability)*
- 2. $X_n \overset{p}{\rightarrow} X \iff$ each subsequence X_{n_k} contains a further subsequence $\{X_{n_{k(i)}}\} \overset{as}{\rightarrow} X$.

Proof. 1. (\implies) $|X_r - X_s| = |X_r - X + X - X_s| \leq |X_r - X| + |X - X_s|$. For all $\epsilon > 0$, $\{\omega: |X_r - X_s| > \epsilon\} \subset \{\omega: |X_r - X| + |X - X_s| > \epsilon\} \subset \{\omega: |X_r - X| > \epsilon/2\} \cup \{\omega:$ $|X_s - X| > \epsilon/2$. Consequently,

$$
P(\{\omega : |X_r - X_s| > \epsilon\}) \le P(\{\omega : |X_r - X| > \epsilon/2\}) + P(\{\omega : |X_s - X| > \epsilon/2\}).\tag{7.1}
$$

Taking limits on both sides of the inequality as $r, s \to \infty$ and given that $X_n \stackrel{p}{\to} X$ we have that $P({\omega : |X_r - X_s| > \epsilon}) \to 0.$ (\iff) Let $\{X_{n(j)}\}_{j\in\mathbb{N}}$ be a subsequence of $\{X_n\}_{n\in\mathbb{N}}$. If $X_{n(j)} \stackrel{as}{\to} X$, then by equation [\(7.1\)](#page-3-0)

$$
P({\{\omega : |X_n - X| > \epsilon\}}) \le P({\{\omega : |X_n - X_{n(j)}| > \epsilon/2\}}) + P({\{\omega : |X_{n(j)} - X| > \epsilon/2\}}).
$$

Using the fact that $\{X_n\}_{n\in\mathbb{N}}$ is Cauchy in probability $P(\{\omega: |X_n - X_{n(j)}| > \epsilon/2\}) \to 0$ as $n, n(j) \to \infty$. Also, since $X_{n(j)} \stackrel{as}{\to} X$ implies $X_{n(j)} \stackrel{p}{\to} X$ and we have that $P(\{\omega :$

 $|X_{n(j)} - X| > \epsilon/2$ } $\rightarrow 0$ as $n(j) \rightarrow \infty$. Thus, it suffice to show that there exists a subsequence $\{X_{n(j)}\}_{j\in\mathbb{N}}$ such that $X_{n(j)} \stackrel{as}{\to} X$. We will construct such sequence.

Let $n(1) = 1$ and define

$$
n(j) = \inf\{N : N > n(j-1), P(\{\omega : |X_r - X_s| > 2^{-j}\}) < 2^{-j}, \text{ for all } r, s \ge N\}.
$$

It is possible to define $\{n(j)\}$ because of the assumption that $\{X_n\}_{n\in\mathbb{N}}$ is Cauchy in probability. Also, by construction, $n(1) < n(2) < \cdots$ so that $n(j) \to \infty$. Consequently,

$$
P(\{\omega : |X_{n(j)+1} - X_{n(j)}| > 2^{-j}\}) < 2^{-j}
$$

and $\sum_{j=1}^{\infty} P(\{\omega : |X_{n(j)+1} - X_{n(j)}| > 2^{-j}\}) < \sum_{j=1}^{\infty} 2^{-j} < \infty$. By the Borel-Cantelli Lemma

$$
P\left(\limsup_{j\to\infty}\{\omega: |X_{n(j)+1} - X_{n(j)}| > 2^{-j}\}\right) = 0
$$

or

$$
P\left(\liminf_{j\to\infty}\{\omega:|X_{n(j)+1}-X_{n(j)}|\leq 2^{-j}\}\right)=1.
$$

Now, $\omega \in \liminf_{j \to \infty} {\{\omega : |X_{n(j)+1} - X_{n(j)}| \leq 2^{-j}\}\}$ means that $\omega \in {\{\omega : |X_{n(j)+1} - X_{n(j)}| \leq 2^{-j}\}\}$ 2^{-j} } for all *j* sufficiently large ($j \geq J$). Hence,

$$
\sum_{j\geq J} |X_{n(j)+1}(\omega) - X_{n(j)}(\omega)| \leq \sum_{j\geq J} 2^{-j} = 2 \cdot 2^{-J}
$$

Hence, for all $K > J$, $|X_{n(K)} - X_{n(J)}| \le \sum_{j \ge J} |X_{n(j)+1} - X_{n(j)}| \le 2 \cdot 2^{-J}$. Thus, as $J \to \infty$, $|X_{n(K)} - X_{n(J)}| \to 0$ establishing that $\{X_{n(j)}\}$ is a Cauchy sequence of real numbers with probability 1. Since $\mathbb R$ is complete, i.e., every Cauchy sequence in $\mathbb R$ has a limit in $\mathbb R$, $\lim_{j\to\infty} X_{n_j}(\omega)$ exists with probability 1. Hence, $X_{n_j}(\omega) \to X(\omega) = \lim_{j\to\infty} X_{n_j}(\omega)$ as. 2. (=)) Choose a subsequence *{Xn*(*j*)*}*. Then, since *Xⁿ p* ! *X*, *Xn*(*j*) *p* ! *X* and *Xn*(*j*) is Cauchy in probability by part 1. Hence, there exists $X_{n(k(i))} \stackrel{as}{\rightarrow} X$.

(\Leftarrow) Suppose not. If $X_n \not\stackrel{p}{\to} X$ then there exists $X_{n(j)}$ and $\epsilon, \delta > 0$ such that

$$
P(\{\omega : |X_{n(j)} - X| > \epsilon\}) \ge \delta. \tag{7.2}
$$

But every $X_{n(j)}$ has a subsequence $X_{n(j(i))} \stackrel{as}{\to} X$ and hence $X_{n(j(i))} \stackrel{p}{\to} X$, which contradicts equation (7.2) .

The following theorem is often called Slutsky's Theorem. It shows that limits in probability and continuous functions can be interchanged.

Theorem 7.4. *(Slutsky's Theorem) If Xn, X are random elements defined on the same probability space and* $X_n \stackrel{p}{\to} X$, $g: \mathbb{R}^K \to \mathbb{R}^L$ *continuous, then* $g(X_n) \stackrel{p}{\to} g(X)$ *.*

Proof. Recall that *g* is continuous at *X* if and only if for all $\epsilon > 0$ there exists $\delta_{\epsilon,X} > 0$ such that whenever $|X_{n,k} - X_k| < \delta_{\epsilon,X}$ for $k = 1, ..., K$, $|g_l(X_n) - g_l(X)| < \epsilon$ for $l = 1, ..., L$. Let $A_{n,k} = \{ \omega : |X_{n,k} - X_k| < \delta_{\epsilon,X} \}$ and $A_n = \{ \omega : |g_l(X_n) - g_l(X)| < \epsilon \}$ for all l. Note that by continuity $\bigcap_{k=1}^{K} A_{n,k} \subset A_n$, which implies that $P(\bigcap_{k=1}^{K} A_{n,k}) \leq P(A_n)$. Thus, $1 - P(A_n) \leq 1 - P(\bigcap_{k=1}^K A_{n,k})$ which implies that $P(A_n^c) \leq P((\bigcap_{k=1}^K A_{n,k})^c) = P(\bigcup_{k=1}^K A_{n,k}^c) \leq$ $\sum_{k=1}^{K} P(A_{n,k}^c)$. Since $X_n \stackrel{p}{\to} X$, $P(A_{n,k}^c) \to 0$ and therefore $P(A_n^c) \to 0$ or $P(A_n) \to 1$.

Theorem 7.5. Let X_n , X be defined in the same probability space such that $X_n \stackrel{p}{\rightarrow} X$. *If there exist a random variable* $0 \le Y \in \mathcal{L}$ *such that* $|X_n(\omega)| \le Y(\omega)$ *for all n almost everywhere, then* $E(X_n)$, $E(X) < \infty$, and $E(X_n) \to E(X)$.

Proof. First, note that if $Y \in \mathcal{L}$, $E|X_n| < \infty$ and $X_n \in \mathcal{L}$. Also, $|X| = |X - X_n + X_n| \le$ $|X_n| + |X_n - X| \le Y + |X_n - X|$ and $|X| - Y \le |X_n - X|$. Consequently, for any $\epsilon > 0$ $\{\omega : |X(\omega)| - Y(\omega) > \epsilon\} \subset \{\omega : |X_n - X| > \epsilon\}$ and

$$
P(\{\omega: |X(\omega)| - Y(\omega) > \epsilon\}) \le P(\{\omega: |X_n - X| > \epsilon\}).
$$

Taking limits as $n \to \infty$, and using the fact that $X_n \stackrel{p}{\to} X$ we obtain $P(\{\omega : |X(\omega)| - Y(\omega) >$ $\{\epsilon\}\}=0.$ Since this is true for any $\epsilon>0$ we have $P(\{\omega: |X(\omega)| > Y(\omega)\})=0.$ Consequently $|X|$ *< Y* almost everywhere and $E(X)$ *<* ∞ .

Since $|E(X_n) - E(X)| \leq \int_{\Omega} |X_n - X| dP$, we need only show that $\int_{\Omega} |X_n - X| dP \to 0$ as $n \to \infty$. If $Z_n = X_n - X$, then $|Z_n| \leq |X_n| + |X| < 2Y$ almost everywhere. In addition, for $\epsilon > 0$,

$$
E|Z_n| = E\left(|Z_n|I_{\{\omega:|Z_n|\leq\epsilon\}}\right) + E\left(|Z_n|I_{\{\omega:|Z_n|>\epsilon\}}\right) \leq \epsilon + E\left(|Z_n|I_{\{\omega:|Z_n|>\epsilon\}}\right) \leq \epsilon + 2E\left(YI_{\{\omega:|Z_n|>\epsilon\}}\right).
$$

Since $X_n \stackrel{p}{\to} X$, $P(\{\omega : |Z_n| > \epsilon\}) \to 0$ as $n \to \infty$. Furthermore, since $E(Y) < \infty$, by Theorem $\overline{4.9}$, $E(YI_{\{\omega:|Z_n|>\epsilon\}})<\epsilon$ and $E|Z_n|<3\epsilon$, completing the proof.

The requirement that $|X_n(\omega)| \le Y(\omega)$ for all *n* almost everywhere may be relaxed. A weaker requirement is given by the following definition.

Definition 7.3. A sequence $\{X_n\}_{n\in\mathbb{N}}$ of random variables defined on (Ω, \mathcal{F}, P) is said to be *uniformly integrable (u.i.) if for every* $\epsilon > 0$ *there exists* $B_{\epsilon} \in [0, \infty)$ *such that*

$$
\sup_{n\in\mathbb{N}}E\left(|X_n|I_{\{\omega:|X_n(\omega)|\geq B_\epsilon\}}\right)<\epsilon.
$$

Uniform integrability of the sequence $\{X_n\}_{n\in\mathbb{N}}$ is a weaker condition compared to the dominating condition in Theorem $|7.5|$. Note that if $|X_n(\omega)| \le Y(\omega)$ for all *n* almost everywhere on Ω and $E(Y) < \infty$, then

$$
|X_n(\omega)|I_{\{\omega:|X_n(\omega)|\geq B_{\epsilon}\}}\leq YI_{\{\omega:|X_n(\omega)|\geq B_{\epsilon}\}}\leq YI_{\{\omega:|Y(\omega)|\geq B_{\epsilon}\}}.
$$

Hence, sup $n \in \mathbb{N}$ $E\left(|X_n(\omega)|I_{\{\omega:|X_n(\omega)|\geq B_{\epsilon}\}}\right)\leq E\left(YI_{\{\omega:|Y(\omega)|\geq B_{\epsilon}\}}\right)$. But since $E(|Y|)<\infty$, for any $\epsilon > 0$ there exists $B_{\epsilon} < \infty$, $E\left(YI_{\{\omega:|Y(\omega)|\geq B_{\epsilon}\}}\right) < \epsilon$ and $\{X_n\}_{n\in\mathbb{N}}$ is u.i.

Theorem 7.6. A sequence $\{X_n\}_{n\in\mathbb{N}}$ of random variables defined on (Ω, \mathcal{F}, P) is uniformly *integrable if, and only if,*

- *1.* sup $\sup_{n \in \mathbb{N}} E|X_n| < \infty,$
- 2. *for all* $\epsilon > 0$ *, there exists* $\delta > 0$ *such that for all n*, $E(|X_n|I_A) < \epsilon$ *for any event A such that* $P(A) < \delta$.

Proof. (\implies) First, let $A_n(B) = {\omega : |X_n(\omega)| \ge B}$ and consider

$$
E(|X_n|) = \int_{\Omega} |X_n| I_{A_n(B)} dP + \int_{\Omega} |X_n| I_{A_n(B)} dP
$$

$$
< \int_{\Omega} |X_n| I_{A_n(B)} dP + B P(A_n^c(B)) \le \int_{\Omega} |X_n| I_{A_n(B)} dP + B.
$$

Hence, sup $\sup_{n \in \mathbb{N}} E(|X_n|) < \sup_{n \in \mathbb{N}}$ $\int_{\Omega} |X_n| I_{A_n(B)} dP + B$, and by uniform integrability of $\{X_n\}_{n \in \mathbb{N}},$ for any $\epsilon > 0$ there exists $B < \infty$ such that $\sup_{n \in \mathbb{N}} E(|X_n|) < \epsilon + B < \infty$.

Second, let $E \in \mathcal{F}$. Then,

$$
E(|X_n|I_E) = E(|X_n|I_{E \cap A_n(B)}) + E(|X_n|I_{E \cap A_n^c(B)}).
$$

But $E(|X_n|I_{E \cap A_n(B)}) \leq E(|X_n|I_{A_n(B)})$ and $E(|X_n|I_{E \cap A_n^c(B)}) \leq b \int_{\Omega} I_{E \cup A_n^c(b)} dP \leq bP(E)$. By uniform integrability of $\{X_n\}_{n\in\mathbb{N}}$, there exists $b > 0$ such that $\sup_{n\in\mathbb{N}} E(|X_n|I_{A_n(b)}) < \epsilon/2$. Furthermore, for any *E* such that $P(E) < \epsilon/2b$, we have $E(|X_n|I_E) < \epsilon$. (\Leftarrow) By Markov's Inequality

$$
P(A_n(b)) < \frac{1}{b} E(|X_n| I_{A_n(b)}) \leq \frac{1}{b} E(|X_n|).
$$

Then, sup $\sup_{n\in\mathbb{N}} P(A_n(b)) \leq \frac{1}{b} \sup_{n\in\mathbb{N}}$ $\sup_{n \in \mathbb{N}} E(|X_n|) < \infty$ by condition 1. Choose, *b* such that $\frac{1}{b} \sup_{n \in \mathbb{N}}$ $\sup_{n\in\mathbb{N}} E(|X_n|) <$ δ , implying that $P(A_n(b)) < \delta$ for all *n*. Then, by condition 2 it follows that $E(|X_n|I_{A_n(b)}) <$ ϵ .

Remark 7.1. *1. The following results follow directly from Theorem [7.3.](#page-3-1)*

 $X_n \stackrel{p}{\to} X$, $Y_n \stackrel{p}{\to} Y \implies X_n + Y_n \stackrel{p}{\to} X + Y$ $X_n \stackrel{p}{\to} X$, $Y_n \stackrel{p}{\to} Y \implies X_n Y_n \stackrel{p}{\to} XY$.

2. If $E(X_n) = \mu_n < \infty$, $V(X_n) = \sigma_n^2 < \infty$. By Markov's Inequality

$$
P(\{\omega: |X_n - \mu_n| \ge \epsilon\}) \le \sigma_n^2/\epsilon^2.
$$

In particular, if $E(X_t) = \mu$ *and* $V(X_t) = \sigma^2$, *letting*

$$
X_n = \frac{1}{n} \sum_{t=1}^n (X_t - \mu),
$$

we have $E(X_n)=0$ *,*

$$
V(X_n) = E(X_n^2) = \frac{1}{n^2} \sum_{t=1}^n E(X_t - \mu)^2 + \frac{1}{n^2} \sum_{t \neq \tau} E(X_t - \mu)(X_t - \mu).
$$

If X_t , X_τ are independent (uncorrelated), $E(X_n^2) = \sigma^2/n$. Then,

$$
P(\{\omega : |X_n| \ge \epsilon\}) \le \frac{\sigma^2}{n\epsilon^2}.
$$

Taking limits on both sides,

$$
\lim_{n \to \infty} P(\{\omega : |X_n| \ge \epsilon\}) = 0.
$$

7.2 Convergence in *^L^p*

Definition 7.4. Let $X, Y \in \mathcal{L}^p(\Omega, \mathcal{F}, P)$ and define $d_p(X, Y) := ||X - Y||_p = (E(|X - Y|^p))^{1/p}$ for $p \in [1,\infty)$. We say that a sequence $\{X_n\}_{n\in\mathbb{N}} \in \mathcal{L}^p(\Omega,\mathcal{F},P)$ converges to $X \in \mathcal{L}^p(\Omega,\mathcal{F},P)$ *in* \mathcal{L}^p *, denoted by* $X_n \xrightarrow{\mathcal{L}^p} X$ *, if* $d_p(X_n, X) \to 0$ *as* $n \to \infty$ *.*

The limit *X* in Definition [7.4](#page-8-0) is not unique, only almost everywhere unique. If *X* and *Y* are such that $X_n \stackrel{\mathcal{L}^p}{\rightarrow} X$ and $X_n \stackrel{\mathcal{L}^p}{\rightarrow} Y$, then by the Minkowski-Riez Inequality

$$
||X - Y||_p = ||X - X_n + X_n - Y||_p \le ||X - X_n||_p + ||X_n - Y||_p.
$$

Taking limits as $n \to \infty$ we have $||X - Y||_p = 0$, which implies that X and Y are equal almost everywhere. We note that d_p is a (semi) metric on $\mathcal{L}^p(\Omega, \mathcal{F}, P)$, induced by the (semi) norm $||X||_p = (E(|X|^p))^{1/p}$.

A sequence $\{X_n\}_{n\in\mathbb{N}}$ in $\mathcal{L}^p(\Omega,\mathcal{F},P)$ is said to be \mathcal{L}^p -Cauchy if for all $\epsilon > 0$ there exists $N(\epsilon)$ such that for all $n, m \geq N(\epsilon)$ we have $d_p(X_n, X_m) < \epsilon$. Note that if $X_n \stackrel{\mathcal{L}^p}{\rightarrow} X$ we have

$$
||X_n - X_m||_p = ||X_n - X + X - X_m||_p \le ||X_n - X||_p + ||X - X_m||_p.
$$

Hence, as $n, m \to \infty$ we obtain $d_p(X_n, X_m) \to 0$, showing that convergent sequences in \mathcal{L}^p are \mathcal{L}^p -Cauchy. The next theorem shows that every \mathcal{L}^p -Cauchy sequence converges to an element in \mathcal{L}^p , i.e., \mathcal{L}^p is a complete (Banach) space.

Theorem 7.7. *(Riez-Fisher Theorem) The spaces* $\mathcal{L}^p(\Omega, \mathcal{F}, P)$ *for* $p \in [1, \infty)$ *are complete.*

Proof. Consider a \mathcal{L}^p -Cauchy sequence $\{X_n\}_{n\in\mathbb{N}} \subset \mathcal{L}^p(\Omega, \mathcal{F}, P)$. We need to show that this sequence converges to a limit *X* in $\mathcal{L}^p(\Omega, \mathcal{F}, P)$. That is, there exists $X \in \mathcal{L}^p(\Omega, \mathcal{F}, P)$ such that

$$
||X_n - X||_p := \left(\int |X_n - X|^p dP\right)^{1/p} \to 0 \text{ as } n \to \infty.
$$

Since $\{X_n\}_{n\in\mathbb{N}}$ is \mathcal{L}^p -Cauchy, we can find $1 < n(1) < n(2) < \cdots$ such that

$$
||X_{n(k+1)} - X_{n(k)}||_p \le \frac{1}{2^k} \text{ for } k = 1, 2, \cdots
$$
 (7.3)

Now, note that if we set $X_{n(0)} := 0$ we have that $X_{n(k+1)} = \sum_{j=0}^{k} (X_{n(j+1)} - X_{n(j)})$ are the partial sums of the series $\sum_{j=0}^{\infty} (X_{n(j+1)} - X_{n(j)})$. Recall that this series converges absolutely if the monotone sequence $\sum_{j=0}^{k} |X_{n(j+1)} - X_{n(j)}|$ converges, and in this case the series converges, that is, $\sum_{j=0}^{k} (X_{n(j+1)} - X_{n(j)})$ converges.

By Minkowski's Inequality and Beppo-Levi's Theorem

$$
\|\sum_{j=0}^{\infty} |X_{n(j+1)} - X_{n(j)}|\|_{p} \leq \sum_{j=0}^{\infty} \|X_{n(j+1)} - X_{n(j)}\|_{p}
$$

$$
\leq \|X_{n(1)}\|_{p} + \sum_{j=1}^{\infty} \frac{1}{2^{j}} = \|X_{n(1)}\|_{p} + 1 < \infty \text{ since } X_{n(1)} \text{ is in } \mathcal{L}^{p}.
$$

Consequently, $\| \sum_{j=0}^{\infty} |X_{n(j+1)} - X_{n(j)}| \|_{p}^{p} < \infty$ and we have that $(\sum_{j=0}^{\infty} |X_{n(j+1)} - X_{n(j)}|)^{p} <$ ∞ almost surely (almost surely real valued) and $\sum_{j=0}^{\infty} (X_{n(j+1)} - X_{n(j)})$ is almost surely (absolutely) convergent.

Letting $X = \sum_{j=0}^{\infty} (X_{n(j+1)} - X_{n(j)})$ we have that

$$
||X - X_{n(k)}||_p = ||\sum_{j=k}^{\infty} |X_{n(j+1)} - X_{n(j)}||_p
$$

$$
\leq \sum_{j=k}^{\infty} ||X_{n(j+1)} - X_{n(j)}||_p \to 0 \text{ as } k \to \infty.
$$

Finally, since

$$
||X_n - X||_p \le ||X_n - X_{n(k)}||_p + ||X_{n(k)} - X||_p.
$$

and ${X_n}_{n=1,2,\cdots}$ is Cauchy we have the desired result. \blacksquare

A complete inner product space is called a Hilbert space. \mathcal{L}^2 is a Hilbert space but \mathcal{L}^p for $p \neq 2$ is not, because the Parallelogram Law is not satisfied.

Point-wise convergence of a sequence $\{X_n\}_{n\in\mathbb{N}}$ of random variables in $\mathcal{L}^p(\Omega,\mathcal{F},P)$ does not imply convergence in \mathcal{L}^p . That is,

$$
\lim_{n \to \infty} X_n(\omega) = X(\omega) \text{ for all } \omega \in \Omega \implies X_n \stackrel{\mathcal{L}^p}{\to} X.
$$

However, by Lebesgue's Dominated Convergence Theorem, if there exist $0 \le Y \in \mathcal{L}^p(\Omega, \mathcal{F}, P)$ such that $|X_n| \leq Y$ for all *n* and $\lim_{n\to\infty} X_n(\omega) = X(\omega)$ exists almost everywhere, then

$$
|X_n - X|^p \le (|X_n| + |X|)^p \le 2^p Y^p
$$

and $X \in \mathcal{L}_P^p$ and $X_n \stackrel{\mathcal{L}^p}{\rightarrow} X$.

The next theorem shows that convergence in \mathcal{L}_P^p implies convergence in probability.

Theorem 7.8. Let $X, X_n, n = 1, 2, \cdots$ be random variables defined in the same probability space. If $X_n \stackrel{\mathcal{L}^p}{\to} X$, then $X_n \stackrel{p}{\to} X$.

Proof. First, note that if $h : \mathbb{R} \to [0, \infty)$ and $a \geq 0$, we have $h(X) \geq aI_{h(X)\geq a}$. Then, $E(h(X)) \ge aP(h(X) \ge a)$ which implies that $P(h(X) \ge a) \le \frac{E(h(X))}{a}$. Now, choose $h(x) = |x|^p$ and set $x = X_n - X$. Then, $\{\omega : |X_n - X| \ge a\} = \{\omega : |X_n - X|^p \ge a^p\}$ and

$$
P({\{\omega : |X_n - X| \ge a\}}) = P({\{\omega : |X_n - X|^p \ge a^p\}}) \le \frac{E(|X_n - X|^p)}{a^p}.
$$

Taking limits on both sides completes the proof. \blacksquare

Theorem 7.9. *Suppose that* $\{X_n\}_{n\in\mathbb{N}}$ *is a sequence of random variables defined on* (Ω, \mathcal{F}, P) *is such that* $X_n \stackrel{p}{\to} X$ *, where X is defined on the same probability space. Then, the following statements are equivalent,*

- *1.* $\{X_n\}_{n\in\mathbb{N}}$ *is uniformly integrable*
- 2. $E(|X_n|) < \infty$ for all *n*, $E(|X|) < \infty$ and $X_n \stackrel{\mathcal{L}^1}{\rightarrow} X$
- 3. $E(|X_n|) < \infty$ for all *n*, and $E(|X_n|) \to E(|X|) < \infty$.

Proof. ■

7.3 Convergence in distribution

Let $(\mathbb{R}, \mathcal{B}, d)$ be a metric space with $d(x, y) = |x - y|$ for all $x, y \in \mathbb{R}$ and P, P_n for $n \in \mathbb{N}$ be probability measures defined on *B*.

Definition 7.5. *The sequence of probability measures* $\{P_n\}_{n\in\mathbb{N}}$ *converges weakly to the measure* P *, denoted by* $P_n \stackrel{w}{\rightarrow} P$ *if*

$$
\int_{\mathbb{R}} f dP_n \to \int_{\mathbb{R}} f dP \text{ as } n \to \infty
$$

for all $f: \mathbb{R} \to \mathbb{R}$ *that are continuous with* $|f| \leq C < \infty$ *.*

We note that if F_n and F are the distribution functions associated with P_n and P , we can say that

$$
\int_{\mathbb{R}} f dP_n \to \int_{\mathbb{R}} f dP \Longleftrightarrow \int_{\mathbb{R}} f(x) dF_n(x) \to \int_{\mathbb{R}} f(x) dF(x)
$$

and we say that $F_n \stackrel{w}{\to} F$.

Definition 7.6. *The sequence of probability measures* $\{P_n\}_{n\in\mathbb{N}}$ *converges generally to the measure P, denoted by* $P_n \implies P$ *if*

$$
P_n(E) \to P(E) \text{ as } n \to \infty \text{ for all } E \in \mathcal{B} \text{ such that } P(\partial E) = 0,
$$

where $\partial E = \overline{E} \cap \overline{E^c}$ *is the boundary of E and* \overline{E} *is the closure of E.*

Theorem 7.10. *The following convergence statements are equivalent:*

- 1. $P_n \overset{w}{\rightarrow} P$,
- 2. $\limsup P_n(E) \leq P(E)$ *if* $E \in \mathcal{B}$ *is closed,* $n\rightarrow\infty$
- 3. $\liminf_{n \to \infty} P_n(E) \ge P(E)$ if $E \in \mathcal{B}$ is open,

$$
4. \, P_n \Longrightarrow P.
$$

Proof. (1. \implies 2.) Let $x \in \mathbb{R}$ and define $|x - E| = \inf\{|x - y| : y \in E\}$, $E(\varepsilon) = \{x :$ $|x - E| < \varepsilon$ for $\varepsilon > 0$, $f(x) = I_E(x)$,

$$
g(x) = \begin{cases} 1, & \text{if } x \le 0 \\ 1 - x, & \text{if } 0 \le x \le 1 \\ 0, & \text{if } x \ge 1 \end{cases}
$$

and $f_{\varepsilon}(x) = g\left(\frac{1}{\varepsilon}|x - E|\right)$. Note that if $x \in E(\varepsilon)$ then $\frac{1}{\varepsilon}|x - E| < 1$ and $f_{\varepsilon}(x) > 0$. Also, if $\varepsilon \downarrow 0$ then $E(\varepsilon) \downarrow E$. Since *g* is bounded and continuous, so is f_{ε} . Now,

$$
\int_{\mathbb{R}} f dP_n = \int_{\mathbb{R}} I_E P_n = P_n(E) \le \int_{\mathbb{R}} f_{\varepsilon} dP_n. \tag{7.4}
$$

The inequality follows because if $x \in E$, $\varepsilon^{-1}|x - E| = 0$ and $f_{\varepsilon}(x) = g(0) = 1 = I_E(x)$, but if $x \notin E$ then $\varepsilon^{-1}|x - E| > 0$ and $f_{\varepsilon}(x) = g(\varepsilon^{-1}|x - E|) \ge 0 = I_E(x)$. Then, taking limits on both sides of equation (7.4) gives

$$
\limsup_{n \to \infty} P_n(E) \le \limsup_{n \to \infty} \int_{\mathbb{R}} f_{\varepsilon} dP_n = \int_{\mathbb{R}} f_{\varepsilon} dP
$$

where the last equality follows from the fact that f_{ε} is continuous and bounded on R and the assumption that 1) holds. But

$$
\int_{\mathbb{R}} f_{\varepsilon} dP \le \int_{\mathbb{R}} I_{E(\varepsilon)} dP = P(E(\varepsilon)) \tag{7.5}
$$

where the inequality follows from the fact that if $x \in E(\varepsilon)$ then $\varepsilon^{-1}|x - E| < 1$ and consequently $0 < f_{\varepsilon}(x) \leq 1 = I_{E(\varepsilon)}$. If $x \notin E(\varepsilon)$ then $f_{\varepsilon}(x) = 0 = I_{E(\varepsilon)}$. Consequently, combining equations (7.4) and (7.5) we obtain lim sup $\limsup_{n \to \infty} P_n(E) \le P(E(\varepsilon))$. Given that if $\varepsilon \downarrow 0$, $E(\varepsilon) \downarrow E$, by continuity of probability measure we have lim sup $\limsup_{n\to\infty} P_n(E) \leq P(E).$ (2. \implies 3.) If *E* is open, then *E^c* is closed. Thus, from 2) $\limsup_{n\to\infty}$ $P_n(E^c) \leq P(E^c)$. But since $P_n(E^c) = 1 - P_n(E)$ and $P(E^c) = 1 - P(E)$ we have

$$
1+\limsup_{n\to\infty}(-P_n(E))\leq 1-P(E)\Longleftrightarrow 1-\liminf_{n\to\infty}P_n(E)\leq 1-P(E)\Longleftrightarrow \liminf_{n\to\infty}P_n(E)\geq P(E).
$$

It is evident from this argument that $(3. \implies 2)$.

 $(3. \implies 4.)$ The interior of *E*, denoted by $int(E)$, is open and $int(E) = E - \partial E$. Since, 2. and 3. are equivalent and $int(E)$ is open and \overline{E} is closed we have

$$
\limsup_{n \to \infty} P_n(E) \le \limsup_{n \to \infty} P_n(\bar{E}) \le P(\bar{E}), \tag{7.6}
$$

$$
\liminf_{n \to \infty} P_n(E) \ge \liminf_{n \to \infty} P_n(int(E)) \ge P(int(E)). \tag{7.7}
$$

But if $P(\partial E) = 0$ then $P(\overline{E}) = P(int(E)) = P(E)$ and $P_n(E) \rightarrow P(E)$ whenever $P(\partial E) =$ 0, i.e., $P_n \Longrightarrow P$.

 $(4. \implies 1.)$ Let *f* be bounded and continuous with $|f| < C$ and define

$$
D = \{d \in \mathbb{R} : P(\{x : f(x) = d\}) > 0\}.
$$

Now, choose $\{y_i\}_{i=0}^k$ such that $y_0 = -C < y_1 < \cdots < y_k = C$. $d \in D$ implies $P(f^{-1}(\{d\})) >$ 0. Since f is a function, for any two $d \neq d'$ such that $d, d' \in D$ we have $f^{-1}(\lbrace d \rbrace) \cap f^{-1}(\lbrace d' \rbrace) =$ \emptyset , and since $P \leq 1$, there can be at most countably many elements in *D*. Suppose $\{y_i\}_{i=0}^k \nsubseteq D$ and $B_i = \{x \in \mathbb{R} : y_i \le f(x) < y_{i+1}\}\$ for $i = 0, 1, \dots, k-1$. Then,

$$
\partial B_i = \{x \in \mathbb{R} : y_i = f(x)\} \cup \{x \in \mathbb{R} : y_{i+1} = f(x)\} = f^{-1}(y_i) \cup f^{-1}(y_{i+1})
$$

and $P(\partial B_i) = 0$ since $\{y_i\}_{i=0}^k \nsubseteq D$. Since, $int(B_i) = B_i - \partial B_i$ we have that $P(B_i) =$ $P(int(B_i))$ and by 4) $P_n(B_i) - P(B_i) \rightarrow 0$. Consequently,

$$
\sum_{i=0}^{k-1} y_i P_n(B_i) \to \sum_{i=0}^{k-1} y_i P(B_i).
$$
 (7.8)

 $\overline{}$ $\mathbf{\mathbf{I}}$ $\mathbf{\mathbf{I}}$ $\mathbf{\mathbf{I}}$ I

Now,

$$
\left| \int_{\mathbb{R}} f dP_n - \int_{\mathbb{R}} f dP \right| \le \left| \int_{\mathbb{R}} f dP_n - \sum_{i=0}^{k-1} y_i P_n(B_i) \right| + \left| \sum_{i=0}^{k-1} y_i P_n(B_i) - \sum_{i=0}^{k-1} y_i P(B_i) \right|
$$

+
$$
\left| \sum_{i=0}^{k-1} y_i P(B_i) - \int_{\mathbb{R}} f dP \right|
$$

$$
\le 2 \max_{0 \le i \le k-1} (y_{i+1} - y_i) + \left| \sum_{i=0}^{k-1} y_i P_n(B_i) - \sum_{i=0}^{k-1} y_i P(B_i) \right|.
$$

By equation (7.8) and the fact that $\{y_i\}_{i=0}^k$ are arbitrary we have the result. \blacksquare

Recall that with a random variable $X : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$ we can associate a distribution function $F_X(x) : \mathbb{R} \to [0,1]$ with the following properties:

- (i) *F^X* is non-decreasing,
- (ii) F_X is right-continuous,
- (iii) $\lim_{x \to \infty} F_X(x) = 1$, $\lim_{x \to -\infty} F_X(x) = 0$.

Let $C(F_X) = \{x \in \mathbb{R} : F_X \text{ is continuous at } x\}$ and note that $C(F_X)^c$ is a countable set.

Definition 7.7. Let F_n , F_X be distribution functions associated with random variables X_n , X *with* $n \in \mathbb{N}$ *. We say that* X_n *converges in distribution to* X *and write* $X_n \stackrel{d}{\to} X$ *if*

$$
F_n(x) \to F_X(x)
$$
, for all $x \in C(F_X)$.

In this case, we write $F_n \Longrightarrow F_X$ *and say that* F_n *converges generally to* F_X *.*

Theorem 7.11. *The following statements are equivalent:*

- 1. $P_n \overset{w}{\rightarrow} P$, 2. $P_n \Longrightarrow P$, 3. $F_n \stackrel{w}{\to} F$,
- $4.$ $F_n \Longrightarrow F.$

Proof. We have proved that 1. and 2. are equivalent. In addition, by construction 1. and 3. are equivalent, so we need only show that 2 and 4 are equivalent.

 $(2. \implies 4.)$ Since $P_n \Longrightarrow P$ we have, in particular, that

$$
P_n((-\infty, x]) \to P((-\infty, x])
$$

for all $x \in \mathbb{R}$ such that $P({x}) = 0$. But this means that $F_n \Longrightarrow F$.

 $(4. \implies 2.)$ We need to prove that $P_n \implies P$, but since by Theorem [7.10](#page-12-1) we have that $P_n \Longrightarrow P$ is equivalent to $\liminf_{n\to\infty} P_n(E) \ge P(E)$ if $E \in \mathcal{B}$ is open, this is what we will establish. Since *E* is an open set in R it can be written as $E = \bigcup_{k=1}^{\infty} I_k$ where $I_k = (a_k, b_k)$ are component intervals (disjoint). Let $\epsilon > 0$ and for each \mathcal{I}_k choose $\mathcal{I}'_k = (a'_k, b'_k]$ a sub-interval such that a'_k, b'_k are points of continuity of *F* and $P(\mathcal{I}_k) \leq P(\mathcal{I}'_k) + 2^{-k} \epsilon$. The existence of these intervals is assured by the fact that F has at most countable many discontinuities. Now,

$$
\liminf_{n \to \infty} P_n(E) = \liminf_{n \to \infty} \sum_{k=1}^{\infty} P_n(\mathcal{I}_k)
$$
\n
$$
\geq \sum_{k=1}^{\infty} \liminf_{n \to \infty} P_n(\mathcal{I}_k) \text{ by Fatou's Lemma}
$$
\n
$$
\geq \sum_{k=1}^{\infty} \liminf_{n \to \infty} P_n(\mathcal{I}'_k).
$$

But by 4. we have that $P_n(\mathcal{I}'_k) = F_n(b'_k) - F_n(a'_k) \rightarrow F(b'_k) - F(a'_k) = P(\mathcal{I}'_k)$. Hence, lim inf $\liminf_{n\to\infty} P_n(E) \ge \sum_{k=1}^{\infty}$ $P(\mathcal{I}'_k) \geq \sum_{k=1}^{\infty}$ *k*=1 $(P(\mathcal{I}_k) - 2^{-k}\epsilon) = P(E) - \epsilon.$

Since ϵ is arbitrary the proof is complete.

Remark 7.2. 1. Convergence in distribution says nothing about $X_n(\omega)$, rather it focuses *on* F_n , as $n \to \infty$ *. For example, let* $X_n = (-1)^n \mathcal{Z}$ *where* $\mathcal{Z} \sim N(0, 1)$ *. Then, let* $f_Z(x) = (2\pi)^{-1/2} \exp\{-\frac{1}{2}x^2\}$ *for all* $x \in \mathbb{R}$ *. For n odd,*

$$
F_n(x) = P(\{\omega : X_n(\omega) \le x\}) = P(\{\omega : -\mathcal{Z} \le x\}) = P(\{\omega : \mathcal{Z} \ge -x\})
$$

$$
= 1 - P(\{\omega : \mathcal{Z} < -x\}) = 1 - \int_{(-\infty, -x)} f_{\mathcal{Z}}(y) dy
$$

$$
= \int_{[-x,\infty)} f_{\mathcal{Z}}(y) dy = \int_{(-\infty, x]} f_{\mathcal{Z}}(y) dy = F_{\mathcal{Z}}(x).
$$

The next to last equality follows from $f_Z(z) = f_Z(-z)$ *. For n even it is obvious that* $F_n(x) = F_{\mathcal{Z}}(x)$. Hence, $F_n(x) = F_{\mathcal{Z}}(x)$, for all n and trivially $F_n(x) \to F_{\mathcal{Z}}(x)$ for all $x \in \mathbb{R}$.

However, if $E_n = {\omega : |X_n(\omega) - \mathcal{Z}(\omega)| < \epsilon}, \text{ then } E_1 = {\omega : | -\mathcal{Z}(\omega) - \mathcal{Z}(\omega)| < \epsilon}$ $\{\omega : |\mathcal{Z}| < \epsilon/2\}, E_2 = \Omega, \cdots$. Hence, there is no limit for $\{P(E_n)\}_{n \in \mathbb{N}}$ and $X_n \not\stackrel{p}{\to} \mathcal{Z}$ (neither does $X_n \stackrel{as}{\to} \mathcal{Z}$). This shows that convergence in distribution is a very weak *mode of convergence relative to the ones we have seen so far.*

2. Contrary to other modes of convergence, here there is no need to have the random variables defined in the same probability space.

Theorem 7.12. *(Continuous Mapping Theorem) Let* $\{X_n\}_{n\in\mathbb{N}}$ *be a sequence of random variables and X be a random variable such that* $X_n \stackrel{d}{\to} X$ *as* $n \to \infty$ *. Let* $h : \mathbb{R} \to \mathbb{R}$ *be continuous at every point of a set C such that* $P(\{\omega : X(\omega) \in C\}) = 1$ *. Then,*

$$
h(X_n) \stackrel{d}{\to} h(X).
$$

Proof. For any closed set *G* let $E_n = {\omega : h(X_n(\omega)) \in G} = {\omega : X_n(\omega) \in h^{-1}(G)}$ $X_n^{-1}(h^{-1}(G))$. Note that $P(E_n) = P(X_n^{-1}(h^{-1}(G))) = P_n(h^{-1}(G))$ and

$$
h^{-1}(G) \subset \overline{h^{-1}(G)} \subset h^{-1}(G) \cup C^c. \tag{7.9}
$$

The first set containment follows from the fact that every set is a subset of its closure. For the second set containment, note that

$$
\overline{h^{-1}(G)} = (\overline{h^{-1}(G)} \cap C) \cup (\overline{h^{-1}(G)} \cap C^c) \subset (\overline{h^{-1}(G)} \cap C) \cup C^c
$$

Now, $(\overline{h^{-1}(G)} \cap C) = (h^{-1}(G) \cup [h^{-1}(G)]^D) \cap C = (h^{-1}(G) \cap C) \cup ([h^{-1}(G)]^D \cap C)$, where $[h^{-1}(G)]^D$ $[h^{-1}(G)]^D$ $[h^{-1}(G)]^D$ is the derived set of $h^{-1}(G)$. If $x \in [h^{-1}(G)]^D$ there exists a sequence $\{x_n\}_{n \in \mathbb{N}} \in$ $h^{-1}(G) \iff \{h(x_n)\}_{n\in \mathbb{N}} \in G$ such that $x_n \to x$. Furthermore, if $x \in C$, then if $x_n \to x$ we have that $h(x_n) \to h(x)$ and $h(x) \in G$ since *G* is closed. But $x \in [h^{-1}(G)]^D$ implies $x \notin h^{-1}(G) \iff h(x) \notin G$. Hence, $[h^{-1}(G)]^D \cap C = \emptyset$ and $\overline{h^{-1}(G)} \subset h^{-1}(G) \cup C^c$.

Consequently,

$$
\limsup_{n \to \infty} P(E_n) = \limsup_{n \to \infty} P_n(h^{-1}(G)) \le \limsup_{n \to \infty} P_n(\overline{h^{-1}(G)})
$$

$$
\le P_X\left(\overline{h^{-1}(G)}\right),
$$

where the last inequality follows from part 2 of Theorem $\overline{7.10}$. Since $P_X(C^c) = 0$, we have from $(\overline{7.9})$ that $P_X\left(\overline{h^{-1}(G)}\right) \leq P_X(h^{-1}(G))$ and

$$
\limsup_{n \to \infty} P_n(h^{-1}(G)) \le P_X(h^{-1}(G)),
$$

which completes the proof by Theorem $\overline{7.10}$.

Theorem 7.13. Let D be dense^{[2](#page-0-2)} in R. Suppose $F_D: D \rightarrow [0,1]$ satisfies:

1. F^D is non-decreasing on D.

¹The collection of its limit points.

²A set *S* is dense in R if $\overline{S} = \mathbb{R}$ where $\overline{S} = \{x \in \mathbb{R} : S \cap B(x, \epsilon) \neq \emptyset \}$ for all $\epsilon > 0\}$ is the closure of the set *S* and $B(x, \epsilon) = \{y \in \mathbb{R} : |y - x| < \epsilon\}.$

2.
$$
\lim_{x \to -\infty} F_D(x) = 0, \lim_{x \to \infty} F_D(x) = 1 \text{ for } x \in D.
$$

Now, for all $x \in \mathbb{R}$ *define*

$$
F(x) := \inf_{y > x, y \in D} F_D(y) = \lim_{y \downarrow x, y \in D} F_D(y).
$$

Then, F is a right continuous distribution function. Thus, any two right continuous functions that coincide on a dense set D, coincide on R*.*

Proof. Let $x \in \mathbb{R}$. Since *D* is dense in R, for all $\delta > 0$ there exists $x' \in D$ such that $x' \in B(x, \delta)$. Take $x' > x$ and note that by definition of *F*, there exists $\epsilon > 0$ such that

$$
F_D(x') - \lim_{y \downarrow x, y \in D} F_D(y) = F_D(x') - F(x) \le \epsilon \implies F_D(x') \le F(x) + \epsilon \tag{7.10}
$$

For $y \in (x, x')$, and since by definition $F(y) = \inf_{z>y, z \in D} F_D(z)$

$$
F(y) \le F_D(x'). \tag{7.11}
$$

Thus, equations [\(7.10\)](#page-18-0) and [\(7.11\)](#page-18-1) give $F(y) \leq F(x) + \epsilon$ for all $y \in (x, x')$. Consequently, as $y \downarrow x$, $\lim_{y \downarrow x} F(y) \leq F(x)$. But monotonicity of *F* gives

$$
\lim_{y \downarrow x} F(y) \ge F(x).
$$

Thus, the last two inequalities give $F(x) = \lim_{y \downarrow x} F(y)$, establishing right-continuity of *F*. \blacksquare

The next theorem establishes uniqueness of weak limits of distribution functions.

Theorem 7.14. *If* $F_n \Longrightarrow F$ *and* $F_n \Longrightarrow G$ *, then* $F = G$ *.*

Proof. By De Morgan's Laws $C(F)^c \cup C(G)^c = (C(F) \cap C(G))^c = \mathbb{R} - (C(F) \cap C(G))$, which implies that $C(F) \cap C(G) = \mathbb{R} - (C(F)^c \cup C(G)^c)$, where $C(F)^c \cup C(G)^c$ is a countable set. Now, if $x \in C(F) \cap C(G)$, $F_n(x) \to F(x)$ and $F_n(x) \to G(x)$, hence $F = G$ in $C(F) \cap C(G)$,

since limits are unique. But note that $C(F) \cap C(G)$ is dense in R. To see this, let $C \subset \mathbb{R}$, *C* countable. For each $x \in \mathbb{R}$ ($x \in C$ or not), $B(x, \epsilon)$ contains uncountable many points. Hence, for all $x \in \mathbb{R}$, the set $(\mathbb{R} - C) \cap B(x; \epsilon)$ is nonempty for all $\epsilon > 0$, so $x \in \overline{\mathbb{R} - C}$. Thus $\mathbb{R} - C \subset (\mathbb{R} - C) \cup C = \mathbb{R} \subset \overline{\mathbb{R} - C}$. Thus, *F* and *G* coincide on a dense set of \mathbb{R} . But since any two distribution functions coinciding on a dense set of R coincide everywhere, $F = G \ \forall x \in \mathbb{R}$.

Theorem 7.15. Let X_n, Y_n, W_n, X, Y be random variables defined on (Ω, \mathcal{F}, P) .

1. $X_n - Y_n \stackrel{p}{\to} 0$, $Y_n \stackrel{d}{\to} Y \implies X_n \stackrel{d}{\to} Y$

2.
$$
X_n \stackrel{p}{\rightarrow} X \implies X_n \stackrel{d}{\rightarrow} X
$$

- 3. $X_n \stackrel{d}{\rightarrow} c \implies X_n \stackrel{p}{\rightarrow} c$ where *c* is a constant
- 4. $X_n \stackrel{d}{\to} X$, $Y_n \stackrel{d}{\to} a$, $W_n \stackrel{p}{\to} b$ where a, b are constant, then $Y_n X_n + W_n \stackrel{d}{\to} aX + b$, if $a \neq 0$.

Proof. 1. $A_n = \{\omega : |X_n - Y_n| < \epsilon\}, B_n = \{\omega : X_n \leq x\}, C_n = \{\omega : Y_n \leq x + \epsilon\},$ $D_n = \{ \omega : Y_n > x - \epsilon \}$ for any $\epsilon > 0$ and $x \in C(F_Y)$. Then,

$$
F_{X_n}(x) = P(\{\omega : X_n(\omega) \le x\}) = P(B_n) = P(B_n \cap A_n) + P(B_n \cap A_n^c)
$$

$$
1 - F_{X_n}(x) = P(B_n^c) = P(B_n^c \cap A_n) + P(B_n^c \cap A_n^c).
$$

Now, $B_n \cap A_n = \{ \omega : X_n \leq x \text{ and } |X_n - Y_n| < \epsilon \} = \{ \omega : X_n \leq x \text{ and } X_n - \epsilon < Y_n < \epsilon \}$ $X_n + \epsilon$ $\subset \{\omega : Y_n \leq x + \epsilon\} = C_n$. $B_n^c \cap A_n = \{\omega : X_n > x \text{ and } X_n - \epsilon < Y_n < X_n + \epsilon\}$ $\{\omega : x - \epsilon < Y_n\} = D_n$. Thus,

- 1. $F_{X_n}(x) = P(B_n) \le P(C_n) + P(A_n^c) = F_{Y_n}(x + \epsilon) + P(A_n^c)$
- 2. 1 $F_{X_n}(x) = P(B_n^c) \le P(D_n) + P(A_n^c) = 1 F_{Y_n}(x \epsilon) + P(A_n^c)$, or $F_{X_n}(x) \ge$ $F_{Y_n}(x - \epsilon) - P(A_n^c).$

That is,

$$
F_{Y_n}(x - \epsilon) - P(A_n^c) \leq F_{X_n}(x) \leq F_{Y_n}(x + \epsilon) + P(A_n^c).
$$

Since $x \in C(F_Y)$ and $P(A_n^c) \to 0$ as $n \to \infty$ we have that as $\epsilon \to 0$,

$$
F_Y(x) \le \liminf F_{X_n}(x) \le \limsup F_{X_n}(x) \le F_Y(x).
$$

Hence, $\lim F_{X_n}(x)$ exists and $\lim F_{X_n}(x) = F_Y(x)$.

2. In 1. let $Y_n = X$.

3. $\{\omega : |X_n - c| > \epsilon\} = \{\omega : X_n > c + \epsilon \text{ or } X_n < c - \epsilon\} = \{\omega : X_n > c + \epsilon\} \cup \{\omega : X_n < c - \epsilon\}$ and

$$
P(\{\omega : |X_n - c| > \epsilon\}) = P(\{\omega : X_n > c + \epsilon\}) + P(\{\omega : X_n < c - \epsilon\})
$$

$$
= 1 - F_{X_n}(c + \epsilon) + F_{X_n}(c - \epsilon).
$$

Since $X_n \stackrel{d}{\to} c$, $F_c(x) = 0$ for all $x < c$ and $F_c(x) = 1$, for all $x \ge c$. Hence, $\lim_{n \to \infty} P(\{\omega :$ $|X_n - c| > \epsilon$ } $) = 0.$ 4. $W_n - b = Y_n X_n + W_n - Y_n X_n - b = Y_n X_n + W_n - (Y_n X_n + b) \stackrel{p}{\to} 0$ by assumption. By 1. it suffices to show that $Y_n X_n + b \stackrel{d}{\to} aX + b$. $Y_n X_n + b - (aX_n + b) = (Y_n - a)X_n$. If $(Y_n - a)X_n \stackrel{p}{\to} 0$, then it suffices to show that $aX_n + b \stackrel{d}{\to} aX + b$. Now, let $G_n = F_{aX_n + b}$, that is

$$
G_n(x) = P(\{\omega : aX_n + b \le x\}) = P(\{\omega : aX_n \le x - b\})
$$

$$
= P\left(\{\omega : X_n \le \frac{x - b}{a}\}\right)
$$

$$
= F_{X_n}\left(\frac{x - b}{a}\right).
$$

Then, $F_{X_n}(\frac{x-b}{a}) \to F_X(\frac{x-b}{a})$ for $\frac{x-b}{a} \in C(F_X)$. $F_X(\frac{x-b}{a}) = P(\{\omega : X \leq \frac{x-b}{a}\}) = P(aX + b \leq \frac{x-b}{a})$ $f(x) = F_{aX+b}(x)$. So, $aX_n + b \stackrel{d}{\rightarrow} aX + b$. We now show that $(Y_n - a)X_n = C_n X_n \stackrel{p}{\rightarrow} 0$. Let $c > 0$. If $-c, c \in C(F_X)$, $P(|X_n| > c) \to P(|X| > c)$. That is, $\forall \epsilon > 0$, $\exists N_{\epsilon}$ such that $n \ge N_{\epsilon}$, $-\epsilon \leq P(|X_n| > c) - P(|X| > c) \leq \epsilon$ or $P(|X| > c) - \epsilon \leq P(|X_n| > c) \leq P(|X| > c) + \epsilon$. Choose *c* such that $P(|X_n| > c) < \delta$, then $P(|X_n| > c) < \delta + \epsilon$. Since $Y_n - a \stackrel{p}{\to} 0$ and $P(|X_n| > c) < \delta + \epsilon$, $C_n X_n \stackrel{p}{\to} 0$.

7.4 Exercises

1. Let $\{X_n\}_{n\in\mathbb{N}}\subset\mathcal{L}^p$ for $p\in[1,\infty)$ be a sequence of non-negative functions. Show that

$$
\|\sum_{n=1}^{\infty} X_n\|_p \le \sum_{n=1}^{\infty} \|X_n\|_p.
$$

- 2. Show that if $\sum_{n\in\mathbb{N}} x_n$ converges absolutely, then it converges.
- 3. Prove Theorem 7.9.
- 4. Let ${g_n}_{n=1,2,\cdots}$ be a sequence of real valued functions that converge uniformly to *g* on an open set *S*, containing *x*, and *g* is continuous at *x*. Show that if $\{X_n\}_{n=1,2,\cdots}$ is a sequence of random variables taking values in *S* such that $X_n \stackrel{p}{\to} X$, then

$$
g_n(X_n) \stackrel{p}{\to} g(X).
$$

Note: Recall that a sequence of real valued functions ${g_n}_{n=1,2,\cdots}$ converges uniformly to *g* on a set *S* if, for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ (depending only on ϵ) such that for all $n > N_{\epsilon}$, $|g_n(x) - g(x)| < \epsilon$ for every $x \in S$.

- 5. Show that $X_n \stackrel{as}{\to} X$ is equivalent to $P(\{\omega : \sup_{j\geq n} |X_j X| \geq \epsilon\}) \to 0$ for all $\epsilon > 0$ as $n \to \infty$.
- 6. Prove item 1 of Remark 7.1.
- 7. Let $n \in \mathbb{N}$ and $h_n > 0$ such that $h_n \to 0$ as $n \to \infty$. Show that if $\sum_{n=1}^{\infty} P(\{\omega :$ $|X_n - X| \ge h_n$) < ∞ then $X_n \stackrel{p}{\to} X$.
- 8. Show that if $Y_n \stackrel{d}{\to} Y$ then $Y_n = O_p(1)$.
- 9. Let $g : S \subseteq \mathbb{R}$ be continuous on S , and X_t and X_s be random variables defined on (Ω, \mathcal{F}, P) taking values in *S*. Show that: a) if X_t is independent of X_s , then $g(X_t)$ is independent of $g(X_s)$; b) if X_t and X_s are identically distributed, then $g(X_t)$ and $g(X_s)$ are identically distributed.
- 10. Let $\{X_n\}$ be a sequence of independent random variables that converges in probability to a limit *X*. Show that *X* is almost surely a constant.
- 11. Suppose $\frac{X_n \mu}{\sigma_n}$ $\stackrel{d}{\rightarrow} Z$ where the non-random sequence $\sigma_n \to 0$ as $n \to \infty$, and *g* is a function which is differentiable at μ . Then, show that $\frac{g(X_n)-g(\mu)}{g^{(1)}(\mu)\sigma_n}$ $\stackrel{d}{\rightarrow} Z.$
- 12. Show that if $\{X_n\}_{n\in\mathbb{N}}$ and X are random variables defined on the same probability space and $r > s \geq 1$ and $X_n \xrightarrow{L_r} X$, then $X_n \xrightarrow{L_s} X$.