
Chapter 7

Convergence of random variables

7.1 Convergence almost surely and in probability

Since random variables are measurable functions from a probability space (⌦,F , P ) to (R,B),

i.e., X : (⌦,F , P ) ! (R,B), the most natural way to define convergence of a sequence

{Xn}n2N is pointwise. In this case, we say that the sequence Xn converges to X for some

! 2 ⌦ if

lim
n!1

Xn(!) = X(!).

That X(!) is a random variable follows from Theorem 3.6. If the limit holds for all ! 2 ⌦ we

say that Xn converges to X on ⌦ and write Xn ! X on ⌦. A weaker convergence concept

requires

P
⇣
{! : lim

n!1

Xn(!) = X(!)}
⌘
= 1.

Note that {! : lim
n!1

Xn(!) = X(!)} must be an event ( 6= ⌦) for the statement to make sense.

In this case we say that Xn converges to X almost surely (or almost everywhere) and we

write Xn

as! X (or Xn

ae! X). Alternatively, we can require the the existence of a set N 2 F

with P (N) = 0 where if ! 2 N c

lim
n!1

Xn(!) = X(!).
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Note that since N is an event, N c is an event and P (N c) = 1 since P (N) = 0 and P (⌦) = 1.

Hence, we give the following definition.

Definition 7.1. (Convergence as) Let {Xn}n2N be a sequence of random variables defined

on the probability space (⌦,F , P ). Then, if there exists N 2 F with P (N) = 0 such that

lim
n!1

Xn(!) exists for all ! 2 N c, we denote this limit by X(!) and say that lim
n!1

Xn(!) =

X(!) almost surely (as) and write Xn

as! X.

The limit statement in the definition is equivalent to stating that for all ✏ > 0 there exists

N(✏) 2 N such that for all n � N(✏),

P ({! : |Xn(!)�X(!)| > ✏}) = 0.

Letting En(✏) = {! : |Xn(!)�X(!)| > ✏}, we see that

P

✓
[
j�n

Ej(✏)

◆

X

j�n

P (Ej(✏)) by sub-additivity of P

= 0 since P (Ej(✏)) = 0 for j � n.

Recall that \1

n=1 [
j�n

Ej(✏) = lim sup
n!1

En(✏), and

P

✓
lim sup
n!1

En(✏)

◆
= lim

n!1

P

✓
[
j�n

Ej(✏)

◆
by continuity of P

= 0.

Hence, Xn

as! X is often stated as P

✓
lim sup
n!1

{! : |Xn(!)�X(!)| > ✏}
◆

= 0 for all ✏ > 0.

What follows is an example of a sequence of random variables that converges to 0 as.

Example 7.1. Let (⌦ = [0, 1],B[0,1],�) where � is Lebesgue measure.

Xn(!) =

(
n if 0  !  1/n

0 if 1/n < !  1

Let N = {0} and note that �(N) = 0. If ! 2 N c then Xn(!) ! 0 as n ! 1, but Xn(!) 6! 0

everywhere on ⌦ since at ! = 0, Xn(!) ! 1.
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An even less demanding convergence concept is that of convergence in probability (con-

vergence ip or convergence in measure im), which is given in the following definition.

Definition 7.2. Let {Xn}n2N be a sequence of random variables and X be a random variable

defined in the same probability space (⌦,F , P ). We say that Xn

p! X if for all ✏ > 0

lim
n!1

P ({! : |Xn(!)�X(!)| > ✏}) = 0.

Alternatively, we can state that for all ✏ > 0 and � > 0 there exists N(✏, �) 2 N such that

for all n � N(✏, �), P ({! : |Xn(!)�X(!)| > ✏}) < �.

Theorem 7.1. Let {Xn}n2N be a sequence of random variables and X be a random variable

defined in the same probability space (⌦,F , P ). Then, Xn

as! X =) Xn

p! X.

Proof. Let En(✏) = {! : |Xn(!) � X(!)| > ✏} for any ✏ > 0. Xn

as! X implies that there

exists a natural number N(✏) such that for all n � N(✏) we have P (En(✏)) = 0. Then, from

the comments following Definition 7.1

P

✓
lim sup
n!1

En(✏)

◆
= 0 = P

⇣
lim
n!1

[1

m=n
Em(✏)

⌘

= lim
n!1

P ([1

m=n
Em(✏)) by continuity of P

� lim
n!1

P (En(✏)).

Consequently, limn!1 P (En(✏)) = 0. ⌅

The following theorem, known as the Borel-Cantelli Lemma is the main device used to

establish almost sure convergence.

Theorem 7.2. (Borel-Cantelli Lemma) Let {En}n2N be a sequence of events. If
1X

n=1

P (En) < 1

then P

✓
lim sup
n!1

En

◆
= 0.
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Proof.

P

✓
lim sup
n!1

En

◆
= P

⇣
lim
n!1

[m�nEm

⌘

= lim
n!1

P ([m�nEm) by continuity of P

 lim sup
n!1

1X

m=n

P (Em) by sub-additivity of P

= 0 since
1X

n=1

P (En) < 1 implies
1X

m=n

P (Em) ! 0 as n ! 1.

⌅

Theorem 7.3. Let {Xn}n2N be a sequence of random variables and X be a random variable

defined in the same probability space (⌦,F , P ).

1. Xn

p! X () Xr �Xs

p! 0 as n, r, s ! 1 (Cauchy in probability)

2. Xn

p! X () each subsequence Xnk
contains a further subsequence {Xnk(i)

} as! X.

Proof. 1. ( =) ) |Xr � Xs| = |Xr � X + X � Xs|  |Xr � X| + |X � Xs|. For all ✏ > 0,

{! : |Xr � Xs| > ✏} ⇢ {! : |Xr � X| + |X � Xs| > ✏} ⇢ {! : |Xr � X| > ✏/2} [ {! :

|Xs �X| > ✏/2}. Consequently,

P ({! : |Xr �Xs| > ✏})  P ({! : |Xr �X| > ✏/2}) + P ({! : |Xs �X| > ✏/2}). (7.1)

Taking limits on both sides of the inequality as r, s ! 1 and given that Xn

p! X we have

that P ({! : |Xr �Xs| > ✏}) ! 0.

( (= ) Let {Xn(j)}j2N be a subsequence of {Xn}n2N. If Xn(j)
as! X, then by equation (7.1)

P ({! : |Xn �X| > ✏})  P ({! : |Xn �Xn(j)| > ✏/2}) + P ({! : |Xn(j) �X| > ✏/2}).

Using the fact that {Xn}n2N is Cauchy in probability P ({! : |Xn � Xn(j)| > ✏/2}) ! 0

as n, n(j) ! 1. Also, since Xn(j)
as! X implies Xn(j)

p! X and we have that P ({! :
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|Xn(j) � X| > ✏/2}) ! 0 as n(j) ! 1. Thus, it suffice to show that there exists a

subsequence {Xn(j)}j2N such that Xn(j)
as! X. We will construct such sequence.

Let n(1) = 1 and define

n(j) = inf{N : N > n(j � 1), P
��

! : |Xr �Xs| > 2�j
 �

< 2�j, for all r, s � N}.

It is possible to define {n(j)} because of the assumption that {Xn}n2N is Cauchy in proba-

bility. Also, by construction, n(1) < n(2) < · · · so that n(j) ! 1. Consequently,

P ({! : |Xn(j)+1 �Xn(j)| > 2�j}) < 2�j

and
P

1

j=1 P ({! : |Xn(j)+1 �Xn(j)| > 2�j}) <
P

1

j=1 2
�j < 1. By the Borel-Cantelli Lemma

P

✓
lim sup
j!1

{! : |Xn(j)+1 �Xn(j)| > 2�j}
◆

= 0

or

P

✓
lim inf
j!1

{! : |Xn(j)+1 �Xn(j)|  2�j}
◆

= 1.

Now, ! 2 lim infj!1{! : |Xn(j)+1 �Xn(j)|  2�j} means that ! 2 {! : |Xn(j)+1 �Xn(j)| 

2�j} for all j sufficiently large (j � J). Hence,

X

j�J

|Xn(j)+1(!)�Xn(j)(!)| 
X

j�J

2�j = 2 · 2�J

Hence, for all K > J , |Xn(K) �Xn(J)| 
P

j�J
|Xn(j)+1 �Xn(j)|  2 · 2�J . Thus, as J ! 1,

|Xn(K) � Xn(J)| ! 0 establishing that {Xn(j)} is a Cauchy sequence of real numbers with

probability 1. Since R is complete, i.e., every Cauchy sequence in R has a limit in R,

limj!1 Xnj(!) exists with probability 1. Hence, Xnj(!) ! X(!) = lim
j!1

Xnj(!) as.

2. ( =) ) Choose a subsequence {Xn(j)}. Then, since Xn

p! X, Xn(j)
p! X and Xn(j) is

Cauchy in probability by part 1. Hence, there exists Xn(k(i))
as! X.

( (= ) Suppose not. If Xn 6 p! X then there exists Xn(j) and ✏, � > 0 such that

P ({! : |Xn(j) �X| > ✏}) � �. (7.2)
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But every Xn(j) has a subsequence Xn(j(i))
as! X and hence Xn(j(i))

p! X, which contradicts

equation (7.2). ⌅

The following theorem is often called Slutsky’s Theorem. It shows that limits in proba-

bility and continuous functions can be interchanged.

Theorem 7.4. (Slutsky’s Theorem) If Xn, X are random elements defined on the same

probability space and Xn

p! X, g : RK ! RL continuous, then g(Xn)
p! g(X).

Proof. Recall that g is continuous at X if and only if for all ✏ > 0 there exists �✏,X > 0

such that whenever |Xn,k �Xk| < �✏,X for k = 1, ..., K, |gl(Xn)� gl(X)| < ✏ for l = 1, ..., L.

Let An,k = {! : |Xn,k � Xk| < �✏,X} and An = {! : |gl(Xn) � gl(X)| < ✏} for all l.

Note that by continuity \K

k=1An,k ⇢ An, which implies that P (\K

k=1An,k)  P (An). Thus,

1�P (An)  1�P (\K

k=1An,k) which implies that P (Ac

n
)  P ((\K

k=1An,k)c) = P ([K

k=1A
c

n,k
) 

P
K

k=1 P (Ac

n,k
). Since Xn

p! X, P (Ac

n,k
) ! 0 and therefore P (Ac

n
) ! 0 or P (An) ! 1. ⌅

Theorem 7.5. Let Xn, X be defined in the same probability space such that Xn

p! X.

If there exist a random variable 0  Y 2 L such that |Xn(!)|  Y (!) for all n almost

everywhere, then E(Xn), E(X) < 1, and E(Xn) ! E(X).

Proof. First, note that if Y 2 L, E|Xn| < 1 and Xn 2 L. Also, |X| = |X � Xn + Xn| 

|Xn| + |Xn � X|  Y + |Xn � X| and |X| � Y  |Xn � X|. Consequently, for any ✏ > 0

{! : |X(!)|� Y (!) > ✏} ⇢ {! : |Xn �X| > ✏} and

P ({! : |X(!)|� Y (!) > ✏})  P ({! : |Xn �X| > ✏}).

Taking limits as n ! 1, and using the fact that Xn

p! X we obtain P ({! : |X(!)|�Y (!) >

✏}) = 0. Since this is true for any ✏ > 0 we have P ({! : |X(!)| > Y (!)}) = 0. Consequently

|X| < Y almost everywhere and E(X) < 1.
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Since |E(Xn)�E(X)| 
R
⌦ |Xn �X|dP , we need only show that

R
⌦ |Xn �X|dP ! 0 as

n ! 1. If Zn = Xn �X, then |Zn|  |Xn|+ |X| < 2Y almost everywhere. In addition, for

✏ > 0,

E|Zn| = E
�
|Zn|I{!:|Zn|✏}

�
+E

�
|Zn|I{!:|Zn|>✏}

�
 ✏+E

�
|Zn|I{!:|Zn|>✏}

�
 ✏+2E

�
Y I{!:|Zn|>✏}

�
.

Since Xn

p! X, P ({! : |Zn| > ✏}) ! 0 as n ! 1. Furthermore, since E(Y ) < 1, by

Theorem 4.9, E
�
Y I{!:|Zn|>✏}

�
< ✏ and E|Zn| < 3✏, completing the proof.⌅

The requirement that |Xn(!)|  Y (!) for all n almost everywhere may be relaxed. A

weaker requirement is given by the following definition.

Definition 7.3. A sequence {Xn}n2N of random variables defined on (⌦,F , P ) is said to be

uniformly integrable (u.i.) if for every ✏ > 0 there exists B✏ 2 [0,1) such that

sup
n2N

E
�
|Xn|I{!:|Xn(!)|�B✏}

�
< ✏.

Uniform integrability of the sequence {Xn}n2N is a weaker condition compared to the

dominating condition in Theorem 7.5 . Note that if |Xn(!)|  Y (!) for all n almost every-

where on ⌦ and E(Y ) < 1, then

|Xn(!)|I{!:|Xn(!)|�B✏}  Y I{!:|Xn(!)|�B✏}  Y I{!:|Y (!)|�B✏}.

Hence, sup
n2N

E
�
|Xn(!)|I{!:|Xn(!)|�B✏}

�
 E

�
Y I{!:|Y (!)|�B✏}

�
. But since E(|Y |) < 1, for any

✏ > 0 there exists B✏ < 1, E
�
Y I{!:|Y (!)|�B✏}

�
< ✏ and {Xn}n2N is u.i.

Theorem 7.6. A sequence {Xn}n2N of random variables defined on (⌦,F , P ) is uniformly

integrable if, and only if,

1. sup
n2N

E|Xn| < 1,

2. for all ✏ > 0, there exists � > 0 such that for all n, E(|Xn|IA) < ✏ for any event A

such that P (A) < �.
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Proof. ( =) ) First, let An(B) = {! : |Xn(!)| � B} and consider

E(|Xn|) =
Z

⌦

|Xn|IAn(B)dP +

Z

⌦

|Xn|IAc
n(B)dP

<

Z

⌦

|Xn|IAn(B)dP +B P (Ac

n
(B)) 

Z

⌦

|Xn|IAn(B)dP +B.

Hence, sup
n2N

E(|Xn|) < sup
n2N

R
⌦ |Xn|IAn(B)dP + B, and by uniform integrability of {Xn}n2N,

for any ✏ > 0 there exists B < 1 such that sup
n2N

E(|Xn|) < ✏+B < 1.

Second, let E 2 F . Then,

E(|Xn|IE) = E(|Xn|IE\An(B)) + E(|Xn|IE\Ac
n(B)).

But E(|Xn|IE\An(B))  E(|Xn|IAn(B)) and E(|Xn|IE\Ac
n(B))  b

R
⌦ IE[Ac

n(b)dP  bP (E).

By uniform integrability of {Xn}n2N, there exists b > 0 such that sup
n2N

E(|Xn|IAn(b)) < ✏/2.

Furthermore, for any E such that P (E) < ✏/2b, we have E(|Xn|IE) < ✏.

((=) By Markov’s Inequality

P (An(b)) <
1

b
E(|Xn|IAn(b)) 

1

b
E(|Xn|).

Then, sup
n2N

P (An(b))  1
b
sup
n2N

E(|Xn|) < 1 by condition 1. Choose, b such that 1
b
sup
n2N

E(|Xn|) <

�, implying that P (An(b)) < � for all n. Then, by condition 2 it follows that E(|Xn|IAn(b)) <

✏. ⌅

Remark 7.1. 1. The following results follow directly from Theorem 7.3.

Xn

p! X, Yn

p! Y =) Xn + Yn

p! X + Y

Xn

p! X, Yn

p! Y =) XnYn

p! XY .

2. If E(Xn) = µn < 1, V (Xn) = �2
n
< 1. By Markov’s Inequality

P ({! : |Xn � µn| � ✏})  �2
n
/✏2.
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In particular, if E(Xt) = µ and V (Xt) = �2, letting

Xn =
1

n

nX

t=1

(Xt � µ),

we have E(Xn) = 0,

V (Xn) = E(X2
n
) =

1

n2

nX

t=1

E(Xt � µ)2 +
1

n2

X

t 6=⌧

E(Xt � µ)(Xt � µ).

If Xt, X⌧ are independent (uncorrelated), E(X2
n
) = �2/n. Then,

P ({! : |Xn| � ✏})  �2

n✏2
.

Taking limits on both sides,

lim
n!1

P ({! : |Xn| � ✏}) = 0.

7.2 Convergence in Lp

Definition 7.4. Let X, Y 2 Lp(⌦,F , P ) and define dp(X, Y ) := kX�Y kp = (E (|X � Y |p))1/p

for p 2 [1,1). We say that a sequence {Xn}n2N 2 Lp(⌦,F , P ) converges to X 2 Lp(⌦,F , P )

in Lp, denoted by Xn

L
p

! X, if dp(Xn, X) ! 0 as n ! 1.

The limit X in Definition 7.4 is not unique, only almost everywhere unique. If X and Y

are such that Xn

L
p

! X and Xn

L
p

! Y , then by the Minkowski-Riez Inequality

kX � Y kp = kX �Xn +Xn � Y kp  kX �Xnkp + kXn � Y kp.

Taking limits as n ! 1 we have kX � Y kp = 0, which implies that X and Y are equal

almost everywhere. We note that dp is a (semi) metric on Lp(⌦,F , P ), induced by the (semi)

norm kXkp = (E(|X|p))1/p.

A sequence {Xn}n2N in Lp(⌦,F , P ) is said to be Lp-Cauchy if for all ✏ > 0 there exists

N(✏) such that for all n,m � N(✏) we have dp(Xn, Xm) < ✏. Note that if Xn

L
p

! X we have

kXn �Xmkp = kXn �X +X �Xmkp  kXn �Xkp + kX �Xmkp.
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Hence, as n,m ! 1 we obtain dp(Xn, Xm) ! 0, showing that convergent sequences in Lp

are Lp-Cauchy. The next theorem shows that every Lp-Cauchy sequence converges to an

element in Lp, i.e., Lp is a complete (Banach) space.

Theorem 7.7. (Riez-Fisher Theorem) The spaces Lp(⌦,F , P ) for p 2 [1,1) are complete.

Proof. Consider a Lp-Cauchy sequence {Xn}n2N ⇢ Lp(⌦,F , P ). We need to show that this

sequence converges to a limit X in Lp(⌦,F , P ). That is, there exists X 2 Lp(⌦,F , P ) such

that

kXn �Xkp :=
✓Z

|Xn �X|pdP
◆1/p

! 0 as n ! 1.

Since {Xn}n2N is Lp-Cauchy , we can find 1 < n(1) < n(2) < · · · such that

kXn(k+1) �Xn(k)kp 
1

2k
for k = 1, 2, · · · (7.3)

Now, note that if we set Xn(0) := 0 we have that Xn(k+1) =
P

k

j=0(Xn(j+1) � Xn(j)) are the

partial sums of the series
P

1

j=0(Xn(j+1)�Xn(j)). Recall that this series converges absolutely if

the monotone sequence
P

k

j=0 |Xn(j+1)�Xn(j)| converges, and in this case the series converges,

that is,
P

k

j=0(Xn(j+1) �Xn(j)) converges.

By Minkowski’s Inequality and Beppo-Levi’s Theorem

k
1X

j=0

|Xn(j+1) �Xn(j)|kp 
1X

j=0

kXn(j+1) �Xn(j)kp

 kXn(1)kp +
1X

j=1

1

2j
= kXn(1)kp + 1 < 1 since Xn(1) is in Lp .

Consequently, k
P

1

j=0 |Xn(j+1) �Xn(j)|kpp < 1 and we have that (
P

1

j=0 |Xn(j+1) �Xn(j)|)p <

1 almost surely (almost surely real valued) and
P

1

j=0(Xn(j+1) � Xn(j)) is almost surely

(absolutely) convergent.
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Letting X =
P

1

j=0(Xn(j+1) �Xn(j)) we have that

kX �Xn(k)kp = k
1X

j=k

|Xn(j+1) �Xn(j)|kp


1X

j=k

kXn(j+1) �Xn(j)kp ! 0 as k ! 1.

Finally, since

kXn �Xkp  kXn �Xn(k)kp + kXn(k) �Xkp.

and {Xn}n=1,2,··· is Cauchy we have the desired result. ⌅

A complete inner product space is called a Hilbert space. L2 is a Hilbert space but Lp

for p 6= 2 is not, because the Parallelogram Law is not satisfied.

Point-wise convergence of a sequence {Xn}n2N of random variables in Lp(⌦,F , P ) does

not imply convergence in Lp. That is,

lim
n!1

Xn(!) = X(!) for all ! 2 ⌦ ; Xn

L
p

! X.

However, by Lebesgue’s Dominated Convergence Theorem, if there exist 0  Y 2 Lp(⌦,F , P )

such that |Xn|  Y for all n and limn!1 Xn(!) = X(!) exists almost everywhere, then

|Xn �X|p  (|Xn|+ |X|)p  2pY p

and X 2 Lp

P
and Xn

L
p

! X.

The next theorem shows that convergence in Lp

P
implies convergence in probability.

Theorem 7.8. Let X,Xn, n = 1, 2, · · · be random variables defined in the same probability

space. If Xn

L
p

! X, then Xn

p! X.

Proof. First, note that if h : R ! [0,1) and a � 0, we have h(X) � aIh(X)�a. Then,

E(h(X)) � aP (h(X) � a) which implies that P (h(X) � a)  E(h(X))
a

. Now, choose

h(x) = |x|p and set x = Xn �X. Then, {! : |Xn �X| � a} = {! : |Xn �X|p � ap} and

P ({! : |Xn �X| � a}) = P ({! : |Xn �X|p � ap})  E(|Xn �X|p)
ap

.
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Taking limits on both sides completes the proof.⌅

Theorem 7.9. Suppose that {Xn}n2N is a sequence of random variables defined on (⌦,F , P )

is such that Xn

p! X, where X is defined on the same probability space. Then, the following

statements are equivalent,

1. {Xn}n2N is uniformly integrable

2. E(|Xn|) < 1 for all n, E(|X|) < 1 and Xn

L
1

! X

3. E(|Xn|) < 1 for all n, and E(|Xn|) ! E(|X|) < 1.

Proof. ⌅

7.3 Convergence in distribution

Let (R,B, d) be a metric space with d(x, y) = |x� y| for all x, y 2 R and P, Pn for n 2 N be

probability measures defined on B.

Definition 7.5. The sequence of probability measures {Pn}n2N converges weakly to the mea-

sure P , denoted by Pn

w! P if

Z

R

fdPn !
Z

R

fdP as n ! 1

for all f : R! R that are continuous with |f |  C < 1.

We note that if Fn and F are the distribution functions associated with Pn and P , we

can say that
Z

R

fdPn !
Z

R

fdP ()
Z

R

f(x)dFn(x) !
Z

R

f(x)dF (x)

and we say that Fn

w! F .
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Definition 7.6. The sequence of probability measures {Pn}n2N converges generally to the

measure P , denoted by Pn =) P if

Pn(E) ! P (E) as n ! 1 for all E 2 B such that P (@E) = 0,

where @E = Ē \ Ec is the boundary of E and Ē is the closure of E.

Theorem 7.10. The following convergence statements are equivalent:

1. Pn

w! P ,

2. lim sup
n!1

Pn(E)  P (E) if E 2 B is closed,

3. lim inf
n!1

Pn(E) � P (E) if E 2 B is open,

4. Pn =) P .

Proof. (1. =) 2.) Let x 2 R and define |x � E| = inf{|x � y| : y 2 E}, E(") = {x :

|x� E| < "} for " > 0, f(x) = IE(x),

g(x) =

8
<

:

1, if x  0
1� x, if 0  x  1
0, if x � 1

and f"(x) = g
�
1
"
|x� E|

�
. Note that if x 2 E(") then 1

"
|x � E| < 1 and f"(x) > 0. Also, if

" # 0 then E(") # E. Since g is bounded and continuous, so is f". Now,

Z

R

fdPn =

Z

R

IEPn = Pn(E) 
Z

R

f"dPn. (7.4)

The inequality follows because if x 2 E, "�1|x� E| = 0 and f"(x) = g(0) = 1 = IE(x), but

if x /2 E then "�1|x � E| > 0 and f"(x) = g("�1|x � E|) � 0 = IE(x). Then, taking limits

on both sides of equation (7.4) gives

lim sup
n!1

Pn(E)  lim sup
n!1

Z

R

f"dPn =

Z

R

f"dP
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where the last equality follows from the fact that f" is continuous and bounded on R and

the assumption that 1) holds. But
Z

R

f"dP 
Z

R

IE(")dP = P (E(")) (7.5)

where the inequality follows from the fact that if x 2 E(") then "�1|x � E| < 1 and conse-

quently 0 < f"(x)  1 = IE("). If x /2 E(") then f"(x) = 0 = IE("). Consequently, combining

equations (7.4) and (7.5) we obtain lim sup
n!1

Pn(E)  P (E(")). Given that if " # 0, E(") # E,

by continuity of probability measure we have lim sup
n!1

Pn(E)  P (E).

(2. =) 3.) If E is open, then Ec is closed. Thus, from 2) lim sup
n!1

Pn(Ec)  P (Ec). But

since Pn(Ec) = 1� Pn(E) and P (Ec) = 1� P (E) we have

1+lim sup
n!1

(�Pn(E))  1�P (E) () 1�lim inf
n!1

Pn(E)  1�P (E) () lim inf
n!1

Pn(E) � P (E).

It is evident from this argument that (3. =) 2.).

(3. =) 4.) The interior of E, denoted by int(E), is open and int(E) = E � @E. Since, 2.

and 3. are equivalent and int(E) is open and Ē is closed we have

lim sup
n!1

Pn(E)  lim sup
n!1

Pn(Ē)  P (Ē), (7.6)

lim inf
n!1

Pn(E) � lim inf
n!1

Pn(int(E)) � P (int(E)). (7.7)

But if P (@E) = 0 then P (Ē) = P (int(E)) = P (E) and Pn(E) ! P (E) whenever P (@E) =

0, i.e., Pn =) P .

(4. =) 1.) Let f be bounded and continuous with |f | < C and define

D = {d 2 R : P ({x : f(x) = d}) > 0}.

Now, choose {yi}ki=0 such that y0 = �C < y1 < · · · < yk = C. d 2 D implies P (f�1({d})) >

0. Since f is a function, for any two d 6= d0 such that d, d0 2 D we have f�1({d})\f�1({d0}) =

;, and since P  1, there can be at most countably many elements in D. Suppose {yi}ki=0 * D
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and Bi = {x 2 R : yi  f(x) < yi+1} for i = 0, 1, · · · , k � 1. Then,

@Bi = {x 2 R : yi = f(x)} [ {x 2 R : yi+1 = f(x)} = f�1(yi) [ f�1(yi+1)

and P (@Bi) = 0 since {yi}ki=0 * D. Since, int(Bi) = Bi � @Bi we have that P (Bi) =

P (int(Bi)) and by 4) Pn(Bi)� P (Bi) ! 0. Consequently,
k�1X

i=0

yiPn(Bi) !
k�1X

i=0

yiP (Bi). (7.8)

Now,
����
Z

R

fdPn �
Z

R

fdP

���� 

�����

Z

R

fdPn �
k�1X

i=0

yiPn(Bi)

�����+

�����

k�1X

i=0

yiPn(Bi)�
k�1X

i=0

yiP (Bi)

�����

+

�����

k�1X

i=0

yiP (Bi)�
Z

R

fdP

�����

 2 max
0ik�1

(yi+1 � yi) +

�����

k�1X

i=0

yiPn(Bi)�
k�1X

i=0

yiP (Bi)

����� .

By equation (7.8) and the fact that {yi}ki=0 are arbitrary we have the result. ⌅

Recall that with a random variable X : (⌦,F , P ) ! (R,B) we can associate a distribution

function FX(x) : R! [0, 1] with the following properties:

(i) FX is non-decreasing,

(ii) FX is right-continuous,

(iii) limx!1 FX(x) = 1, limx!�1 FX(x) = 0.

Let C(FX) = {x 2 R : FX is continuous at x} and note that C(FX)c is a countable set.

Definition 7.7. Let Fn, FX be distribution functions associated with random variables Xn, X

with n 2 N. We say that Xn converges in distribution to X and write Xn

d! X if

Fn(x) ! FX(x), for all x 2 C(FX).

In this case, we write Fn =) FX and say that Fn converges generally to FX .
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Theorem 7.11. The following statements are equivalent:

1. Pn

w! P ,

2. Pn =) P ,

3. Fn

w! F ,

4. Fn =) F .

Proof. We have proved that 1. and 2. are equivalent. In addition, by construction 1. and 3.

are equivalent, so we need only show that 2 and 4 are equivalent.

(2. =) 4.) Since Pn =) P we have, in particular, that

Pn((�1, x]) ! P ((�1, x])

for all x 2 R such that P ({x}) = 0. But this means that Fn =) F .

(4. =) 2.) We need to prove that Pn =) P , but since by Theorem 7.10 we have

that Pn =) P is equivalent to lim inf
n!1

Pn(E) � P (E) if E 2 B is open, this is what we will

establish. Since E is an open set in R it can be written as E = [1

k=1Ik where Ik = (ak, bk) are

component intervals (disjoint). Let ✏ > 0 and for each Ik choose I 0

k
= (a0

k
, b0

k
] a sub-interval

such that a0
k
, b0

k
are points of continuity of F and P (Ik)  P (I 0

k
) + 2�k✏. The existence of

these intervals is assured by the fact that F has at most countable many discontinuities.

Now,

lim inf
n!1

Pn(E) = lim inf
n!1

1X

k=1

Pn(Ik)

�
1X

k=1

lim inf
n!1

Pn(Ik) by Fatou’s Lemma

�
1X

k=1

lim inf
n!1

Pn(I 0

k
).
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But by 4. we have that Pn(I 0

k
) = Fn(b0k)� Fn(a0k) ! F (b0

k
)� F (a0

k
) = P (I 0

k
). Hence,

lim inf
n!1

Pn(E) �
1X

k=1

P (I 0

k
) �

1X

k=1

�
P (Ik)� 2�k✏

�
= P (E)� ✏.

Since ✏ is arbitrary the proof is complete. ⌅

Remark 7.2. 1. Convergence in distribution says nothing about Xn(!), rather it focuses

on Fn, as n ! 1. For example, let Xn = (�1)nZ where Z ⇠ N(0, 1). Then, let

fZ(x) = (2⇡)�1/2 exp{�1
2x

2} for all x 2 R. For n odd,

Fn(x) = P ({! : Xn(!)  x}) = P ({! : �Z  x}) = P ({! : Z � �x})

= 1� P ({! : Z < �x}) = 1�
Z

(�1,�x)

fZ(y)dy

=

Z

[�x,1)

fZ(y)dy =

Z

(�1,x]

fZ(y)dy = FZ(x).

The next to last equality follows from fZ(z) = fZ(�z). For n even it is obvious that

Fn(x) = FZ(x). Hence, Fn(x) = FZ(x), for all n and trivially Fn(x) ! FZ(x) for all

x 2 R.

However, if En = {! : |Xn(!)� Z(!)| < ✏}, then E1 = {! : |� Z(!)� Z(!)| < ✏} =

{! : |Z| < ✏/2}, E2 = ⌦, · · · . Hence, there is no limit for {P (En)}n2N and Xn 6 p! Z

(neither does Xn

as! Z). This shows that convergence in distribution is a very weak

mode of convergence relative to the ones we have seen so far.

2. Contrary to other modes of convergence, here there is no need to have the random

variables defined in the same probability space.

Theorem 7.12. (Continuous Mapping Theorem) Let {Xn}n2N be a sequence of random

variables and X be a random variable such that Xn

d! X as n ! 1. Let h : R ! R be

continuous at every point of a set C such that P ({! : X(!) 2 C}) = 1. Then,

h(Xn)
d! h(X).

129



Proof. For any closed set G let En = {! : h(Xn(!)) 2 G} = {! : Xn(!) 2 h�1(G)} =

X�1
n

(h�1(G)). Note that P (En) = P (X�1
n

(h�1(G))) = Pn(h�1(G)) and

h�1(G) ⇢ h�1(G) ⇢ h�1(G) [ Cc. (7.9)

The first set containment follows from the fact that every set is a subset of its closure. For

the second set containment, note that

h�1(G) = (h�1(G) \ C) [ (h�1(G) \ Cc) ⇢ (h�1(G) \ C) [ Cc

Now, (h�1(G) \ C) = (h�1(G) [ [h�1(G)]D) \ C = (h�1(G) \ C) [ ([h�1(G)]D \ C), where

[h�1(G)]D is the derived set of h�1(G).1 If x 2 [h�1(G)]D there exists a sequence {xn}n2N 2

h�1(G) () {h(xn)}nN 2 G such that xn ! x. Furthermore, if x 2 C, then if xn ! x

we have that h(xn) ! h(x) and h(x) 2 G since G is closed. But x 2 [h�1(G)]D implies

x /2 h�1(G) () h(x) /2 G. Hence, [h�1(G)]D \ C = ; and h�1(G) ⇢ h�1(G) [ Cc.

Consequently,

lim sup
n!1

P (En) = lim sup
n!1

Pn(h
�1(G))  lim sup

n!1

Pn(h�1(G))

 PX

⇣
h�1(G)

⌘
,

where the last inequality follows from part 2 of Theorem 7.10. Since PX(Cc) = 0, we have

from (7.9) that PX

⇣
h�1(G)

⌘
 PX(h�1(G)) and

lim sup
n!1

Pn(h
�1(G))  PX(h

�1(G)),

which completes the proof by Theorem 7.10. ⌅

Theorem 7.13. Let D be dense2 in R. Suppose FD : D ! [0, 1] satisfies:

1. FD is non-decreasing on D.
1
The collection of its limit points.

2
A set S is dense in R if S̄ = R where S̄ = {x 2 R : S \B(x, ✏) 6= ; for all ✏ > 0} is the closure of the set

S and B(x, ✏) = {y 2 R : |y � x| < ✏}.
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2. limx!�1 FD(x) = 0, limx!1 FD(x) = 1 for x 2 D.

Now, for all x 2 R define

F (x) := inf
y>x,y2D

FD(y) = lim
y#x,y2D

FD(y).

Then, F is a right continuous distribution function. Thus, any two right continuous functions

that coincide on a dense set D, coincide on R.

Proof. Let x 2 R. Since D is dense in R, for all � > 0 there exists x0 2 D such that

x0 2 B(x, �). Take x0 > x and note that by definition of F , there exists ✏ > 0 such that

FD(x
0)� lim

y#x,y2D

FD(y) = FD(x
0)� F (x)  ✏ =) FD(x

0)  F (x) + ✏ (7.10)

For y 2 (x, x0), and since by definition F (y) = infz>y,z2D FD(z)

F (y)  FD(x
0). (7.11)

Thus, equations (7.10) and (7.11) give F (y)  F (x) + ✏ for all y 2 (x, x0). Consequently, as

y # x, limy#x F (y)  F (x). But monotonicity of F gives

lim
y#x

F (y) � F (x).

Thus, the last two inequalities give F (x) = limy#x F (y), establishing right-continuity of F .

⌅

The next theorem establishes uniqueness of weak limits of distribution functions.

Theorem 7.14. If Fn =) F and Fn =) G, then F = G.

Proof. By De Morgan’s Laws C(F )c[C(G)c = (C(F )\C(G))c = R�(C(F )\C(G)), which

implies that C(F )\C(G) = R� (C(F )c [C(G)c), where C(F )c [C(G)c is a countable set.

Now, if x 2 C(F )\C(G), Fn(x) ! F (x) and Fn(x) ! G(x), hence F = G in C(F )\C(G),
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since limits are unique. But note that C(F ) \ C(G) is dense in R. To see this, let C ⇢ R,

C countable. For each x 2 R (x 2 C or not), B(x, ✏) contains uncountable many points.

Hence, for all x 2 R, the set (R � C) \ B(x; ✏) is nonempty for all ✏ > 0, so x 2 R� C.

Thus R � C ⇢ (R � C) [ C = R ⇢ R� C. Thus, F and G coincide on a dense set of R.

But since any two distribution functions coinciding on a dense set of R coincide everywhere,

F = G 8x 2 R. ⌅

Theorem 7.15. Let Xn, Yn,Wn, X, Y be random variables defined on (⌦,F , P ).

1. Xn � Yn

p! 0, Yn

d! Y =) Xn

d! Y

2. Xn

p! X =) Xn

d! X

3. Xn

d! c =) Xn

p! c where c is a constant

4. Xn

d! X, Yn

d! a, Wn

p! b where a, b are constant, then YnXn + Wn

d! aX + b, if

a 6= 0.

Proof. 1. An = {! : |Xn � Yn| < ✏}, Bn = {! : Xn  x}, Cn = {! : Yn  x + ✏},

Dn = {! : Yn > x� ✏} for any ✏ > 0 and x 2 C(FY ). Then,

FXn(x) = P ({! : Xn(!)  x}) = P (Bn) = P (Bn \ An) + P (Bn \ Ac

n
)

1� FXn(x) = P (Bc

n
) = P (Bc

n
\ An) + P (Bc

n
\ Ac

n
).

Now, Bn \ An = {! : Xn  x and |Xn � Yn| < ✏} = {! : Xn  x and Xn � ✏ < Yn <

Xn + ✏} ⇢ {! : Yn  x + ✏} = Cn. Bc

n
\ An = {! : Xn > x and Xn � ✏ < Yn < Xn + ✏} ⇢

{! : x� ✏ < Yn} = Dn. Thus,

1. FXn(x) = P (Bn)  P (Cn) + P (Ac

n
) = FYn(x+ ✏) + P (Ac

n
)

2. 1 � FXn(x) = P (Bc

n
)  P (Dn) + P (Ac

n
) = 1 � FYn(x � ✏) + P (Ac

n
), or FXn(x) �

FYn(x� ✏)� P (Ac

n
).
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That is,

FYn(x� ✏)� P (Ac

n
)  FXn(x)  FYn(x+ ✏) + P (Ac

n
).

Since x 2 C(FY ) and P (Ac

n
) ! 0 as n ! 1 we have that as ✏ ! 0,

FY (x)  lim inf FXn(x)  lim supFXn(x)  FY (x).

Hence, limFXn(x) exists and limFXn(x) = FY (x).

2. In 1. let Yn = X.

3. {! : |Xn� c| > ✏} = {! : Xn > c+ ✏ or Xn < c� ✏} = {! : Xn > c+ ✏}[{! : Xn < c� ✏}

and

P ({! : |Xn � c| > ✏}) = P ({! : Xn > c+ ✏}) + P ({! : Xn < c� ✏})

= 1� FXn(c+ ✏) + FXn(c� ✏).

Since Xn

d! c, Fc(x) = 0 for all x < c and Fc(x) = 1, for all x � c. Hence, limn!1 P ({! :

|Xn � c| > ✏}) = 0.

4. Wn � b = YnXn +Wn � YnXn � b = YnXn +Wn � (YnXn + b)
p! 0 by assumption. By

1. it suffices to show that YnXn + b
d! aX + b. YnXn + b � (aXn + b) = (Yn � a)Xn. If

(Yn � a)Xn

p! 0, then it suffices to show that aXn + b
d! aX + b. Now, let Gn = FaXn+b,

that is

Gn(x) = P ({! : aXn + b  x}) = P ({! : aXn  x� b})

= P

✓
{! : Xn  x� b

a
}
◆

= FXn

✓
x� b

a

◆
.

Then, FXn(
x�b

a
) ! FX(

x�b

a
) for x�b

a
2 C(FX). FX(

x�b

a
) = P ({! : X  x�b

a
}) = P (aX + b 

x) = FaX+b(x). So, aXn + b
d! aX + b. We now show that (Yn � a)Xn = CnXn

p! 0. Let

c > 0. If �c, c 2 C(FX), P (|Xn| > c) ! P (|X| > c). That is, 8✏ > 0, 9N✏ such that n � N✏,
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�✏  P (|Xn| > c) � P (|X| > c)  ✏ or P (|X| > c) � ✏  P (|Xn| > c)  P (|X| > c) + ✏.

Choose c such that P (|Xn| > c) < �, then P (|Xn| > c) < � + ✏. Since Yn � a
p! 0 and

P (|Xn| > c) < � + ✏, CnXn

p! 0. ⌅

7.4 Exercises

1. Let {Xn}n2N ⇢ Lp for p 2 [1,1) be a sequence of non-negative functions. Show that

k
1X

n=1

Xnkp 
1X

n=1

kXnkp.

2. Show that if
P

n2N xn converges absolutely, then it converges.

3. Prove Theorem 7.9.

4. Let {gn}n=1,2,··· be a sequence of real valued functions that converge uniformly to g on

an open set S, containing x, and g is continuous at x. Show that if {Xn}n=1,2,··· is a

sequence of random variables taking values in S such that Xn

p! X, then

gn(Xn)
p! g(X).

Note: Recall that a sequence of real valued functions {gn}n=1,2,··· converges uniformly

to g on a set S if, for every ✏ > 0 there exists N✏ 2 N (depending only on ✏) such that

for all n > N✏, |gn(x)� g(x)| < ✏ for every x 2 S.

5. Show that Xn

as! X is equivalent to P
�
{! : sup

j�n
|Xj �X| � ✏}

�
! 0 for all ✏ > 0 as n ! 1.

6. Prove item 1 of Remark 7.1.
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7. Let n 2 N and hn > 0 such that hn ! 0 as n ! 1. Show that if
P

1

n=1 P ({! :

|Xn �X| � hn}) < 1 then Xn

p! X.

8. Show that if Yn

d! Y then Yn = Op(1).

9. Let g : S ✓ R be continuous on S, and Xt and Xs be random variables defined on

(⌦,F , P ) taking values in S. Show that: a) if Xt is independent of Xs, then g(Xt)

is independent of g(Xs); b) if Xt and Xs are identically distributed, then g(Xt) and

g(Xs) are identically distributed.

10. Let {Xn} be a sequence of independent random variables that converges in probability

to a limit X. Show that X is almost surely a constant.

11. Suppose Xn�µ

�n

d! Z where the non-random sequence �n ! 0 as n ! 1, and g is a

function which is differentiable at µ. Then, show that g(Xn)�g(µ)
g(1)(µ)�n

d! Z.

12. Show that if {Xn}n2N and X are random variables defined on the same probability

space and r > s � 1 and Xn

Lr�! X, then Xn

Ls�! X.
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