Chapter 8

Laws of large numbers

We first discuss the notion of “tail equivalence” of a sequence of random variables. Here, the
Borel-Cantelli Lemma is very useful. Recall that it says that if {E,},cn is a sequence of

events with > >°  P(E,) < oo, then P (lim sup En) =0.

n—oo

Definition 8.1. Two sequences of random variables { X, }new and {Y, hnew are tail equivalent
of
S P (o X, (0) £ Va())) = 3 Pl{wr: Xulw) ~ Yalt) £0)) = 3 P(A4,) < o0
n=1 n=1 n=1
where A, = {w: X,(w) — Y, (w) # 0}.
Theorem 8.1. Suppose { X, }nen and {Y, }nen are tail equivalent. Then,

1.5 (X, —Y,) converges almost surely,
2. 3 X, converges as <= Y > 'Y, converges as,

3. If there exists a,, — oo and a random variable X such that i 2?21 X; X X, then

1 n as
EZj:lY} — X.

n—o0

Proof. 1. By tail equivalence and the Borel-Cantelli Lemma P (lim sup An> = 0. Now,

recall that limsupA,, = NS U A, =N, C,,, where C,, := UX_ A,,. Consequently,

n—oo

(lim sup An> = (M2 ,CL) =0 O = U (U A )¢ = U Noe_ AY = liminf A¢.

n—0o0 n—00
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Thus,

P (lim inf{w : X, (w) = Yn(w)}> =P (lim inf A;) =1-P (lim sup An) = 1.

n—oo n—o0 n—oo

Since liminfAS = {w : Y7 I4, (w) < oo}, P({w: > 7, Ia,(w) < oo}) = 1. Hence,

n—

there exists a set of w’s which occurs with probability 1, and in this set X, (w) = ¥, (w)
for all but finitely many n. That is, for w € {w : >~ I, (w) < oo} there are only
finitely many n for which I{x, @)y, w)(w) = 1. That is, there exists N(w) such that

for all n > N(w), I{x, ()£, (w)}(w) = 0. Hence, in this same set,
N(w)

ZXn(w) - ZYn(w) = Z(Xn(w) — Y, (w)) < oo almost surely .

n=1

2. Note that

D Valw) =D Xalw)+ ) Valw) = > Xn(w)

= ZXTL(M) - Z(Xn(w) - Yn(w))‘

If >, X, (w) converges as and X,, and Y,, are tail equivalent, then both terms on the

right side of the equality converge as, hence y |V, (w) < oo as. Similarly, writing

Y Xaw) =) Xa(w)+ ) Ya(w) = ) Ya(w)

— ZYn(w) - (Y (w) — Xy (w)).

n=1 n=1

we conclude Y > | X, (w) < oo as.

3. Write
izij - %wa) — X;() + X;())
= =Y 5~ X)) + o YK
= o D050 = K)o D5 = X + 3K
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As n — oo the last term converges as to X(w) by assumption. The second term
converges to zero since Y;(w) and X;(w) are tail equivalent (and by 1), and the first
term goes to 0 as a, — oo. Hence, i > Yi(w) B X(w).

The following definition and associated notation will be useful.

Definition 8.2. Let { X, }new be a sequence of random variables defined on (S, F, P) and

{$n}nen be a sequence in (0,00). We write,

1. X,, = Oy(sy) if for all e > 0 and n € IN, there exists B, > 0 such that

P w:’X”(w>’>BE <€
()

2. X = 0p(Sn) z'ff—: 0.

Theorem 8.2. (General Law of Large Numbers) Suppose { X, }nen is a sequence of inde-
pendent random variables defined on (0, F, P) and S, =37 X;. If

1. Z;;l P({w: |Xj<w)‘ >n}) =0 asn— oo and
2' # Z?:l E(X]QI{UJ|XJ|§n}) — O as n — o0,
then Sn_n - %ZL E(Xjf{w:\xj\gn}) 20.

Proof. Let T, j(w) = X;(w)l{w:|x;1<ny and Sp(w) = >0 T j(w). Note that {w : X;(w) #
Thj(w)} = {w : [Xj(w)| > n} and by assumption > 7 | P({w : T, ;(w) # X;(w)}) — 0 as
n — 00. Note also that

n n n

[Su(w) = Sp@)l = D X(w) =D Tyw)| < D 1X;(w) = Tos(w)l.



Thus, for all € > 0,
{w: |Sp(w) — S/ (w)] > €} C {w : Z | X (w) =T (w)| > 6}
j=1

C | JHw: 1X;(w) = Toj(w)| > ¢/n}.
j=1
Consequently,

P({w: 15:0) = Syw)] > ) < 3P ({w 1(w) = Tug(w)] > e/n})
<> P(ws X > nb).

Taking limits on both sides as n — oo, we have that S, — S/, % 0 since by assumption 1
S P (w0 X > n}) 0.

Now, since {X,, }nen is an independent sequence E ((T5, 1 — E(Tox))(Thy — E(T1))) =0
and consequently V(S;) = 2", V(T,,;) < X", E(T};). Note also that for given n

E(Tr%,j) = / Xff{w;|xj|gn}dp < nZ/dP = n2.
Q Q
Consequently, since V(S),) exists for every n, by Chebyshev’s Inequality (Remark [5.1]),

S, — E(5;) V(S _ 1 <
(e [ ) 50 < L e
j=1

n
Taking limits on both sides as n — oo and by the assumption that # Z?Zl E (Xf]{w:|xj|§n}) —

0, we have b;_; — %‘%) 2 0. Now, since
Sh S/ S, S, S !
Sop(R)-%o% % (%)
n n n n n n

we can immediately conclude that % —F (%) = 0,(1). Finally, from the definition of S,

we have that % — %Z?:l E(le{w:|Xj|§n}) = Op(1>. [ |

We note E(X;) < oo or E(X?) < oo are not required for Theorem The following are
examples of how Theorem [8.2] can be used.
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Example 8.1. Let { X, }new be an independent and identically distributed sequence of ran-
dom variables with E(X,) = u, B(X?) < C < oo. Then, we verify condition 1 by noting
that the identical distribution assumption and Markov’s Inequality give

E(X?) 1. o
n2 - EE(XI) S

ZP(|Xj| >n) =nP(|X;| >n)<n

Jj=1

=1Q

Taking limits on both sides as n — oo gives lim Y7 | P(|X;| > n) = 0. For condition 2,
n—oo

note that by the identical distribution assumption

E(XT) <

=1Q

1 1 1
= > E(XIx;i<ny) = EE(X%[{IXllgn}) <=
j=1
Again, taking limits on both sides as n — oo gives 711;1{)10”—12 > B(XFIx,1<ny) = 0. Finally,
observe that
> (X x;1<ny)
n

= E(X1]{|X1|§n}) — E(Xl) = U

as n — oo by Lebesgque’s dominated convergence theorem. Thus, %Sn L

Example 8.2. Let {X, }n,enw be an independent and identically distributed sequence with

E(]X1]) < C < oo and let E(X,) = u. For condition 1, note that

ZP(|Xj| >n) =nP(|X1] > n) = E(nlgx|>n))-

j=1
But since nliy.x,>n} < | X1|lju|x,|>n}, we have that
> P51 > n) < B( X Ty x,5ny)
j=1
Consequently, lim 377 | P(|X;| > n) < lm E(|Xi|[I{yx,>n)). And since E(|X1|) < C,
n—o0 n—oo
T}LHJOE(|X1|I{UJ|X1|>H}) = 0.

For condition 2, note that by the identical distribution assumption

1 n
=2 B (X Lwix,ien) = B (X, <n)

j=1

Sl— 3|~

(B (X{ Luyxii<eviy) + B (X eyn<ixij<ny)) for any e € (0,1)
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Since E(XT L xy1<eymt) = Jo Xiliwx1<eymdP < ne? [, dP = ne®, we have

n

1

1 1
1 2B (e ian) £ €4 DB (1K Xl wemsingen) £ €+ EOIX i Twameinien))
j=1

< 62 + F (|X1|[{w:6\/ﬁ§\xl\})

Taking limits on both sides as n — 0o, and noting that E(|X1|) < C, we have that

lim E(|X; | em<ix;p) = 0.

n—o0

And, since € can be made arbitrarily small, lim,,_, # Z?:l E(Xf]{w:‘xj‘gn}) = 0. Conse-

quently, 2= — E(X1I(ux,1<n}) — 0. Lastly, note that

lim (/ dep— / X1]{|X1|<n}dp) = / deP— lim le{\XlKn}dP = E(Xl)—E(Xl) =0
Q Q a Q n=eo Jo B

n—oo

by the previous example. Hence,

Sn

— B = % + E(X1I{xy1<ny) — BE(X1lyx,1<ny) — E(X1) = 0p(1) 4+ 0(1) = 0,(1).

Example 8.3. Suppose { X, }new is an independent and identically distributed sequence with

lim xP(|X;| > x) = 0. For condition 1, given the identically distributed assumption, we have
T—00
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> o P(IX;] > n) = nP(1X;| > n) — 0 by assumption. For condition 2, note that

1 n 1 1
n2 ZE(X?I{w:\Xj\Sn}) = EE(X%[{W:|XJ‘|§”}) == /|:ngn 2*dFx, (z)

. %/ﬂgn (/Ox| sds> dFy, (z) = %/Ons (/K'Z'Sn dFXl(x)) ds

s(P(|X1] <n) — P(|X1] < s))ds

Jj=1

3

ST 30 3033 3w

— . T T —

3

s(1— P(|X1| >n) — 1+ P(|X1| > s))ds

3

s(P(|X1| > s) — P(|X1]| > n))ds

3

1 n
7(s)ds — 2P (| X1| > n)ﬁ/ sds, where 7(s) = sP(|X1] > s)
0

3

1 n?
T(S)dS — 2P(|X1| > H)E?

3

7(s)ds —nP(|X1]| > n) = %/0” 7(s)ds — 7(n).

Since, T(n) — 0 as n — oo, we have that for all € > 0 there exists N, such that if n > N,

7(n) <e. Consequently,

Lr <>d—1/NE s+ [ <>d<1/NE (s)ds +
n . T(S S—n . T(S S n 67_8 S_n . TS S €.

Taking limits on both sides asn — oo gives + [*7(s)ds — 0. Then, = — E(X1 x,1<n) 50.

If {X;}jen with E(X}) < oo, E(X?) < M < oo for all j, we have that

1 1 1 — ] —
—Sn = —E(Sy) =~ JZ_;(XJ - B(Xj)) = ;Zj

where E(Z;) =0. If E(Z;Z;) =0 for all i # j, then
IR i 1 M
2
E (E jEZl Zj> = jEZI E(Z3) < - — 0 as n — oo.

Hence, =377 | Z; £ 0, and by Theorem DDA 5 0. In fact, 230 Z; B0 as

Jj=1

shown in the next theorem.

143



Theorem 8.3. Let {X;}jen with E(X;) < oo, E(X?) < M < oo for all j, and assume
that E((X; — E(X;))(X; — E(X;))) =0 for all i # j. Then, letting Z; = X; — E(X;) and
Sn =271 Zj, we have

Proof. For all € > 0 and by Chebyshev’s Inequality
M
P(|S,| > < —.
(18] > ne) < =
Since 22021% diverges we can’t use the Borel-Cantelli Lemma directly. However, if we
consider the subsequence S,,2, we have
— M
ZP {w: S| >n’e}) <> —— < o0,

n2e?
n=1

S

since Y 7, # = %2. Hence, P (hmsup{w |Sp2 (w)| > nze}) = 0 and we have % =0.

n—oo
Now, let
D, := max [S; — Sz
n2<k<(n+1)2
and note that
|Sk| < |Sk| _ |Sk — Sn2 + Sn2| < |Sk — Sn2| |Sn2| |Sn2|
k — n? n? - n? n? - n2 n2

Now, since P(lg}ﬁezx [Wi| > €) <>t P(|Wg| > €) and using Markov’s Inequality

n2+j

} 2
P(D,, > n?) <ZP< >ne><zn42 (ZZ”2+j>
j=1

:Z%ZE(Z?%LJ‘) < ﬂ:%

nte? n2e?

Then, we have > > P(D, > n%) < L35> 4 < 0o, and by the Borel-Cantelli Lemma

n=1

Ly 22 0. Since, as n — oo we have that k — oo, ‘S’“| 2Zo.m

We now state Markov’s Law of Large Numbers.
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Theorem 8.4. (Markov’s LLN) Let { X, }nen be a sequence of independent random variables

with E(X,,) = pun. If for some 6 > 0 we have Y -, E|X’;1+|+ < 00, then

1 I~ a
—Sp — — i — 0
Proof. Chung (1974, A Course in Probability Theory, pp. 125-126). B

8.1 Exercises

1. Let U and V be two points in an n-dimensional unit cube, i.e., [0,1]" and X,, be the
Euclidean distance between these two points which are chosen independently and uni-
Xy P L
formly. Show that N
2. Show that if { X} ;ew be a sequence of random variables with F(X;) = 0and » 7%, - p E(|X;]P) <

oo for some p > 1 and a sequence of positive constants {a;};en. Then,

o

ZP | X;| > a;) < co and Z ]E Xjltwx;1<a;})| < 00.
Furthermore, for any r > p,

oo 1 .
> T E(X i 12a53) < 00
j=1

<.

Use this result to prove Theorem 8.4 in your class notes with convergence in probability.

3. Let {X;}i—23... be a sequence of independent random variables such that

1 1
P(X;=0)=1—

" 2ilogi’ ilogi

Show that 257" ) X; 5 0.
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Chapter 9

Conditional expectation

9.1 Inner product spaces

There are several ways to introduce the notion of conditional expectation. We begin by
introducing inner-product spaces and motivate a definition of conditional expectation by

using the Projection Theorem.

Definition 9.1. A real vector space X is called an inner-product space if for all x,y € X,

there exists a function (z,y), called an inner-product, such that for all z,y,z € X and a €
1. (z,y) = (y, )
2. {x+y,z2) = (r,2) +{y,2)
3. {ax,y) = alzr,y), a € R
4. {x,x)y >0, for all x
5. (r,x) =0 < x =0, where 0 is the null vector in X.

The following theorem shows that a general version of the Cauchy-Schwarz Inequality

holds for inner-product spaces.

HIf the vector space X is associated with a complex field, property 1 becomes (x,y) = (y,z), where for
x € C, z is the complex conjugate of z, and in property 3 a € C.
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Theorem 9.1. Let X be an inner-product space and x,y € X. Then,

(2, y)| < (z,2) 2 (y, y) 2.

Proof. Let y # 6 and note that for all a € R,

0 < (z—ay,z—ay) = (z,x) — 2a{z,y) + a*(y,y)
< (o) - <§”y’ y;) by letting a = (2, 4)/(y, y)-

The last inequality is equivalent to (x,4)? < (x, z)(y, y) or |{x,y)| = (x, 2)/*(y,y)/2. Lastly,

if y = 0 then the inequality holds with equality and (z,0) = 0. B

It can be easily shown that the function || - || : X — [0, 00) defined as ||z| = (z,z)Y/? is a
norm on X. Thus, every inner-product space can be taken to be a normed space with this
induced norm. Another important property in inner-product spaces is the Parallelogram

Law, which is given in the next theorem.
Theorem 9.2. In an inner-product space ||z + y||* + ||z — y||* = 2||z||* + 2|y

Proof. |z +yl|> = (z+y,x+y) = (z.2) + (y,y) + 2(z,y) and ||z —y|* = (x —y,z — y) =

(x,x) + (y,y) — 2(x,y). Hence, we obtain
[+ y|I” + [l — ylI” = 2||=]]* + 2[|y[*
|

Example 9.1. Let z,y € R" and define (x,y) = > . xy;. It can be easily shown that

1/2 .
n 2% is a norm.

(z,y) is an inner-product for R™ and (x,z)'/? = ||z|| = O,

=11

Example 9.2. Consider the space L*(Q, F, P) of random variables X : (Q, F, P) — (R, B)

such that [X?dP < oco. By Theorem |5.10.1 XY € L(Q,F,P) and by Theorem [5.10.3
0
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L2(Q, F, P) is a vector space. Now, define (X,Y) = E(XY) = [XYdP. Using the prop-
erties of integrals, conditions 1-4 in Definition |9.1] are easily verijfiled. However, condition 5
does not hold. Whereas it is true that X(w) = 0 for all w, the null vector in L*(Q, F, P),
gives (X, X) = [X?(w)dP = 0, [X*(w)dP = 0 does not imply X (w) = 0 for all w. This
18 true since a rgndom variable Zchat takes non-zero values in sets of measure zero and is
equal to 0 elsewhere will be such that [Z*(w)dP = 0. If we treat any two variables X and
Z in L2(Q,F, P) as being identical ifﬂthey differ only in a set of measure zero, that is if
Pw: X(w) # Z(w)}) =0, ff/gen condition 5 is met and L*(Q, F, P) is an inner product

space with || X||s = (fXZdP) . We know from the Riez-Fisher Theorem that L?(Q, F, P)
0

is a Banach space, viz., a complete vector space. Hence, L2(Q, F, P) is a Hilbert space.

Theorem 9.3. Let {X,,}n=12.. and {Y,}n—12.. be sequences in a Hilbert space with inner
product {-,-) and norm || - || = (-,-)*/2. Let X,, — X in that || X, — X|| = 0 as n — co and

Y, =Y. Then, (X,,Y,) = (X,Y).
Proof. By the Cauchy-Schwarz inequality (Theorem [9.1)), [(X,Y)| < [|X||||Y]|. Therefore,

[(X,Y) = (X, Vi) | = [(X, Vo) = (KXo, V) + (X, Y) = (X, Vo) = (X0, V) 4 (Xan, Vi)
+ (X, Y)Y — (X, Vo)l
= (X = X, V) + (X — X,,, Y = Y,) +(X,,, Y = V)|
<X =X, Vi)l + (X = X0, YV = Vo) [+ (X, Y = V3]
<X = X[Vl + 11X = XallIY = Yol + [ XY = Yall-

By convergence, || X — X, ||, [|Y — Y.|| — 0 and since || X, ||, ||Yn] < oo for all n, [(X,Y) —
(X, Y)| — 0,asn — co. B

Definition 9.2. Let S be a closed subset of a Hilbert space H. The distance from'Y € H to
S is denoted by
d(Y,S) =inf{]|Y — X||: X € S}.
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IfY €8, d(Y,S) =0.

Theorem 9.4. (Projection Theorem): Let S be a closed subspace of a Hilbert space H and
Y € H. There exists a unique X € S such that ||Y — X|| := inf{]|]Y — X'|| : X’ € S}.
Furthermore, (Y — X,s) =0, for all s € S.

Proof. First, consider existence of X. If Y € S, put X =Y. If Y ¢ S, we would like to
obtain X € S such that ||Y — X|| = )}nfS{HY - X'} =6>0.
‘e
Let {X;}iew € S such that | X; — Y| — 6. Now, if X; and Y are in a Hilbert space, we

have by the Parallelogram Law
10X = ¥) + (¥ = Xl2+ 10X, = ¥) = (v = X012 = 201X, — Y[ + 2]y = X

and

X+ X;
1 = XGII* = 211X = VI + 2]y = X|° = 4y = ———|*

For all 4,7 the vector = € S (since S is a subspace). Therefore, by definition of ¢,

2
Y — @H > 0 and we obtain || X; — X;||* < 2||X; — Y|* 4+ 2||Y — X;||* — 4% Since
|X; — Y[|* = 6% by continuity of inner product (Theorem[9.3), || X; — X;[|* = 0 as 4, j — oc.
Hence, {X;} is a Cauchy sequence. Since S is closed, { X} converges to X € S. Furthermore,
§<||Y = X|| <||Y = Xi|| + || X; — X|| <9. Hence, X = X which we wanted to show existed.

Now, consider the proof of (Y — X, s) =0 for all s € S. Suppose there exists s € S such
that (Y — X, s) # 0. Without loss of generality assume that ||s|| = 1 and that (Y — X, s) =

0 # 0 and define s; € S such that s; = X + ds. Then,
Y — 51]|* = ||Y — X — 6s]|*by definition of s,
= [|Y = X[]? = (Y = X, d5) — (05, Y — X) + |||
=Y — X||? =6 - 6* +6°

=Y - X|* = o* < |ly — X]?
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Hence, if (Y — X, s) # 0, then X is not the minimizing element of S and it must be that for
allse S, (Y —X,s) =0.

Lastly, let’s prove uniqueness. For all s € S, the theorem of Pythagoras says that
Y —s|P=]Y =X+ X —s|?=|Y — X||*+ || X —s||%. (Note that (Y — X, X —s) =0 due
to the fact that (Y — X,s) =0, Vs € S). Hence, ||[Y —s|| > [|[Y — X| for s # X. R

As a matter of terminology, we call any two elements X and Y of a Hilbert space orthog-

onal if (X,Y) =0.

9.2 Conditional expectation for random variables in
£2(Q7 F? P)

Now consider the Hilbert space £2 composed of all random variables defined on (2, F, P) and
for precision denote this space by £2(Q, F, P). Let X be a random vector taking values in R™
defined in the same probability space with o(X) C F. Then, £*(Q,0(X), P) C L*(Q, F, P)
is a Hilbert space with the same inner product. Furthermore, £2(Q2,0(X), P) is a closed

subspace of £2(Q, F, P). We now define conditional expectation.

Definition 9.3. Let Y € L*(Q,F,P). The conditional expectation of Y given X 1is the

unique element Y € L2(Q,0(X), P) such that

A

E((Y =Y)s) =0, for all s € L*(Q,0(X), P).
We write Y = E(Y|X) or Y = E(Y|o(X)).
Recall that if X : (2, F, P) — (R",B") is a random vector, then X~'(B") C F is a o-
algebra and we wrote X ~1(B") = (X)), the o-algebra generated by X. Consider a random

variable Y : (Q,F, P) — (R, B). It is legitimate to ask when Y is measurable (a random

variable) with respect to o(X ) The following theorem provides a useful characterization.

2More generally, for G C F a o-algebra, we say that X is G-measurable if for all B € B, X~}(B) € G.
There may be many of these G’s. The intersection of all of them, i.e. o(X) := N;crG; is called the o-algebra
generated by X.
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Theorem 9.5. Let X : (0, F, P) — (R", B") be a random vector and Y : (Q, F, P) — (R, B)
be a random variable. Y is o(X)-measurable if, and only if, there exists f : (R™, B") — (R, B)
such that Y = f(X) and f is B"-measurable.

Proof. ( <= ) We want to show that for every B € B we have Y '(B) € o(X). But
Y~YB) = X7 }(f~!(B)) and by measurability of f, f~!(B) € B" and since X is a random
vector X~ 1(f~!(B)) € o(X). Thus, Y is o(X)-measurable.

( = ) Suppose Y !(B) € o(X) for all B € B. First, assume that Y is simple. Then,
for kK € IN we have Y = Zle a;l,, for a; distinct and A; pairwise-disjoint. In this case,
Y~'({a;}) = A; and by assumption A; € o(X). Hence there exists B; € B" such that
XYB;) = A; (definition of ¢(X)). Let f(z) = S.r, aip,(x), then Y = f(X), f B"-
measurable. Thus, the implication is proved for every Y simple that is o(X)-measurable.

IfyY:(Q,F,P)—[0,00) then, by Theorem there exist Y,,(w) simple such that

Y(w) = limY,(w), 0 <Y,(w) <Y,11(w).

n—o0

Each Y,, is o(X)-measurable and Y,, = f,(X) from the first part of the proof. Now, set
f(z) = limsup,,_,, fu(z) and note Y = lim,, oo Yy, = lim,, . fr(X).
Given that (limsup,,_, f»)(X) = limsup,, ., fn(X), by Theorem[3.6] f(x) is B"-measurable.

For general Y, write Y = Y+ — Y~ which reduces to the preceding case. W

Remark 9.1. 1. An equivalent way to think of Definition[9.5 using the previous theorem

15 to write

EY|X)= arginf ||V —s| = arginf |V — f(X)].
s€L2(Q,0(X),P) feF

where F' 1s the set of Borel measurable functions from R™ to R.

2. Since Y = BE(Y|X) is o(X)-measurable, by Theorem there exists f : R™ — R
which is Borel measurable such that E(Y|X) = f(X) and f is unique. Hence, we
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can write E[(Y — f(X))g(X)] = 0, for all g : R — R Borel measurable such that
[ ¢*dP < .

We can free the concept of conditional expectation from a particular set of random
variables (or element) that produces o(X) and speak more generally of conditioning on a

o-algebra G C F, that is a sub-o-algebra of F.

Definition 9.4. Y : (Q, F, P) — (R, B) be a random variable with [ Y*dP < co. Let G be
a sub-c-algebra of F. Then E(Y|G) is the unique Y € L*(Q, G, P) such that

~

E((Y =Y)s)=E([Y — E(Y|9)]s) =0,
for all measurable s € L2(, G, P).
Remark 9.2. 1. The definition gives E(Ys) = E(sE(Y|G)).
2. Since s = 1€ L2(Q,G, P), E(Y) = E(E(Y|G)).

3. If U,V € L*(Q, F, P), then E(U+aV|G) satisfies E(U+aV)s) = E(E(U+aV|G)s).
But,
E((U+aV)s)=E(Us) + aE(Vs)
= E(EU|G)s) + aE(E(V]|G)s)
= E([EUIG) + aE(V|G)]s).

Hence, E(U + aV|G) = E(U|G) + aE(V|G). That is E(+|G) is a linear function.

Theorem 9.6. Assume that Z := ( )}2 ) is a random vector defined on (2, F, P) taking

values in R* and having density f.

1.Y and X have densities on (R,B) given by fy(y) = [g [(y,x)d\(x) and fx(z) =
Jo Iy, 2)dA(y).
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2. For every v € R such that fx(x) # 0 we have that fy|x—.(y) = 1wa) s g density on

R.

E(Y|X) = h(X) where h(x) = [ yfyix=2(y)d\(y).

Proof. 1. Let EE € B. Then,

PYeFE)=P(ZecExR)= [y, 2)d\*(y, z)
ExR
//fy,d)\d)\ /fyd)\)
with fy (y) = [ f( (z). Therefore, P(Y € E) = [, Ipfy(y)d\(y) and fy is a density
for Y.
2 fa fmxzx(y)dk(y) = Jo FESdA(y) = 1.
3. Let h(z) = [ ufyix=2(y)d\(y) and consider any bounded Borel measurable function

g: (R,B) = (R, B). Then,

E(h(X)g(X))Z/h(iv) () fx //ny|x —(Y)dA(y)g(x) fx (x)dA(x)
-/ / S w)gta) fs@)ix@) = [ [ ufodidg(aae)
=FE(Yg(X
Consequently,

E(h(X)g(X)) — E(Yg(X)) = E((Y — h(X))g(X)) = 0
which gives F(Y|X) =h(X). &

Theorem 9.7. Let Y be a random variable in L2(2, F, P) and S be a closed subspace of
L2(Q, F,P). Then,

1. there exists a unique function Ps : L2(Q2, F, P) — S such that (Z—Ps) : L*(Q, F, P) —

S+ where St is the orthogonal complement of S

3The orthogonal complement of a subset S of an inner-product space is the set of all vectors in the space
that are orthogonal to S.
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2.V )2 = 1Ps(W)I* + [I(1 — Ps)(Y)|1%,

3. Ps(Y,) = Ps(Y) if |V, — Y] — 0 as n — oo,

4. if S1, So are closed subspaces of L*(Q, F, P) such that S; C Sy = Ps,(Ps,(Y)) =
Ps, (Y).

Proof. 1. By the Projection Theorem, for each Y € £?(Q, F, P) there exists a unique Yes.
Thus, we write the function Ps(Y) = Y. In addition E{(Y — Ps(Y))s} = 0 for all s € S.
That is, Y — Ps(Y) is orthogonal to the subspace S. Any Y € £2(Q, F, P) can be written
as Y — Ps(Y)+ Ps(Y)=Y or Y = (Z — Ps)(Y) + Ps(Y) where Z is the identity operator
in £L%(Q, F, P) and Z — Ps projects Y onto the orthogonal complement of S.
2. Note that
IYI* =Y = PsY + PsY||*

= ||Y — Ps(Y)||* + | Ps(Y)||* by Pythagoras’ theorem

= (Z = Ps)(YV)II* + | Ps (Y]
3. Note that || Ps(Y,,) — Ps(Y)||? = || Ps(Y, — Y)||>. By the last equality in part 2.,

1Yo = Y| = |(Z = Ps)(Ya = Y)|I* + || Ps(Ya — Y)I?
= [l(Z = Ps) (Y = V)| + [|Ps(Y) — Ps(Y)]*.
Consequently,
1Ps(Y,) = Ps(Y)|I* = Vo = YII* = [(Z = Ps) (Yo = Y)II* < [[Ya — Y[

Hence, if ||Y,, — Y|| = 0 as n — oo, then ||Ps(Y,) — Ps(Y)||> = 0 as n — oo.

4.Y = Ps,(Y) 4+ (Z — Ps,)(Y) and Ps,(Y) = Ps,(Ps,(Y)) + Ps,((Z — Ps,)(Y)). In the last
term, the argument of Ps, is an element of the orthogonal complement of S5. That is < (Z —
Pg,)(Y),s >= 0 for every s € Sy. But since S; C Sy, it must be that < (Z—Pg,)(Y),s1 >=0

for all s; € S;. Thus, (Z — Ps,)(Y) € St and consequently Ps, ((Z — Ps,)(Y)) =0. B
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In Theorem , if we take the closed subspace of £L2(Q, F, P) to be L2(Q2,G, P) for G a

sub o-algebra of F, we write E(Y|G) for Ps(Y). In particular, we have:
L Y2 =IEXIOI*+ 1Y - B9
2. B(Y,|G) — E(Y|G) it Y, 5V,

3. if H C G then E(E(Y|G)[H) = E(Y|H).

9.3 Conditional expectation for random variables in
L(2, F,P)

It is desirable to extend the concept of conditional expectation to random variables Y :
(Q,F,P) = (R, B) such that Y € £. The word extend is justified, since by the Cauchy-

Schwarz Inequality (or Rogers-Holder Inequality with p = g = 2)
E(XY]) < [ X]2l[Y[]2-

Taking Y = 1 almost everywhere, we have E(|X|)* < E(X?). Hence, if E(X?) < C then
E|X| < C. Consequently, £L? C L.

For this purpose, recall that Y € £(Q, F, P) if YT = max{Y (w),0} and Y~ = — min{Y (w), 0}
are such that E(Y "), E(Y ™) < oo and, in this case, we define E(Y) = E(Y") - E(Y ™). If
Y >0, then Y~ =0and Y = Y'. We first consider Y € £, (2, F, P). As in Definition [4.4]
we allow Y (w) = co. The next theorem provides the basis for extending our definition of

conditional expectation to random variables in L.

Theorem 9.8. i) Let Y € L, (2, F,P) and let G be a sub-c-algebra of F. There exists
a unique element E(Y|G) of Li(2,G, P) such that E([Y — E(Y|G)]X) = 0 for all
X eL (G, P).
i) IfY € L2(Q, F, P) then the conditional expectation E(Y|G) in i) is the same as E(Y|G)
in Definition with o(X) = G.
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iii) If Y <Y’ then E(Y|G) < E(Y'|G).

Proof. 1) We first consider the existence E(Y|G). Let Y € £2(Q, F,P) and Y > 0. In this
case, define E(Y|G) as in Definition [9.3] Now, for X € £.(Q,G, P) let

X(w), if X(w)<n,
n, if X(w) > n,

Xp(w) = min{ X (w),n} = {

and note that

s v JXP(w), if X(w)<n
Xalw) = {nQ, if X(w)>n

Hence,

/XQdP _ Jo X2dP <n? [,dP =n* < oo, if X(w)<n
a n? [, dP = n® < oo, if X(w)>n
so that X,, € £2.
Now, 0 < Xj(w) < Xs(w) < -+ < X(w) and X, (w) — X(w) almost everywhere as

n — 00. Then, by Beppo-Levi’s Theorem, we have that

E <lim YXn> = B(YX) = lim E(YX,) = lim B(E(Y|G)X,).

n—o0 n—oo

The last equality follows from the fact that EY? < oo, EX? < oo and Definition Now,

again by Beppo-Levi’s Theorem, we have

E(YX) = lim E(E(Y|G)X,) = E(E(Y|G)X), for all X € £,(Q,G, P).

n—oo

IfY € L,(Q,F, P) then let Yy, (w) = min{Y (w),m} and from the argument above Y,, € L.

Hence,

lim B(Y,,X,) = lim B(E(Y;n|G)X,) = E(E(Y|G) lim X,,)

n—oo n—oo

= E(E(Y,,|6)X).

Now, since Y, > 0, then F(Y,,|G) as defined in Definition [0.3]is such that E(Y;,|G) > 0.
To see this, consider Z = I{p(y,.|g)<0} and note that E(Z?) = P(E(Y,,|G) < 0), E(Y,,Z) =
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E(E(Yn|G)Z) = E(E(Ym|G) ey, 0)<0y)- Now, since Y, > 0 and Z =1 or Z = 0 we have
that F(Y,,Z) > 0. But the right-hand side of the last equality is less than 0 if F(Y,,|G) <0,
so it must be that E(Y,,|G) > 0 if Y,, > 0. Hence, E(Y,,|G) is increasing with m, and by

Beppo-Levi’s Theorem we have

lim lim E(Y,,X,) = B(YX) = lim E (E(Y,|G)X) = E ( Tim. E(Ym|g)X) .

i lim e
Now, since E(YX) = E ((J%E(Ym|g)) X) or E ((Y —ngnooE(mg)) X) = 0 for all
X € L (2,6, P), we define

E(Y|9) = lim_ E(Y,,|0) (9.1)

for Y € LT(Q,F, P).

We now consider uniqueness of E(Y'|G). Let U and V' be two versions of E(Y|G) and let
Ap ={w:U <V <n}. Since U and V are versions of E(Y|G) we know that U and V are
G-measurable. Consequently, {w : U <n} € G, {w:V<nteGand A, ={w: U<V <
n}eqg.

Note that E(Y1,,) = E(UI,,) = E(VI,,) since U = V = E(Y|G). Furthermore,
0 < Ul < VI, <mnandif P(A,) >0 (A, # 0), Ul,, < VI,, which implies that
EWUI,,) < E(VI,,), which contradicts E(Ul,,) = E(VI,,). Therefore, P(A,) = 0 for
all n. Now, note that Ay C Ay C A3 C --- C {U < V}. Now T}LI%O ur, A ={0 <V}
and P ( Tim Uz, /\i) = lim P(UZA) < limg oo 0, P(A). Thus, P({U < V}) = 0.
Repeating the argument for I', = {w : V < U < n} we conclude that P{V < U}) = 0.
Hence, it must be that U and V coincide with probability 1.

ii) The proof follows from the first part of the argument in item 1i).

iii) If Y <Y’ then Y,, <Y, for all m and E(Y,,|G) < E(Y,/|G) and consequently

lim B(Y,|G) < lim BE(Y,|G) <= E(Y|g) < E(Y'|G).
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We now consider conditional expectations for random variables in L£(€2, F, P).

Theorem 9.9. Let Y € L(Q, F, P) and let G be a sub-o-algebra of F. There exists a unique
element E(Y'|G) in L(Q,G, P) such that

E({(Y - EY|G)X)=0, for all bounded G-measurable X .

E(Y|G) coincides with those in Definition and Theorem whenY € L? and Y € L.
In addition, (i) if Y >0, then E(Y|G) > 0 and (i1) E(Y|G) is a linear in Y.

Proof. We first consider existence of the conditional expectation. Since Y € L, we can write

Y=Y"-Y and YY", Y™ € L. Now, Y and Y~ are such that

E((Y"—-E(Y*G)X) =0, forall X € £,(Q,G, P) and

E((Y~ —E(Y|G)X) =0, forall X € £L,(Q,G, P).
Define E(Y|G) = E(Y*|G) — E(Y~|G) and note that for X € £,(9,G, P)

E(YX)=E(Y* —Y")X) = E(Y*X) - E(Y"X)
= FE(E(Y"|G)X) — E(E(Y"|G)X) by Theorem

— B((E(Y*|G) - E(Y~|6)))X) = E(E(Y]G)X).

We now establish uniqueness of E(Y'|G). Suppose U and V' are two versions of E(Y|G) and
let A = {U < V}. Then, since U and V are G-measurable, then A € G. Therefore I, is

G-measurable.

E(Y1\) = E(E(Y|G)I5) = E(UIL\) = E(VIA).

But, if P(A) > 0, then E(UI,) < E(VI,), a contradiction. Thus, P(A) = 0. A similar

reverse argument gives P(V < U) = 0.
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Now, for any X that is bounded and G-measurable consider

B(YX)=E(Y(X* - X)) = B(YX") - B(YX")
= E(XTE(Y|G)) - E(X"E(Y|9))
using the definition of conditional expectation in this proof.
= E((XT - X7)E(Y|9)) = E(XE(YG)).

The proofs of items (i) and (ii) are left as exercises. W

Remark 9.3. Note that if X and Y are independent random variables defined on the same
probability space, then by Theorem[6.6, if f is a bounded measurable function E(Y f(X)) =
E(Y)E(f(X)). Now, E(Yf(X)) = E(E(Y|o(X))f(X)) and consequently

taking f(X) = E(Y) gives E(Y) = E(Y|o(X)).

Lebesgue’s monotone and dominated convergence theorems hold for conditional expec-

tations.
Theorem 9.10. Y, (w) : (2, F,P) — (R, B) and let G be a sub-o-algebra of F.

a) If Y, >0,V <Yy, <Yy <--- withY, 3Y asn — oo, then lim,_,o BE(Y,|G) =
EY|G) a.s.

b) If Y, 3 Y and |Y,| < Z for some Z € L(Q, F, P), then lim, .., E(Y,|G) = E(Y|G)

a.s.
Proof. Left as an exercise. W

We now give an example where conditional expectation is taken to belong to a specific

class of measurable functions.
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Example 9.3. Let Y € L*(Q,F,P) and let X be a random wvector defined on the same
probability space. Assume that for every component of Xy, for k =1,--- K of X we have

Xy € L2(Q, F, P). Now, consider the following class of functions

K
F=A{f:f(x)= Z arpxy where f is o(X)-measurable and a € R}.

k=1

Using Definition[9.3 or item 1 in Remark 30

a1, 0K a1, ,aK

) 2
E(Y|X) = argmin / (Y - Zaka> dP = argminO(ay, - - ,aK).
k=1

K K
O(ay, -+ ,akx) = /(Y2 - ZYZaka + (Z arX)?)dP
k=1 =1
K K

_/YZdP—2Zak/XdeP+Zaz/X,§dP

k=1 k=1
K
+ ZZakal/XledP

k=1 k#l

K K K
=0’ =2 wEXY)+ > a /X,fdP Y Y aa B(XX)).
k=1 k=1

k=1 jk#l

Now, taking derivatives with respect to ay we have 2-O(ay, -+ ,ax) = —2E(XY)+2a,E(X?)+

day,

2) paB(XXh) for k=1,--- K. Alternatively, using matrices

E(X?) E(X1Xp) -+ BE(XXk)
E(X Y !
: S BOGX)  E(X3) o B(GXp) | |
%O(alfuuaK):_Z . +2 : : :
E(XkgY ) '
(XxcY) E(XxX1) E(XgXs) --- E(X2) 4K
= —2b+2Aa
Choosing a := a such that %O(dl,--- Jaxg) = 0 we have a = A7'b if A is invertible.

Invertibility of A follows positive definiteness of A, which also assures that f(:v) = Zszl QpTy

corresponds to a minimum.
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9.4 Exercises

1. Assess the veracity of the following statement: “Since knowledge of X implies knowl-
edge of f(X), conditioning on X is the same as conditioning on f(X). Hence, E(Y|f(X)) =

E(Y|X).” Explain using mathematical arguments.

2. Let X and Y be independent random variables defined in the same probability space.
Show that if E(|Y]) < oo then

P(E(Y|X)=E®Y)) =1.

3. Let (Q, F, P) be a probability space. The set of random variables X : Q — R such

1/2

that [, X?dP < oo is denoted by L?(€, F,P). On this set | X[ = ([, X*dP)
is a norm and < X,Y >= fQ XYdP is an inner product. If G is a o-algebra and
G C F, the conditional expectation of X with respect to G, denoted by F(X|G) is the
orthogonal projection of X onto the closed subspace L*(Q, G, P) of L*(Q2, F, P). Prove

the following results:

(a) For X,Y € L*(Q, F, P)wehave < E(X|G),Y >=< E(Y|G)), X >=< E(X|G), E(Y|G) >.
(b) If X =Y almost everywhere then E(X|G) = E(Y|G) almost everywhere.

(c) For X € L*(Q,G, P) we have E(X|G) = X.

(d) If H C G is a o-algebra, then F(E(X|G)|H) = E(X|H).

(e) fY € L*(Q,G, P) and there exists a constant C' > 0 such that P(|Y| > C) =0,
we have that E(Y X|G) = YE(X|G).

(f) If {V}new, X € L2(Q, F,P) and ||V, — X|| — 0 as n — oo, then E(Y,|G) 5
E(X|G) as n — oo.
4. Let X,Y € L£*(Q, F, P) be random variables and assume that F(Y|X) = aX where

a € R.

162



(a) Show that if E(X?) >0, a = E(XY)/E(X?).
(b) If {(Y; X;)T}, is a sequence of independent random vectors with components
having the same distribution as (Y X)?, show that

] — 1 —
N X2B EB(X?) and =) VX, B E(XY).
QX B and S (x)

(c) Let a, = (3701, XZ-Q)_1 L5 Y:X,. Does a, > a? Can a, be defined for all n?

i=1"11

Explain.
5. Prove the following:

(a) IfY € L(Q,F,P) and G C F is a o-algebra, show that |[E(Y|G)| < E(|Y||G).

(b) Let ¢ be a scalar constant and suppose X = ¢ almost surely. Show that E(X|G) =

¢ almost surely.

(c) IfY € L(Q,F,P)and G C F is a o-algebra, show that for a > 0

—_

P({w: [Y(w)| 2 a}|g) < ~E([Y ()[|9).

a
What is the definition of P ({w : |Y(w)| > a}|G)? Is this a legitimate probability

measure?

6. Let Y and X be random variables such that Y, X € L*(Q,F,P) and define ¢ =
Y — E(Y|X).
(a) Show that E(¢|X) =0 and E(e) = 0.

(b) Let V(Y|X) = E(Y?|X) — E(Y|X)2. Show that V(V|X) = V(¢|X), V(e) =
E(V(Y]X));

(¢) Cov(e, h(X)) =0 for any function of X whose expectation exists.
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(d) Assume that E(Y|X) = a + X where a, f € R. Let E(Y) = py, E(X) = px,
V(Y) =0y, V(X)=0% and p = CovlXY) Show that,

OX0Yy

X —
E(Y]X) = py + poy =% and E(V(Y]X)) = (1= )0}
X
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