
Chapter 8

Laws of large numbers

We first discuss the notion of “tail equivalence” of a sequence of random variables. Here, the

Borel-Cantelli Lemma is very useful. Recall that it says that if {En}n2N is a sequence of

events with
P

1

n=1 P (En) < 1, then P

✓
lim sup
n!1

En

◆
= 0.

Definition 8.1. Two sequences of random variables {Xn}n2N and {Yn}n2N are tail equivalent

if
1X

n=1

P ({! : Xn(!) 6= Yn(!)}) =
1X

n=1

P ({! : Xn(!)� Yn(!) 6= 0}) =
1X

n=1

P (An) < 1,

where An = {! : Xn(!)� Yn(!) 6= 0}.

Theorem 8.1. Suppose {Xn}n2N and {Yn}n2N are tail equivalent. Then,

1.
P

1

n=1(Xn � Yn) converges almost surely,

2.
P

1

n=1 Xn converges as ()
P

1

n=1 Yn converges as,

3. If there exists an ! 1 and a random variable X such that 1
an

P
n

j=1 Xj

as! X, then
1
an

P
n

j=1 Yj

as! X.

Proof. 1. By tail equivalence and the Borel-Cantelli Lemma P

✓
lim sup
n!1

An

◆
= 0. Now,

recall that lim sup
n!1

An = \1

n=1[1

m=n
Am = \1

n=1Cn, where Cn := [1

m=n
Am. Consequently,

✓
lim sup
n!1

An

◆c

= (\1

n=1Cn)
c = [1

n=1C
c

n
= [1

n=1([1

m=n
Am)

c = [1

n=1 \1

m=n
Ac

m
= lim inf

n!1

Ac

n
.
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Thus,

P
⇣
lim inf
n!1

{! : Xn(!) = Yn(!)}
⌘
= P

⇣
lim inf
n!1

Ac

n

⌘
= 1� P

✓
lim sup
n!1

An

◆
= 1.

Since lim inf
n!1

Ac

n
= {! :

P
1

n=1 IAn(!) < 1}, P ({! :
P

1

n=1 IAn(!) < 1}) = 1. Hence,

there exists a set of !’s which occurs with probability 1, and in this set Xn(!) = Yn(!)

for all but finitely many n. That is, for ! 2 {! :
P

1

n=1 IAn(!) < 1} there are only

finitely many n for which I{Xn(!) 6=Yn(!)}(!) = 1. That is, there exists N(!) such that

for all n > N(!), I{Xn(!) 6=Yn(!)}(!) = 0. Hence, in this same set,
1X

n=1

Xn(!)�
1X

n=1

Yn(!) =
N(!)X

n=1

(Xn(!)� Yn(!)) < 1 almost surely .

2. Note that
1X

n=1

Yn(!) =
1X

n=1

Xn(!) +
1X

n=1

Yn(!)�
1X

n=1

Xn(!)

=
1X

n=1

Xn(!)�
1X

n=1

(Xn(!)� Yn(!)).

If
P

1

n=1 Xn(!) converges as and Xn and Yn are tail equivalent, then both terms on the

right side of the equality converge as, hence
P

1

n=1 Yn(!) < 1 as. Similarly, writing
1X

n=1

Xn(!) =
1X

n=1

Xn(!) +
1X

n=1

Yn(!)�
1X

n=1

Yn(!)

=
1X

n=1

Yn(!)�
1X

n=1

(Yn(!)�Xn(!)).

we conclude
P

1

n=1 Xn(!) < 1 as.

3. Write

1

an

nX

j=1

Yj(!) =
1

an

nX

j=1

(Yj(!)�Xj(!) +Xj(!))

=
1

an

nX

j=1

(Yj(!)�Xj(!)) +
1

an

nX

j=1

Xj(!)

=
1

an

N�1X

j=1

(Yj(!)�Xj(!)) +
1

an

nX

j=N

(Yj(!)�Xj(!)) +
1

an

nX

j=1

Xj(!).
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As n ! 1 the last term converges as to X(!) by assumption. The second term

converges to zero since Yj(!) and Xj(!) are tail equivalent (and by 1), and the first

term goes to 0 as an ! 1. Hence, 1
an

P
n

j=1 Yj(!)
as! X(!).

⌅

The following definition and associated notation will be useful.

Definition 8.2. Let {Xn}n2N be a sequence of random variables defined on (⌦,F , P ) and

{sn}n2N be a sequence in (0,1). We write,

1. Xn = Op(sn) if for all ✏ > 0 and n 2 N, there exists B✏ > 0 such that

P

✓⇢
! :

|Xn(!)|
sn

> B✏

�◆
< ✏

2. Xn = op(sn) if Xn
sn

p! 0.

Theorem 8.2. (General Law of Large Numbers) Suppose {Xn}n2N is a sequence of inde-

pendent random variables defined on (⌦,F , P ) and Sn =
P

n

j=1 Xj. If

1.
P

n

j=1 P ({! : |Xj(!)| > n}) ! 0 as n ! 1 and

2. 1
n2

P
n

j=1 E(X2
j
I{!:|Xj |n}) ! 0 as n ! 1,

then Sn
n
� 1

n

P
n

j=1 E(XjI{!:|Xj |n})
p! 0.

Proof. Let Tn,j(!) = Xj(!)I{!:|Xj |n} and S 0

n
(!) =

P
n

j=1 Tn,j(!). Note that {! : Xj(!) 6=

Tn,j(!)} = {! : |Xj(!)| > n} and by assumption
P

n

j=1 P ({! : Tn,j(!) 6= Xj(!)}) ! 0 as

n ! 1. Note also that

|Sn(!)� S 0

n
(!)| =

�����

nX

j=1

Xj(!)�
nX

j=1

Tn,j(!)

����� 
nX

j=1

|Xj(!)� Tn,j(!)|.
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Thus, for all ✏ > 0,

{! : |Sn(!)� S 0

n
(!)| > ✏} ⇢

(
! :

nX

j=1

|Xj(!)� Tn,j(!)| > ✏

)

⇢
n[

j=1

{! : |Xj(!)� Tn,j(!)| > ✏/n}.

Consequently,

P ({! : |Sn(!)� S 0

n
(!)| > ✏}) 

nX

j=1

P ({! : |Xj(!)� Tn,j(!)| > ✏/n})


nX

j=1

P ({! : |Xj| > n}) .

Taking limits on both sides as n ! 1, we have that Sn � S 0

n

p! 0 since by assumption 1
P

n

j=1 P ({! : |Xj| > n}) ! 0.

Now, since {Xn}n2N is an independent sequence E ((Tn,k � E(Tn,k))(Tn,l � E(Tn,l))) = 0

and consequently V (S 0

n
) =

P
n

j=1 V (Tn,j) 
P

n

j=1 E(T 2
n,j
). Note also that for given n

E(T 2
n,j
) =

Z

⌦

X2
j
I{!:|Xj |n}dP  n2

Z

⌦

dP = n2.

Consequently, since V (S 0

n
) exists for every n, by Chebyshev’s Inequality (Remark 5.1),

P

✓⇢
! :

����
S 0

n
� E(S 0

n
)

n

���� > ✏

�◆
 V (S 0

n
)

n2✏2
 1

n2✏2

nX

j=1

E
�
X2

j
I{!:|Xj |n}

�
.

Taking limits on both sides as n ! 1 and by the assumption that 1
n2

P
n

j=1 E
�
X2

j
I{!:|Xj |n}

�
!

0, we have S
0
n
n
� E(S0

n)
n

p! 0. Now, since

Sn

n
� E

✓
S 0

n

n

◆
=

Sn

n
� S 0

n

n
+

S 0

n

n
� E

✓
S 0

n

n

◆

we can immediately conclude that Sn
n
� E

⇣
S
0
n
n

⌘
= op(1). Finally, from the definition of S 0

n

we have that Sn
n
� 1

n

P
n

j=1 E(XjI{!:|Xj |n}) = op(1). ⌅

We note E(Xj) < 1 or E(X2
j
) < 1 are not required for Theorem 8.2. The following are

examples of how Theorem 8.2 can be used.

140



Example 8.1. Let {Xn}n2N be an independent and identically distributed sequence of ran-

dom variables with E(Xn) = µ, E(X2
n
)  C < 1. Then, we verify condition 1 by noting

that the identical distribution assumption and Markov’s Inequality give
nX

j=1

P (|Xj| > n) = nP (|X1| > n)  n
E(X2

1 )

n2
=

1

n
E(X2

1 ) 
C

n
.

Taking limits on both sides as n ! 1 gives lim
n!1

P
n

j=1 P (|Xj| > n) = 0. For condition 2,

note that by the identical distribution assumption

1

n2

nX

j=1

E(X2
j
I{|Xj |n}) =

1

n
E(X2

1I{|X1|n}) 
1

n
E(X2

1 ) 
C

n
.

Again, taking limits on both sides as n ! 1 gives lim
n!1

1
n2

P
n

j=1 E(X2
j
I{|Xj |n}) = 0. Finally,

observe that P
n

j=1 E(XjI{|Xj |n})

n
= E(X1I{|X1|n}) ! E(X1) = µ

as n ! 1 by Lebesgue’s dominated convergence theorem. Thus, 1
n
Sn

p! µ.

Example 8.2. Let {Xn}n2N be an independent and identically distributed sequence with

E(|X1|)  C < 1 and let E(X1) = µ. For condition 1, note that
nX

j=1

P (|Xj| > n) = nP (|X1| > n) = E(nI{!:|X1|>n}).

But since nI{!:|X1|>n}  |X1|I{!:|X1|>n}, we have that
nX

j=1

P (|Xj| > n)  E(|X1|I{!:|X1|>n})

Consequently, lim
n!1

P
n

j=1 P (|Xj| > n)  lim
n!1

E(|X1|I{!:|X1|>n}). And since E(|X1|) < C,

lim
n!1

E(|X1|I{!:|X1|>n}) = 0.

For condition 2, note that by the identical distribution assumption

1

n2

nX

j=1

E
�
X2

j
I{!:|Xj |n}

�
=

1

n
E
�
X2

1I{!:|X1|n}

�

=
1

n

�
E
�
X2

1I{!:|X1|✏
p
n}

�
+ E

�
X2

1I{!:✏
p
n|X1|n}

��
for any ✏ 2 (0, 1)
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Since E(X2
1I{!:|X1|✏

p
n}) =

R
⌦ X2

1I{!:|X1|✏
p
n}dP  n✏2

R
⌦ dP = n✏2, we have

1

n2

nX

j=1

E
�
X2

j
I{!:|Xj |n}

�
 ✏2 +

1

n
E
�
|X1||X1|I{!:✏pn|X1|n}

�
 ✏2 +

1

n
E(n|X1|I{!:✏pn|X1|n}))

 ✏2 + E
�
|X1|I{!:✏pn|X1|}

�

Taking limits on both sides as n ! 1, and noting that E(|X1|) < C, we have that

lim
n!1

E(|Xj|I{!:✏pn|Xj |}
) = 0.

And, since ✏ can be made arbitrarily small, limn!1
1
n2

P
n

j=1 E(X2
j
I{!:|Xj |n}) = 0. Conse-

quently, Sn
n
� E(X1I{!:|X1|n})

p! 0. Lastly, note that

lim
n!1

✓Z

⌦

X1dP �
Z

⌦

X1I{|X1|n}dP

◆
=

Z

⌦

X1dP� lim
n!1

Z

⌦

X1I{|X1|n}dP = E(X1)�E(X1) = 0

by the previous example. Hence,

Sn

n
� E(X1) =

Sn

n
+ E(X1I{|X1|n})� E(X1I{|X1|n})� E(X1) = op(1) + o(1) = op(1).

Example 8.3. Suppose {Xn}n2N is an independent and identically distributed sequence with

lim
x!1

xP (|X1| > x) = 0. For condition 1, given the identically distributed assumption, we have
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P
n

j=1 P (|Xj| > n) = nP (|Xj| > n) ! 0 by assumption. For condition 2, note that

1

n2

nX

j=1

E(X2
j
I{!:|Xj |n}) =

1

n
E(X2

1I{!:|Xj |n}) =
1

n

Z

|x|n

x2dFX1(x)

=
2

n

Z

|x|n

 Z
|x|

0

sds

!
dFX1(x) =

2

n

Z
n

0

s

✓Z

s<|x|n

dFX1(x)

◆
ds

=
2

n

Z
n

0

s(P (|X1|  n)� P (|X1| < s))ds

=
2

n

Z
n

0

s(1� P (|X1| > n)� 1 + P (|X1| � s))ds

=
2

n

Z
n

0

s(P (|X1| � s)� P (|X1| > n))ds

=
2

n

Z
n

0

⌧(s)ds� 2P (|X1| > n)
1

n

Z
n

0

sds, where ⌧(s) = sP (|X1| > s)

=
2

n

Z
n

0

⌧(s)ds� 2P (|X1| > n)
1

n

n2

2

=
2

n

Z
n

0

⌧(s)ds� nP (|X1| > n) =
2

n

Z
n

0

⌧(s)ds� ⌧(n).

Since, ⌧(n) ! 0 as n ! 1, we have that for all ✏ > 0 there exists N✏ such that if n > N✏,

⌧(n)  ✏. Consequently,

1

n

Z
n

0

⌧(s)ds =
1

n

Z
N✏

0

⌧(s)ds+
1

n

Z
n

N✏

⌧(s)ds  1

n

Z
N✏

0

⌧(s)ds+ ✏.

Taking limits on both sides as n ! 1 gives 1
n

R
n

0 ⌧(s)ds ! 0. Then, Sn
n
�E(X1I|X1|n)

p! 0.

If {Xj}j2N with E(Xj) < 1, E(X2
j
) < M < 1 for all j, we have that

1

n
Sn �

1

n
E(Sn) =

1

n

nX

j=1

(Xj � E(Xj)) :=
1

n

nX

j=1

Zj

where E(Zj) = 0. If E(ZiZj) = 0 for all i 6= j, then

E

0

@
 
1

n

nX

j=1

Zj

!2
1

A =
1

n2

nX

j=1

E(Z2
j
) <

M

n
! 0 as n ! 1.

Hence, 1
n

P
n

j=1 Zj

L
2

! 0, and by Theorem 7.8 1
n

P
n

j=1 Zj

p! 0. In fact, 1
n

P
n

j=1 Zj

as! 0 as

shown in the next theorem.
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Theorem 8.3. Let {Xj}j2N with E(Xj) < 1, E(X2
j
) < M < 1 for all j, and assume

that E((Xj � E(Xj))(Xi � E(Xi))) = 0 for all i 6= j. Then, letting Zj = Xj � E(Xj) and

Sn =
P

n

j=1 Zj, we have
1

n
Sn

as! 0.

Proof. For all ✏ > 0 and by Chebyshev’s Inequality

P (|Sn| > n✏)  M

n✏2
.

Since
P

1

n=1
1
n

diverges we can’t use the Borel-Cantelli Lemma directly. However, if we

consider the subsequence Sn2 , we have
1X

n=1

P ({! : |Sn2 | > n2✏}) 
1X

n=1

M

n2✏2
< 1.

Hence, P
✓
lim sup
n!1

{! : |Sn2(!)| > n2✏}
◆

= 0 and we have Sn2

n2

as! 0. Now, let

Dn := max
n2k<(n+1)2

|Sk � Sn2 |

and note that

|Sk|
k

 |Sk|
n2

=
|Sk � Sn2 + Sn2 |

n2
 |Sk � Sn2 |

n2
+

|Sn2 |
n2

 Dn

n2
+

|Sn2 |
n2

.

Now, since P ( max
1km

|Wk| � ✏) 
P

m

k=1 P (|Wk| � ✏) and using Markov’s Inequality

P (Dn � n2✏) 
2nX

l=1

P

 �����

lX

j=1

Zn2+j

����� � n2✏

!


2nX

l=1

1

n4✏2
E

0

@
 

lX

j=1

Zn2+j

!2
1

A

=
2nX

l=1

1

n4✏2

lX

j=1

E(Z2
n2+j

)  4n2M

n4✏2
=

4M

n2✏2
.

Then, we have
P

1

n=1 P (Dn � n2✏)  4M
✏2

P
1

n=1
1
n2 < 1, and by the Borel-Cantelli Lemma

Dn
n2

as! 0. Since, as n ! 1 we have that k ! 1, |Sk|

k

as! 0. ⌅

We now state Markov’s Law of Large Numbers.
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Theorem 8.4. (Markov’s LLN) Let {Xn}n2N be a sequence of independent random variables

with E(Xn) = µn. If for some � > 0 we have
P

1

n=1
E|Xn�µn|

1+�

n1+� < 1, then

1

n
Sn �

1

n

nX

i=1

µi

as! 0.

Proof. Chung (1974, A Course in Probability Theory, pp. 125-126). ⌅
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