Chapter 8

Laws of large numbers

We first discuss the notion of "tail equivalence" of a sequence of random variables. Here, the Borel-Cantelli Lemma is very useful. Recall that it says that if ${E_n}_{n\in\mathbb{N}}$ is a sequence of events with $\sum_{n=1}^{\infty} P(E_n) < \infty$, then *P* $\sqrt{ }$ lim sup $n\rightarrow\infty$ *Eⁿ* ◆ $= 0.$

Definition 8.1. *Two sequences of random variables* $\{X_n\}_{n\in\mathbb{N}}$ *and* $\{Y_n\}_{n\in\mathbb{N}}$ *are tail equivalent if*

$$
\sum_{n=1}^{\infty} P\left(\{\omega : X_n(\omega) \neq Y_n(\omega)\}\right) = \sum_{n=1}^{\infty} P(\{\omega : X_n(\omega) - Y_n(\omega) \neq 0\}) = \sum_{n=1}^{\infty} P(A_n) < \infty,
$$
\nwhere $A_n = \{\omega : X_n(\omega) - Y_n(\omega) \neq 0\}.$

Theorem 8.1. *Suppose* $\{X_n\}_{n\in\mathbb{N}}$ *and* $\{Y_n\}_{n\in\mathbb{N}}$ *are tail equivalent. Then,*

- *1.* $\sum_{n=1}^{\infty} (X_n Y_n)$ *converges almost surely,*
- 2. $\sum_{n=1}^{\infty} X_n$ *converges as* $\iff \sum_{n=1}^{\infty} Y_n$ *converges as,*
- 3. If there exists $a_n \to \infty$ and a random variable X such that $\frac{1}{a_n} \sum_{j=1}^n X_j \stackrel{as}{\to} X$, then 1 $\frac{1}{a_n} \sum_{j=1}^n Y_j \stackrel{as}{\rightarrow} X$.

Proof. 1. By tail equivalence and the Borel-Cantelli Lemma *P* $\sqrt{ }$ lim sup $n\rightarrow\infty$ *Aⁿ* ◆ $= 0$. Now, recall that lim sup $\max_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m = \bigcap_{n=1}^{\infty} C_n$, where $C_n := \bigcup_{m=n}^{\infty} A_m$. Consequently, $\sqrt{ }$ lim sup $n\rightarrow\infty$ *Aⁿ* \bigwedge^c = $(\bigcap_{n=1}^{\infty} C_n)^c = \bigcup_{n=1}^{\infty} C_n^c = \bigcup_{n=1}^{\infty} (\bigcup_{m=n}^{\infty} A_m)^c = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m^c = \liminf_{n \to \infty} A_n^c.$ Thus,

$$
P\left(\liminf_{n\to\infty}\{\omega:X_n(\omega)=Y_n(\omega)\}\right)=P\left(\liminf_{n\to\infty}A_n^c\right)=1-P\left(\limsup_{n\to\infty}A_n\right)=1.
$$

Since $\liminf_{n \to \infty} A_n^c = \{ \omega : \sum_{n=1}^{\infty} I_{A_n}(\omega) < \infty \}, P(\{\omega : \sum_{n=1}^{\infty} I_{A_n}(\omega) < \infty \}) = 1.$ Hence, there exists a set of ω 's which occurs with probability 1, and in this set $X_n(\omega) = Y_n(\omega)$ for all but finitely many *n*. That is, for $\omega \in {\{\omega : \sum_{n=1}^{\infty} I_{A_n}(\omega) < \infty\}}$ there are only finitely many *n* for which $I_{\{X_n(\omega)\neq Y_n(\omega)\}}(\omega) = 1$. That is, there exists $N(\omega)$ such that for all $n > N(\omega)$, $I_{\{X_n(\omega)\neq Y_n(\omega)\}}(\omega) = 0$. Hence, in this same set,

$$
\sum_{n=1}^{\infty} X_n(\omega) - \sum_{n=1}^{\infty} Y_n(\omega) = \sum_{n=1}^{N(\omega)} (X_n(\omega) - Y_n(\omega)) < \infty \text{ almost surely }.
$$

2. Note that

$$
\sum_{n=1}^{\infty} Y_n(\omega) = \sum_{n=1}^{\infty} X_n(\omega) + \sum_{n=1}^{\infty} Y_n(\omega) - \sum_{n=1}^{\infty} X_n(\omega)
$$

$$
= \sum_{n=1}^{\infty} X_n(\omega) - \sum_{n=1}^{\infty} (X_n(\omega) - Y_n(\omega)).
$$

If $\sum_{n=1}^{\infty} X_n(\omega)$ converges *as* and X_n and Y_n are tail equivalent, then both terms on the right side of the equality converge *as*, hence $\sum_{n=1}^{\infty} Y_n(\omega) < \infty$ *as*. Similarly, writing

$$
\sum_{n=1}^{\infty} X_n(\omega) = \sum_{n=1}^{\infty} X_n(\omega) + \sum_{n=1}^{\infty} Y_n(\omega) - \sum_{n=1}^{\infty} Y_n(\omega)
$$

$$
= \sum_{n=1}^{\infty} Y_n(\omega) - \sum_{n=1}^{\infty} (Y_n(\omega) - X_n(\omega)).
$$

we conclude $\sum_{n=1}^{\infty} X_n(\omega) < \infty$ *as*.

3. Write

$$
\frac{1}{a_n} \sum_{j=1}^n Y_j(\omega) = \frac{1}{a_n} \sum_{j=1}^n (Y_j(\omega) - X_j(\omega) + X_j(\omega))
$$

=
$$
\frac{1}{a_n} \sum_{j=1}^n (Y_j(\omega) - X_j(\omega)) + \frac{1}{a_n} \sum_{j=1}^n X_j(\omega)
$$

=
$$
\frac{1}{a_n} \sum_{j=1}^{N-1} (Y_j(\omega) - X_j(\omega)) + \frac{1}{a_n} \sum_{j=N}^n (Y_j(\omega) - X_j(\omega)) + \frac{1}{a_n} \sum_{j=1}^n X_j(\omega).
$$

As $n \to \infty$ the last term converges as to $X(\omega)$ by assumption. The second term converges to zero since $Y_j(\omega)$ and $X_j(\omega)$ are tail equivalent (and by 1), and the first term goes to 0 as $a_n \to \infty$. Hence, $\frac{1}{a_n} \sum_{j=1}^n Y_j(\omega) \stackrel{as}{\to} X(\omega)$.

The following definition and associated notation will be useful.

Definition 8.2. Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables defined on (Ω, \mathcal{F}, P) and ${s_n}_{n \in \mathbb{N}}$ *be a sequence in* $(0, \infty)$ *. We write,*

1. $X_n = O_p(s_n)$ *if for all* $\epsilon > 0$ *and* $n \in \mathbb{N}$ *, there exists* $B_{\epsilon} > 0$ *such that*

$$
P\left(\left\{\omega:\frac{|X_n(\omega)|}{s_n}>B_{\epsilon}\right\}\right)<\epsilon
$$

2. $X_n = o_p(s_n)$ if $\frac{X_n}{s_n}$ $\stackrel{p}{\rightarrow} 0.$

 \blacksquare

Theorem 8.2. *(General Law of Large Numbers) Suppose* $\{X_n\}_{n\in\mathbb{N}}$ *is a sequence of independent random variables defined on* (Ω, \mathcal{F}, P) *and* $S_n = \sum_{j=1}^n X_j$ *. If*

- *1.* $\sum_{j=1}^{n} P(\{\omega : |X_j(\omega)| > n\}) \to 0 \text{ as } n \to \infty \text{ and }$
- $2. \frac{1}{n^2} \sum_{j=1}^n E(X_j^2 I_{\{\omega: |X_j| \le n\}}) \to 0 \text{ as } n \to \infty,$

then $\frac{S_n}{n} - \frac{1}{n} \sum_{j=1}^n E(X_j I_{\{\omega : |X_j| \leq n\}}) \stackrel{p}{\to} 0.$

Proof. Let $T_{n,j}(\omega) = X_j(\omega)I_{\{\omega: |X_j|\leq n\}}$ and $S'_n(\omega) = \sum_{j=1}^n T_{n,j}(\omega)$. Note that $\{\omega: X_j(\omega) \neq \omega\}$ $T_{n,j}(\omega)$ } = { ω : $|X_j(\omega)| > n$ } and by assumption $\sum_{j=1}^n P(\{\omega : T_{n,j}(\omega) \neq X_j(\omega)\}) \to 0$ as $n \to \infty$. Note also that

$$
|S_n(\omega) - S'_n(\omega)| = \left| \sum_{j=1}^n X_j(\omega) - \sum_{j=1}^n T_{n,j}(\omega) \right| \le \sum_{j=1}^n |X_j(\omega) - T_{n,j}(\omega)|.
$$

Thus, for all $\epsilon > 0$,

$$
\{\omega : |S_n(\omega) - S'_n(\omega)| > \epsilon\} \subset \left\{\omega : \sum_{j=1}^n |X_j(\omega) - T_{n,j}(\omega)| > \epsilon\right\}
$$

$$
\subset \bigcup_{j=1}^n \{\omega : |X_j(\omega) - T_{n,j}(\omega)| > \epsilon/n\}.
$$

Consequently,

$$
P(\{\omega : |S_n(\omega) - S'_n(\omega)| > \epsilon\}) \le \sum_{j=1}^n P(\{\omega : |X_j(\omega) - T_{n,j}(\omega)| > \epsilon/n\})
$$

$$
\le \sum_{j=1}^n P(\{\omega : |X_j| > n\}).
$$

Taking limits on both sides as $n \to \infty$, we have that $S_n - S'_n$ $\stackrel{p}{\rightarrow} 0$ since by assumption 1 $\sum_{j=1}^{n} P(\{\omega : |X_j| > n\}) \to 0.$

Now, since $\{X_n\}_{n\in\mathbb{N}}$ is an independent sequence $E\left((T_{n,k}-E(T_{n,k}))(T_{n,l}-E(T_{n,l}))\right)=0$ and consequently $V(S'_n) = \sum_{j=1}^n V(T_{n,j}) \le \sum_{j=1}^n E(T_{n,j}^2)$. Note also that for given *n*

$$
E(T_{n,j}^2) = \int_{\Omega} X_j^2 I_{\{\omega : |X_j| \le n\}} dP \le n^2 \int_{\Omega} dP = n^2.
$$

Consequently, since $V(S_n')$ exists for every *n*, by Chebyshev's Inequality (Remark $[5.1]$),

$$
P\left(\left\{\omega:\left|\frac{S'_n - E(S'_n)}{n}\right| > \epsilon\right\}\right) \leq \frac{V(S'_n)}{n^2\epsilon^2} \leq \frac{1}{n^2\epsilon^2} \sum_{j=1}^n E\left(X_j^2 I_{\{\omega:|X_j|\leq n\}}\right).
$$

Taking limits on both sides as $n \to \infty$ and by the assumption that $\frac{1}{n^2} \sum_{j=1}^n E(X_j^2 I_{\{\omega:|X_j|\leq n\}}) \to$ 0, we have $\frac{S'_n}{n} - \frac{E(S'_n)}{n}$ *n* $\stackrel{p}{\rightarrow} 0$. Now, since

$$
\frac{S_n}{n} - E\left(\frac{S_n'}{n}\right) = \frac{S_n}{n} - \frac{S_n'}{n} + \frac{S_n'}{n} - E\left(\frac{S_n'}{n}\right)
$$

we can immediately conclude that $\frac{S_n}{n} - E\left(\frac{S'_n}{n}\right)$ $= o_p(1)$. Finally, from the definition of S'_n we have that $\frac{S_n}{n} - \frac{1}{n} \sum_{j=1}^n E(X_j I_{\{\omega : |X_j| \le n\}}) = o_p(1)$.

We note $E(X_j) < \infty$ or $E(X_j^2) < \infty$ are not required for Theorem [8.2.](#page-2-0) The following are examples of how Theorem 8.2 can be used.

Example 8.1. Let $\{X_n\}_{n\in\mathbb{N}}$ be an independent and identically distributed sequence of ran*dom variables with* $E(X_n) = \mu$, $E(X_n^2) \leq C < \infty$. Then, we verify condition 1 by noting *that the identical distribution assumption and Markov's Inequality give*

$$
\sum_{j=1}^{n} P(|X_j| > n) = nP(|X_1| > n) \le n\frac{E(X_1^2)}{n^2} = \frac{1}{n}E(X_1^2) \le \frac{C}{n}.
$$

Taking limits on both sides as $n \to \infty$ gives $\lim_{n \to \infty} \sum_{j=1}^{n} P(|X_j| > n) = 0$. For condition 2, *note that by the identical distribution assumption*

$$
\frac{1}{n^2} \sum_{j=1}^n E(X_j^2 I_{\{|X_j| \le n\}}) = \frac{1}{n} E(X_1^2 I_{\{|X_1| \le n\}}) \le \frac{1}{n} E(X_1^2) \le \frac{C}{n}.
$$

Again, taking limits on both sides as $n \to \infty$ gives $\lim_{n \to \infty} \frac{1}{n^2}$ $\frac{1}{n^2} \sum_{j=1}^n E(X_j^2 I_{\{|X_j| \le n\}}) = 0$ *. Finally, observe that*

$$
\frac{\sum_{j=1}^{n} E(X_j I_{\{|X_j| \le n\}})}{n} = E(X_1 I_{\{|X_1| \le n\}}) \to E(X_1) = \mu
$$

as $n \to \infty$ by Lebesgue's dominated convergence theorem. Thus, $\frac{1}{n}S_n \stackrel{p}{\to} \mu$.

Example 8.2. Let $\{X_n\}_{n\in\mathbb{N}}$ be an independent and identically distributed sequence with $E(|X_1|) \leq C < \infty$ and let $E(X_1) = \mu$ *. For condition 1, note that*

$$
\sum_{j=1}^{n} P(|X_j| > n) = nP(|X_1| > n) = E(nI_{\{\omega : |X_1| > n\}}).
$$

But since $nI_{\{\omega:|X_1|>n\}} \leq |X_1|I_{\{\omega:|X_1|>n\}}$ *, we have that*

$$
\sum_{j=1}^{n} P(|X_j| > n) \le E(|X_1| I_{\{\omega : |X_1| > n\}})
$$

Consequently, $\lim_{n\to\infty}\sum_{j=1}^n P(|X_j|>n) \leq \lim_{n\to\infty}E(|X_1|I_{\{\omega:|X_1|>n\}})$. And since $E(|X_1|)< C$, $\lim_{n \to \infty} E(|X_1|I_{\{\omega:|X_1|>n\}}) = 0.$

For condition 2, note that by the identical distribution assumption

$$
\frac{1}{n^2} \sum_{j=1}^n E\left(X_j^2 I_{\{\omega:\|X_j|\leq n\}}\right) = \frac{1}{n} E\left(X_1^2 I_{\{\omega:\|X_1|\leq n\}}\right)
$$
\n
$$
= \frac{1}{n} \left(E\left(X_1^2 I_{\{\omega:\|X_1|\leq \epsilon\sqrt{n}\}}\right) + E\left(X_1^2 I_{\{\omega:\epsilon\sqrt{n}\leq |X_1|\leq n\}}\right) \right) \text{ for any } \epsilon \in (0,1)
$$

Since
$$
E(X_1^2 I_{\{\omega:|X_1|\leq \epsilon\sqrt{n}\}}) = \int_{\Omega} X_1^2 I_{\{\omega:|X_1|\leq \epsilon\sqrt{n}\}} dP \leq n\epsilon^2 \int_{\Omega} dP = n\epsilon^2
$$
, we have

$$
\frac{1}{n^2} \sum_{j=1}^n E\left(X_j^2 I_{\{\omega:\|X_j|\leq n\}}\right) \leq \epsilon^2 + \frac{1}{n} E\left(\|X_1\| X_1 | I_{\{\omega:\epsilon\sqrt{n}\leq |X_1|\leq n\}}\right) \leq \epsilon^2 + \frac{1}{n} E(n|X_1 | I_{\{\omega:\epsilon\sqrt{n}\leq |X_1|\leq n\}}))
$$

$$
\leq \epsilon^2 + E\left(\|X_1 | I_{\{\omega:\epsilon\sqrt{n}\leq |X_1|\}}\right)
$$

Taking limits on both sides as $n \to \infty$ *, and noting that* $E(|X_1|) < C$ *, we have that*

$$
\lim_{n\to\infty} E(|X_j|I_{\{\omega:\epsilon\sqrt{n}\leq |X_j|\}})=0.
$$

And, since ϵ can be made arbitrarily small, $\lim_{n\to\infty} \frac{1}{n^2} \sum_{j=1}^n E(X_j^2 I_{\{\omega: |X_j|\leq n\}}) = 0$. Conse- $\int_{0}^{x} q u \cdot d\mathbf{r}$ *f* $\int_{0}^{x} f(u) \cdot d\mathbf{r}$ *f* \int_{0}

$$
\lim_{n \to \infty} \left(\int_{\Omega} X_1 dP - \int_{\Omega} X_1 I_{\{|X_1| \le n\}} dP \right) = \int_{\Omega} X_1 dP - \lim_{n \to \infty} \int_{\Omega} X_1 I_{\{|X_1| \le n\}} dP = E(X_1) - E(X_1) = 0
$$

by the previous example. Hence,

$$
\frac{S_n}{n} - E(X_1) = \frac{S_n}{n} + E(X_1 I_{\{|X_1| \le n\}}) - E(X_1 I_{\{|X_1| \le n\}}) - E(X_1) = o_p(1) + o(1) = o_p(1).
$$

Example 8.3. Suppose $\{X_n\}_{n\in\mathbb{N}}$ is an independent and identically distributed sequence with $\lim_{x\to\infty} xP(|X_1| > x) = 0$. For condition 1, given the identically distributed assumption, we have

$$
\sum_{j=1}^{n} P(|X_j| > n) = nP(|X_j| > n) \to 0 \text{ by assumption. For condition 2, note that}
$$

\n
$$
\frac{1}{n^2} \sum_{j=1}^{n} E(X_j^2 I_{\{\omega : |X_j| \le n\}}) = \frac{1}{n} E(X_1^2 I_{\{\omega : |X_j| \le n\}}) = \frac{1}{n} \int_{|x| \le n} x^2 dF_{X_1}(x)
$$

\n
$$
= \frac{2}{n} \int_{|x| \le n} \left(\int_0^{|x|} s ds \right) dF_{X_1}(x) = \frac{2}{n} \int_0^n s \left(\int_{s < |x| \le n} dF_{X_1}(x) \right) ds
$$

\n
$$
= \frac{2}{n} \int_0^n s(P(|X_1| \le n) - P(|X_1| < s)) ds
$$

\n
$$
= \frac{2}{n} \int_0^n s(1 - P(|X_1| > n) - 1 + P(|X_1| \ge s)) ds
$$

\n
$$
= \frac{2}{n} \int_0^n s(P(|X_1| \ge s) - P(|X_1| > n)) ds
$$

\n
$$
= \frac{2}{n} \int_0^n \tau(s) ds - 2P(|X_1| > n) \frac{1}{n} \int_0^n s ds, \text{ where } \tau(s) = sP(|X_1| > s)
$$

\n
$$
= \frac{2}{n} \int_0^n \tau(s) ds - 2P(|X_1| > n) \frac{1}{n} \frac{n^2}{2}
$$

\n
$$
= \frac{2}{n} \int_0^n \tau(s) ds - nP(|X_1| > n) = \frac{2}{n} \int_0^n \tau(s) ds - \tau(n).
$$

 $Since, \tau(n) \to 0 \text{ as } n \to \infty, \text{ we have that for all } \epsilon > 0 \text{ there exists } N_{\epsilon} \text{ such that if } n > N_{\epsilon},$ $\tau(n) \leq \epsilon$. Consequently,

$$
\frac{1}{n}\int_0^n \tau(s)ds = \frac{1}{n}\int_0^{N_\epsilon} \tau(s)ds + \frac{1}{n}\int_{N_\epsilon}^n \tau(s)ds \le \frac{1}{n}\int_0^{N_\epsilon} \tau(s)ds + \epsilon.
$$

Taking limits on both sides as $n \to \infty$ gives $\frac{1}{n} \int_0^n \tau(s) ds \to 0$. Then, $\frac{S_n}{n} - E(X_1 I_{|X_1| \leq n}) \stackrel{p}{\to} 0$.

If $\{X_j\}_{j\in\mathbb{N}}$ with $E(X_j) < \infty$, $E(X_j^2) < M < \infty$ for all *j*, we have that

$$
\frac{1}{n}S_n - \frac{1}{n}E(S_n) = \frac{1}{n}\sum_{j=1}^n (X_j - E(X_j)) := \frac{1}{n}\sum_{j=1}^n Z_j
$$

where $E(Z_j) = 0$. If $E(Z_i Z_j) = 0$ for all $i \neq j$, then

$$
E\left(\left(\frac{1}{n}\sum_{j=1}^n Z_j\right)^2\right) = \frac{1}{n^2}\sum_{j=1}^n E(Z_j^2) < \frac{M}{n} \to 0 \text{ as } n \to \infty.
$$

Hence, $\frac{1}{n}\sum_{j=1}^n Z_j \stackrel{\mathcal{L}^2}{\rightarrow} 0$, and by Theorem $\boxed{7.8}$ $\frac{1}{n}\sum_{j=1}^n Z_j \stackrel{p}{\rightarrow} 0$. In fact, $\frac{1}{n}\sum_{j=1}^n Z_j \stackrel{as}{\rightarrow} 0$ as shown in the next theorem.

Theorem 8.3. Let $\{X_j\}_{j\in\mathbb{N}}$ with $E(X_j) < \infty$, $E(X_j^2) < M < \infty$ for all j, and assume that $E((X_j - E(X_j))(X_i - E(X_i))) = 0$ for all $i \neq j$. Then, letting $Z_j = X_j - E(X_j)$ and $S_n = \sum_{j=1}^n Z_j$, we have

$$
\frac{1}{n}S_n \stackrel{as}{\to} 0.
$$

Proof. For all $\epsilon > 0$ and by Chebyshev's Inequality

$$
P(|S_n| > n\epsilon) \le \frac{M}{n\epsilon^2}.
$$

Since $\sum_{n=1}^{\infty}$ $\frac{1}{n}$ diverges we can't use the Borel-Cantelli Lemma directly. However, if we consider the subsequence S_{n^2} , we have

$$
\sum_{n=1}^{\infty} P(\{\omega : |S_{n^2}| > n^2 \epsilon\}) \le \sum_{n=1}^{\infty} \frac{M}{n^2 \epsilon^2} < \infty.
$$

Hence, $P\left(\limsup_{n \to \infty} \{\omega : |S_{n^2}(\omega)| > n^2 \epsilon\}\right) = 0$ and we have $\frac{S_{n^2}}{n^2} \stackrel{as}{\to} 0$. Now, let

$$
D_n := \max_{n^2 \le k < (n+1)^2} |S_k - S_{n^2}|
$$

and note that

$$
\frac{|S_k|}{k} \le \frac{|S_k|}{n^2} = \frac{|S_k - S_{n^2} + S_{n^2}|}{n^2} \le \frac{|S_k - S_{n^2}|}{n^2} + \frac{|S_{n^2}|}{n^2} \le \frac{D_n}{n^2} + \frac{|S_{n^2}|}{n^2}.
$$

Now, since *P*(max $\max_{1 \le k \le m} |W_k| \ge \epsilon$) $\le \sum_{k=1}^m P(|W_k| \ge \epsilon)$ and using Markov's Inequality

$$
P(D_n \ge n^2 \epsilon) \le \sum_{l=1}^{2n} P\left(\left|\sum_{j=1}^l Z_{n^2+j}\right| \ge n^2 \epsilon\right) \le \sum_{l=1}^{2n} \frac{1}{n^4 \epsilon^2} E\left(\left(\sum_{j=1}^l Z_{n^2+j}\right)^2\right)
$$

=
$$
\sum_{l=1}^{2n} \frac{1}{n^4 \epsilon^2} \sum_{j=1}^l E(Z_{n^2+j}^2) \le \frac{4n^2 M}{n^4 \epsilon^2} = \frac{4M}{n^2 \epsilon^2}.
$$

Then, we have $\sum_{n=1}^{\infty} P(D_n \geq n^2 \epsilon) \leq \frac{4M}{\epsilon^2} \sum_{n=1}^{\infty}$ $\frac{1}{n^2} < \infty$, and by the Borel-Cantelli Lemma *Dn n*² $\stackrel{as}{\rightarrow}$ 0. Since, as $n \to \infty$ we have that $k \to \infty$, $\frac{|S_k|}{k}$ $\stackrel{as}{\rightarrow} 0.$

We now state Markov's Law of Large Numbers.

Theorem 8.4. *(Markov's LLN) Let* $\{X_n\}_{n\in\mathbb{N}}$ *be a sequence of independent random variables with* $E(X_n) = \mu_n$ *. If for some* $\delta > 0$ *we have* $\sum_{n=1}^{\infty} \frac{E|X_n - \mu_n|^{1+\delta}}{n^{1+\delta}} < \infty$ *, then*

$$
\frac{1}{n}S_n - \frac{1}{n}\sum_{i=1}^n \mu_i \stackrel{as}{\to} 0.
$$

Proof. Chung (1974, A Course in Probability Theory, pp. 125-126). \blacksquare