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Chapter 1

Exercises

1. Let f: INxIN — R be a double sequence with typical value given by f(m,n). Assume

that

(a) for every n € N, f(mq,n) < f(mag,n) whenever m; < mo,

(b) for every m € N, f(m,ny) < f(m,ny) whenever n; < ns.

Show that lim < lim f(m,n)) = lim (hm f(m, n)) = lim f(n,n).

n—oo \m—oo m—0o0 \N—oo n—o0

As a corollary, show that if f(m,n) > 0then > > f(m,n)= > > f(m,n).

neN melN meN neN
Answer: From conditions (a) and (b), f(1,1) < f(1,2) < f(2,2) < f(2,3) <
f(3,3) <--- Hence, f(m,m) < f(n,n) whenever m < n. The sequence {f(n,n)},en
is monotonically increasing, hence it has a limit, which is either finite, if the sequence is
bounded above, or infinity, if it is not. Let this limit be denoted by F'. By the same rea-
soning, there exist limits F,, = Jggof(m, n) for each m € IN. Since f(m,n) < f(n,n),
we have that F,,, < F' when m < n. Note that F,,, < F,, whenever m; < mg, hence

lim F,, = F’ exists, and F' < F.

m—0o0
To complete the proof, we need to show that F’ = F. If F' is finite, for every ¢ > 0
there exists N(e) such that for all n > N(e¢), F' —¢e < f(n,n) < F. Put m := N(e),
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and note that

F,, = lim f(m,n) > f(m,m) := f(N(e), N(¢)) > F —e.

n—o0

Hence, lim F,, = F > F —e¢, which implies that F' < F’. Combining the last inequality
n—o0

with F” < F' from the previous paragraph gives F' = F’. If I is infinite, for any C' > 0

there exists N(C') such that if n > N(C), f(n,n) > C. If m = N(C) < n then

f(m,m) < f(m,n) and

Cgf(mvm) < hmf(mvn) = Fin,

n—oo

hence it follows that F' must be infinite.

The proof that lim ( lim f(m, n)) = lim f(n,n) follows in exactly the same way by
n—oo

n—oo \m—oo

interchanging the indexes m and n due to the symmetry of the equation.

Corollary. Let g(p,q) =>" _>>7_| f(m,n) for p,q € IN. Since, f(m,n) >0, g(p,q)

satisfies conditions (a) and (b), establishing the result.

. Let X be an arbitrary set and consider the collection of all subsets of X that are
countable or have countable complements. Show that this collection is a o-algebra.

Use this fact to obtain the o-algebra generated by C = {{z} : x € R}.

Answer: Let F = {A C X : #A4 < #IN or #A° < #IN}, where # indicates cardi-
nality. First, note that X € F since X¢ = (), which is countable. Second, if A € F
then either A = (A°)¢ or A° are countable. That is, A° € F. Third, if A, € F for
n € IN we have two possible cases - A,, are all countable, or at least one of these sets
is uncountable, say A,,. For the first case, nléJJNA" is the countable union of countable
sets, hence it is countable and consequently in F. For the second case, since A,, is

uncountable and in F, it must be that Aj, is countable. Also,

(uAn> — N ASCAS.

nelN nelN
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C
Since subsets of countable sets are countable, ( U]NAn) is countable, and consequently
ne

U A, eF.
nelN

Now, let F be the o-algebra defined above. Since C C F, o(C) C F. Also, if A € F
either A or A°is countable. Without loss of generality, suppose A is countable. Then,
A = U {z} where C is a countable collection of real numbers. Hence, A € o(C).

xeC
Hence, F C ¢(C). Combining the two set containments we have o(C) = F.

. Denote by B(z,r) an open ball in R" centered at x and with radius r. Show that the

Borel sets are generated by the collection B = {B,(z) : x € R", r > 0}.

Answer: Let B = {B,(z) : x € Q", 7 € Q"}. Then, B C B C Og» and o(B’) C
o(B) C 0(Ognr).

Now, let S = U B. By construction x € S = x € O. Now, suppose x € O.
BeB’,BCO

Then, since O is open, there exists B(z, €) such that B(z,€) C O where € is a rational

number. Since Q" is a dense subset of R", we can find ¢ € Q" such that ||z —q|| < €/2.

Consequently,

B(q,€¢/2) C B(x,¢e) C O.

Hence, O C S. Thus, every open O can be written as O = U B. Since B’ is a
BEB', BCO

collection of balls with rational radius and rational centers, B’ is countable. Thus,
Orn C 0(B') = 0(Orn) C o(B').
Combining this set containment with o(B’) C o(B) C 0(Ogr») completes the proof.

. Let (22, F) be a measurable space. Show that: a) if p; and ps are measures on (2, F),
then p.(F) = cipn(F) + coue(F) for F € F and all ¢1,co > 0 is a measure; b) if
{1i}iew are measures on (2, F) and {«;}ien is a sequence of positive numbers, then

Poo(F) = D e ipti(F) for F € F is a measure.
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Answer: a) First, note that u. : F — [0,00] since ¢y, co, u1(F), uo(F) > 0 for all
F e F. Second, 11.(0) = c1p1(0) + copra(@) = 0 since py and po are measures. Third, if

{F;}iew € F is a pairwise disjoint collection of sets,

te (Uiew F3) = cipn (Uien F;) + copio(Uien F3)

= E w1 (Fy) + ¢ E w2 (F;), since py and pp are measures

€N i€IN
= (am(F) +cp(F)) =) pe(F
i€N ielN

b) The verification that po, : F — [0, 00] and pie (D) = 0 follows the same arguments as
in item a) when examining y.. For o-additivity, note that if {F}},ew € F is a pairwise
disjoint collection of sets,

J20% ]G]NF Z O‘z,uz ]GJNF Z a; Z Mz az,uz

=1 j=1 =1 j=1
If we are able to interchange the sums in the last term, then we can write
poo (UjenF3) = ) aupi (F) Zuoo )
7j=1 =1

completing the proof. Now, note that

n

f: i aip; (Fy) = lim lim zn: i ;i (Fy) = sup sup zm: a;ipti (Fj) = sup sup Sppm,

=1 j—1 i—1 j=1 ne€lN melN i=1 j—1 nelN melN

since the partial sums are increasing. Now, if 5,,,, € R, then

sup sup Sy, = sup sup Spm-
nelN melN meN nelN

Hence, to finish the proof, we require p;(F};) < oo.

. Let (Q, F, u) be a measure space and G C F be a g-algebra. In this case, we call G a
sub-g-algebra of F. Let v := pulg be the restriction of x to G. That is, v(G) = u(G)
for all G € G. Is v a measure? If y is finite, is v finite? If y is a probability, is v a

probability?



Answer: Since ) € G C F, v(0) = pu(@) = 0. If {A;}iew € G is a pairwise disjoint
sequence, we have that {A;};ew € F. Hence, v(UiewA;) = pu(UiewAi) = D ey 1(A;) =
Y iew Y(Ai). Now, p finite means that p(€2) < oo. Since Q € G, v(Q) = u(Q) < oco.
The same holds for p(2) = 1.

. Show that a measure space (€2, F, i) is o-finite if, and only if, there exists {F}, },en € F

such that U,ewF,, = Q and u(F),) < oo for all n.

Answer: (=) By definition, (2, F, 1) is o-finite if there exists and increasing sequence
Ay C Ay C Az -+ such that Upen A, = Q with u(A,) < oo for all n. Hence, it suffices

to let F,, = A,,.

(<) Let A, = Uj_;Fj. Then, Ay C Ay C - and Upen4, = UjenF; = Q. Also,

1(An) = p(Ui_, Fy) < 3775 u(F}) < oo since the sum is finite and p(Fy) < oo.

. Let (Q2, F, P) be a probability space and {E,, },ew C F. Show thatif Y>>, P(E,) < oo
then P (hmsupEn) =0.

n—o0

Answer:

P (limsupEn> = P ( lim Uj>p Ej>

n—o0 n—00

= lim P (U;>,E;) by continuity

n—o0

< limsup Z P(E;) by subadditivity and definition of limsup.

Since ) 7| P(E,) < oo it must be that > 72 P(E;) — 0 as n — 0. Consequently,

P <limsupEn> = 0.

n—o0

. Let {E,};es be a collection of pairwise disjoint events. Show that if P(£;) > 0 for

each j € J, then J is countable.



Answer: Let C,, = {E; : P(E;) > % and j € J}. By assumption the elements of C,,
are disjoint events and

Py B = PE,) = o

m=1

where the last equality follows from the fact that P(E;,,) > 0. So, it must be that C,,
has finitely many elements. Also, {E}};e; = U2 ,C,, which is countable since it is a

countable union of finite sets.

. Consider the extended real line, i.e., R := R U {—occ} U {oc}. Let B := B(R) be
defined as the collection of sets B such that B = BU S where B € B(R) and S €
{0, {—o0}, {oo}, {—00,00}}. Show that B is a o-algebra and that it is generated by a

collection of sets of the form [a, oo] where a € R.

Answer: Let’s first show that B is a o-algebra. Since B = BU S with B € B(R), we
can choose B = R and use S = {—00,00} to conclude that R = R U {—00,00} € B.
Next, note that if B = BUS we have that B¢ = B°NS°. But the complement of a set S
is an element of {R, RU{occ}, RU{—o00}, R}. Hence, either 1) B¢ = B‘NR = B°U) € B
or, 2) B¢ = B°N(RU{o0}) = (B°NR) U {oo} where B°NR € B and consequently
B¢ e Bor 3) B*=B°N(RU{-00}) = (BN R) U {—0cc} where B°NR € B and
consequently B¢ € B or, 4) B°= B°NR € B.

Lastly, letting A; = B; U S for B; € B we have that UjenA; = Uien(B; U S) =

(UsenB;) U S. Since Ujew B; € B we have that U;ew4; € B.

If B is a o-algebra and C = {[a, 0] : a € R}, we need to show that (C) = B,

First, note that [a, 0o] = [a, 00) U{oo} and we know that [a,00) € B. Thus, [a, ] € B

for all a € R. Then, o(C) C B.

Second, observe that for —oo < a < b < oo we have [a,b) = [a,00] — [b,00] =

la,00] N [b,00]¢ € ¢(C) since (C) contains [a, 00| and [b, 0o]® by virtue of being a
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10.

11.

o-algebra. Hence,
BCo(C)CB.
Now,
{OO} = miE]N[ia OOL {_OO} = mieﬂ\l[_ooa _Z) = miE]l\T[_i7 OO]C
which allows us to conclude that {oo}, {—oc} € ¢(C). Hence, if B € B all sets of the
form
B,BU{oc0}, BU{—00}, BU{o0}U{—00}

are in o(C). Hence, B C ¢(C). Combining this set. containment with o(C) C B gives

the result.

If £y, Es,--- , E, are independent events, show that the probability that none of them

occur is less than or equal to exp (— > 1, P(E;)).

Answer: Let f(x) = exp(—z) and note that for A € (0,1), by Taylor’s Theorem

exp(—z) = f(x) = £(0) + fP(0)x + %f@)()\x)xz =1l-z+ % exp(—Ar)z?

Consequently, 1 — z < exp(—x). Now, we are interested in the event £ = (U E;)" =

N Ef. But since the Fy, By, - - - | B, are independent, so is the collection EY, S, --- | E¢.

n

Hence, P(E) = [T, P(E¢) = [T, (1= P(E})) < T, exp(~P(E,)) = exp (— X0, P(E)).

Let {A,}nen and {B,}.en be events (measurable sets) in a probability space with
measure P with lim A, = A, lim B, = B, P(B,),P(B) > 0 for all n. Show that
P(A,|B) — P(A|B), P(A|B,) — P(A|B), P(A,|B,) — P(A|B) as n — .

Answer: Since P(-|B) is a probability measure (proved in the class notes), we have

by continuity of probability measures that P(A,|B) — P(A|B) if lim B, = B.

Now, since lim B,, = B we have that AN B, — AN B. To see this, note that if

AN B, = C, then D;j = U2.C,, = AN (U, By,). Then, limsupC,, = N, D; =
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12.

N2, (ANUyL,B,) = AN B. Defining liminf for C,, we can in similar fashion that
liminf C},, = ANB. Hence, by continuity of probability measures P(ANB,) — P(ANB)

and P(B,) — P(B). Consequently,

(ANB,) P(ANB)
P(B,) P(B)

P(AB,) =L — P(A|B).

Lastly, since A, N B, — AU B, using the same arguments

P(A,nB,) P(ANDB)

PElB) = =55, 7 " Pm)

— P(A|B).

Let (X,F,ji) be the measure space defined in Theorem 1.15 and C = {G € X :
JA, BE F>ACGC Band u(B— A) =0}. Show that F =C.

Answer: Ge F — G=AUM where Ac Fand M eS. MeS = 3N €
N,> M C N. Then,

ACG=AUMCAUN :=B¢c F.

Now, u(B — A) = p(BUA°) = u((AUN) — A) < u(N) =0. Thus, G € C.

GeC = JA, Be F>5ACGCBand u(B—A)=0. Since A C G C B we have
that G—A C B— A, and since B— Aisa y-null set G—A € S. Now, G = AU(G—A),
and since A € F, G € F.



Chapter 2

Exercises

1. Let p be a measure on (R, B(R)) such that u([—n,n)) < oo for all n € IN. Define,

{ w([0, z)) if x>0,
0 if v =0,
—u([z,0)) ifz<0.

Show that F), : R — R is monotonically increasing and left continuous.

Answer: Given that p([—n,n)) < oo, F), takes values in R. First, we show that all

x <, F,(x) < F,(z). There are three cases to be considered

(a) (0 <z < 2) f0 <o <, Fuo) — Fu(z) = n([0,2")) — p([0,2)). Since
[0,2") = [0,2) U [z,2"), o-additivity of u gives u([0,2")) = u([0,z)) + p([z,2")) or
l[,2)) = p([0,27)) — u([0,)) = Fule') — Ful) 2 0. T = 0, Fy(a’) — F(0) =

p([0,27)) = 0.

(b) (z <0< a): If 2’ >0, F,(2') — Fu(x) = p([0,2")) + p(jz,0)) > 0. If 2/ =0,
FL(0) = Ey(w) = p((,0)) > 0.

(c) (z <2’ <0): F(2")—F,(x) = —p([z',0))+u([z,0)). Since [z,0) = [z,2")U[z’,0),
o-additivity of u gives u([z,0)) = p([z, 2")) + p([2,0)) or u([z,0)) — u([z’,0)) =
Fu(a) = Fulw) = e, ) > 0.



Second, we must show that lim F),(x — h,) = F,(z) for all z € R. Let n € NN,
n—oo

hi > hy > hg > --- with h, | 0 as n — oo, and hy > 0. There are three cases to

consider.

(a) (z > 0): Choose hy € (0,z) and define A,, = [0,z — h,,). Then, Ay C Ay C ---

and lim A, = |J A, = [0,2). By continuity of measure from below,

lim F,(z — hy,) = lm p([0,2 — hy,)) = p([0,2)) = F,(x).

n—o0 n—oo

(b) (z = 0): Define A,, = [—h,,0). Then, Ay D A3 D --- and lim A, = () 4, = 0.

By continuity of measures from above, and given that u([—hy,0)) < oo,

lim F,(—h,) = lim u([—h,,0)) = p(@) =0 = F,(0).

n—oo n—0o0

(¢) (x <0): Define A,, = [x — hy,0). Then, Ay D Ay D -+ and lim A, = N2, A, =

n—oo

[,0). By continuity of measures from above and given that u([z — hy,0)) < oo,

lim F,(x — h,) = lim — p([xr — hy,0)) = —p([z,0)) = F,.(z).

n—oo n—oo

2. Let F), be defined as in question 1 and let vg, (([a,b)) = F,(b) — Fj,(a) for all @ < b,

a,b € R. Show that v, extends uniquely to a measure on B(R) and vg, = p.

Answer: Recall that S = {[a,b) : a < b, a,b € R} is a semi-ring =10, [a,a) =0).

(if @
Given F),, we define v, : S — [0,00) as vg,([a,b)) = F,(b) — F,(a) for all @ < b. Since
F), is monotonically increasing, F,(b)—F,(a) > 0 and vg, ([a,a) = 0) = F,(a)—F,.(a) =
0. Also, vp, is finitely additive since for a < ¢ < b, we have that [a,b) = [a, c)U[c, D) and
v (0,6)) = Fyu(b) — Fula) = Fule) — Fula) + Fa(b) — Fu(e) = v, ([0, 0)) + v, (fe, ).
We now show that vp, is o-additive, i.e., for [a,,b,), n € IN a disjoint collection such
that [a,b) = nLEJ]N[an, bn), we have vp, ([a,b)) = > vp,([an,bn)). Fix €,, € > 0 and note

nelN
that (a, — €,,b,) D [an,b,). Hence, U (a, — €,,b,) D U]N[an,bn) = [a,b) D [a,b— €.
ne

nelN
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Since U]N(an — €, by) is an open cover for the compact set [a, b— €], by the Heine-Borel
ne

Theorem, there exists N € IN such that
UM [an — €n,bn) D UN_(an — €,,b0) D [a,b— €] D [a,b—e). (2.1)
Now, since Upen|dn, bp) = [a, b) we have UY_,[a,,b,) C [a,b) and

vr,([a,b)) > vp, (UM [an, by) Z vp, ([an, bn)) by finite additivity.

Hence, we have

0 < vg,( g vE, ([an, bn)

— €n, b)) — VFu([an ) a”)))

Mz

=vp,([a,b—¢€)) +vp,([b—¢€))

n:l

=vp,([a,b—¢) Z vp,([an — €,,0y,)) this term < 0 by (2.1)

+vr, ([ )+ ZIJFM — €n,Ay))
< VFH([b —6b) + Z VFH([an — €, Qp)) = Fu(b) - Fu(b —€)+ Z(Fu(an) - Fu<an — €n))-

By left-continuity of F),, we can choose € such that F),(b) — F,(b—¢€) < 1/2 and ¢, such

that F,(a,) — F(a, — €,) <27"n/2. Hence,

N
O<VFM ([a, b)) X:VFM A, by) §g<1+;2n>.

Letting N — oo we have that vp, ([a,0)) = >0 vg, ([an, b))

Since vp, is a pre-measure on a semi-ring, by Carathéodory’s Theorem, it has an exten-
sion to o(S) = B(R). Furthermore, since for n € N, [-n,n) T R and vg, ([-n,n)) =
F,(n) — F,(—n) = p([0,n)) + p([—n,0))) < oo, this extension is unique.

To verify that vp, = p, it suffices to verify that vp, = p on S, since vg, extends

uniquely to B(R). There are three cases:
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Case 1 (0 < a < 8): v ([wD) = Fu(b) — Fala) = u([0,5)) — ([0, ) = ([0,0)) +
p(la,0)) = p((0,a)) = p([a, b)), since [0,b) = [0, a) U [a, b),

Case 2 (a < 0 <b): vg,([a,b)) = F,(b) — Fy(a) = pu([0,b)) + i([a,0)) = u([a,b)), since
la,b) = [a,0) U[0,b),

Case 3 (a < b < 0): v, ([a,b)) = Fu(b) — Fula) = —pu([6,0)) + u([a, 0)) = u(la,b)),

since [a,b) = [a,0) — [b,0), which completes the proof.

. If F' is a distribution function, show that it can have an infinite number of jump

discontinuities, but at most countably many.

Answer: A jump of F', denoted by Jr(x) exists if Jp(z) = F(z) — }LiHéF(x —h)>0
%
for h > 0. This happens if and only if P({z}) > 0. Now, the collection of events
E, = {{z} : P({z}) > 0} is disjoint and all have positive probability. We now show
that this collection is countable. Let C,, = {E, : P(E,) > 1 and z € R}. The elements
of C,, are disjoint events and
m=1

where the last equality follows from the fact that P(E,,_ ) > 0. So, it must be that C,,
has finitely many elements. Also, {E, }zer = U2, C,, which is countable since it is a

countable union of finite sets.

. Show that A'((a,b)) = b —a for all a,b € R, a < b. State and prove the same for \".

Answer: Let a < b and note that [a + %, b) 1 (a,b) as k — oo. Thus, by continuity of

measures,
A(a,b)) = lim AN([a+ 1/k,b) = lim (b—a — 1/k) =b — a.
k—ro00 k—o0

Since A([a, b)) = b — a, this proves that A({a}) = 0.

12



5. Consider the measure space (R”, B(R"), A"). Show that for every B € B(R") and z €
R™, x4+ B € B(R") and that \*(x+ B) = \"(B). Note: x4+ B :={z: 2 =x+b, b € B}.
Answer: First, we need to show that x + B € B(R"™) for all x € R™ and for all
B € B(R"). Let A, = {B € B(R") : * + B € B(R")} and note that A, C B(R").

Also, A, is a o-algebra associated with R", since:

(a) R™ € A, given that x + b € R” for all b € R™ and R™ € B(R"),

(b) Be A, = z+B e B(R") = (z+B)° € B(R"). But since (x+ B)¢ = x+ B¢
and B¢ € B(R"), B € A,.

(c) {Antnen € Ay = x4+ A, € B(R") for all n € N. Since B(R") is a o-
algebra |J,cn(@ + An) = 2 + U,en An € B(R™). But since J,, .y An € B(R"),
Unen An € As.

Now, let R™" = x™_ [l;,u;) € Z%" C B(R") and note that z + R™" € ™" C B(R").

Hence, R*" € A, = x + R™" ¢ A,. Hence,
B(R") = o(I™") Cc A, C B(R"),

which implies that z + B € B(R") for all x € R" and for all B € B(R").
Now, set v(B) = \*(z+B). It B =0, v(0) = \*(z+0) = A™(0) = 0. Also, for a pairwise

disjoint sequence {4, }new, v (Unew 4An) = A" (2 4 Upen An) = A" (Upen(@ + 45)) =
Yonen AN(@ 4+ Ay) =0 wv(A,). Hence, v is a measure and

n n

v(R™) = \"(z + R™") = H(Uz +x — (i + ) = H(uz — 1) = X" (R™).

i=1 i=1
Hence, v(R™") = \*(R™") for every R™" € T™". Since Z™" is a m-system, generates
B(R™) and admits an exhausting sequence [—k, k) T R™ with A"([—k,k)") = (2k)" <

00, we have by Carathéodory Theorem that A\ = v on B(R").
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Chapter 3

Exercises

1. Suppose (Q,F) and (Y,G) are measure spaces and f : Q@ — Y. Show that: a)
It—1ay(w) = (Ia o f)(w) for all w; b) f is measurable if, and only if, o({f~(A) :
Aeg})CF.

Answer: a) For any subset A C Y, we have f~1(A) = {w: f(w) € A}. Then,
L1 (@) = Tupweay(w) = La(f(w)) = (La o f)(w).

b) Since f is measurable, f~1(G) C F. By monotonicity of o-algebras, o(f~(G)) =
o{f71(A): AeG}) CF. Now, o(f1(G)) = f1c(G)) = fHG) C F. The last set

containment implies measurability.

2. Show that for any function f : X — Y and any collection of subsets G of Y,
fHe(9) =o(f719))
Answer: f~(0(G)) is a o-algebra associated with X. Since G C o(G), f71(G) C
f71(0(G)) and consequently o(f~(G)) C f~(a(G))-

Now, as in Theorem 3.1, U = {U € 2Y : f~YU) € o(f~1(G))} is a o-algebra. By

definition of U
FHU) Co(f71G))
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Also, G C U since f71(G) C f~(U) C o(f71(G)). Since U is a o-algebra we have that
o(G) CU. So,

fHe(@) C f7HU) co(f71(C)).

The last set containment combined with the reverse obtained on the last paragraph

completes the proof.
. Let i € I where I is an arbitrary index set. Consider f; : (X, F) — (X;, F;).

(a) Show that for all i, the smallest o-algebra associated with X that makes f; mea-

surable is given by f; ! (F).

(b) Show that o (U fi_l(.E)) is the smallest o-algebra associated with X that makes
iel
all f; simultaneously measurable.

Answer: a) f; is measurable if f;'(F;) C F. But by monotonicity of o(-) we have
o(f7HF)) = f7Y(F;) C F since f'(F;) is a o-algebra. b) f;'(F;) C F for alli € I

because f; is measurable. But any sub-o-algebra of F that makes all f; measurable

functions must contain all f;'(F;), i.e., U f; '(F;). However, unions of o-algebras are
i€l

not necessarily o-algebras. Hence, we consider o (U fil(}})) the smallest o-algebra
il
that makes all f; simultaneously measurable.

. Let X : (Q,F, P) — (S,Bs) where S C R* and Bs = {BN S : B € B*} be a random
vector with £ € IN, and ¢ : (S, Bs) — (7', Br) be measurable where T C R? with p € IN.

If Y = g(X), show that

(a) o(Y) =Y YBr) C o(X) := X YBy),
(b) if k = p and g is bijective, o(Y) = o(X).

16



Answer: (a) E € Y Y(By) = E =Y '(Byr) for some Br € Br. Now,

E={w:Y(w) € Br}={w:g(X(w)) € By} ={w: X(w) € g7 '(Br)}
= X"(g7(Br)).
Since ¢ is measurable, g~ !(B7) € Bg and since X is a random vector X (g~ *(Br)) €
o(X) = X1 (Bg). Hence, o(Y) C o(X).

(b) First, observe that since g is bijective, it must be that k = p and S = T. For any
Br € BT,

g (Br) = g '(g(B)) for some B C S

= B € Bg since ¢! is an inverse function and g is measurable.

Hence, any Br € By is such that Br = g(B) where B € Bg. Similarly, due to the
existence of the inverse ¢!, for any Bs € Bg, Bs = g '(B) where B € Br. Hence, if
C:={¢gY(B): B € By} then Bs C C. But measurability of g assures that C C Bg

Hence, X~ (Bs) := o(X) = X1(C) = {X (¢ (B)) : B € By} = o(Y).

17
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Chapter 4

Exercises

1. Prove Theorem 4.2.

Answer: Let f = ZiI:O yila, and f = Z;.]:O y;Ip, be standard representations of f

and ¢g. Then,
J

I
:ZZ y’Lj:Z] [AQB

i=0 j=0

and

M“

Y

=0 7

yzzg IA NB;

I
=)

with (A; N B;) N (Ay N By) = 0 whenever (i, j) # (7, j'). After relabeling and merging
the double sums into single sums we have the result. The case for c¢f is obvious. f
simple implies f™ and f~ are simple by definition, and since |f| = f* 4+ f~, |f] is

simple.

2. Show that if f is a non-negative measurable simple function, its integral, as defined in
Definition 4.3 is equal to 1,(f).
Answer: Since f is simple and f < f, f is one of the simple functions (denoted by
¢) appearing in Definition 21 of the class notes. Hence, [ fdu > I,(f). Also, if ¢ is a

simple function such that ¢ < f, by monotonicity of the integral of simple functions
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we have [,(¢) < I,,(f), hence

sgplu(éb) = /fdu < L.(f)-
Combining the two inequalities we have [ fdu = I,(f).

. Let (X, F) be a measurable space and {x, }new be a sequence of measures defined on
it. Noting that p = > _x ttn is also a measure on (X, F) (you don’t have to prove

this), show that

[ tn=3 [ fin,

nelN

for f non-negative and measurable.

Answer: First, let f = Ir > 0 for F' € F. Then, f is measurable and

[ gan= [ Tody = F) = () = 3 / ted, =3 [ s

Hence, the result holds for indicator functions. Now, consider a simple non-negative

function f = Z;-n:o ajls; where a; > 0 and A; € F. Then,

X X =0 j=0 7=0 7=0 nelN
Sp D) SLTHENED Y 7
nelN 57=0 nelN

Hence, the result holds for simple non-negative functions. Lastly, let f be non-negative
and measurable. By Theorem 3.3 in the class notes, there exists a sequence {¢, }nen
of non-negative, non-decreasing, measurable simple function such that sup¢, = f. By

n€lN
Beppo-Levi’s Theorem

/fduzsup/ Pndji.
X nelN JX

20



Hence,

/deu=sup/X¢ndu= swi/x%duj

nelN nelN =1

= sup sup Z / Ondj; since fx ¢ndpt; is nondecreasing.
nelN melN =1 X

= sup sup / Ondp; = sup lim / Ondpt;
meN nelN jzl X ! meN 00 JZI X I

= sup lim / nd
meN Znﬁoo X ¢ LL]

= sup Z/ lim ¢, dy; by Beppo-Levi’s Theorem
meN =1 X oo

—swp > [ g =Y [ sy
meN =1 X jeN X

. Let (X, F, 1) be a measure space and f : (X, F,u) — (R, B) be measurable and non-
negative. For every F' € F consider [ Ipfdu. Is this a measure?

Answer: Let v(F) = [Ipfdp. Then v is a [0, c0]-valued set function defined for
F e F. Then,

(a) Iy = 0 and clearly v(0)) = 0.

(b) Let F = UjenF; be a union of pairwise disjoint sets in F. Then, > ° Ir = Ip

oF) = [ (i:jn:) fin— [ (ij) au

=3 [ dnfdn=3"v(E)

and

. Let (Q, F, P) be a probability space and {F, },enw C F.

(a) Prove that I intp, = liminf I, and Dimsup r, = limsup Ix,.
n— o0 n—oo

n—oo n—oo
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(b) Prove that P <lim inf Fn) < liminf P(F}).

n—oo n—o0

(c) Prove that limsup P(F,) < P (lim sup Fn>

n—oo n—o0

Answer: Part (a) is straightforward by noting that Ing, = inf I, and I g,

sup I4,. (b) Part (a) combined with Fatou’s Lemma gives,

P(liminf F,) = /[limianndP = /liminf Irp dP < liminf/fpndP.

(c) Again, by Fatou’s Lemma (the reverse) we have,

P(limsup F),) = /I]imsupFndP: /limsupIFndP > limsup/IFndP.
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Chapter 5

Exercises

1. Prove Theorem 4.2.

Answer: Let f = Zf:o yila, and f = ijo y;1p, be standard representations of f

and g. Then,
I
fEg= Z Z(yz £ zj)Lains,
i=0 j=0
and
I J
F9=Y (wiz)lans,
=0 j=0

with (A; N B;j) N (Ay N By) = 0 whenever (i, j) # (¢, j'). After relabeling and merging
the double sums into single sums we have the result. The case for c¢f is obvious. f
simple implies f™ and f~ are simple by definition, and since |f| = f* + f~, |f] is

simple.

2. Prove Theorem 4.10.

Answer: Since f = fT — f~ and f* and f~ are nonnegative, use Theorems 4.6 and

4.8 in your notes.

3. Use Markov’s inequality to prove the following for @ > 0 and g : (0,00) — (0, 00) that

is increasing;:
1

P(X(@)| 2 0) < / g(|X|)dP
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Answer: Since g is increasing, {w : |X(w)| > a} = {w : g(|X(w)|) > g(a)}. Hence,

since g is positive

9(a) [ x@)2a} = 9(@) {wg(x(@))2g(@} < (X (W)])-

Integrating both sides we have g(a)P({w : |X(w)] > a}) < [g(|X(w)|)dP. This

completes the proof as g(a) > 0.

. Let X be arandom variable defined in the probability space (2, F, P) with E(X?) < oo.
Consider a function f: R — R. What restrictions are needed on f to guarantee that

f(X) is a random variable with E(f(X)?) < co?

Answer: Recall that if X : (Q,F, P) — (R, Br), we say that X is a random variable
(measurable real valued function) if, and only if, for all B € Bg we have X~}(B) € F.
Hence, if h(w) := f(X(w)) = (f o X)(w) : (2, F, P) = (R, Br) we require that for all
B € Br we have h™*(B) = (f o X)"Y(B) = X~}(f~Y(B)) € F. That is, f~}(B) € Bg.

Since X is a random variable (measurable) and given that f~!(B) € By for all B € Bg,
f(X) is arandom variable (measurable). Since the f? is a continuous function of f, f? is
also a random variable (measurable). Hence, we can consider the integrability (or not)
of f(X)?, i.e., whether or not E(f(X)?) < co. We give two general restrictions on f

that give E(f(X)?) < oo. First, suppose that sup,,cq |2(w)| = sup,cq |(foX)(w)| < C.

’/f%lp' g/thPSCQ/dP:OQ.

Second, suppose that h? < X2 for all w € Q. Then, [h?dP < [ X?dP < cc.

Then,

Note that, in general, it is not true that E(f(X)?) < oo even if E(X?) < oo. For

example, suppose that X ~ U[0,1]. Then, F(X?) = 1/3. Now, let Y := f(X) =
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tan (7T(X — %)) and we can easily obtain that the probability density of Y is

d

) =[] = |4

1 1
— 4 —arct =——,y€R.
5 + —arc an(y)) ‘ 55 Y

But this is the Cauchy density and [ y*fy (y)dy does not exist.

. Let X : (Q, F, P) = (R, B) be arandom variable. Show that if V(X) := E (X — E(X)))* =

0 then X is a constant with probability 1.

Answer: From your notes, if [, X?dP = 0 then X* = 0 almost everywhere. If N
is a null set fQXZdP = fNXQdP—I— fNCXZdP = fNXQdP—l— fNCOdP = 0. Thus,
P(X?=1x)=0for x # 0 and P(X? =0) = 1. But this is equivalent to P(X = 0) = 1.
Hence, V(X) = E (X — E(X)))? = 0 implies P(X —E(X) =0) = P(X = E(X)) = 1.

. Consider the following statement: f is continuous almost everywhere if, and only if, it
is almost everywhere equal to an everywhere continuous function. Is this true or false?

Explain, with precise mathematical arguments.

Answer: False. Consider the function Ig(x), where # € R. This function is nowhere
continuous in R, but it is equal to 0 almost everywhere, an everywhere continuous
function. Alternatively, the function Ijg «)(z) is continuous everywhere except at {0},
a set of measure zero. So, it is continuous almost everywhere. However, there is no

everywhere continuous function in R that is equal Ij o) (2) almost everywhere.

. Adapt the proof of Lebesgue’s Dominated Convergence Theorem in your notes to show
that any sequence {f,},en of measurable functions such that lim, .. fu.(x) = f(2)

and | f,,| < g for some g with g? nonnegative and integrable satisfies
lim /|fn — f|Pdp = 0.
n—oo

Answer: (3 points) First, note that |f, — f|? < (|fa| + [f])?. Since [f, — f| = 0 we

have that |f,| — |f|. Consequently, for all ¢ > 0 there exists N, € IN such that for
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n > N, we have

|fn‘_€§|f‘§’fn|+€§g+5

since |f,| < g. Consequently, |f| < g, |f|P < ¢” and |f, — f|P < 2P¢? where ¢? is
nonnegative and integrable. Now, letting ¢,, = | f,, — f|P we have that lim ¢, = 0 and
n—oo

by Lebesgue’s dominated convergence theorem in the class notes
y g g

n—o0

lim Ondp = / lim ¢, dp = 0.
X X n— oo

. Let X be the one-dimensional Lebesgue measure for the Borel sets of R. Show that for

every integrable function f, the function

g(x) = f(t)dA, for x >0
(0,2)

1S continuous.

Answer: Consider a sequence {y, }newy with 0 < x < y,, such that lim y, = 2. Then,
n—oo

9(ya) — glz) = / jain— [ far— / Lo fdr — / Lo fiA
(0,yn) (0,z) (0,00) (0,00)
:/( )(f(o,ym—f(o,m))fdA:/ Lz y,) fdA
0,00

(0,00)

90 — g(2)| < /( QAR

Now, Ijzy|f] < |f| and f(o 00) | fld\ < oo since f is integrable. Also, lim Ij,,.)f =0
) n—oo

almost everywhere (ae). Thus, by dominated convergence in the class notes

lim [g(ya) = g(2)| < lim Lz )| FldX

n—o0 (0700)

= lim Iy, | f]dA = 0.

By repeating the argument for y,, T © we obtain continuity of g at x.
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9.

10.

Show that if X is a random variable with F(|X|?) < oo then |X]| is almost everywhere

real valued.

Answer: Let N = {w: |[X(w)] = o0} = {w : | X (w)[P = c0}. Then N = Nyen{w :
| X (w)|P > n}. Then,

P (N) = P (Mnen{w : [X(w)[” = n})

= lim P ({w: |X(w)|? > n}) by continuity of probability measures

n—oo

1
< lim z / | X|PdP by Markov’s Inequality
Q

n—oo

= 0 since [, | X[PdP is finite.

Suppose X : (2, F, P) — (R, B) is a random variable with E(|X|) < co. Let N € F
be such that P(N) = 0 and define

- {9 ey

where ¢ € R. Is Y integrable? Is F(X) = E(Y)?

Answer: Yes, for both questions. We can change an integrable random variables at

any set of measure zero without changing the integral.
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