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Chapter 1

Exercises

1. Let f : N×N→ R be a double sequence with typical value given by f(m,n). Assume

that

(a) for every n ∈ N, f(m1, n) ≤ f(m2, n) whenever m1 ≤ m2,

(b) for every m ∈ N, f(m,n1) ≤ f(m,n2) whenever n1 ≤ n2.

Show that lim
n→∞

(
lim
m→∞

f(m,n)
)

= lim
m→∞

(
lim
n→∞

f(m,n)
)

= lim
n→∞

f(n, n).

As a corollary, show that if f(m,n) ≥ 0 then
∑
n∈N

∑
m∈N

f(m,n) =
∑
m∈N

∑
n∈N

f(m,n).

Answer: From conditions (a) and (b), f(1, 1) ≤ f(1, 2) ≤ f(2, 2) ≤ f(2, 3) ≤

f(3, 3) ≤ · · · Hence, f(m,m) ≤ f(n, n) whenever m ≤ n. The sequence {f(n, n)}n∈N

is monotonically increasing, hence it has a limit, which is either finite, if the sequence is

bounded above, or infinity, if it is not. Let this limit be denoted by F . By the same rea-

soning, there exist limits Fm = lim
n→∞

f(m,n) for each m ∈ N. Since f(m,n) ≤ f(n, n),

we have that Fm ≤ F when m ≤ n. Note that Fm1 ≤ Fm2 whenever m1 ≤ m2, hence

lim
m→∞

Fm = F ′ exists, and F ′ ≤ F .

To complete the proof, we need to show that F ′ = F . If F is finite, for every ε > 0

there exists N(ε) such that for all n ≥ N(ε), F − ε ≤ f(n, n) ≤ F . Put m := N(ε),
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and note that

Fm = lim
n→∞

f(m,n) ≥ f(m,m) := f(N(ε), N(ε)) ≥ F − ε.

Hence, lim
n→∞

Fm = F ≥ F−ε, which implies that F ≤ F ′. Combining the last inequality

with F ′ ≤ F from the previous paragraph gives F = F ′. If F is infinite, for any C > 0

there exists N(C) such that if n ≥ N(C), f(n, n) ≥ C. If m = N(C) ≤ n then

f(m,m) ≤ f(m,n) and

C ≤ f(m,m) ≤ lim
n→∞

f(m,n) = Fm,

hence it follows that F ′ must be infinite.

The proof that lim
n→∞

(
lim
m→∞

f(m,n)
)

= lim
n→∞

f(n, n) follows in exactly the same way by

interchanging the indexes m and n due to the symmetry of the equation.

Corollary. Let g(p, q) =
∑p

m=1

∑q
n=1 f(m,n) for p, q ∈ N. Since, f(m,n) ≥ 0, g(p, q)

satisfies conditions (a) and (b), establishing the result.

2. Let X be an arbitrary set and consider the collection of all subsets of X that are

countable or have countable complements. Show that this collection is a σ-algebra.

Use this fact to obtain the σ-algebra generated by C = {{x} : x ∈ R}.

Answer: Let F = {A ⊆ X : #A ≤ #N or #Ac ≤ #N}, where # indicates cardi-

nality. First, note that X ∈ F since Xc = ∅, which is countable. Second, if A ∈ F

then either A = (Ac)c or Ac are countable. That is, Ac ∈ F . Third, if An ∈ F for

n ∈ N we have two possible cases - An are all countable, or at least one of these sets

is uncountable, say An0 . For the first case, ∪
n∈N

An is the countable union of countable

sets, hence it is countable and consequently in F . For the second case, since An0 is

uncountable and in F , it must be that Acn0
is countable. Also,(

∪
n∈N

An

)c
= ∩

n∈N
Acn ⊂ Acn0

.
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Since subsets of countable sets are countable,
(
∪
n∈N

An

)c
is countable, and consequently

∪
n∈N

An ∈ F .

Now, let F be the σ-algebra defined above. Since C ⊆ F , σ(C) ⊆ F . Also, if A ∈ F

either A or Ac is countable. Without loss of generality, suppose A is countable. Then,

A = ∪
x∈C
{x} where C is a countable collection of real numbers. Hence, A ∈ σ(C).

Hence, F ⊆ σ(C). Combining the two set containments we have σ(C) = F .

3. Denote by B(x, r) an open ball in Rn centered at x and with radius r. Show that the

Borel sets are generated by the collection B = {Br(x) : x ∈ Rn, r > 0}.

Answer: Let B′ = {Br(x) : x ∈ Qn, r ∈ Q+}. Then, B′ ⊂ B ⊂ ORn and σ(B′) ⊂

σ(B) ⊂ σ(ORn).

Now, let S =
⋃

B∈B′, B⊂O
B. By construction x ∈ S =⇒ x ∈ O. Now, suppose x ∈ O.

Then, since O is open, there exists B(x, ε) such that B(x, ε) ⊂ O where ε is a rational

number. Since Qn is a dense subset of Rn, we can find q ∈ Qn such that ‖x− q‖ ≤ ε/2.

Consequently,

B(q, ε/2) ⊂ B(x, ε) ⊂ O.

Hence, O ⊂ S. Thus, every open O can be written as O =
⋃

B∈B′, B⊂O
B. Since B′ is a

collection of balls with rational radius and rational centers, B′ is countable. Thus,

ORn ⊂ σ(B′) =⇒ σ(ORn) ⊂ σ(B′).

Combining this set containment with σ(B′) ⊂ σ(B) ⊂ σ(ORn) completes the proof.

4. Let (Ω,F) be a measurable space. Show that: a) if µ1 and µ2 are measures on (Ω,F),

then µc(F ) := c1µ1(F ) + c2µ2(F ) for F ∈ F and all c1, c2 ≥ 0 is a measure; b) if

{µi}i∈N are measures on (Ω,F) and {αi}i∈N is a sequence of positive numbers, then

µ∞(F ) =
∑

i∈N αiµi(F ) for F ∈ F is a measure.
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Answer: a) First, note that µc : F → [0,∞] since c1, c2, µ1(F ), µ2(F ) ≥ 0 for all

F ∈ F . Second, µc(∅) = c1µ1(∅) + c2µ2(∅) = 0 since µ1 and µ2 are measures. Third, if

{Fi}i∈N ∈ F is a pairwise disjoint collection of sets,

µc (∪i∈NFi) = c1µ1(∪i∈NFi) + c2µ2(∪i∈NFi)

= c1

∑
i∈N

µ1(Fi) + c2

∑
i∈N

µ2(Fi), since µ1 and µ2 are measures

=
∑
i∈N

(c1µ1(Fi) + c2µ2(Fi)) =
∑
i∈N

µc(Fi).

b) The verification that µ∞ : F → [0,∞] and µ∞(∅) = 0 follows the same arguments as

in item a) when examining µc. For σ-additivity, note that if {Fj}j∈N ∈ F is a pairwise

disjoint collection of sets,

µ∞ (∪j∈NFj) =
∞∑
i=1

αiµi (∪j∈NFj) =
∞∑
i=1

αi

∞∑
j=1

µi (Fj) =
∞∑
i=1

∞∑
j=1

αiµi (Fj) .

If we are able to interchange the sums in the last term, then we can write

µ∞ (∪j∈NFj) =
∞∑
j=1

∞∑
i=1

αiµi (Fj) =
∞∑
j=1

µ∞ (Fj) ,

completing the proof. Now, note that
∞∑
i=1

∞∑
j=1

αiµi (Fj) = lim
n→∞

lim
m→∞

n∑
i=1

m∑
j=1

αiµi (Fj) = sup
n∈N

sup
m∈N

n∑
i=1

m∑
j=1

αiµi (Fj) = sup
n∈N

sup
m∈N

Snm

since the partial sums are increasing. Now, if Snm ∈ R, then

sup
n∈N

sup
m∈N

Snm = sup
m∈N

sup
n∈N

Snm.

Hence, to finish the proof, we require µi(Fj) <∞.

5. Let (Ω,F , µ) be a measure space and G ⊂ F be a σ-algebra. In this case, we call G a

sub-σ-algebra of F . Let ν := µ|G be the restriction of µ to G. That is, ν(G) = µ(G)

for all G ∈ G. Is ν a measure? If µ is finite, is ν finite? If µ is a probability, is ν a

probability?
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Answer: Since ∅ ∈ G ⊂ F , ν(∅) = µ(∅) = 0. If {Ai}i∈N ∈ G is a pairwise disjoint

sequence, we have that {Ai}i∈N ∈ F . Hence, ν(∪i∈NAi) = µ(∪i∈NAi) =
∑

i∈N µ(Ai) =∑
i∈N ν(Ai). Now, µ finite means that µ(Ω) < ∞. Since Ω ∈ G, ν(Ω) = µ(Ω) < ∞.

The same holds for µ(Ω) = 1.

6. Show that a measure space (Ω,F , µ) is σ-finite if, and only if, there exists {Fn}n∈N ∈ F

such that ∪n∈NFn = Ω and µ(Fn) <∞ for all n.

Answer: (⇒) By definition, (Ω,F , µ) is σ-finite if there exists and increasing sequence

A1 ⊂ A2 ⊂ A3 · · · such that ∪n∈NAn = Ω with µ(An) <∞ for all n. Hence, it suffices

to let Fn = An.

(⇐) Let An = ∪nj=1Fj. Then, A1 ⊂ A2 ⊂ · · · and ∪n∈NAn = ∪j∈NFj = Ω. Also,

µ(An) = µ(∪nj=1Fj) ≤
∑n

j=1 µ(Fj) <∞ since the sum is finite and µ(Fj) <∞.

7. Let (Ω,F , P ) be a probability space and {En}n∈N ⊂ F . Show that if
∑∞

n=1 P (En) <∞

then P
(
limsup
n→∞

En

)
= 0.

Answer:

P

(
limsup
n→∞

En

)
= P

(
lim
n→∞

∪j≥n Ej
)

= lim
n→∞

P (∪j≥nEj) by continuity

≤ limsup
n→∞

∞∑
j=n

P (Ej) by subadditivity and definition of limsup.

Since
∑∞

n=1 P (En) < ∞ it must be that
∑∞

j=n P (Ej) → 0 as n → 0. Consequently,

P

(
limsup
n→∞

En

)
= 0.

8. Let {Ej}j∈J be a collection of pairwise disjoint events. Show that if P (Ej) > 0 for

each j ∈ J , then J is countable.
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Answer: Let Cn = {Ej : P (Ej) >
1
n
and j ∈ J}. By assumption the elements of Cn

are disjoint events and

P (∪jmEjm) =
∞∑
m=1

P (Ejm) =∞,

where the last equality follows from the fact that P (Ejm) > 0. So, it must be that Cn

has finitely many elements. Also, {Ej}j∈J = ∪∞n=1Cn, which is countable since it is a

countable union of finite sets.

9. Consider the extended real line, i.e., R̄ := R ∪ {−∞} ∪ {∞}. Let B̄ := B(R̄) be

defined as the collection of sets B̄ such that B̄ = B ∪ S where B ∈ B(R) and S ∈

{∅, {−∞}, {∞}, {−∞,∞}}. Show that B̄ is a σ-algebra and that it is generated by a

collection of sets of the form [a,∞] where a ∈ R.

Answer: Let’s first show that B̄ is a σ-algebra. Since B̄ = B ∪ S with B ∈ B(R), we

can choose B = R and use S = {−∞,∞} to conclude that R̄ = R ∪ {−∞,∞} ∈ B̄.

Next, note that if B̄ = B∪S we have that B̄c = Bc∩Sc. But the complement of a set S

is an element of {R̄,R∪{∞},R∪{−∞},R}. Hence, either 1) B̄c = Bc∩R̄ = Bc∪∅ ∈ B̄

or, 2) B̄c = Bc ∩ (R ∪ {∞}) = (Bc ∩ R) ∪ {∞} where Bc ∩ R ∈ B and consequently

B̄c ∈ B̄ or, 3) B̄c = Bc ∩ (R ∪ {−∞}) = (Bc ∩ R) ∪ {−∞} where Bc ∩ R ∈ B and

consequently B̄c ∈ B̄ or, 4) B̄c = Bc ∩R ∈ B̄.

Lastly, letting Ai = Bi ∪ S for Bi ∈ B we have that ∪i∈NAi = ∪i∈N(Bi ∪ S) =

(∪i∈NBi) ∪ S. Since ∪i∈NBi ∈ B we have that ∪i∈NAi ∈ B̄.

If B̄ is a σ-algebra and C = {[a,∞] : a ∈ R}, we need to show that σ(C) = B̄.

First, note that [a,∞] = [a,∞)∪{∞} and we know that [a,∞) ∈ B. Thus, [a,∞] ∈ B̄

for all a ∈ R. Then, σ(C) ⊆ B̄.

Second, observe that for −∞ < a ≤ b < ∞ we have [a, b) = [a,∞] − [b,∞] =

[a,∞] ∩ [b,∞]c ∈ σ(C) since σ(C) contains [a,∞] and [b,∞]c by virtue of being a
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σ-algebra. Hence,

B ⊆ σ(C) ⊆ B̄.

Now,

{∞} = ∩i∈N[i,∞], {−∞} = ∩i∈N[−∞,−i) = ∩i∈N[−i,∞]c

which allows us to conclude that {∞}, {−∞} ∈ σ(C). Hence, if B ∈ B all sets of the

form

B,B ∪ {∞}, B ∪ {−∞}, B ∪ {∞} ∪ {−∞}

are in σ(C). Hence, B̄ ⊆ σ(C). Combining this set. containment with σ(C) ⊆ B̄ gives

the result.

10. If E1, E2, · · · , En are independent events, show that the probability that none of them

occur is less than or equal to exp (−
∑n

i=1 P (Ei)).

Answer: Let f(x) = exp(−x) and note that for λ ∈ (0, 1), by Taylor’s Theorem

exp(−x) = f(x) = f(0) + f (1)(0)x+
1

2
f (2)(λx)x2 = 1− x+

1

2
exp(−λx)x2

Consequently, 1− x ≤ exp(−x). Now, we are interested in the event E = (∪ni=1Ei)
c =

∩ni=1E
c
i . But since the E1, E2, · · · , En are independent, so is the collectionEc

1, E
c
2, · · · , Ec

n.

Hence, P (E) =
∏n

i=1 P (Ec
i ) =

∏n
i=1(1−P (Ei)) ≤

∏n
i=1 exp(−P (Ei)) = exp (−

∑n
i=1 P (Ei)).

11. Let {An}n∈N and {Bn}n∈N be events (measurable sets) in a probability space with

measure P with limAn = A, limBn = B, P (Bn), P (B) > 0 for all n. Show that

P (An|B)→ P (A|B), P (A|Bn)→ P (A|B), P (An|Bn)→ P (A|B) as n→∞.

Answer: Since P (·|B) is a probability measure (proved in the class notes), we have

by continuity of probability measures that P (An|B)→ P (A|B) if limBn = B.

Now, since limBn = B we have that A ∩ Bn → A ∩ B. To see this, note that if

A ∩ Bn := Cn then Dj = ∪∞n=jCn = A ∩ (∪∞n=1Bn). Then, lim supCn = ∩∞j=1Dj =
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∩∞j=1 (A ∩ ∪∞n=1Bn) = A ∩ B. Defining lim inf for Cn we can in similar fashion that

lim inf Cn = A∩B. Hence, by continuity of probability measures P (A∩Bn)→ P (A∩B)

and P (Bn)→ P (B). Consequently,

P (A|Bn) =
P (A ∩Bn)

P (Bn)
→ P (A ∩B)

P (B)
= P (A|B).

Lastly, since An ∩Bn → A ∪B, using the same arguments

P (An|Bn) =
P (An ∩Bn)

P (Bn)
→ P (A ∩B)

P (B)
= P (A|B).

12. Let (X, F̄ , µ̄) be the measure space defined in Theorem 1.15 and C = {G ∈ X :

∃A, B ∈ F 3 A ⊂ G ⊂ B and µ(B − A) = 0}. Show that F̄ = C.

Answer: G ∈ F̄ =⇒ G = A ∪M where A ∈ F and M ∈ S. M ∈ S =⇒ ∃N ∈

Nµ 3M ⊂ N . Then,

A ⊂ G = A ∪M ⊂ A ∪N := B ∈ F .

Now, µ(B − A) = µ(B ∪ Ac) = µ((A ∪N)− A) ≤ µ(N) = 0. Thus, G ∈ C.

G ∈ C =⇒ ∃A, B ∈ F 3 A ⊂ G ⊂ B and µ(B − A) = 0. Since A ⊂ G ⊂ B we have

that G−A ⊂ B−A, and since B−A is a µ-null set G−A ∈ S. Now, G = A∪(G−A),

and since A ∈ F , G ∈ F̄ .

8



Chapter 2

Exercises

1. Let µ be a measure on (R,B(R)) such that µ([−n, n)) <∞ for all n ∈ N. Define,

Fµ(x) :=


µ([0, x)) if x > 0,
0 if x = 0,
−µ([x, 0)) if x < 0.

Show that Fµ : R→ R is monotonically increasing and left continuous.

Answer: Given that µ([−n, n)) < ∞, Fµ takes values in R. First, we show that all

x < x′, Fµ(x) ≤ Fµ(x′). There are three cases to be considered

(a) (0 ≤ x < x′): if 0 < x < x′, Fµ(x′) − Fµ(x) = µ([0, x′)) − µ([0, x)). Since

[0, x′) = [0, x) ∪ [x, x′), σ-additivity of µ gives µ([0, x′)) = µ([0, x)) + µ([x, x′)) or

µ([x, x′)) = µ([0, x′))−µ([0, x)) = Fµ(x′)−Fµ(x) ≥ 0. If x = 0, Fµ(x′)−Fµ(0) =

µ([0, x′)) ≥ 0.

(b) (x < 0 ≤ x′): If x′ > 0, Fµ(x′) − Fµ(x) = µ([0, x′)) + µ([x, 0)) ≥ 0. If x′ = 0,

Fµ(0)− Fµ(x) = µ([x, 0)) ≥ 0.

(c) (x < x′ < 0): Fµ(x′)−Fµ(x) = −µ([x′, 0))+µ([x, 0)). Since [x, 0) = [x, x′)∪[x′, 0),

σ-additivity of µ gives µ([x, 0)) = µ([x, x′)) + µ([x′, 0)) or µ([x, 0))− µ([x′, 0)) =

Fµ(x′)− Fµ(x) = µ([x, x′)) ≥ 0.
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Second, we must show that lim
n→∞

Fµ(x − hn) = Fµ(x) for all x ∈ R. Let n ∈ N,

h1 ≥ h2 ≥ h3 ≥ · · · with hn ↓ 0 as n → ∞, and h1 > 0. There are three cases to

consider.

(a) (x > 0): Choose h1 ∈ (0, x) and define An = [0, x − hn). Then, A1 ⊂ A2 ⊂ · · ·

and lim
n→∞

An =
⋃
n∈N

An = [0, x). By continuity of measure from below,

lim
n→∞

Fµ(x− hn) = lim
n→∞

µ([0, x− hn)) = µ([0, x)) = Fµ(x).

(b) (x = 0): Define An = [−hn, 0). Then, A1 ⊃ A2 ⊃ · · · and lim
n→∞

An =
⋂
n∈N

An = ∅.

By continuity of measures from above, and given that µ([−h1, 0)) <∞,

lim
n→∞

Fµ(−hn) = lim
n→∞

µ([−hn, 0)) = µ(∅) = 0 = Fµ(0).

(c) (x < 0): Define An = [x− hn, 0). Then, A1 ⊃ A2 ⊃ · · · and lim
n→∞

An = ∩∞n=1An =

[x, 0). By continuity of measures from above and given that µ([x− h1, 0)) <∞,

lim
n→∞

Fµ(x− hn) = lim
n→∞

− µ([x− hn, 0)) = −µ([x, 0)) = Fµ(x).

2. Let Fµ be defined as in question 1 and let νFµ (([a, b)) = Fµ(b) − Fµ(a) for all a ≤ b,

a, b ∈ R. Show that νFµ extends uniquely to a measure on B(R) and νFµ = µ.

Answer: Recall that S = {[a, b) : a ≤ b, a, b ∈ R} is a semi-ring (if a = b, [a, a) = ∅).

Given Fµ, we define νFµ : S → [0,∞) as νFµ([a, b)) = Fµ(b)−Fµ(a) for all a ≤ b. Since

Fµ is monotonically increasing, Fµ(b)−Fµ(a) ≥ 0 and νFµ([a, a) = ∅) = Fµ(a)−Fµ(a) =

0. Also, νFµ is finitely additive since for a < c < b, we have that [a, b) = [a, c)∪[c, b) and

νFµ([a, b)) = Fµ(b)− Fµ(a) = Fµ(c)− Fµ(a) + Fµ(b)− Fµ(c) = νFµ([a, c)) + νFµ([c, b)).

We now show that νFµ is σ-additive, i.e., for [an, bn), n ∈ N a disjoint collection such

that [a, b) = ∪
n∈N

[an, bn), we have νFµ([a, b)) =
∑
n∈N

νFµ([an, bn)). Fix εn, ε > 0 and note

that (an − εn, bn) ⊃ [an, bn). Hence, ∪
n∈N

(an − εn, bn) ⊃ ∪
n∈N

[an, bn) = [a, b) ⊃ [a, b− ε].
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Since ∪
n∈N

(an− εn, bn) is an open cover for the compact set [a, b− ε], by the Heine-Borel

Theorem, there exists N ∈ N such that

∪Nn=1 [an − εn, bn) ⊃ ∪Nn=1(an − εn, bn) ⊃ [a, b− ε] ⊃ [a, b− ε). (2.1)

Now, since ∪n∈N[an, bn) = [a, b) we have ∪Nn=1[an, bn) ⊂ [a, b) and

νFµ([a, b)) ≥ νFµ
(
∪Nn=1[an, bn)

)
=

N∑
n=1

νFµ ([an, bn)) by finite additivity.

Hence, we have

0 ≤ νFµ([a, b))−
N∑
n=1

νFµ ([an, bn))

= νFµ([a, b− ε)) + νFµ([b− ε, b))−
N∑
n=1

(
νFµ([an − εn, bn))− νFµ([an − εn, an))

)
= νFµ([a, b− ε))−

N∑
n=1

νFµ([an − εn, bn)) this term < 0 by (2.1)

+ νFµ([b− ε, b)) +
N∑
n=1

νFµ([an − εn, an))

≤ νFµ([b− ε, b)) +
N∑
n=1

νFµ([an − εn, an)) = Fµ(b)− Fµ(b− ε) +
N∑
n=1

(Fµ(an)− Fµ(an − εn)).

By left-continuity of Fµ, we can choose ε such that Fµ(b)−Fµ(b− ε) < η/2 and εn such

that Fµ(an)− Fµ(an − εn) < 2−n η/2. Hence,

0 ≤ νFµ([a, b))−
N∑
n=1

νFµ ([an, bn)) ≤ η

2

(
1 +

N∑
n=1

2−n

)
.

Letting N →∞ we have that νFµ([a, b)) =
∑∞

n=1 νFµ ([an, bn)).

Since νFµ is a pre-measure on a semi-ring, by Carathéodory’s Theorem, it has an exten-

sion to σ(S) = B(R). Furthermore, since for n ∈ N, [−n, n) ↑ R and νFµ([−n, n)) =

Fµ(n)− Fµ(−n) = µ([0, n)) + µ([−n, 0))) <∞, this extension is unique.

To verify that νFµ = µ, it suffices to verify that νFµ = µ on S, since νFµ extends

uniquely to B(R). There are three cases:
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Case 1 (0 ≤ a < b): νFµ([a, b)) = Fµ(b) − Fµ(a) = µ([0, b)) − µ([0, a)) = µ([0, a)) +

µ([a, b))− µ([0, a)) = µ([a, b)), since [0, b) = [0, a) ∪ [a, b),

Case 2 (a < 0 < b): νFµ([a, b)) = Fµ(b)− Fµ(a) = µ([0, b)) + µ([a, 0)) = µ([a, b)), since

[a, b) = [a, 0) ∪ [0, b),

Case 3 (a < b ≤ 0): νFµ([a, b)) = Fµ(b) − Fµ(a) = −µ([b, 0)) + µ([a, 0)) = µ([a, b)),

since [a, b) = [a, 0)− [b, 0), which completes the proof.

3. If F is a distribution function, show that it can have an infinite number of jump

discontinuities, but at most countably many.

Answer: A jump of F , denoted by JF (x) exists if JF (x) = F (x) − lim
h→0

F (x − h) > 0

for h > 0. This happens if and only if P ({x}) > 0. Now, the collection of events

Ex := {{x} : P ({x}) > 0} is disjoint and all have positive probability. We now show

that this collection is countable. Let Cn = {Ex : P (Ex) >
1
n
and x ∈ R}. The elements

of Cn are disjoint events and

P (∪xmExm) =
∞∑
m=1

P (Exm) =∞,

where the last equality follows from the fact that P (Exm) > 0. So, it must be that Cn

has finitely many elements. Also, {Ex}x∈R = ∪∞n=1Cn, which is countable since it is a

countable union of finite sets.

4. Show that λ1((a, b)) = b− a for all a, b ∈ R, a ≤ b. State and prove the same for λn.

Answer: Let a < b and note that [a+ 1
k
, b) ↑ (a, b) as k →∞. Thus, by continuity of

measures,

λ((a, b)) = lim
k→∞

λ([a+ 1/k, b) = lim
k→∞

(b− a− 1/k) = b− a.

Since λ([a, b)) = b− a, this proves that λ({a}) = 0.
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5. Consider the measure space (Rn,B(Rn), λn). Show that for every B ∈ B(Rn) and x ∈

Rn, x+B ∈ B(Rn) and that λn(x+B) = λn(B). Note: x+B := {z : z = x+b, b ∈ B}.

Answer: First, we need to show that x + B ∈ B(Rn) for all x ∈ Rn and for all

B ∈ B(Rn). Let Ax = {B ∈ B(Rn) : x + B ∈ B(Rn)} and note that Ax ⊂ B(Rn).

Also, Ax is a σ-algebra associated with Rn, since:

(a) Rn ∈ Ax given that x+ b ∈ Rn for all b ∈ Rn and Rn ∈ B(Rn),

(b) B ∈ Ax =⇒ x+B ∈ B(Rn) =⇒ (x+B)c ∈ B(Rn). But since (x+B)c = x+Bc

and Bc ∈ B(Rn), Bc ∈ Ax.

(c) {An}n∈N ⊂ Ax =⇒ x + An ∈ B(Rn) for all n ∈ N. Since B(Rn) is a σ-

algebra
⋃
n∈N(x + An) = x +

⋃
n∈NAn ∈ B(Rn). But since

⋃
n∈NAn ∈ B(Rn),⋃

n∈NAn ∈ Ax.

Now, let Rn,h = ×ni=1[li, ui) ∈ In,h ⊂ B(Rn) and note that x + Rn,h ∈ In,h ⊂ B(Rn).

Hence, Rn,h ∈ Ax =⇒ x+Rn,h ∈ Ax. Hence,

B(Rn) = σ(In,h) ⊂ Ax ⊂ B(Rn),

which implies that x+B ∈ B(Rn) for all x ∈ Rn and for all B ∈ B(Rn).

Now, set v(B) = λn(x+B). If B = ∅, v(∅) = λn(x+∅) = λn(∅) = 0. Also, for a pairwise

disjoint sequence {An}n∈N, v
(⋃

n∈NAn
)

= λn
(
x+

⋃
n∈NAn

)
= λn

(⋃
n∈N(x+ An)

)
=∑

n∈N λ
n(x+ An) =

∑
n∈N v(An). Hence, v is a measure and

v(Rn,h) = λn(x+Rn,h) =
n∏
i=1

(ui + xi − (li + xi)) =
n∏
i=1

(ui − li) = λn(Rn,h).

Hence, v(Rn,h) = λn(Rn,h) for every Rn,h ∈ In,h. Since In,h is a π-system, generates

B(Rn) and admits an exhausting sequence [−k, k) ↑ Rn with λn([−k, k)n) = (2k)n <

∞, we have by Carathéodory Theorem that λn = v on B(Rn).
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Chapter 3

Exercises

1. Suppose (Ω,F) and (Y,G) are measure spaces and f : Ω → Y. Show that: a)

If−1(A)(ω) = (IA ◦ f)(ω) for all ω; b) f is measurable if, and only if, σ({f−1(A) :

A ∈ G}) ⊂ F .

Answer: a) For any subset A ⊂ Y , we have f−1(A) = {ω : f(ω) ∈ A}. Then,

If−1(A)(ω) = I{ω:f(ω)∈A}(ω) = IA(f(ω)) = (IA ◦ f)(ω).

b) Since f is measurable, f−1(G) ⊂ F . By monotonicity of σ-algebras, σ(f−1(G)) =

σ({f−1(A) : A ∈ G}) ⊂ F . Now, σ(f−1(G)) = f−1(σ(G)) = f−1(G) ⊂ F . The last set

containment implies measurability.

2. Show that for any function f : X → Y and any collection of subsets G of Y,

f−1(σ(G)) = σ(f−1(G))

Answer: f−1(σ(G)) is a σ-algebra associated with X. Since G ⊂ σ(G), f−1(G) ⊂

f−1(σ(G)) and consequently σ(f−1(G)) ⊂ f−1(σ(G)).

Now, as in Theorem 3.1, U = {U ∈ 2Y : f−1(U) ∈ σ(f−1(G))} is a σ-algebra. By

definition of U

f−1(U) ⊂ σ(f−1(G)).
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Also, G ⊂ U since f−1(G) ⊂ f−1(U) ⊂ σ(f−1(G)). Since U is a σ-algebra we have that

σ(G) ⊂ U . So,

f−1(σ(G)) ⊂ f−1(U) ⊂ σ(f−1(C)).

The last set containment combined with the reverse obtained on the last paragraph

completes the proof.

3. Let i ∈ I where I is an arbitrary index set. Consider fi : (X,F)→ (Xi,Fi).

(a) Show that for all i, the smallest σ-algebra associated with X that makes fi mea-

surable is given by f−1
i (Fi).

(b) Show that σ
(⋃
i∈I
f−1
i (Fi)

)
is the smallest σ-algebra associated with X that makes

all fi simultaneously measurable.

Answer: a) fi is measurable if f−1
i (Fi) ⊂ F . But by monotonicity of σ(·) we have

σ(f−1
i (Fi)) = f−1

i (Fi) ⊂ F since f−1
i (Fi) is a σ-algebra. b) f−1

i (Fi) ⊂ F for all i ∈ I

because fi is measurable. But any sub-σ-algebra of F that makes all fi measurable

functions must contain all f−1
i (Fi), i.e.,

⋃
i∈I
f−1
i (Fi). However, unions of σ-algebras are

not necessarily σ-algebras. Hence, we consider σ
(⋃
i∈I
f−1
i (Fi)

)
, the smallest σ-algebra

that makes all fi simultaneously measurable.

4. Let X : (Ω,F , P ) → (S,BS) where S ⊂ Rk and BS = {B ∩ S : B ∈ Bk} be a random

vector with k ∈ N, and g : (S,BS)→ (T,BT ) be measurable where T ⊂ Rp with p ∈ N.

If Y = g(X), show that

(a) σ(Y ) := Y −1(BT ) ⊂ σ(X) := X−1(BS),

(b) if k = p and g is bijective, σ(Y ) = σ(X).

16



Answer: (a) E ∈ Y −1(BT ) =⇒ E = Y −1(BT ) for some BT ∈ BT . Now,

E = {ω : Y (ω) ∈ BT} = {ω : g(X(ω)) ∈ BT} = {ω : X(ω) ∈ g−1(BT )}

= X−1(g−1(BT )).

Since g is measurable, g−1(BT ) ∈ BS and since X is a random vector X−1(g−1(BT )) ∈

σ(X) := X−1(BS). Hence, σ(Y ) ⊂ σ(X).

(b) First, observe that since g is bijective, it must be that k = p and S = T . For any

BT ∈ BT ,

g−1(BT ) = g−1(g(B)) for some B ⊂ S

= B ∈ BS since g−1 is an inverse function and g is measurable.

Hence, any BT ∈ BT is such that BT = g(B) where B ∈ BS. Similarly, due to the

existence of the inverse g−1, for any BS ∈ BS, BS = g−1(B) where B ∈ BT . Hence, if

C := {g−1(B) : B ∈ BT} then BS ⊂ C. But measurability of g assures that C ⊂ BS

Hence, X−1(BS) := σ(X) = X−1(C) = {X−1(g−1(B)) : B ∈ BT} = σ(Y ).

17
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Chapter 4

Exercises

1. Prove Theorem 4.2.

Answer: Let f =
∑I

i=0 yiIAi and f =
∑J

j=0 yjIBj be standard representations of f

and g. Then,

f ± g =
I∑
i=0

J∑
j=0

(yi ± zj)IAi∩Bj

and

fg =
I∑
i=0

J∑
j=0

(yizj)IAi∩Bj

with (Ai ∩Bj)∩ (Ai′ ∩Bj′) = ∅ whenever (i, j) 6= (i′, j′). After relabeling and merging

the double sums into single sums we have the result. The case for cf is obvious. f

simple implies f+ and f− are simple by definition, and since |f | = f+ + f−, |f | is

simple.

2. Show that if f is a non-negative measurable simple function, its integral, as defined in

Definition 4.3 is equal to Iµ(f).

Answer: Since f is simple and f ≤ f , f is one of the simple functions (denoted by

φ) appearing in Definition 21 of the class notes. Hence,
∫
fdµ ≥ Iµ(f). Also, if φ is a

simple function such that φ ≤ f , by monotonicity of the integral of simple functions
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we have Iµ(φ) ≤ Iµ(f), hence

sup
φ
Iµ(φ) :=

∫
fdµ ≤ Iµ(f).

Combining the two inequalities we have
∫
fdµ = Iµ(f).

3. Let (X,F) be a measurable space and {µn}n∈N be a sequence of measures defined on

it. Noting that µ =
∑

n∈N µn is also a measure on (X,F) (you don’t have to prove

this), show that ∫
X

fdµ =
∑
n∈N

∫
X

fdµn

for f non-negative and measurable.

Answer: First, let f = IF ≥ 0 for F ∈ F . Then, f is measurable and

∫
X

fdµ =

∫
X

IFdµ = µ(F ) =
∑
n∈N

µn(F ) =
∑
n∈N

∫
X

IFdµn =
∑
n∈N

∫
X

fdµn.

Hence, the result holds for indicator functions. Now, consider a simple non-negative

function f =
∑m

j=0 ajIAj where aj ≥ 0 and Aj ∈ F . Then,

∫
X

fdµ =

∫
X

m∑
j=0

ajIAjdµ =
m∑
j=0

aj

∫
X

IAjdµ =
m∑
j=0

ajµ(Aj) =
m∑
j=0

aj
∑
n∈N

µn(Aj)

=
∑
n∈N

m∑
j=0

ajµn(Aj) =
∑
n∈N

∫
X

fdµn.

Hence, the result holds for simple non-negative functions. Lastly, let f be non-negative

and measurable. By Theorem 3.3 in the class notes, there exists a sequence {φn}n∈N

of non-negative, non-decreasing, measurable simple function such that sup
n∈N

φn = f . By

Beppo-Levi’s Theorem ∫
X

fdµ = sup
n∈N

∫
X

φndµ.
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Hence, ∫
X

fdµ = sup
n∈N

∫
X

φndµ = sup
n∈N

∞∑
j=1

∫
X

φndµj

= sup
n∈N

sup
m∈N

m∑
j=1

∫
X

φndµj since
∫
X
φndµj is nondecreasing.

= sup
m∈N

sup
n∈N

m∑
j=1

∫
X

φndµj = sup
m∈N

lim
n→∞

m∑
j=1

∫
X

φndµj

= sup
m∈N

m∑
j=1

lim
n→∞

∫
X

φndµj

= sup
m∈N

m∑
j=1

∫
X

lim
n→∞

φndµj by Beppo-Levi’s Theorem

= sup
m∈N

m∑
j=1

∫
X

fdµj =
∑
j∈N

∫
X

fdµj.

4. Let (X,F , µ) be a measure space and f : (X,F , µ)→ (R,B) be measurable and non-

negative. For every F ∈ F consider
∫
IFfdµ. Is this a measure?

Answer: Let v(F ) =
∫
IFfdµ. Then v is a [0,∞]-valued set function defined for

F ∈ F . Then,

(a) I∅ = 0 and clearly v(∅) = 0.

(b) Let F = ∪i∈NFi be a union of pairwise disjoint sets in F . Then,
∑∞

i=1 IFi = IF

and

v(F ) =

∫ ( ∞∑
i=1

IFi

)
fdµ =

∫ ( ∞∑
i=1

IFif

)
dµ

=
∞∑
i=1

∫
IFifdµ =

∞∑
i=1

v(Fi)

.

5. Let (Ω,F , P ) be a probability space and {Fn}n∈N ⊂ F .

(a) Prove that Ilim inf
n→∞

Fn = lim inf
n→∞

IFn and Ilim sup
n→∞

Fn = lim sup
n→∞

IFn .

21



(b) Prove that P
(

lim inf
n→∞

Fn

)
≤ lim inf

n→∞
P (Fn).

(c) Prove that lim sup
n→∞

P (Fn) ≤ P

(
lim sup
n→∞

Fn

)
.

Answer: Part (a) is straightforward by noting that I∩Fn = inf IFn and I∪Fn =

sup IAn . (b) Part (a) combined with Fatou’s Lemma gives,

P (lim inf Fn) =

∫
Ilim inf FndP =

∫
lim inf IFndP ≤ lim inf

∫
IFndP.

(c) Again, by Fatou’s Lemma (the reverse) we have,

P (lim supFn) =

∫
Ilim supFndP =

∫
lim sup IFndP ≥ lim sup

∫
IFndP.
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Chapter 5

Exercises

1. Prove Theorem 4.2.

Answer: Let f =
∑I

i=0 yiIAi and f =
∑J

j=0 yjIBj be standard representations of f

and g. Then,

f ± g =
I∑
i=0

J∑
j=0

(yi ± zj)IAi∩Bj

and

fg =
I∑
i=0

J∑
j=0

(yizj)IAi∩Bj

with (Ai ∩Bj)∩ (Ai′ ∩Bj′) = ∅ whenever (i, j) 6= (i′, j′). After relabeling and merging

the double sums into single sums we have the result. The case for cf is obvious. f

simple implies f+ and f− are simple by definition, and since |f | = f+ + f−, |f | is

simple.

2. Prove Theorem 4.10.

Answer: Since f = f+ − f− and f+ and f− are nonnegative, use Theorems 4.6 and

4.8 in your notes.

3. Use Markov’s inequality to prove the following for a > 0 and g : (0,∞)→ (0,∞) that

is increasing:

P (|X(ω)| ≥ a) ≤ 1

g(a)

∫
g(|X|)dP
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Answer: Since g is increasing, {ω : |X(ω)| ≥ a} = {ω : g(|X(ω)|) ≥ g(a)}. Hence,

since g is positive

g(a)I{ω:|X(ω)|≥a} = g(a)I{ω:g(|X(ω)|)≥g(a)} ≤ g(|X(ω)|).

Integrating both sides we have g(a)P ({ω : |X(ω)| ≥ a}) ≤
∫
g(|X(ω)|)dP . This

completes the proof as g(a) > 0.

4. LetX be a random variable defined in the probability space (Ω,F , P ) with E(X2) <∞.

Consider a function f : R → R. What restrictions are needed on f to guarantee that

f(X) is a random variable with E(f(X)2) <∞?

Answer: Recall that if X : (Ω,F , P )→ (R,BR), we say that X is a random variable

(measurable real valued function) if, and only if, for all B ∈ BR we have X−1(B) ∈ F .

Hence, if h(ω) := f(X(ω)) = (f ◦X)(ω) : (Ω,F , P )→ (R,BR) we require that for all

B ∈ BR we have h−1(B) = (f ◦X)−1(B) = X−1(f−1(B)) ∈ F . That is, f−1(B) ∈ BR.

Since X is a random variable (measurable) and given that f−1(B) ∈ BR for all B ∈ BR,

f(X) is a random variable (measurable). Since the f 2 is a continuous function of f , f 2 is

also a random variable (measurable). Hence, we can consider the integrability (or not)

of f(X)2, i.e., whether or not E(f(X)2) < ∞. We give two general restrictions on f

that give E(f(X)2) <∞. First, suppose that supω∈Ω |h(ω)| = supω∈Ω |(f ◦X)(ω)| < C.

Then, ∣∣∣∣∫ f 2dP

∣∣∣∣ ≤ ∫ h2dP ≤ C2

∫
dP = C2.

Second, suppose that h2 ≤ X2 for all ω ∈ Ω. Then,
∫
h2dP ≤

∫
X2dP <∞.

Note that, in general, it is not true that E(f(X)2) < ∞ even if E(X2) < ∞. For

example, suppose that X ∼ U [0, 1]. Then, E(X2) = 1/3. Now, let Y := f(X) =
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tan
(
π(X − 1

2

)
) and we can easily obtain that the probability density of Y is

fY (y) =

∣∣∣∣ ddyf−1(y)

∣∣∣∣ =

∣∣∣∣ ddy
(

1

2
+

1

π
arctan(y)

)∣∣∣∣ =
1

π

1

1 + y2
, y ∈ R.

But this is the Cauchy density and
∫
y2fY (y)dy does not exist.

5. LetX : (Ω,F , P )→ (R,B) be a random variable. Show that if V (X) := E ((X − E(X)))2 =

0 then X is a constant with probability 1.

Answer: From your notes, if
∫

Ω
X2dP = 0 then X2 = 0 almost everywhere. If N

is a null set
∫

Ω
X2dP =

∫
N
X2dP +

∫
Nc X

2dP =
∫
N
X2dP +

∫
Nc 0dP = 0. Thus,

P (X2 = x) = 0 for x 6= 0 and P (X2 = 0) = 1. But this is equivalent to P (X = 0) = 1.

Hence, V (X) = E ((X − E(X)))2 = 0 implies P (X−E(X) = 0) = P (X = E(X)) = 1.

6. Consider the following statement:f is continuous almost everywhere if, and only if, it

is almost everywhere equal to an everywhere continuous function. Is this true or false?

Explain, with precise mathematical arguments.

Answer: False. Consider the function IQ(x), where x ∈ R. This function is nowhere

continuous in R, but it is equal to 0 almost everywhere, an everywhere continuous

function. Alternatively, the function I[0,∞)(x) is continuous everywhere except at {0},

a set of measure zero. So, it is continuous almost everywhere. However, there is no

everywhere continuous function in R that is equal I[0,∞)(x) almost everywhere.

7. Adapt the proof of Lebesgue’s Dominated Convergence Theorem in your notes to show

that any sequence {fn}n∈N of measurable functions such that limn→∞ fn(x) = f(x)

and |fn| ≤ g for some g with gp nonnegative and integrable satisfies

lim
n→∞

∫
|fn − f |pdµ = 0.

Answer: (3 points) First, note that |fn − f |p ≤ (|fn| + |f |)p. Since |fn − f | → 0 we

have that |fn| → |f |. Consequently, for all ε > 0 there exists Nε ∈ N such that for
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n ≥ Nε we have

|fn| − ε ≤ |f | ≤ |fn|+ ε ≤ g + ε

since |fn| < g. Consequently, |f | ≤ g, |f |p ≤ gp and |fn − f |p ≤ 2pgp where gp is

nonnegative and integrable. Now, letting φn = |fn − f |p we have that lim
n→∞

φn = 0 and

by Lebesgue’s dominated convergence theorem in the class notes

lim
n→∞

∫
X

φndµ =

∫
X

lim
n→∞

φndµ = 0.

8. Let λ be the one-dimensional Lebesgue measure for the Borel sets of R. Show that for

every integrable function f , the function

g(x) =

∫
(0,x)

f(t)dλ, for x > 0

is continuous.

Answer: Consider a sequence {yn}n∈N with 0 < x < yn such that lim
n→∞

yn = x. Then,

g(yn)− g(x) =

∫
(0,yn)

fdλ−
∫

(0,x)

fdλ =

∫
(0,∞)

I(0,yn)fdλ−
∫

(0,∞)

I(0,x)fdλ

=

∫
(0,∞)

(I(0,yn) − I(0,x))fdλ =

∫
(0,∞)

I(x,yn)fdλ

|g(yn)− g(x)| ≤
∫

(0,∞)

I[x,yn)|f |dλ.

Now, I[x,yn)|f | ≤ |f | and
∫

(0,∞)
|f |dλ < ∞ since f is integrable. Also, lim

n→∞
I[x,yn)f = 0

almost everywhere (ae). Thus, by dominated convergence in the class notes

lim
n→∞
|g(yn)− g(x)| ≤ lim

n→∞

∫
(0,∞)

I(x,yn)|f |dλ

=

∫
(0,∞)

lim
n→∞

I(x,yn)|f |dλ = 0.

By repeating the argument for yn ↑ x we obtain continuity of g at x.
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9. Show that if X is a random variable with E(|X|p) <∞ then |X| is almost everywhere

real valued.

Answer: Let N = {ω : |X(ω)| = ∞} = {ω : |X(ω)|p = ∞}. Then N = ∩n∈N{ω :

|X(ω)|p ≥ n}. Then,

P (N) = P (∩n∈N{ω : |X(ω)|p ≥ n})

= lim
n→∞

P ({ω : |X(ω)|p ≥ n}) by continuity of probability measures

≤ lim
n→∞

1

k

∫
Ω

|X|pdP by Markov’s Inequality

= 0 since
∫

Ω
|X|pdP is finite.

10. Suppose X : (Ω,F , P ) → (R,B) is a random variable with E(|X|) < ∞. Let N ∈ F

be such that P (N) = 0 and define

Y (ω) =

{
X(ω) if ω /∈ N
c if ω ∈ N ,

where c ∈ R. Is Y integrable? Is E(X) = E(Y )?

Answer: Yes, for both questions. We can change an integrable random variables at

any set of measure zero without changing the integral.
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