Exercises and solutions for FUNDAMENTAL ELEMENTS OF PROBABILITY AND ASYMPTOTIC THEORY

by

Carlos Brunet Martins-Filho Department of Economics 256 UCB University of Colorado at Boulder Boulder, CO 80309-0256 USA email: carlos.martins@colorado.edu

Chapter 1

Exercises

- 1. Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ be a double sequence with typical value given by $f(m, n)$. Assume that
	- (a) for every $n \in \mathbb{N}$, $f(m_1, n) \le f(m_2, n)$ whenever $m_1 \le m_2$,
	- (b) for every $m \in \mathbb{N}$, $f(m, n_1) \le f(m, n_2)$ whenever $n_1 \le n_2$.

Show that $\lim_{n\to\infty} \left(\lim_{m\to\infty} f(m,n) \right) = \lim_{m\to\infty} \left(\lim_{n\to\infty} f(m,n) \right) = \lim_{n\to\infty} f(n,n).$ As a corollary, show that if $f(m, n) \geq 0$ then \sum \bar{n} ∈N \sum $m \overline{\in} \mathbb{N}$ $f(m, n) = \sum$ $m \overline{\in} \mathbb{N}$ \sum \bar{n} ∈N $f(m, n)$.

Answer: From conditions (a) and (b), $f(1,1) \le f(1,2) \le f(2,2) \le f(2,3) \le$ $f(3,3) \leq \cdots$ Hence, $f(m,m) \leq f(n,n)$ whenever $m \leq n$. The sequence $\{f(n,n)\}_{n\in\mathbb{N}}$ is monotonically increasing, hence it has a limit, which is either finite, if the sequence is bounded above, or infinity, if it is not. Let this limit be denoted by F . By the same reasoning, there exist limits $F_m = \lim_{n \to \infty} f(m, n)$ for each $m \in \mathbb{N}$. Since $f(m, n) \le f(n, n)$, we have that $F_m \leq F$ when $m \leq n$. Note that $F_{m_1} \leq F_{m_2}$ whenever $m_1 \leq m_2$, hence $\lim_{m \to \infty} F_m = F'$ exists, and $F' \leq F$.

To complete the proof, we need to show that $F' = F$. If F is finite, for every $\epsilon > 0$ there exists $N(\epsilon)$ such that for all $n \ge N(\epsilon)$, $F - \epsilon \le f(n,n) \le F$. Put $m := N(\epsilon)$, and note that

$$
F_m = \lim_{n \to \infty} f(m, n) \ge f(m, m) := f(N(\epsilon), N(\epsilon)) \ge F - \epsilon.
$$

Hence, $\lim_{n\to\infty} F_m = F \geq F - \epsilon$, which implies that $F \leq F'$. Combining the last inequality with $F' \leq F$ from the previous paragraph gives $F = F'$. If F is infinite, for any $C > 0$ there exists $N(C)$ such that if $n \ge N(C)$, $f(n,n) \ge C$. If $m = N(C) \le n$ then $f(m, m) \le f(m, n)$ and

$$
C \le f(m, m) \le \lim_{n \to \infty} f(m, n) = F_m,
$$

hence it follows that F' must be infinite.

The proof that $\lim_{n\to\infty}\left(\lim_{m\to\infty}f(m,n)\right)=\lim_{n\to\infty}f(n,n)$ follows in exactly the same way by interchanging the indexes m and n due to the symmetry of the equation.

Corollary. Let $g(p,q) = \sum_{m=1}^p \sum_{n=1}^q f(m,n)$ for $p,q \in \mathbb{N}$. Since, $f(m,n) \geq 0$, $g(p,q)$ satisfies conditions (a) and (b), establishing the result.

2. Let X be an arbitrary set and consider the collection of all subsets of X that are countable or have countable complements. Show that this collection is a σ -algebra. Use this fact to obtain the σ -algebra generated by $\mathcal{C} = \{\{x\} : x \in \mathbb{R}\}.$

Answer: Let $\mathcal{F} = \{A \subseteq \mathbb{X} : #A \leq #\mathbb{N} \text{ or } #A^c \leq #\mathbb{N}\}\$, where # indicates cardinality. First, note that $X \in \mathcal{F}$ since $X^c = \emptyset$, which is countable. Second, if $A \in \mathcal{F}$ then either $A = (A^c)^c$ or A^c are countable. That is, $A^c \in \mathcal{F}$. Third, if $A_n \in \mathcal{F}$ for $n \in \mathbb{N}$ we have two possible cases - A_n are all countable, or at least one of these sets is uncountable, say A_{n_0} . For the first case, $\bigcup_{n\in\mathbb{N}}A_n$ is the countable union of countable sets, hence it is countable and consequently in \mathcal{F} . For the second case, since A_{n_0} is uncountable and in \mathcal{F} , it must be that $A_{n_0}^c$ is countable. Also,

$$
\left(\bigcup_{n\in\mathbb{N}}A_n\right)^c=\bigcap_{n\in\mathbb{N}}A_n^c\subset A_{n_0}^c.
$$

Since subsets of countable sets are countable, $\left(\bigcup_{n\in\mathbb{N}}A_n\right)$ \setminus^c is countable, and consequently $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{F}.$

Now, let F be the σ -algebra defined above. Since $\mathcal{C} \subseteq \mathcal{F}$, $\sigma(\mathcal{C}) \subseteq \mathcal{F}$. Also, if $A \in \mathcal{F}$ either A or A^c is countable. Without loss of generality, suppose A is countable. Then, $A = \bigcup_{x \in C} \{x\}$ where C is a countable collection of real numbers. Hence, $A \in \sigma(\mathcal{C})$. Hence, $\mathcal{F} \subseteq \sigma(\mathcal{C})$. Combining the two set containments we have $\sigma(\mathcal{C}) = \mathcal{F}$.

3. Denote by $B(x, r)$ an open ball in \mathbb{R}^n centered at x and with radius r. Show that the Borel sets are generated by the collection $B = \{B_r(x) : x \in \mathbb{R}^n, r > 0\}.$

Answer: Let $B' = \{B_r(x) : x \in \mathbb{Q}^n, r \in \mathbb{Q}^+\}$. Then, $B' \subset B \subset \mathcal{O}_{\mathbb{R}^n}$ and $\sigma(B') \subset$ $\sigma(B) \subset \sigma(\mathcal{O}_{\mathbb{R}^n}).$

Now, let $S = \bigcup$ $B \in B', B \subset O$ B. By construction $x \in S \implies x \in O$. Now, suppose $x \in O$. Then, since O is open, there exists $B(x, \epsilon)$ such that $B(x, \epsilon) \subset O$ where ϵ is a rational number. Since \mathbb{Q}^n is a dense subset of \mathbb{R}^n , we can find $q \in \mathbb{Q}^n$ such that $||x-q|| \leq \epsilon/2$. Consequently,

$$
B(q, \epsilon/2) \subset B(x, \epsilon) \subset O.
$$

Hence, $O \subset S$. Thus, every open O can be written as $O = \bigcup$ $B \in B', B \subset O$ B. Since B' is a collection of balls with rational radius and rational centers, B' is countable. Thus,

$$
\mathcal{O}_{\mathbb{R}^n} \subset \sigma(B') \implies \sigma(\mathcal{O}_{\mathbb{R}^n}) \subset \sigma(B').
$$

Combining this set containment with $\sigma(B') \subset \sigma(B) \subset \sigma(\mathcal{O}_{\mathbb{R}^n})$ completes the proof.

4. Let (Ω, \mathcal{F}) be a measurable space. Show that: a) if μ_1 and μ_2 are measures on (Ω, \mathcal{F}) , then $\mu_c(F) := c_1\mu_1(F) + c_2\mu_2(F)$ for $F \in \mathcal{F}$ and all $c_1, c_2 \geq 0$ is a measure; b) if $\{\mu_i\}_{i\in\mathbb{N}}$ are measures on (Ω, \mathcal{F}) and $\{\alpha_i\}_{i\in\mathbb{N}}$ is a sequence of positive numbers, then $\mu_{\infty}(F) = \sum_{i \in \mathbb{N}} \alpha_i \mu_i(F)$ for $F \in \mathcal{F}$ is a measure.

Answer: a) First, note that $\mu_c : \mathcal{F} \to [0, \infty]$ since $c_1, c_2, \mu_1(F), \mu_2(F) \geq 0$ for all $F \in \mathcal{F}$. Second, $\mu_c(\emptyset) = c_1\mu_1(\emptyset) + c_2\mu_2(\emptyset) = 0$ since μ_1 and μ_2 are measures. Third, if ${F_i}_{i \in \mathbb{N}} \in \mathcal{F}$ is a pairwise disjoint collection of sets,

$$
\mu_c(\bigcup_{i \in \mathbb{N}} F_i) = c_1 \mu_1(\bigcup_{i \in \mathbb{N}} F_i) + c_2 \mu_2(\bigcup_{i \in \mathbb{N}} F_i)
$$

= $c_1 \sum_{i \in \mathbb{N}} \mu_1(F_i) + c_2 \sum_{i \in \mathbb{N}} \mu_2(F_i)$, since μ_1 and μ_2 are measures
= $\sum_{i \in \mathbb{N}} (c_1 \mu_1(F_i) + c_2 \mu_2(F_i)) = \sum_{i \in \mathbb{N}} \mu_c(F_i)$.

b) The verification that $\mu_{\infty} : \mathcal{F} \to [0, \infty]$ and $\mu_{\infty}(\emptyset) = 0$ follows the same arguments as in item a) when examining μ_c . For σ -additivity, note that if $\{F_j\}_{j\in\mathbb{N}}\in\mathcal{F}$ is a pairwise disjoint collection of sets,

$$
\mu_{\infty}(\cup_{j\in\mathbb{N}} F_j) = \sum_{i=1}^{\infty} \alpha_i \mu_i (\cup_{j\in\mathbb{N}} F_j) = \sum_{i=1}^{\infty} \alpha_i \sum_{j=1}^{\infty} \mu_i (F_j) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \alpha_i \mu_i (F_j).
$$

If we are able to interchange the sums in the last term, then we can write

$$
\mu_{\infty}(\cup_{j\in\mathbb{N}} F_j) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \alpha_i \mu_i(F_j) = \sum_{j=1}^{\infty} \mu_{\infty}(F_j),
$$

completing the proof. Now, note that

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \alpha_i \mu_i \left(F_j \right) = \lim_{n \to \infty} \lim_{m \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \mu_i \left(F_j \right) = \sup_{n \in \mathbb{N}} \sup_{m \in \mathbb{N}} \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \mu_i \left(F_j \right) = \sup_{n \in \mathbb{N}} \sup_{m \in \mathbb{N}} S_{nm}
$$

since the partial sums are increasing. Now, if $S_{nm} \in \mathbb{R}$, then

$$
\sup_{n \in \mathbb{N}} \sup_{m \in \mathbb{N}} S_{nm} = \sup_{m \in \mathbb{N}} \sup_{n \in \mathbb{N}} S_{nm}.
$$

Hence, to finish the proof, we require $\mu_i(F_j) < \infty$.

5. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\mathcal{G} \subset \mathcal{F}$ be a σ -algebra. In this case, we call \mathcal{G} a sub-σ-algebra of F. Let $\nu := \mu|_{\mathcal{G}}$ be the restriction of μ to \mathcal{G} . That is, $\nu(G) = \mu(G)$ for all $G \in \mathcal{G}$. Is ν a measure? If μ is finite, is ν finite? If μ is a probability, is ν a probability?

Answer: Since $\emptyset \in \mathcal{G} \subset \mathcal{F}$, $\nu(\emptyset) = \mu(\emptyset) = 0$. If $\{A_i\}_{i \in \mathbb{N}} \in \mathcal{G}$ is a pairwise disjoint sequence, we have that $\{A_i\}_{i\in\mathbb{N}}\in\mathcal{F}$. Hence, $\nu(\cup_{i\in\mathbb{N}}A_i)=\mu(\cup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\mu(A_i)=$ $\sum_{i\in\mathbb{N}}\nu(A_i)$. Now, μ finite means that $\mu(\Omega)<\infty$. Since $\Omega\in\mathcal{G}$, $\nu(\Omega)=\mu(\Omega)<\infty$. The same holds for $\mu(\Omega) = 1$.

6. Show that a measure space $(\Omega, \mathcal{F}, \mu)$ is σ -finite if, and only if, there exists $\{F_n\}_{n\in\mathbb{N}} \in \mathcal{F}$ such that $\cup_{n\in\mathbb{N}}F_n=\Omega$ and $\mu(F_n)<\infty$ for all n .

Answer: (\Rightarrow) By definition, $(\Omega, \mathcal{F}, \mu)$ is σ -finite if there exists and increasing sequence $A_1 \subset A_2 \subset A_3 \cdots$ such that $\cup_{n\in \mathbb{N}} A_n = \Omega$ with $\mu(A_n) < \infty$ for all n. Hence, it suffices to let $F_n = A_n$.

(\Leftarrow) Let $A_n = \bigcup_{j=1}^n F_j$. Then, $A_1 \subset A_2 \subset \cdots$ and $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{j \in \mathbb{N}} F_j = \Omega$. Also, $\mu(A_n) = \mu(\bigcup_{j=1}^n F_j) \le \sum_{j=1}^n \mu(F_j) < \infty$ since the sum is finite and $\mu(F_j) < \infty$.

7. Let (Ω, \mathcal{F}, P) be a probability space and $\{E_n\}_{n\in\mathbb{N}}\subset \mathcal{F}$. Show that if $\sum_{n=1}^{\infty} P(E_n) < \infty$ then $$ $\sqrt{ }$ limsup $\text{msup}E_n$
 $\to \infty$ \setminus $= 0.$

Answer:

$$
P\left(\limsup_{n\to\infty} E_n\right) = P\left(\lim_{n\to\infty} \cup_{j\ge n} E_j\right)
$$

=
$$
\lim_{n\to\infty} P\left(\cup_{j\ge n} E_j\right)
$$
 by continuity

$$
\le \limsup_{n\to\infty} \sum_{j=n}^{\infty} P(E_j)
$$
 by subadditivity and definition of limsup.

Since $\sum_{n=1}^{\infty} P(E_n) < \infty$ it must be that $\sum_{j=n}^{\infty} P(E_j) \to 0$ as $n \to 0$. Consequently, P $\sqrt{ }$ limsup $\text{msup} E_n$
 $\rightarrow \infty$ \setminus $= 0.$

8. Let ${E_j}_{j\in J}$ be a collection of pairwise disjoint events. Show that if $P(E_j) > 0$ for each $j \in J$, then J is countable.

Answer: Let $C_n = \{E_j : P(E_j) > \frac{1}{n}\}\$ $\frac{1}{n}$ and $j \in J$. By assumption the elements of C_n are disjoint events and

$$
P\left(\cup_{j_m} E_{j_m}\right) = \sum_{m=1}^{\infty} P(E_{j_m}) = \infty,
$$

where the last equality follows from the fact that $P(E_{j_m}) > 0$. So, it must be that C_n has finitely many elements. Also, ${E_j}_{j \in J} = \bigcup_{n=1}^{\infty} C_n$, which is countable since it is a countable union of finite sets.

9. Consider the extended real line, i.e., $\bar{\mathbb{R}} := \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$. Let $\bar{\mathcal{B}} := \mathcal{B}(\bar{\mathbb{R}})$ be defined as the collection of sets \bar{B} such that $\bar{B} = B \cup S$ where $B \in \mathcal{B}(\mathbb{R})$ and $S \in$ $\{\emptyset, \{-\infty\}, \{\infty\}, \{-\infty, \infty\}\}\.$ Show that \overline{B} is a σ -algebra and that it is generated by a collection of sets of the form $[a,\infty]$ where $a \in \mathbb{R}$.

Answer: Let's first show that \overline{B} is a σ -algebra. Since $\overline{B} = B \cup S$ with $B \in \mathcal{B}(\mathbb{R})$, we can choose $B = \mathbb{R}$ and use $S = \{-\infty, \infty\}$ to conclude that $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\} \in \overline{\mathcal{B}}$. Next, note that if $\bar{B} = B \cup S$ we have that $\bar{B}^c = B^c \cap S^c$. But the complement of a set S is an element of $\{\overline{\mathbb{R}}, \mathbb{R}\cup\{\infty\}, \mathbb{R}\cup\{-\infty\}, \mathbb{R}\}$. Hence, either 1) $\overline{B}^c = B^c \cap \overline{\mathbb{R}} = B^c \cup \emptyset \in \overline{\mathcal{B}}$ or, 2) $\bar{B}^c = B^c \cap (\mathbb{R} \cup {\infty}) = (B^c \cap \mathbb{R}) \cup {\infty}$ where $B^c \cap \mathbb{R} \in \mathcal{B}$ and consequently $\overline{B}^c \in \overline{\mathcal{B}}$ or, 3) $\overline{B}^c = B^c \cap (\mathbb{R} \cup \{-\infty\}) = (B^c \cap \mathbb{R}) \cup \{-\infty\}$ where $B^c \cap \mathbb{R} \in \mathcal{B}$ and consequently $\bar{B}^c \in \bar{\mathcal{B}}$ or, 4) $\bar{B}^c = B^c \cap \mathbb{R} \in \bar{\mathcal{B}}$.

Lastly, letting $A_i = B_i \cup S$ for $B_i \in \mathcal{B}$ we have that $\cup_{i\in\mathbb{N}} A_i = \cup_{i\in\mathbb{N}} (B_i \cup S)$ $(\cup_{i\in\mathbb{N}}B_i)\cup S$. Since $\cup_{i\in\mathbb{N}}B_i\in\mathcal{B}$ we have that $\cup_{i\in\mathbb{N}}A_i\in\bar{\mathcal{B}}$.

If \overline{B} is a σ -algebra and $C = \{ [a, \infty] : a \in \mathbb{R} \}$, we need to show that $\sigma(C) = \overline{B}$.

First, note that $[a,\infty] = [a,\infty) \cup \{\infty\}$ and we know that $[a,\infty) \in \mathcal{B}$. Thus, $[a,\infty] \in \overline{\mathcal{B}}$ for all $a \in \mathbb{R}$. Then, $\sigma(\mathcal{C}) \subseteq \mathcal{B}$.

Second, observe that for $-\infty < a \le b < \infty$ we have $[a, b) = [a, \infty] - [b, \infty] =$ $[a,\infty] \cap [b,\infty]^c \in \sigma(C)$ since $\sigma(C)$ contains $[a,\infty]$ and $[b,\infty]^c$ by virtue of being a σ -algebra. Hence,

$$
\mathcal{B}\subseteq \sigma(\mathcal{C})\subseteq \bar{\mathcal{B}}.
$$

Now,

$$
\{\infty\} = \bigcap_{i \in \mathbb{N}} [i, \infty], \ \{-\infty\} = \bigcap_{i \in \mathbb{N}} [-\infty, -i] = \bigcap_{i \in \mathbb{N}} [-i, \infty]^c
$$

which allows us to conclude that $\{\infty\}, \{-\infty\} \in \sigma(\mathcal{C})$. Hence, if $B \in \mathcal{B}$ all sets of the form

$$
B, B \cup \{\infty\}, B \cup \{-\infty\}, B \cup \{\infty\} \cup \{-\infty\}
$$

are in $\sigma(\mathcal{C})$. Hence, $\bar{\mathcal{B}} \subseteq \sigma(\mathcal{C})$. Combining this set. containment with $\sigma(\mathcal{C}) \subseteq \bar{\mathcal{B}}$ gives the result.

10. If E_1, E_2, \dots, E_n are independent events, show that the probability that none of them occur is less than or equal to $\exp(-\sum_{i=1}^n P(E_i)).$

Answer: Let $f(x) = \exp(-x)$ and note that for $\lambda \in (0, 1)$, by Taylor's Theorem

$$
\exp(-x) = f(x) = f(0) + f^{(1)}(0)x + \frac{1}{2}f^{(2)}(\lambda x)x^{2} = 1 - x + \frac{1}{2}\exp(-\lambda x)x^{2}
$$

Consequently, $1 - x \le \exp(-x)$. Now, we are interested in the event $E = (\bigcup_{i=1}^{n} E_i)^c$ $\bigcap_{i=1}^n E_i^c$. But since the E_1, E_2, \cdots, E_n are independent, so is the collection $E_1^c, E_2^c, \cdots, E_n^c$. Hence, $P(E) = \prod_{i=1}^{n} P(E_i^c) = \prod_{i=1}^{n} (1 - P(E_i)) \le \prod_{i=1}^{n} \exp(-P(E_i)) = \exp(-\sum_{i=1}^{n} P(E_i)).$

11. Let $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$ be events (measurable sets) in a probability space with measure P with $\lim A_n = A$, $\lim B_n = B$, $P(B_n)$, $P(B) > 0$ for all n. Show that $P(A_n|B) \to P(A|B)$, $P(A|B_n) \to P(A|B)$, $P(A_n|B_n) \to P(A|B)$ as $n \to \infty$.

Answer: Since $P(\cdot|B)$ is a probability measure (proved in the class notes), we have by continuity of probability measures that $P(A_n|B) \to P(A|B)$ if $\lim B_n = B$.

Now, since $\lim B_n = B$ we have that $A \cap B_n \to A \cap B$. To see this, note that if $A \cap B_n := C_n$ then $D_j = \bigcup_{n=j}^{\infty} C_n = A \cap (\bigcup_{n=1}^{\infty} B_n)$. Then, $\limsup C_n = \bigcap_{j=1}^{\infty} D_j =$

 $\bigcap_{j=1}^{\infty} (A \cap \bigcup_{n=1}^{\infty} B_n) = A \cap B$. Defining lim inf for C_n we can in similar fashion that lim inf $C_n = A \cap B$. Hence, by continuity of probability measures $P(A \cap B_n) \to P(A \cap B)$ and $P(B_n) \to P(B)$. Consequently,

$$
P(A|B_n) = \frac{P(A \cap B_n)}{P(B_n)} \to \frac{P(A \cap B)}{P(B)} = P(A|B).
$$

Lastly, since $A_n \cap B_n \to A \cup B$, using the same arguments

$$
P(A_n|B_n) = \frac{P(A_n \cap B_n)}{P(B_n)} \to \frac{P(A \cap B)}{P(B)} = P(A|B).
$$

12. Let $(X, \bar{\mathcal{F}}, \bar{\mu})$ be the measure space defined in Theorem 1.15 and $\mathcal{C} = \{G \in X :$ $\exists A, B \in \mathcal{F} \ni A \subset G \subset B$ and $\mu(B - A) = 0$. Show that $\bar{\mathcal{F}} = \mathcal{C}$.

Answer: $G \in \overline{\mathcal{F}} \implies G = A \cup M$ where $A \in \mathcal{F}$ and $M \in \mathcal{S}$. $M \in \mathcal{S} \implies \exists N \in \mathcal{F}$ $\mathcal{N}_{\mu} \ni M \subset N$. Then,

$$
A \subset G = A \cup M \subset A \cup N := B \in \mathcal{F}.
$$

Now, $\mu(B - A) = \mu(B \cup A^c) = \mu((A \cup N) - A) \le \mu(N) = 0$. Thus, *G* ∈ *C*.

 $G \in \mathcal{C} \implies \exists A, B \in \mathcal{F} \ni A \subset G \subset B$ and $\mu(B - A) = 0$. Since $A \subset G \subset B$ we have that $G-A \subset B-A$, and since $B-A$ is a μ -null set $G-A \in \mathcal{S}$. Now, $G = A \cup (G-A)$, and since $A \in \mathcal{F}$, $G \in \overline{\mathcal{F}}$.

Chapter 2

Exercises

1. Let μ be a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mu([-n, n)) < \infty$ for all $n \in \mathbb{N}$. Define,

$$
F_{\mu}(x) := \begin{cases} \mu([0, x)) & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -\mu([x, 0)) & \text{if } x < 0. \end{cases}
$$

Show that $F_{\mu} : \mathbb{R} \to \mathbb{R}$ is monotonically increasing and left continuous.

Answer: Given that $\mu([-n, n)) < \infty$, F_{μ} takes values in R. First, we show that all $x < x'$, $F_{\mu}(x) \leq F_{\mu}(x')$. There are three cases to be considered

- (a) $(0 \le x \le x')$: if $0 \le x \le x'$, $F_{\mu}(x') F_{\mu}(x) = \mu([0, x')) \mu([0, x])$. Since $[0, x') = [0, x) \cup [x, x', \sigma\text{-additivity of } \mu \text{ gives } \mu([0, x')) = \mu([0, x)) + \mu([x, x')) \text{ or }$ $\mu([x,x')) = \mu([0,x')) - \mu([0,x)) = F_{\mu}(x') - F_{\mu}(x) \ge 0$. If $x = 0$, $F_{\mu}(x') - F_{\mu}(0) =$ $\mu([0, x')) \geq 0.$
- (b) $(x < 0 \le x')$: If $x' > 0$, $F_{\mu}(x') F_{\mu}(x) = \mu([0, x')) + \mu([x, 0)) \ge 0$. If $x' = 0$, $F_u(0) - F_u(x) = \mu([x, 0)) > 0.$
- (c) $(x < x' < 0)$: $F_{\mu}(x') F_{\mu}(x) = -\mu([x', 0)) + \mu([x, 0))$. Since $[x, 0) = [x, x') \cup [x', 0)$, σ-additivity of μ gives $\mu([x, 0)) = \mu([x, x')) + \mu([x', 0))$ or $\mu([x, 0)) - \mu([x', 0)) =$ $F_{\mu}(x') - F_{\mu}(x) = \mu([x, x')) \ge 0.$

Second, we must show that $\lim_{n\to\infty} F_{\mu}(x - h_n) = F_{\mu}(x)$ for all $x \in \mathbb{R}$. Let $n \in \mathbb{N}$, $h_1 \ge h_2 \ge h_3 \ge \cdots$ with $h_n \downarrow 0$ as $n \to \infty$, and $h_1 > 0$. There are three cases to consider.

(a) $(x > 0)$: Choose $h_1 \in (0, x)$ and define $A_n = [0, x - h_n)$. Then, $A_1 \subset A_2 \subset \cdots$ and $\lim_{n\to\infty} A_n = \bigcup_{n\in\mathbb{N}}$ $n\bar{\in}\mathbb{N}$ $A_n = [0, x)$. By continuity of measure from below, $\lim_{n \to \infty} F_{\mu}(x - h_n) = \lim_{n \to \infty} \mu([0, x - h_n)) = \mu([0, x)) = F_{\mu}(x).$

(b) $(x = 0)$: Define $A_n = [-h_n, 0)$. Then, $A_1 \supset A_2 \supset \cdots$ and $\lim_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} A_n$ $n\in\mathbb{N}$ $A_n = \emptyset.$ By continuity of measures from above, and given that $\mu([-h_1, 0)) < \infty$,

$$
\lim_{n \to \infty} F_{\mu}(-h_n) = \lim_{n \to \infty} \mu([-h_n, 0)) = \mu(\emptyset) = 0 = F_{\mu}(0).
$$

(c) $(x < 0)$: Define $A_n = [x - h_n, 0)$. Then, $A_1 \supset A_2 \supset \cdots$ and $\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n =$ [x, 0). By continuity of measures from above and given that $\mu([x-h_1,0)) < \infty$,

$$
\lim_{n \to \infty} F_{\mu}(x - h_n) = \lim_{n \to \infty} -\mu([x - h_n, 0)) = -\mu([x, 0)) = F_{\mu}(x).
$$

2. Let F_{μ} be defined as in question 1 and let $\nu_{F_{\mu}}((a, b)) = F_{\mu}(b) - F_{\mu}(a)$ for all $a \leq b$, $a, b \in \mathbb{R}$. Show that $\nu_{F_{\mu}}$ extends uniquely to a measure on $\mathcal{B}(\mathbb{R})$ and $\nu_{F_{\mu}} = \mu$.

Answer: Recall that $S = \{ [a, b) : a \le b, a, b \in \mathbb{R} \}$ is a semi-ring (if $a = b$, $[a, a) = \emptyset$). Given F_{μ} , we define $\nu_{F_{\mu}} : S \to [0, \infty)$ as $\nu_{F_{\mu}}([a, b)) = F_{\mu}(b) - F_{\mu}(a)$ for all $a \leq b$. Since F_μ is monotonically increasing, $F_\mu(b) - F_\mu(a) \ge 0$ and $\nu_{F_\mu}([a, a) = \emptyset) = F_\mu(a) - F_\mu(a) =$ 0. Also, ν_{F_μ} is finitely additive since for $a < c < b$, we have that $[a, b) = [a, c] \cup [c, b)$ and $\nu_{F_\mu}([a,b)) = F_\mu(b) - F_\mu(a) = F_\mu(c) - F_\mu(a) + F_\mu(b) - F_\mu(c) = \nu_{F_\mu}([a,c)) + \nu_{F_\mu}([c,b)).$ We now show that ν_{F_μ} is σ -additive, i.e., for $[a_n, b_n)$, $n \in \mathbb{N}$ a disjoint collection such that $[a, b) = \bigcup_{n \in \mathbb{N}} [a_n, b_n)$, we have $\nu_{F_\mu}([a, b)) = \sum_{n \in \mathbb{N}}$ \bar{n} ∈N $\nu_{F_\mu}([a_n, b_n))$. Fix ϵ_n , $\epsilon > 0$ and note that $(a_n - \epsilon_n, b_n) \supset [a_n, b_n)$. Hence, $\bigcup_{n \in \mathbb{N}} (a_n - \epsilon_n, b_n) \supset \bigcup_{n \in \mathbb{N}} [a_n, b_n) = [a, b) \supset [a, b - \epsilon]$.

Since $\bigcup_{n\in\mathbb{N}}(a_n-\epsilon_n,b_n)$ is an open cover for the compact set $[a,b-\epsilon]$, by the Heine-Borel Theorem, there exists $N \in \mathbb{N}$ such that

$$
\bigcup_{n=1}^{N} [a_n - \epsilon_n, b_n] \supset \bigcup_{n=1}^{N} (a_n - \epsilon_n, b_n) \supset [a, b - \epsilon] \supset [a, b - \epsilon). \tag{2.1}
$$

Now, since $\cup_{n\in\mathbb{N}}[a_n, b_n) = [a, b)$ we have $\cup_{n=1}^N[a_n, b_n) \subset [a, b)$ and

$$
\nu_{F_{\mu}}([a,b)) \geq \nu_{F_{\mu}}\left(\cup_{n=1}^{N}[a_n,b_n)\right) = \sum_{n=1}^{N} \nu_{F_{\mu}}\left([a_n,b_n)\right)
$$
 by finite additivity.

Hence, we have

$$
0 \leq \nu_{F_{\mu}}([a,b)) - \sum_{n=1}^{N} \nu_{F_{\mu}}([a_n, b_n))
$$

= $\nu_{F_{\mu}}([a, b - \epsilon)) + \nu_{F_{\mu}}([b - \epsilon, b)) - \sum_{n=1}^{N} (\nu_{F_{\mu}}([a_n - \epsilon_n, b_n)) - \nu_{F_{\mu}}([a_n - \epsilon_n, a_n)))$
= $\nu_{F_{\mu}}([a, b - \epsilon)) - \sum_{n=1}^{N} \nu_{F_{\mu}}([a_n - \epsilon_n, b_n))$ this term < 0 by (2.1)
+ $\nu_{F_{\mu}}([b - \epsilon, b)) + \sum_{n=1}^{N} \nu_{F_{\mu}}([a_n - \epsilon_n, a_n))$
 $\leq \nu_{F_{\mu}}([b - \epsilon, b)) + \sum_{n=1}^{N} \nu_{F_{\mu}}([a_n - \epsilon_n, a_n)) = F_{\mu}(b) - F_{\mu}(b - \epsilon) + \sum_{n=1}^{N} (F_{\mu}(a_n) - F_{\mu}(a_n - \epsilon_n)).$

By left-continuity of F_{μ} , we can choose ϵ such that $F_{\mu}(b)-F_{\mu}(b-\epsilon) < \eta/2$ and ϵ_n such that $F_{\mu}(a_n) - F_{\mu}(a_n - \epsilon_n) < 2^{-n} \eta/2$. Hence,

$$
0 \leq \nu_{F_{\mu}}([a,b)) - \sum_{n=1}^{N} \nu_{F_{\mu}}([a_n,b_n)) \leq \frac{\eta}{2} \left(1 + \sum_{n=1}^{N} 2^{-n}\right).
$$

Letting $N \to \infty$ we have that $\nu_{F_\mu}([a, b)) = \sum_{n=1}^{\infty} \nu_{F_\mu}([a_n, b_n)).$

Since ν_{F_μ} is a pre-measure on a semi-ring, by Carathéodory's Theorem, it has an extension to $\sigma(\mathcal{S}) = \mathcal{B}(\mathbb{R})$. Furthermore, since for $n \in \mathbb{N}$, $[-n, n) \uparrow \mathbb{R}$ and $\nu_{F_\mu}([-n, n)) =$ $F_{\mu}(n)-F_{\mu}(-n)=\mu([0,n))+\mu([-n,0)))<\infty,$ this extension is unique.

To verify that $\nu_{F_\mu} = \mu$, it suffices to verify that $\nu_{F_\mu} = \mu$ on S, since ν_{F_μ} extends uniquely to $\mathcal{B}(\mathbb{R})$. There are three cases:

Case 1 $(0 \le a < b)$: $\nu_{F_\mu}([a, b)) = F_\mu(b) - F_\mu(a) = \mu([0, b)) - \mu([0, a)) = \mu([0, a)) +$ $\mu([a, b)) - \mu([0, a)) = \mu([a, b)),$ since $[0, b) = [0, a) \cup [a, b),$ Case 2 $(a < 0 < b)$: $\nu_{F_\mu}([a, b)) = F_\mu(b) - F_\mu(a) = \mu([0, b)) + \mu([a, 0)) = \mu([a, b))$, since $[a, b) = [a, 0) \cup [0, b),$ Case 3 $(a < b \le 0)$: $\nu_{F_\mu}([a, b)) = F_\mu(b) - F_\mu(a) = -\mu([b, 0)) + \mu([a, 0)) = \mu([a, b)),$ since $[a, b) = [a, 0) - [b, 0)$, which completes the proof.

3. If F is a distribution function, show that it can have an infinite number of jump discontinuities, but at most countably many.

Answer: A jump of F, denoted by $J_F(x)$ exists if $J_F(x) = F(x) - \lim_{h\to 0} F(x-h) > 0$ for $h > 0$. This happens if and only if $P(\lbrace x \rbrace) > 0$. Now, the collection of events $E_x := \{\{x\} : P(\{x\}) > 0\}$ is disjoint and all have positive probability. We now show that this collection is countable. Let $C_n = \{E_x : P(E_x) > \frac{1}{n}\}$ $\frac{1}{n}$ and $x \in \mathbb{R}$. The elements of C_n are disjoint events and

$$
P\left(\cup_{x_m} E_{x_m}\right) = \sum_{m=1}^{\infty} P(E_{x_m}) = \infty,
$$

where the last equality follows from the fact that $P(E_{x_m}) > 0$. So, it must be that C_n has finitely many elements. Also, ${E_x}_{x \in \mathbb{R}} = \bigcup_{n=1}^{\infty} C_n$, which is countable since it is a countable union of finite sets.

4. Show that $\lambda^1((a, b)) = b - a$ for all $a, b \in \mathbb{R}$, $a \leq b$. State and prove the same for λ^n .

Answer: Let $a < b$ and note that $[a + \frac{1}{k}]$ $(\frac{1}{k}, b) \uparrow (a, b)$ as $k \to \infty$. Thus, by continuity of measures,

$$
\lambda((a, b)) = \lim_{k \to \infty} \lambda([a + 1/k, b) = \lim_{k \to \infty} (b - a - 1/k) = b - a.
$$

Since $\lambda([a, b)) = b - a$, this proves that $\lambda({a}) = 0$.

- 5. Consider the measure space $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \lambda^n)$. Show that for every $B \in \mathcal{B}(\mathbb{R}^n)$ and $x \in$ $\mathbb{R}^n, x+B \in \mathcal{B}(\mathbb{R}^n)$ and that $\lambda^n(x+B) = \lambda^n(B)$. Note: $x+B := \{z : z = x+b, b \in B\}$. **Answer:** First, we need to show that $x + B \in \mathcal{B}(\mathbb{R}^n)$ for all $x \in \mathbb{R}^n$ and for all $B \in \mathcal{B}(\mathbb{R}^n)$. Let $\mathcal{A}_x = \{B \in \mathcal{B}(\mathbb{R}^n) : x + B \in \mathcal{B}(\mathbb{R}^n)\}\$ and note that $\mathcal{A}_x \subset \mathcal{B}(\mathbb{R}^n)$. Also, A_x is a σ -algebra associated with \mathbb{R}^n , since:
	- (a) $\mathbb{R}^n \in \mathcal{A}_x$ given that $x + b \in \mathbb{R}^n$ for all $b \in \mathbb{R}^n$ and $\mathbb{R}^n \in \mathcal{B}(\mathbb{R}^n)$,
	- (b) $B \in \mathcal{A}_x \implies x + B \in \mathcal{B}(\mathbb{R}^n) \implies (x + B)^c \in \mathcal{B}(\mathbb{R}^n)$. But since $(x + B)^c = x + B^c$ and $B^c \in \mathcal{B}(\mathbb{R}^n)$, $B^c \in \mathcal{A}_x$.
	- (c) ${A_n}_{n \in \mathbb{N}} \subset A_x \implies x + A_n \in \mathcal{B}(\mathbb{R}^n)$ for all $n \in \mathbb{N}$. Since $\mathcal{B}(\mathbb{R}^n)$ is a σ algebra $\bigcup_{n\in\mathbb{N}}(x+A_n) = x + \bigcup_{n\in\mathbb{N}}A_n \in \mathcal{B}(\mathbb{R}^n)$. But since $\bigcup_{n\in\mathbb{N}}A_n \in \mathcal{B}(\mathbb{R}^n)$, $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}_x.$

Now, let $R^{n,h} = \times_{i=1}^n [l_i, u_i) \in \mathcal{I}^{n,h} \subset \mathcal{B}(\mathbb{R}^n)$ and note that $x + R^{n,h} \in \mathcal{I}^{n,h} \subset \mathcal{B}(\mathbb{R}^n)$. Hence, $R^{n,h} \in \mathcal{A}_x \implies x + R^{n,h} \in \mathcal{A}_x$. Hence,

$$
\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{I}^{n,h}) \subset \mathcal{A}_x \subset \mathcal{B}(\mathbb{R}^n),
$$

which implies that $x + B \in \mathcal{B}(\mathbb{R}^n)$ for all $x \in \mathbb{R}^n$ and for all $B \in \mathcal{B}(\mathbb{R}^n)$.

Now, set $v(B) = \lambda^n(x+B)$. If $B = \emptyset$, $v(\emptyset) = \lambda^n(x+\emptyset) = \lambda^n(\emptyset) = 0$. Also, for a pairwise disjoint sequence $\{A_n\}_{n\in\mathbb{N}}$, $v\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lambda^n\left(x+\bigcup_{n\in\mathbb{N}}A_n\right)=\lambda^n\left(\bigcup_{n\in\mathbb{N}}(x+A_n)\right)=$ $\sum_{n\in\mathbb{N}}\lambda^n(x+A_n)=\sum_{n\in\mathbb{N}}v(A_n)$. Hence, v is a measure and

$$
v(R^{n,h}) = \lambda^n(x + R^{n,h}) = \prod_{i=1}^n (u_i + x_i - (l_i + x_i)) = \prod_{i=1}^n (u_i - l_i) = \lambda^n(R^{n,h}).
$$

Hence, $v(R^{n,h}) = \lambda^n(R^{n,h})$ for every $R^{n,h} \in \mathcal{I}^{n,h}$. Since $\mathcal{I}^{n,h}$ is a π -system, generates $\mathcal{B}(\mathbb{R}^n)$ and admits an exhausting sequence $[-k, k) \uparrow \mathbb{R}^n$ with $\lambda^n([-k, k]^n) = (2k)^n <$ ∞ , we have by Carathéodory Theorem that $\lambda^n = v$ on $\mathcal{B}(\mathbb{R}^n)$.

Chapter 3

Exercises

1. Suppose (Ω, \mathcal{F}) and $(\mathbb{Y}, \mathcal{G})$ are measure spaces and $f : \Omega \to \mathbb{Y}$. Show that: a) $I_{f^{-1}(A)}(\omega) = (I_A \circ f)(\omega)$ for all ω ; b) f is measurable if, and only if, $\sigma(\lbrace f^{-1}(A) :$ $A \in \mathcal{G}$) $\subset \mathcal{F}$.

Answer: a) For any subset $A \subset Y$, we have $f^{-1}(A) = \{\omega : f(\omega) \in A\}$. Then,

$$
I_{f^{-1}(A)}(\omega) = I_{\{\omega: f(\omega) \in A\}}(\omega) = I_A(f(\omega)) = (I_A \circ f)(\omega).
$$

b) Since f is measurable, $f^{-1}(\mathcal{G}) \subset \mathcal{F}$. By monotonicity of σ -algebras, $\sigma(f^{-1}(\mathcal{G})) =$ $\sigma(\lbrace f^{-1}(A) : A \in \mathcal{G} \rbrace) \subset \mathcal{F}$. Now, $\sigma(f^{-1}(\mathcal{G})) = f^{-1}(\sigma(\mathcal{G})) = f^{-1}(\mathcal{G}) \subset \mathcal{F}$. The last set containment implies measurability.

2. Show that for any function $f : \mathbb{X} \to \mathbb{Y}$ and any collection of subsets $\mathcal G$ of \mathbb{Y} , $f^{-1}(\sigma(\mathcal{G})) = \sigma(f^{-1}(\mathcal{G}))$

Answer: $f^{-1}(\sigma(\mathcal{G}))$ is a σ -algebra associated with X. Since $\mathcal{G} \subset \sigma(\mathcal{G})$, $f^{-1}(\mathcal{G}) \subset$ $f^{-1}(\sigma(\mathcal{G}))$ and consequently $\sigma(f^{-1}(\mathcal{G})) \subset f^{-1}(\sigma(\mathcal{G})).$

Now, as in Theorem 3.1, $\mathcal{U} = \{U \in 2^{\mathbb{Y}} : f^{-1}(U) \in \sigma(f^{-1}(\mathcal{G}))\}$ is a σ -algebra. By definition of U

$$
f^{-1}(\mathcal{U}) \subset \sigma(f^{-1}(\mathcal{G})).
$$

Also, $\mathcal{G} \subset \mathcal{U}$ since $f^{-1}(\mathcal{G}) \subset f^{-1}(\mathcal{U}) \subset \sigma(f^{-1}(\mathcal{G}))$. Since \mathcal{U} is a σ -algebra we have that $\sigma(\mathcal{G}) \subset \mathcal{U}$. So,

$$
f^{-1}(\sigma(\mathcal{G})) \subset f^{-1}(\mathcal{U}) \subset \sigma(f^{-1}(\mathcal{C})).
$$

The last set containment combined with the reverse obtained on the last paragraph completes the proof.

- 3. Let $i \in I$ where I is an arbitrary index set. Consider $f_i : (\mathbb{X}, \mathcal{F}) \to (\mathbb{X}_i, \mathcal{F}_i)$.
	- (a) Show that for all i, the smallest σ -algebra associated with X that makes f_i measurable is given by f_i^{-1} $i^{-1}(\mathcal{F}_i).$
	- (b) Show that σ $\overline{(\cup)}$ i∈I f_i^{-1} $\widetilde{c}_i^{-1}(\mathcal{F}_i)$ is the smallest σ -algebra associated with X that makes all f_i simultaneously measurable.

Answer: a) f_i is measurable if f_i^{-1} $i^{-1}(\mathcal{F}_i) \subset \mathcal{F}$. But by monotonicity of $\sigma(\cdot)$ we have $\sigma(f_i^{-1})$ $f_i^{-1}(\mathcal{F}_i) = f_i^{-1}$ $f_i^{-1}(\mathcal{F}_i) \subset \mathcal{F}$ since f_i^{-1} $f_i^{-1}(\mathcal{F}_i)$ is a σ -algebra. b) f_i^{-1} $i_i^{-1}(\mathcal{F}_i) \subset \mathcal{F}$ for all $i \in I$ because f_i is measurable. But any sub- σ -algebra of $\mathcal F$ that makes all f_i measurable functions must contain all f_i^{-1} $i^{-1}(\mathcal{F}_i)$, i.e., \bigcup i∈I f_i^{-1} $i^{-1}(\mathcal{F}_i)$. However, unions of σ -algebras are not necessarily σ -algebras. Hence, we consider σ $\overline{(\cup)}$ i∈I f_i^{-1} $\widetilde{f}_i^{-1}(\mathcal{F}_i)$ \setminus , the smallest σ -algebra that makes all f_i simultaneously measurable.

4. Let $X : (\Omega, \mathcal{F}, P) \to (S, \mathcal{B}_S)$ where $S \subset \mathbb{R}^k$ and $\mathcal{B}_S = \{B \cap S : B \in \mathcal{B}^k\}$ be a random vector with $k \in \mathbb{N}$, and $g : (S, \mathcal{B}_{S}) \to (T, \mathcal{B}_{T})$ be measurable where $T \subset \mathbb{R}^{p}$ with $p \in \mathbb{N}$. If $Y = g(X)$, show that

(a)
$$
\sigma(Y) := Y^{-1}(\mathcal{B}_T) \subset \sigma(X) := X^{-1}(\mathcal{B}_S),
$$

(b) if $k = p$ and g is bijective, $\sigma(Y) = \sigma(X)$.

Answer: (a) $E \in Y^{-1}(\mathcal{B}_T) \implies E = Y^{-1}(B_T)$ for some $B_T \in \mathcal{B}_T$. Now,

$$
E = \{\omega : Y(\omega) \in B_T\} = \{\omega : g(X(\omega)) \in B_T\} = \{\omega : X(\omega) \in g^{-1}(B_T)\}
$$

= $X^{-1}(g^{-1}(B_T)).$

Since g is measurable, $g^{-1}(B_T) \in \mathcal{B}_S$ and since X is a random vector $X^{-1}(g^{-1}(B_T)) \in$ $\sigma(X) := X^{-1}(\mathcal{B}_S)$. Hence, $\sigma(Y) \subset \sigma(X)$.

(b) First, observe that since g is bijective, it must be that $k = p$ and $S = T$. For any $B_T \in \mathcal{B}_T$,

$$
g^{-1}(B_T) = g^{-1}(g(B))
$$
 for some $B \subset S$
= $B \in \mathcal{B}_S$ since g^{-1} is an inverse function and g is measurable.

Hence, any $B_T \in \mathcal{B}_T$ is such that $B_T = g(B)$ where $B \in \mathcal{B}_S$. Similarly, due to the existence of the inverse g^{-1} , for any $B_S \in \mathcal{B}_S$, $B_S = g^{-1}(B)$ where $B \in \mathcal{B}_T$. Hence, if $\mathcal{C} := \{g^{-1}(B) : B \in \mathcal{B}_T\}$ then $\mathcal{B}_S \subset \mathcal{C}$. But measurability of g assures that $\mathcal{C} \subset \mathcal{B}_S$ Hence, $X^{-1}(\mathcal{B}_S) := \sigma(X) = X^{-1}(\mathcal{C}) = \{X^{-1}(g^{-1}(B)) : B \in \mathcal{B}_T\} = \sigma(Y).$

Chapter 4

Exercises

1. Prove Theorem 4.2.

Answer: Let $f = \sum_{i=0}^{I} y_i I_{A_i}$ and $f = \sum_{j=0}^{J} y_j I_{B_j}$ be standard representations of f and g. Then,

$$
f \pm g = \sum_{i=0}^{I} \sum_{j=0}^{J} (y_i \pm z_j) I_{A_i \cap B_j}
$$

and

$$
fg = \sum_{i=0}^{I} \sum_{j=0}^{J} (y_i z_j) I_{A_i \cap B_j}
$$

with $(A_i \cap B_j) \cap (A_{i'} \cap B_{j'}) = \emptyset$ whenever $(i, j) \neq (i', j')$. After relabeling and merging the double sums into single sums we have the result. The case for cf is obvious. f simple implies f^+ and f^- are simple by definition, and since $|f| = f^+ + f^-$, $|f|$ is simple.

2. Show that if f is a non-negative measurable simple function, its integral, as defined in Definition 4.3 is equal to $I_{\mu}(f)$.

Answer: Since f is simple and $f \leq f$, f is one of the simple functions (denoted by ϕ) appearing in Definition 21 of the class notes. Hence, $\int f d\mu \geq I_{\mu}(f)$. Also, if ϕ is a simple function such that $\phi \leq f$, by monotonicity of the integral of simple functions we have $I_{\mu}(\phi) \leq I_{\mu}(f)$, hence

$$
\sup_{\phi} I_{\mu}(\phi) := \int f d\mu \le I_{\mu}(f).
$$

Combining the two inequalities we have $\int f d\mu = I_{\mu}(f)$.

3. Let (X, \mathcal{F}) be a measurable space and $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence of measures defined on it. Noting that $\mu = \sum_{n\in\mathbb{N}} \mu_n$ is also a measure on $(\mathbb{X}, \mathcal{F})$ (you don't have to prove this), show that

$$
\int_{\mathbb{X}} f d\mu = \sum_{n \in \mathbb{N}} \int_{\mathbb{X}} f d\mu_n
$$

for f non-negative and measurable.

Answer: First, let $f = I_F \geq 0$ for $F \in \mathcal{F}$. Then, f is measurable and

$$
\int_{\mathbb{X}} f d\mu = \int_{\mathbb{X}} I_F d\mu = \mu(F) = \sum_{n \in \mathbb{N}} \mu_n(F) = \sum_{n \in \mathbb{N}} \int_{\mathbb{X}} I_F d\mu_n = \sum_{n \in \mathbb{N}} \int_{\mathbb{X}} f d\mu_n.
$$

Hence, the result holds for indicator functions. Now, consider a simple non-negative function $f = \sum_{j=0}^{m} a_j I_{A_j}$ where $a_j \geq 0$ and $A_j \in \mathcal{F}$. Then,

$$
\int_{\mathbb{X}} f d\mu = \int_{\mathbb{X}} \sum_{j=0}^{m} a_j I_{A_j} d\mu = \sum_{j=0}^{m} a_j \int_{\mathbb{X}} I_{A_j} d\mu = \sum_{j=0}^{m} a_j \mu(A_j) = \sum_{j=0}^{m} a_j \sum_{n \in \mathbb{N}} \mu_n(A_j)
$$

$$
= \sum_{n \in \mathbb{N}} \sum_{j=0}^{m} a_j \mu_n(A_j) = \sum_{n \in \mathbb{N}} \int_{\mathbb{X}} f d\mu_n.
$$

Hence, the result holds for simple non-negative functions. Lastly, let f be non-negative and measurable. By Theorem 3.3 in the class notes, there exists a sequence $\{\phi_n\}_{n\in\mathbb{N}}$ of non-negative, non-decreasing, measurable simple function such that sup $\sup_{n\in\mathbb{N}}\phi_n=f.$ By Beppo-Levi's Theorem

$$
\int_{\mathbb{X}} f d\mu = \sup_{n \in \mathbb{N}} \int_{\mathbb{X}} \phi_n d\mu.
$$

Hence,

$$
\int_{\mathbb{X}} f d\mu = \sup_{n \in \mathbb{N}} \int_{\mathbb{X}} \phi_n d\mu = \sup_{n \in \mathbb{N}} \sum_{j=1}^{\infty} \int_{\mathbb{X}} \phi_n d\mu_j
$$

\n
$$
= \sup_{n \in \mathbb{N}} \sup_{m \in \mathbb{N}} \sum_{j=1}^m \int_{\mathbb{X}} \phi_n d\mu_j \text{ since } \int_{\mathbb{X}} \phi_n d\mu_j \text{ is nondecreasing.}
$$

\n
$$
= \sup_{m \in \mathbb{N}} \sup_{n \in \mathbb{N}} \sum_{j=1}^m \int_{\mathbb{X}} \phi_n d\mu_j = \sup_{m \in \mathbb{N}} \lim_{n \to \infty} \sum_{j=1}^m \int_{\mathbb{X}} \phi_n d\mu_j
$$

\n
$$
= \sup_{m \in \mathbb{N}} \sum_{j=1}^m \lim_{n \to \infty} \int_{\mathbb{X}} \phi_n d\mu_j
$$

\n
$$
= \sup_{m \in \mathbb{N}} \sum_{j=1}^m \int_{\mathbb{X}} \lim_{n \to \infty} \phi_n d\mu_j \text{ by Beppo-Levi's Theorem}
$$

\n
$$
= \sup_{m \in \mathbb{N}} \sum_{j=1}^m \int_{\mathbb{X}} f d\mu_j = \sum_{j \in \mathbb{N}} \int_{\mathbb{X}} f d\mu_j.
$$

- 4. Let (X, \mathcal{F}, μ) be a measure space and $f : (X, \mathcal{F}, \mu) \to (\mathbb{R}, \mathcal{B})$ be measurable and nonnegative. For every $F \in \mathcal{F}$ consider $\int I_F f d\mu$. Is this a measure? **Answer:** Let $v(F) = \int I_F f d\mu$. Then v is a $[0, \infty]$ -valued set function defined for $F \in \mathcal{F}$. Then,
	- (a) $I_{\emptyset} = 0$ and clearly $v(\emptyset) = 0$.

.

(b) Let $F = \bigcup_{i \in \mathbb{N}} F_i$ be a union of pairwise disjoint sets in F. Then, $\sum_{i=1}^{\infty} I_{F_i} = I_F$ and

$$
v(F) = \int \left(\sum_{i=1}^{\infty} I_{F_i}\right) f d\mu = \int \left(\sum_{i=1}^{\infty} I_{F_i} f\right) d\mu
$$

$$
= \sum_{i=1}^{\infty} \int I_{F_i} f d\mu = \sum_{i=1}^{\infty} v(F_i)
$$

5. Let (Ω, \mathcal{F}, P) be a probability space and $\{F_n\}_{n\in\mathbb{N}} \subset \mathcal{F}$.

(a) Prove that $I_{\liminf_{n\to\infty}F_n} = \liminf_{n\to\infty} I_{F_n}$ and $I_{\limsup_{n\to\infty}F_n} = \limsup_{n\to\infty} I_{F_n}$.

- (b) Prove that $P\left(\liminf_{n\to\infty}F_n\right)\leq \liminf_{n\to\infty}P(F_n)$.
- (c) Prove that lim sup $\limsup_{n\to\infty} P(F_n) \leq F$ $\sqrt{ }$ lim sup $\limsup_{n\to\infty} F_n$ \setminus .

Answer: Part (a) is straightforward by noting that $I_{\cap F_n} = \inf I_{F_n}$ and $I_{\cup F_n} =$ $\sup I_{A_n}$. (b) Part (a) combined with Fatou's Lemma gives,

$$
P(\liminf F_n) = \int I_{\liminf F_n} dP = \int \liminf I_{F_n} dP \le \liminf \int I_{F_n} dP.
$$

(c) Again, by Fatou's Lemma (the reverse) we have,

$$
P(\limsup F_n) = \int I_{\limsup F_n} dP = \int \limsup I_{F_n} dP \ge \limsup \int I_{F_n} dP.
$$

Chapter 5

Exercises

1. Prove Theorem 4.2.

Answer: Let $f = \sum_{i=0}^{I} y_i I_{A_i}$ and $f = \sum_{j=0}^{J} y_j I_{B_j}$ be standard representations of f and g . Then,

$$
f \pm g = \sum_{i=0}^{I} \sum_{j=0}^{J} (y_i \pm z_j) I_{A_i \cap B_j}
$$

and

$$
fg = \sum_{i=0}^{I} \sum_{j=0}^{J} (y_i z_j) I_{A_i \cap B_j}
$$

with $(A_i \cap B_j) \cap (A_{i'} \cap B_{j'}) = \emptyset$ whenever $(i, j) \neq (i', j')$. After relabeling and merging the double sums into single sums we have the result. The case for cf is obvious. f simple implies f^+ and f^- are simple by definition, and since $|f| = f^+ + f^-$, $|f|$ is simple.

2. Prove Theorem 4.10.

Answer: Since $f = f^+ - f^-$ and f^+ and f^- are nonnegative, use Theorems 4.6 and 4.8 in your notes.

3. Use Markov's inequality to prove the following for $a > 0$ and $g : (0, \infty) \to (0, \infty)$ that is increasing:

$$
P(|X(\omega)| \ge a) \le \frac{1}{g(a)} \int g(|X|) dP
$$

Answer: Since g is increasing, $\{\omega : |X(\omega)| \ge a\} = \{\omega : g(|X(\omega)|) \ge g(a)\}.$ Hence, since q is positive

$$
g(a)I_{\{\omega:|X(\omega)|\geq a\}}=g(a)I_{\{\omega: g(|X(\omega)|)\geq g(a)\}}\leq g(|X(\omega)|).
$$

Integrating both sides we have $g(a)P(\{\omega : |X(\omega)| \ge a\}) \le \int g(|X(\omega)|)dP$. This completes the proof as $q(a) > 0$.

4. Let X be a random variable defined in the probability space (Ω, \mathcal{F}, P) with $E(X^2) < \infty$. Consider a function $f : \mathbb{R} \to \mathbb{R}$. What restrictions are needed on f to guarantee that $f(X)$ is a random variable with $E(f(X)^2) < \infty$?

Answer: Recall that if $X : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, we say that X is a random variable (measurable real valued function) if, and only if, for all $B \in \mathcal{B}_{\mathbb{R}}$ we have $X^{-1}(B) \in \mathcal{F}$. Hence, if $h(\omega) := f(X(\omega)) = (f \circ X)(\omega) : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ we require that for all $B \in \mathcal{B}_{\mathbb{R}}$ we have $h^{-1}(B) = (f \circ X)^{-1}(B) = X^{-1}(f^{-1}(B)) \in \mathcal{F}$. That is, $f^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$. Since X is a random variable (measurable) and given that $f^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$ for all $B \in \mathcal{B}_{\mathbb{R}}$, $f(X)$ is a random variable (measurable). Since the f^2 is a continuous function of f, f^2 is also a random variable (measurable). Hence, we can consider the integrability (or not) of $f(X)^2$, i.e., whether or not $E(f(X)^2) < \infty$. We give two general restrictions on f that give $E(f(X)^2) < \infty$. First, suppose that $\sup_{\omega \in \Omega} |h(\omega)| = \sup_{\omega \in \Omega} |(f \circ X)(\omega)| < C$. Then,

$$
\left| \int f^2 dP \right| \le \int h^2 dP \le C^2 \int dP = C^2.
$$

Second, suppose that $h^2 \leq X^2$ for all $\omega \in \Omega$. Then, $\int h^2 dP \leq \int X^2 dP < \infty$.

Note that, in general, it is not true that $E(f(X)^2) < \infty$ even if $E(X^2) < \infty$. For example, suppose that $X \sim U[0,1]$. Then, $E(X^2) = 1/3$. Now, let $Y := f(X) =$ $\tan (\pi(X - \frac{1}{2})$ $(\frac{1}{2})$ and we can easily obtain that the probability density of Y is

$$
f_Y(y) = \left| \frac{d}{dy} f^{-1}(y) \right| = \left| \frac{d}{dy} \left(\frac{1}{2} + \frac{1}{\pi} \arctan(y) \right) \right| = \frac{1}{\pi} \frac{1}{1 + y^2}, y \in \mathbb{R}.
$$

But this is the Cauchy density and $\int y^2 f_Y(y) dy$ does not exist.

5. Let $X : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$ be a random variable. Show that if $V(X) := E((X - E(X)))^2$ 0 then X is a constant with probability 1.

Answer: From your notes, if $\int_{\Omega} X^2 dP = 0$ then $X^2 = 0$ almost everywhere. If N is a null set $\int_{\Omega} X^2 dP = \int_N X^2 dP + \int_{N^c} X^2 dP = \int_N X^2 dP + \int_{N^c} 0 dP = 0$. Thus, $P(X^2 = x) = 0$ for $x \neq 0$ and $P(X^2 = 0) = 1$. But this is equivalent to $P(X = 0) = 1$. Hence, $V(X) = E((X - E(X)))^2 = 0$ implies $P(X - E(X) = 0) = P(X = E(X)) = 1$.

6. Consider the following statement: f is continuous almost everywhere if, and only if, it is almost everywhere equal to an everywhere continuous function. Is this true or false? Explain, with precise mathematical arguments.

Answer: False. Consider the function $I_{\mathbb{Q}}(x)$, where $x \in \mathbb{R}$. This function is nowhere continuous in R, but it is equal to 0 almost everywhere, an everywhere continuous function. Alternatively, the function $I_{[0,\infty)}(x)$ is continuous everywhere except at $\{0\},$ a set of measure zero. So, it is continuous almost everywhere. However, there is no everywhere continuous function in R that is equal $I_{[0,\infty)}(x)$ almost everywhere.

7. Adapt the proof of Lebesgue's Dominated Convergence Theorem in your notes to show that any sequence ${f_n}_{n\in\mathbb{N}}$ of measurable functions such that $\lim_{n\to\infty} f_n(x) = f(x)$ and $|f_n| \leq g$ for some g with g^p nonnegative and integrable satisfies

$$
\lim_{n \to \infty} \int |f_n - f|^p d\mu = 0.
$$

Answer: (3 points) First, note that $|f_n - f|^p \leq (|f_n| + |f|)^p$. Since $|f_n - f| \to 0$ we have that $|f_n| \to |f|$. Consequently, for all $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that for $n \geq N_{\epsilon}$ we have

$$
|f_n| - \epsilon \le |f| \le |f_n| + \epsilon \le g + \epsilon
$$

since $|f_n| < g$. Consequently, $|f| \leq g$, $|f|^p \leq g^p$ and $|f_n - f|^p \leq 2^p g^p$ where g^p is nonnegative and integrable. Now, letting $\phi_n = |f_n - f|^p$ we have that $\lim_{n \to \infty} \phi_n = 0$ and by Lebesgue's dominated convergence theorem in the class notes

$$
\lim_{n \to \infty} \int_{\mathbb{X}} \phi_n d\mu = \int_{\mathbb{X}} \lim_{n \to \infty} \phi_n d\mu = 0.
$$

8. Let λ be the one-dimensional Lebesgue measure for the Borel sets of R. Show that for every integrable function f , the function

$$
g(x) = \int_{(0,x)} f(t) d\lambda, \text{ for } x > 0
$$

is continuous.

Answer: Consider a sequence $\{y_n\}_{n\in\mathbb{N}}$ with $0 < x < y_n$ such that $\lim_{n\to\infty} y_n = x$. Then,

$$
g(y_n) - g(x) = \int_{(0,y_n)} f d\lambda - \int_{(0,x)} f d\lambda = \int_{(0,\infty)} I_{(0,y_n)} f d\lambda - \int_{(0,\infty)} I_{(0,x)} f d\lambda
$$

$$
= \int_{(0,\infty)} (I_{(0,y_n)} - I_{(0,x)}) f d\lambda = \int_{(0,\infty)} I_{(x,y_n)} f d\lambda
$$

$$
|g(y_n) - g(x)| \leq \int_{(0,\infty)} I_{[x,y_n)} |f| d\lambda.
$$

Now, $I_{[x,y_n)}|f| \leq |f|$ and $\int_{(0,\infty)} |f|d\lambda < \infty$ since f is integrable. Also, $\lim_{n\to\infty} I_{[x,y_n)}f = 0$ almost everywhere (ae). Thus, by dominated convergence in the class notes

$$
\lim_{n \to \infty} |g(y_n) - g(x)| \leq \lim_{n \to \infty} \int_{(0,\infty)} I_{(x,y_n)} |f| d\lambda
$$

$$
= \int_{(0,\infty)} \lim_{n \to \infty} I_{(x,y_n)} |f| d\lambda = 0.
$$

By repeating the argument for $y_n \uparrow x$ we obtain continuity of g at x.

9. Show that if X is a random variable with $E(|X|^p) < \infty$ then $|X|$ is almost everywhere real valued.

Answer: Let $N = {\omega : |X(\omega)| = \infty} = {\omega : |X(\omega)|^p = \infty}.$ Then $N = \cap_{n \in \mathbb{N}} {\{\omega : |X(\omega)|^p = \infty}$ $|X(\omega)|^p \geq n$. Then,

$$
P(N) = P(\bigcap_{n \in \mathbb{N}} \{\omega : |X(\omega)|^p \ge n\})
$$

= $\lim_{n \to \infty} P(\{\omega : |X(\omega)|^p \ge n\})$ by continuity of probability measures
 $\le \lim_{n \to \infty} \frac{1}{k} \int_{\Omega} |X|^p dP$ by Markov's Inequality
= 0 since $\int_{\Omega} |X|^p dP$ is finite.

10. Suppose $X : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$ is a random variable with $E(|X|) < \infty$. Let $N \in \mathcal{F}$ be such that $P(N) = 0$ and define

$$
Y(\omega) = \begin{cases} X(\omega) & \text{if } \omega \notin N \\ c & \text{if } \omega \in N \end{cases},
$$

where $c \in \mathbb{R}$. Is Y integrable? Is $E(X) = E(Y)$?

Answer: Yes, for both questions. We can change an integrable random variables at any set of measure zero without changing the integral.