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Chapter 1

Exercises

1. Let f : N⇥N! R be a double sequence with typical value given by f(m,n). Assume
that

(a) for every n 2 N, f(m1, n)  f(m2, n) whenever m1  m2,

(b) for every m 2 N, f(m,n1)  f(m,n2) whenever n1  n2.

Show that lim
n!1

⇣
lim

m!1
f(m,n)

⌘
= lim

m!1

⇣
lim
n!1

f(m,n)
⌘
= lim

n!1
f(n, n).

As a corollary, show that if f(m,n) � 0 then
P
n2N

P
m2N

f(m,n) =
P
m2N

P
n2N

f(m,n).

Answer: From conditions (a) and (b), f(1, 1)  f(1, 2)  f(2, 2)  f(2, 3) 
f(3, 3)  · · · Hence, f(m,m)  f(n, n) whenever m  n. The sequence {f(n, n)}n2N
is monotonically increasing, hence it has a limit, which is either finite, if the sequence is
bounded above, or infinity, if it is not. Let this limit be denoted by F . By the same rea-
soning, there exist limits Fm = lim

n!1
f(m,n) for each m 2 N. Since f(m,n)  f(n, n),

we have that Fm  F when m  n. Note that Fm1  Fm2 whenever m1  m2, hence
lim

m!1
Fm = F

0 exists, and F
0  F .

To complete the proof, we need to show that F
0 = F . If F is finite, for every ✏ > 0

there exists N(✏) such that for all n � N(✏), F � ✏  f(n, n)  F . Put m := N(✏),
and note that

Fm = lim
n!1

f(m,n) � f(m,m) := f(N(✏), N(✏)) � F � ✏.

Hence, lim
n!1

Fm = F � F�✏, which implies that F  F
0. Combining the last inequality

with F
0  F from the previous paragraph gives F = F

0. If F is infinite, for any C > 0
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there exists N(C) such that if n � N(C), f(n, n) � C. If m = N(C)  n then
f(m,m)  f(m,n) and

C  f(m,m)  lim
n!1

f(m,n) = Fm,

hence it follows that F
0 must be infinite.

The proof that lim
n!1

⇣
lim

m!1
f(m,n)

⌘
= lim

n!1
f(n, n) follows in exactly the same way by

interchanging the indexes m and n due to the symmetry of the equation.

Corollary. Let g(p, q) =
P

p

m=1

P
q

n=1 f(m,n) for p, q 2 N. Since, f(m,n) � 0, g(p, q)
satisfies conditions (a) and (b), establishing the result.

2. Let X be an arbitrary set and consider the collection of all subsets of X that are
countable or have countable complements. Show that this collection is a �-algebra.
Use this fact to obtain the �-algebra generated by C = {{x} : x 2 R}.

Answer: Let F = {A ✓ X : #A  #N or #A
c  #N}, where # indicates cardi-

nality. First, note that X 2 F since Xc = ;, which is countable. Second, if A 2 F
then either A = (Ac)c or A

c are countable. That is, Ac 2 F . Third, if An 2 F for
n 2 N we have two possible cases - An are all countable, or at least one of these sets
is uncountable, say An0 . For the first case, [

n2N
An is the countable union of countable

sets, hence it is countable and consequently in F . For the second case, since An0 is
uncountable and in F , it must be that Ac

n0
is countable. Also,

✓
[

n2N
An

◆c

= \
n2N

A
c

n
⇢ A

c

n0
.

Since subsets of countable sets are countable,
✓

[
n2N

An

◆c

is countable, and consequently

[
n2N

An 2 F .

Now, let F be the �-algebra defined above. Since C ✓ F , �(C) ✓ F . Also, if A 2 F
either A or Ac is countable. Without loss of generality, suppose A is countable. Then,
A = [

x2C
{x} where C is a countable collection of real numbers. Hence, A 2 �(C).

Hence, F ✓ �(C). Combining the two set containments we have �(C) = F .

3. Denote by B(x, r) an open ball in Rn centered at x and with radius r. Show that the
Borel sets are generated by the collection B = {Br(x) : x 2 Rn

, r > 0}.

Answer: Let B
0 = {Br(x) : x 2 Qn

, r 2 Q+}. Then, B0 ⇢ B ⇢ ORn and �(B0) ⇢
�(B) ⇢ �(ORn).
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Now, let S =
S

B2B0, B⇢O

B. By construction x 2 S =) x 2 O. Now, suppose x 2 O.

Then, since O is open, there exists B(x, ✏) such that B(x, ✏) ⇢ O where ✏ is a rational
number. Since Qn is a dense subset of Rn, we can find q 2 Qn such that kx� qk  ✏/2.
Consequently,

B(q, ✏/2) ⇢ B(x, ✏) ⇢ O.

Hence, O ⇢ S. Thus, every open O can be written as O =
S

B2B0, B⇢O

B. Since B
0 is a

collection of balls with rational radius and rational centers, B0 is countable. Thus,

ORn ⇢ �(B0) =) �(ORn) ⇢ �(B0).

Combining this set containment with �(B0) ⇢ �(B) ⇢ �(ORn) completes the proof.

4. Let (⌦,F) be a measurable space. Show that: a) if µ1 and µ2 are measures on (⌦,F),
then µc(F ) := c1µ1(F ) + c2µ2(F ) for F 2 F and all c1, c2 � 0 is a measure; b) if
{µi}i2N are measures on (⌦,F) and {↵i}i2N is a sequence of positive numbers, then
µ1(F ) =

P
i2N ↵iµi(F ) for F 2 F is a measure.

Answer: a) First, note that µc : F ! [0,1] since c1, c2, µ1(F ), µ2(F ) � 0 for all
F 2 F . Second, µc(;) = c1µ1(;) + c2µ2(;) = 0 since µ1 and µ2 are measures. Third, if
{Fi}i2N 2 F is a pairwise disjoint collection of sets,

µc ([i2NFi) = c1µ1([i2NFi) + c2µ2([i2NFi)

= c1

X

i2N

µ1(Fi) + c2

X

i2N

µ2(Fi), since µ1 and µ2 are measures

=
X

i2N

(c1µ1(Fi) + c2µ2(Fi)) =
X

i2N

µc(Fi).

b) The verification that µ1 : F ! [0,1] and µ1(;) = 0 follows the same arguments as
in item a) when examining µc. For �-additivity, note that if {Fj}j2N 2 F is a pairwise
disjoint collection of sets,

µ1 ([j2NFj) =
1X

i=1

↵iµi ([j2NFj) =
1X

i=1

↵i

1X

j=1

µi (Fj) =
1X

i=1

1X

j=1

↵iµi (Fj) .

If we are able to interchange the sums in the last term, then we can write

µ1 ([j2NFj) =
1X

j=1

1X

i=1

↵iµi (Fj) =
1X

j=1

µ1 (Fj) ,
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completing the proof. Now, note that
1X

i=1

1X

j=1

↵iµi (Fj) = lim
n!1

lim
m!1

nX

i=1

mX

j=1

↵iµi (Fj) = sup
n2N

sup
m2N

nX

i=1

mX

j=1

↵iµi (Fj) = sup
n2N

sup
m2N

Snm

since the partial sums are increasing. Now, if Snm 2 R, then

sup
n2N

sup
m2N

Snm = sup
m2N

sup
n2N

Snm.

Hence, to finish the proof, we require µi(Fj) < 1.

5. Let (⌦,F , µ) be a measure space and G ⇢ F be a �-algebra. In this case, we call G a
sub-�-algebra of F . Let ⌫ := µ|G be the restriction of µ to G. That is, ⌫(G) = µ(G)

for all G 2 G. Is ⌫ a measure? If µ is finite, is ⌫ finite? If µ is a probability, is ⌫ a
probability?

Answer: Since ; 2 G ⇢ F , ⌫(;) = µ(;) = 0. If {Ai}i2N 2 G is a pairwise disjoint
sequence, we have that {Ai}i2N 2 F . Hence, ⌫([i2NAi) = µ([i2NAi) =

P
i2N µ(Ai) =P

i2N ⌫(Ai). Now, µ finite means that µ(⌦) < 1. Since ⌦ 2 G, ⌫(⌦) = µ(⌦) < 1.
The same holds for µ(⌦) = 1.

6. Show that a measure space (⌦,F , µ) is �-finite if, and only if, there exists {Fn}n2N 2 F
such that [n2NFn = ⌦ and µ(Fn) < 1 for all n.

Answer: ()) By definition, (⌦,F , µ) is �-finite if there exists and increasing sequence
A1 ⇢ A2 ⇢ A3 · · · such that [n2NAn = ⌦ with µ(An) < 1 for all n. Hence, it suffices
to let Fn = An.

(() Let An = [n

j=1Fj. Then, A1 ⇢ A2 ⇢ · · · and [n2NAn = [j2NFj = ⌦. Also,
µ(An) = µ([n

j=1Fj) 
P

n

j=1 µ(Fj) < 1 since the sum is finite and µ(Fj) < 1.

7. Let (⌦,F , P ) be a probability space and {En}n2N ⇢ F . Show that if
P1

n=1 P (En) < 1

then P

✓
limsup
n!1

En

◆
= 0.

Answer:

P

✓
limsup
n!1

En

◆
= P

⇣
lim
n!1

[j�n Ej

⌘

= lim
n!1

P ([j�nEj) by continuity

 limsup
n!1

1X

j=n

P (Ej) by subadditivity and definition of limsup.
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Since
P1

n=1 P (En) < 1 it must be that
P1

j=n
P (Ej) ! 0 as n ! 0. Consequently,

P

✓
limsup
n!1

En

◆
= 0.

8. Let {Ej}j2J be a collection of pairwise disjoint events. Show that if P (Ej) > 0 for
each j 2 J , then J is countable.

Answer: Let Cn = {Ej : P (Ej) >
1
n

and j 2 J}. By assumption the elements of Cn

are disjoint events and

P ([jmEjm) =
1X

m=1

P (Ejm) = 1,

where the last equality follows from the fact that P (Ejm) > 0. So, it must be that Cn

has finitely many elements. Also, {Ej}j2J = [1
n=1Cn, which is countable since it is a

countable union of finite sets.

9. Consider the extended real line, i.e., R̄ := R [ {�1} [ {1}. Let B̄ := B(R̄) be
defined as the collection of sets B̄ such that B̄ = B [ S where B 2 B(R) and S 2
{;, {�1}, {1}, {�1,1}}. Show that B̄ is a �-algebra and that it is generated by a
collection of sets of the form [a,1] where a 2 R.

Answer: Let’s first show that B̄ is a �-algebra. Since B̄ = B [ S with B 2 B(R), we
can choose B = R and use S = {�1,1} to conclude that R̄ = R [ {�1,1} 2 B̄.
Next, note that if B̄ = B[S we have that B̄c = B

c\Sc. But the complement of a set S
is an element of {R̄,R[{1},R[{�1},R}. Hence, either 1) B̄c = B

c\R̄ = B
c[; 2 B̄

or, 2) B̄
c = B

c \ (R [ {1}) = (Bc \ R) [ {1} where B
c \ R 2 B and consequently

B̄
c 2 B̄ or, 3) B̄

c = B
c \ (R [ {�1}) = (Bc \ R) [ {�1} where B

c \ R 2 B and
consequently B̄

c 2 B̄ or, 4) B̄
c = B

c \R 2 B̄.

Lastly, letting Ai = Bi [ S for Bi 2 B we have that [i2NAi = [i2N(Bi [ S) =

([i2NBi) [ S. Since [i2NBi 2 B we have that [i2NAi 2 B̄.

If B̄ is a �-algebra and C = {[a,1] : a 2 R}, we need to show that �(C) = B̄.

First, note that [a,1] = [a,1)[{1} and we know that [a,1) 2 B. Thus, [a,1] 2 B̄
for all a 2 R. Then, �(C) ✓ B̄.

Second, observe that for �1 < a  b < 1 we have [a, b) = [a,1] � [b,1] =

[a,1] \ [b,1]c 2 �(C) since �(C) contains [a,1] and [b,1]c by virtue of being a
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�-algebra. Hence,
B ✓ �(C) ✓ B̄.

Now,
{1} = \i2N[i,1], {�1} = \i2N[�1,�i) = \i2N[�i,1]c

which allows us to conclude that {1}, {�1} 2 �(C). Hence, if B 2 B all sets of the
form

B,B [ {1}, B [ {�1}, B [ {1} [ {�1}

are in �(C). Hence, B̄ ✓ �(C). Combining this set. containment with �(C) ✓ B̄ gives
the result.

10. If E1, E2, · · · , En are independent events, show that the probability that none of them
occur is less than or equal to exp (�

P
n

i=1 P (Ei)).

Answer: Let f(x) = exp(�x) and note that for � 2 (0, 1), by Taylor’s Theorem

exp(�x) = f(x) = f(0) + f
(1)(0)x+

1

2
f
(2)(�x)x2 = 1� x+

1

2
exp(��x)x2

Consequently, 1� x  exp(�x). Now, we are interested in the event E = ([n

i=1Ei)
c =

\n

i=1E
c

i
. But since the E1, E2, · · · , En are independent, so is the collection E

c

1, E
c

2, · · · , Ec

n
.

Hence, P (E) =
Q

n

i=1 P (Ec

i
) =

Q
n

i=1(1�P (Ei)) 
Q

n

i=1 exp(�P (Ei)) = exp (�
P

n

i=1 P (Ei)).

11. Let {An}n2N and {Bn}n2N be events (measurable sets) in a probability space with
measure P with limAn = A, limBn = B, P (Bn), P (B) > 0 for all n. Show that
P (An|B) ! P (A|B), P (A|Bn) ! P (A|B), P (An|Bn) ! P (A|B) as n ! 1.

Answer: Since P (·|B) is a probability measure (proved in the class notes), we have
by continuity of probability measures that P (An|B) ! P (A|B) if limBn = B.

Now, since limBn = B we have that A \ Bn ! A \ B. To see this, note that if
A \ Bn := Cn then Dj = [1

n=j
Cn = A \ ([1

n=1Bn). Then, lim supCn = \1
j=1Dj =

\1
j=1 (A \ [1

n=1Bn) = A \ B. Defining lim inf for Cn we can in similar fashion that
lim inf Cn = A\B. Hence, by continuity of probability measures P (A\Bn) ! P (A\B)

and P (Bn) ! P (B). Consequently,

P (A|Bn) =
P (A \ Bn)

P (Bn)
! P (A \ B)

P (B)
= P (A|B).

Lastly, since An \ Bn ! A [B, using the same arguments

P (An|Bn) =
P (An \Bn)

P (Bn)
! P (A \B)

P (B)
= P (A|B).
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12. Let (X, F̄ , µ̄) be the measure space defined in Theorem 1.15 and C = {G 2 X :

9A, B 2 F 3 A ⇢ G ⇢ B and µ(B � A) = 0}. Show that F̄ = C.

Answer: G 2 F̄ =) G = A [ M where A 2 F and M 2 S. M 2 S =) 9N 2
Nµ 3 M ⇢ N . Then,

A ⇢ G = A [M ⇢ A [N := B 2 F .

Now, µ(B � A) = µ(B [ A
c) = µ((A [N)� A)  µ(N) = 0. Thus, G 2 C.

G 2 C =) 9A, B 2 F 3 A ⇢ G ⇢ B and µ(B � A) = 0. Since A ⇢ G ⇢ B we have
that G�A ⇢ B�A, and since B�A is a µ-null set G�A 2 S. Now, G = A[(G�A),
and since A 2 F , G 2 F̄ .
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