EXERCISES AND SOLUTIONS FOR FUNDAMENTAL ELEMENTS OF PROBABILITY AND ASYMPTOTIC THEORY

by

Carlos Brunet Martins-Filho
Department of Economics
256 UCB
University of Colorado at Boulder
Boulder, CO 80309-0256 USA
email: carlos.martins@colorado.edu

Chapter 1

Exercises

- 1. Let $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ be a double sequence with typical value given by f(m, n). Assume that
 - (a) for every $n \in \mathbb{N}$, $f(m_1, n) \leq f(m_2, n)$ whenever $m_1 \leq m_2$,
 - (b) for every $m \in \mathbb{N}$, $f(m, n_1) \leq f(m, n_2)$ whenever $n_1 \leq n_2$.

Show that
$$\lim_{n\to\infty} \left(\lim_{m\to\infty} f(m,n)\right) = \lim_{m\to\infty} \left(\lim_{n\to\infty} f(m,n)\right) = \lim_{n\to\infty} f(n,n).$$

As a corollary, show that if $f(m,n) \ge 0$ then $\sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}} f(m,n) = \sum_{m \in \mathbb{N}} \sum_{n \in \mathbb{N}} f(m,n)$.

Answer: From conditions (a) and (b), $f(1,1) \leq f(1,2) \leq f(2,2) \leq f(2,3) \leq f(3,3) \leq \cdots$ Hence, $f(m,m) \leq f(n,n)$ whenever $m \leq n$. The sequence $\{f(n,n)\}_{n \in \mathbb{N}}$ is monotonically increasing, hence it has a limit, which is either finite, if the sequence is bounded above, or infinity, if it is not. Let this limit be denoted by F. By the same reasoning, there exist limits $F_m = \lim_{n \to \infty} f(m,n)$ for each $m \in \mathbb{N}$. Since $f(m,n) \leq f(n,n)$, we have that $F_m \leq F$ when $m \leq n$. Note that $F_{m_1} \leq F_{m_2}$ whenever $m_1 \leq m_2$, hence $\lim_{m \to \infty} F_m = F'$ exists, and $F' \leq F$.

To complete the proof, we need to show that F' = F. If F is finite, for every $\epsilon > 0$ there exists $N(\epsilon)$ such that for all $n \geq N(\epsilon)$, $F - \epsilon \leq f(n,n) \leq F$. Put $m := N(\epsilon)$, and note that

$$F_m = \lim_{n \to \infty} f(m, n) \ge f(m, m) := f(N(\epsilon), N(\epsilon)) \ge F - \epsilon.$$

Hence, $\lim_{n\to\infty} F_m = F \ge F - \epsilon$, which implies that $F \le F'$. Combining the last inequality with $F' \le F$ from the previous paragraph gives F = F'. If F is infinite, for any C > 0

there exists N(C) such that if $n \geq N(C)$, $f(n,n) \geq C$. If $m = N(C) \leq n$ then $f(m,m) \leq f(m,n)$ and

$$C \le f(m,m) \le \lim_{n \to \infty} f(m,n) = F_m,$$

hence it follows that F' must be infinite.

The proof that $\lim_{n\to\infty} \left(\lim_{m\to\infty} f(m,n)\right) = \lim_{n\to\infty} f(n,n)$ follows in exactly the same way by interchanging the indexes m and n due to the symmetry of the equation.

Corollary. Let $g(p,q) = \sum_{m=1}^{p} \sum_{n=1}^{q} f(m,n)$ for $p,q \in \mathbb{N}$. Since, $f(m,n) \geq 0$, g(p,q) satisfies conditions (a) and (b), establishing the result.

2. Let X be an arbitrary set and consider the collection of all subsets of X that are countable or have countable complements. Show that this collection is a σ -algebra. Use this fact to obtain the σ -algebra generated by $\mathcal{C} = \{\{x\} : x \in \mathbb{R}\}.$

Answer: Let $\mathcal{F} = \{A \subseteq \mathbb{X} : \#A \leq \#\mathbb{N} \text{ or } \#A^c \leq \#\mathbb{N}\}$, where # indicates cardinality. First, note that $\mathbb{X} \in \mathcal{F}$ since $\mathbb{X}^c = \emptyset$, which is countable. Second, if $A \in \mathcal{F}$ then either $A = (A^c)^c$ or A^c are countable. That is, $A^c \in \mathcal{F}$. Third, if $A_n \in \mathcal{F}$ for $n \in \mathbb{N}$ we have two possible cases - A_n are all countable, or at least one of these sets is uncountable, say A_{n_0} . For the first case, $\bigcup_{n \in \mathbb{N}} A_n$ is the countable union of countable sets, hence it is countable and consequently in \mathcal{F} . For the second case, since A_{n_0} is uncountable and in \mathcal{F} , it must be that $A_{n_0}^c$ is countable. Also,

$$\left(\bigcup_{n\in\mathbb{N}}A_n\right)^c=\bigcap_{n\in\mathbb{N}}A_n^c\subset A_{n_0}^c.$$

Since subsets of countable sets are countable, $\left(\bigcup_{n\in\mathbb{N}}A_n\right)^c$ is countable, and consequently $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{F}$.

Now, let \mathcal{F} be the σ -algebra defined above. Since $\mathcal{C} \subseteq \mathcal{F}$, $\sigma(\mathcal{C}) \subseteq \mathcal{F}$. Also, if $A \in \mathcal{F}$ either A or A^c is countable. Without loss of generality, suppose A is countable. Then, $A = \bigcup_{x \in C} \{x\}$ where C is a countable collection of real numbers. Hence, $A \in \sigma(\mathcal{C})$. Hence, $\mathcal{F} \subseteq \sigma(\mathcal{C})$. Combining the two set containments we have $\sigma(\mathcal{C}) = \mathcal{F}$.

3. Denote by B(x,r) an open ball in \mathbb{R}^n centered at x and with radius r. Show that the Borel sets are generated by the collection $B = \{B_r(x) : x \in \mathbb{R}^n, r > 0\}$.

Answer: Let $B' = \{B_r(x) : x \in \mathbb{Q}^n, r \in \mathbb{Q}^+\}$. Then, $B' \subset B \subset \mathcal{O}_{\mathbb{R}^n}$ and $\sigma(B') \subset \sigma(B) \subset \sigma(\mathcal{O}_{\mathbb{R}^n})$.

Now, let $S = \bigcup_{B \in B', B \subset O} B$. By construction $x \in S \implies x \in O$. Now, suppose $x \in O$. Then, since O is open, there exists $B(x, \epsilon)$ such that $B(x, \epsilon) \subset O$ where ϵ is a rational number. Since \mathbb{Q}^n is a dense subset of \mathbb{R}^n , we can find $q \in \mathbb{Q}^n$ such that $||x - q|| \le \epsilon/2$. Consequently,

$$B(q, \epsilon/2) \subset B(x, \epsilon) \subset O.$$

Hence, $O \subset S$. Thus, every open O can be written as $O = \bigcup_{B \in B', B \subset O} B$. Since B' is a collection of balls with rational radius and rational centers, B' is countable. Thus,

$$\mathcal{O}_{\mathbb{R}^n} \subset \sigma(B') \implies \sigma(\mathcal{O}_{\mathbb{R}^n}) \subset \sigma(B').$$

Combining this set containment with $\sigma(B') \subset \sigma(B) \subset \sigma(\mathcal{O}_{\mathbb{R}^n})$ completes the proof.

4. Let (Ω, \mathcal{F}) be a measurable space. Show that: a) if μ_1 and μ_2 are measures on (Ω, \mathcal{F}) , then $\mu_c(F) := c_1\mu_1(F) + c_2\mu_2(F)$ for $F \in \mathcal{F}$ and all $c_1, c_2 \geq 0$ is a measure; b) if $\{\mu_i\}_{i\in\mathbb{N}}$ are measures on (Ω, \mathcal{F}) and $\{\alpha_i\}_{i\in\mathbb{N}}$ is a sequence of positive numbers, then $\mu_{\infty}(F) = \sum_{i\in\mathbb{N}} \alpha_i \mu_i(F)$ for $F \in \mathcal{F}$ is a measure.

Answer: a) First, note that $\mu_c : \mathcal{F} \to [0, \infty]$ since $c_1, c_2, \mu_1(F), \mu_2(F) \geq 0$ for all $F \in \mathcal{F}$. Second, $\mu_c(\emptyset) = c_1 \mu_1(\emptyset) + c_2 \mu_2(\emptyset) = 0$ since μ_1 and μ_2 are measures. Third, if $\{F_i\}_{i \in \mathbb{N}} \in \mathcal{F}$ is a pairwise disjoint collection of sets,

$$\mu_{c} \left(\cup_{i \in \mathbb{N}} F_{i} \right) = c_{1} \mu_{1} \left(\cup_{i \in \mathbb{N}} F_{i} \right) + c_{2} \mu_{2} \left(\cup_{i \in \mathbb{N}} F_{i} \right)$$

$$= c_{1} \sum_{i \in \mathbb{N}} \mu_{1}(F_{i}) + c_{2} \sum_{i \in \mathbb{N}} \mu_{2}(F_{i}), \text{ since } \mu_{1} \text{ and } \mu_{2} \text{ are measures}$$

$$= \sum_{i \in \mathbb{N}} \left(c_{1} \mu_{1}(F_{i}) + c_{2} \mu_{2}(F_{i}) \right) = \sum_{i \in \mathbb{N}} \mu_{c}(F_{i}).$$

b) The verification that $\mu_{\infty}: \mathcal{F} \to [0, \infty]$ and $\mu_{\infty}(\emptyset) = 0$ follows the same arguments as in item a) when examining μ_c . For σ -additivity, note that if $\{F_j\}_{j\in\mathbb{N}} \in \mathcal{F}$ is a pairwise disjoint collection of sets,

$$\mu_{\infty}\left(\bigcup_{j\in\mathbb{N}}F_{j}\right)=\sum_{i=1}^{\infty}\alpha_{i}\mu_{i}\left(\bigcup_{j\in\mathbb{N}}F_{j}\right)=\sum_{i=1}^{\infty}\alpha_{i}\sum_{j=1}^{\infty}\mu_{i}\left(F_{j}\right)=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\alpha_{i}\mu_{i}\left(F_{j}\right).$$

If we are able to interchange the sums in the last term, then we can write

$$\mu_{\infty}\left(\cup_{j\in\mathbb{N}}F_{j}\right) = \sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\alpha_{i}\mu_{i}\left(F_{j}\right) = \sum_{j=1}^{\infty}\mu_{\infty}\left(F_{j}\right),$$

completing the proof. Now, note that

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \alpha_{i} \mu_{i}\left(F_{j}\right) = \lim_{n \to \infty} \lim_{m \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \mu_{i}\left(F_{j}\right) = \sup_{n \in \mathbb{N}} \sup_{m \in \mathbb{N}} \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \mu_{i}\left(F_{j}\right) = \sup_{n \in \mathbb{N}} \sup_{m \in \mathbb{N}} S_{nm}$$

since the partial sums are increasing. Now, if $S_{nm} \in \mathbb{R}$, then

$$\sup_{n\in\mathbb{N}}\sup_{m\in\mathbb{N}}S_{nm}=\sup_{m\in\mathbb{N}}\sup_{n\in\mathbb{N}}S_{nm}.$$

Hence, to finish the proof, we require $\mu_i(F_i) < \infty$.

5. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\mathcal{G} \subset \mathcal{F}$ be a σ -algebra. In this case, we call \mathcal{G} a sub- σ -algebra of \mathcal{F} . Let $\nu := \mu|_{\mathcal{G}}$ be the restriction of μ to \mathcal{G} . That is, $\nu(G) = \mu(G)$ for all $G \in \mathcal{G}$. Is ν a measure? If μ is finite, is ν finite? If μ is a probability, is ν a probability?

Answer: Since $\emptyset \in \mathcal{G} \subset \mathcal{F}$, $\nu(\emptyset) = \mu(\emptyset) = 0$. If $\{A_i\}_{i \in \mathbb{N}} \in \mathcal{G}$ is a pairwise disjoint sequence, we have that $\{A_i\}_{i \in \mathbb{N}} \in \mathcal{F}$. Hence, $\nu(\cup_{i \in \mathbb{N}} A_i) = \mu(\cup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i) = \sum_{i \in \mathbb{N}} \mu(A_i)$. Now, μ finite means that $\mu(\Omega) < \infty$. Since $\Omega \in \mathcal{G}$, $\nu(\Omega) = \mu(\Omega) < \infty$. The same holds for $\mu(\Omega) = 1$.

6. Show that a measure space $(\Omega, \mathcal{F}, \mu)$ is σ -finite if, and only if, there exists $\{F_n\}_{n\in\mathbb{N}} \in \mathcal{F}$ such that $\bigcup_{n\in\mathbb{N}} F_n = \Omega$ and $\mu(F_n) < \infty$ for all n.

Answer: (\Rightarrow) By definition, $(\Omega, \mathcal{F}, \mu)$ is σ -finite if there exists and increasing sequence $A_1 \subset A_2 \subset A_3 \cdots$ such that $\bigcup_{n \in \mathbb{N}} A_n = \Omega$ with $\mu(A_n) < \infty$ for all n. Hence, it suffices to let $F_n = A_n$.

- (\Leftarrow) Let $A_n = \bigcup_{j=1}^n F_j$. Then, $A_1 \subset A_2 \subset \cdots$ and $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{j \in \mathbb{N}} F_j = \Omega$. Also, $\mu(A_n) = \mu(\bigcup_{j=1}^n F_j) \leq \sum_{j=1}^n \mu(F_j) < \infty$ since the sum is finite and $\mu(F_j) < \infty$.
- 7. Let (Ω, \mathcal{F}, P) be a probability space and $\{E_n\}_{n \in \mathbb{N}} \subset \mathcal{F}$. Show that if $\sum_{n=1}^{\infty} P(E_n) < \infty$ then $P\left(\limsup_{n \to \infty} E_n\right) = 0$.

Answer:

$$P\left(\limsup_{n\to\infty} E_n\right) = P\left(\lim_{n\to\infty} \cup_{j\geq n} E_j\right)$$

$$= \lim_{n\to\infty} P\left(\cup_{j\geq n} E_j\right) \text{ by continuity}$$

$$\leq \limsup_{n\to\infty} \sum_{j=n}^{\infty} P(E_j) \text{ by subadditivity and definition of limsup.}$$

Since $\sum_{n=1}^{\infty} P(E_n) < \infty$ it must be that $\sum_{j=n}^{\infty} P(E_j) \to 0$ as $n \to 0$. Consequently, $P\left(\limsup_{n \to \infty} E_n\right) = 0$.

8. Let $\{E_j\}_{j\in J}$ be a collection of pairwise disjoint events. Show that if $P(E_j) > 0$ for each $j \in J$, then J is countable.

Answer: Let $C_n = \{E_j : P(E_j) > \frac{1}{n} \text{ and } j \in J\}$. By assumption the elements of C_n are disjoint events and

$$P\left(\bigcup_{j_m} E_{j_m}\right) = \sum_{m=1}^{\infty} P(E_{j_m}) = \infty,$$

where the last equality follows from the fact that $P(E_{j_m}) > 0$. So, it must be that C_n has finitely many elements. Also, $\{E_j\}_{j\in J} = \bigcup_{n=1}^{\infty} C_n$, which is countable since it is a countable union of finite sets.

9. Consider the extended real line, i.e., $\bar{\mathbb{R}} := \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$. Let $\bar{\mathcal{B}} := \mathcal{B}(\bar{\mathbb{R}})$ be defined as the collection of sets \bar{B} such that $\bar{B} = B \cup S$ where $B \in \mathcal{B}(\mathbb{R})$ and $S \in \{\emptyset, \{-\infty\}, \{\infty\}, \{-\infty, \infty\}\}$. Show that $\bar{\mathcal{B}}$ is a σ -algebra and that it is generated by a collection of sets of the form $[a, \infty]$ where $a \in \mathbb{R}$.

Answer: Let's first show that $\bar{\mathcal{B}}$ is a σ -algebra. Since $\bar{B} = B \cup S$ with $B \in \mathcal{B}(\mathbb{R})$, we can choose $B = \mathbb{R}$ and use $S = \{-\infty, \infty\}$ to conclude that $\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\} \in \bar{\mathcal{B}}$. Next, note that if $\bar{B} = B \cup S$ we have that $\bar{B}^c = B^c \cap S^c$. But the complement of a set S^c is an element of $\{\bar{\mathbb{R}}, \mathbb{R} \cup \{\infty\}, \mathbb{R} \cup \{-\infty\}, \mathbb{R}\}$. Hence, either 1) $\bar{B}^c = B^c \cap \bar{\mathbb{R}} = B^c \cup \emptyset \in \bar{\mathcal{B}}$ or, 2) $\bar{B}^c = B^c \cap (\mathbb{R} \cup \{\infty\}) = (B^c \cap \mathbb{R}) \cup \{\infty\}$ where $B^c \cap \mathbb{R} \in \mathcal{B}$ and consequently $\bar{B}^c \in \bar{\mathcal{B}}$ or, 3) $\bar{B}^c = B^c \cap (\mathbb{R} \cup \{-\infty\}) = (B^c \cap \mathbb{R}) \cup \{-\infty\}$ where $B^c \cap \mathbb{R} \in \mathcal{B}$ and consequently $\bar{B}^c \in \bar{\mathcal{B}}$ or, 4) $\bar{B}^c = B^c \cap \mathbb{R} \in \bar{\mathcal{B}}$.

Lastly, letting $A_i = B_i \cup S$ for $B_i \in \mathcal{B}$ we have that $\bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} (B_i \cup S) = (\bigcup_{i \in \mathbb{N}} B_i) \cup S$. Since $\bigcup_{i \in \mathbb{N}} B_i \in \mathcal{B}$ we have that $\bigcup_{i \in \mathbb{N}} A_i \in \bar{\mathcal{B}}$.

If $\bar{\mathcal{B}}$ is a σ -algebra and $\mathcal{C} = \{[a, \infty] : a \in \mathbb{R}\}$, we need to show that $\sigma(\mathcal{C}) = \bar{\mathcal{B}}$.

First, note that $[a, \infty] = [a, \infty) \cup \{\infty\}$ and we know that $[a, \infty) \in \mathcal{B}$. Thus, $[a, \infty] \in \bar{\mathcal{B}}$ for all $a \in \mathbb{R}$. Then, $\sigma(\mathcal{C}) \subseteq \bar{\mathcal{B}}$.

Second, observe that for $-\infty < a \le b < \infty$ we have $[a,b) = [a,\infty] - [b,\infty] = [a,\infty] \cap [b,\infty]^c \in \sigma(\mathcal{C})$ since $\sigma(\mathcal{C})$ contains $[a,\infty]$ and $[b,\infty]^c$ by virtue of being a

 σ -algebra. Hence,

$$\mathcal{B} \subseteq \sigma(\mathcal{C}) \subseteq \bar{\mathcal{B}}.$$

Now,

$$\{\infty\} = \bigcap_{i \in \mathbb{N}} [i, \infty], \{-\infty\} = \bigcap_{i \in \mathbb{N}} [-\infty, -i) = \bigcap_{i \in \mathbb{N}} [-i, \infty]^c$$

which allows us to conclude that $\{\infty\}, \{-\infty\} \in \sigma(\mathcal{C})$. Hence, if $B \in \mathcal{B}$ all sets of the form

$$B, B \cup \{\infty\}, B \cup \{-\infty\}, B \cup \{\infty\} \cup \{-\infty\}$$

are in $\sigma(\mathcal{C})$. Hence, $\bar{\mathcal{B}} \subseteq \sigma(\mathcal{C})$. Combining this set. containment with $\sigma(\mathcal{C}) \subseteq \bar{\mathcal{B}}$ gives the result.

10. If E_1, E_2, \dots, E_n are independent events, show that the probability that none of them occur is less than or equal to $\exp(-\sum_{i=1}^n P(E_i))$.

Answer: Let $f(x) = \exp(-x)$ and note that for $\lambda \in (0,1)$, by Taylor's Theorem

$$\exp(-x) = f(x) = f(0) + f^{(1)}(0)x + \frac{1}{2}f^{(2)}(\lambda x)x^2 = 1 - x + \frac{1}{2}\exp(-\lambda x)x^2$$

Consequently, $1-x \leq \exp(-x)$. Now, we are interested in the event $E = (\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n E_i^c$. But since the E_1, E_2, \dots, E_n are independent, so is the collection $E_1^c, E_2^c, \dots, E_n^c$. Hence, $P(E) = \prod_{i=1}^n P(E_i^c) = \prod_{i=1}^n (1-P(E_i)) \leq \prod_{i=1}^n \exp(-P(E_i)) = \exp(-\sum_{i=1}^n P(E_i))$.

11. Let $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$ be events (measurable sets) in a probability space with measure P with $\lim A_n = A$, $\lim B_n = B$, $P(B_n), P(B) > 0$ for all n. Show that $P(A_n|B) \to P(A|B)$, $P(A|B_n) \to P(A|B)$, $P(A|B_n) \to P(A|B)$ as $n \to \infty$.

Answer: Since $P(\cdot|B)$ is a probability measure (proved in the class notes), we have by continuity of probability measures that $P(A_n|B) \to P(A|B)$ if $\lim B_n = B$.

Now, since $\lim B_n = B$ we have that $A \cap B_n \to A \cap B$. To see this, note that if $A \cap B_n := C_n$ then $D_j = \bigcup_{n=j}^{\infty} C_n = A \cap (\bigcup_{n=1}^{\infty} B_n)$. Then, $\limsup C_n = \bigcap_{j=1}^{\infty} D_j = \bigcap_{j=1}^{\infty} (A \cap \bigcup_{n=1}^{\infty} B_n) = A \cap B$. Defining \liminf for C_n we can in similar fashion that $\liminf C_n = A \cap B$. Hence, by continuity of probability measures $P(A \cap B_n) \to P(A \cap B)$ and $P(B_n) \to P(B)$. Consequently,

$$P(A|B_n) = \frac{P(A \cap B_n)}{P(B_n)} \to \frac{P(A \cap B)}{P(B)} = P(A|B).$$

Lastly, since $A_n \cap B_n \to A \cup B$, using the same arguments

$$P(A_n|B_n) = \frac{P(A_n \cap B_n)}{P(B_n)} \to \frac{P(A \cap B)}{P(B)} = P(A|B).$$

12. Let $(X, \bar{\mathcal{F}}, \bar{\mu})$ be the measure space defined in Theorem 1.15 and $\mathcal{C} = \{G \in X : \exists A, B \in \mathcal{F} \ni A \subset G \subset B \text{ and } \mu(B - A) = 0\}$. Show that $\bar{\mathcal{F}} = \mathcal{C}$.

Answer: $G \in \bar{\mathcal{F}} \implies G = A \cup M$ where $A \in \mathcal{F}$ and $M \in \mathcal{S}$. $M \in \mathcal{S} \implies \exists N \in \mathcal{N}_{\mu} \ni M \subset N$. Then,

$$A \subset G = A \cup M \subset A \cup N := B \in \mathcal{F}.$$

Now,
$$\mu(B - A) = \mu(B \cup A^c) = \mu((A \cup N) - A) \le \mu(N) = 0$$
. Thus, $G \in C$.

 $G \in \mathcal{C} \implies \exists A, B \in \mathcal{F} \ni A \subset G \subset B \text{ and } \mu(B-A) = 0.$ Since $A \subset G \subset B$ we have that $G-A \subset B-A$, and since B-A is a μ -null set $G-A \in \mathcal{S}$. Now, $G=A \cup (G-A)$, and since $A \in \mathcal{F}$, $G \in \bar{\mathcal{F}}$.