Chapter 2

Exercises

1. Let μ be a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mu([-n, n)) < \infty$ for all $n \in \mathbb{N}$. Define,

$$F_{\mu}(x) := \begin{cases} \mu([0, x)) & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -\mu([x, 0)) & \text{if } x < 0. \end{cases}$$

Show that $F_{\mu}: \mathbb{R} \to \mathbb{R}$ is monotonically increasing and left continuous.

Answer: Given that $\mu([-n,n)) < \infty$, F_{μ} takes values in \mathbb{R} . First, we show that all x < x', $F_{\mu}(x) \le F_{\mu}(x')$. There are three cases to be considered

- (a) $(0 \le x < x')$: if 0 < x < x', $F_{\mu}(x') F_{\mu}(x) = \mu([0, x')) \mu([0, x))$. Since $[0, x') = [0, x) \cup [x, x')$, σ -additivity of μ gives $\mu([0, x')) = \mu([0, x)) + \mu([x, x'))$ or $\mu([x, x')) = \mu([0, x')) \mu([0, x)) = F_{\mu}(x') F_{\mu}(x) \ge 0$. If x = 0, $F_{\mu}(x') F_{\mu}(0) = \mu([0, x')) \ge 0$.
- (b) $(x < 0 \le x')$: If x' > 0, $F_{\mu}(x') F_{\mu}(x) = \mu([0, x')) + \mu([x, 0)) \ge 0$. If x' = 0, $F_{\mu}(0) F_{\mu}(x) = \mu([x, 0)) \ge 0$.
- (c) (x < x' < 0): $F_{\mu}(x') F_{\mu}(x) = -\mu([x', 0)) + \mu([x, 0))$. Since $[x, 0) = [x, x') \cup [x', 0)$, σ -additivity of μ gives $\mu([x, 0)) = \mu([x, x')) + \mu([x', 0))$ or $\mu([x, 0)) \mu([x', 0)) = F_{\mu}(x') F_{\mu}(x) = \mu([x, x')) \ge 0$.

Second, we must show that $\lim_{n\to\infty} F_{\mu}(x-h_n) = F_{\mu}(x)$ for all $x\in\mathbb{R}$. Let $n\in\mathbb{N}$, $h_1\geq h_2\geq h_3\geq \cdots$ with $h_n\downarrow 0$ as $n\to\infty$, and $h_1>0$. There are three cases to consider.

(a) (x > 0): Choose $h_1 \in (0, x)$ and define $A_n = [0, x - h_n)$. Then, $A_1 \subset A_2 \subset \cdots$ and $\lim_{n \to \infty} A_n = \bigcup_{n \in \mathbb{N}} A_n = [0, x)$. By continuity of measure from below,

$$\lim_{n \to \infty} F_{\mu}(x - h_n) = \lim_{n \to \infty} \mu([0, x - h_n)) = \mu([0, x)) = F_{\mu}(x).$$

(b) (x = 0): Define $A_n = [-h_n, 0)$. Then, $A_1 \supset A_2 \supset \cdots$ and $\lim_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} A_n = \emptyset$. By continuity of measures from above, and given that $\mu([-h_1, 0)) < \infty$,

$$\lim_{n \to \infty} F_{\mu}(-h_n) = \lim_{n \to \infty} \mu([-h_n, 0)) = \mu(\emptyset) = 0 = F_{\mu}(0).$$

(c) (x < 0): Define $A_n = [x - h_n, 0)$. Then, $A_1 \supset A_2 \supset \cdots$ and $\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n = [x, 0)$. By continuity of measures from above and given that $\mu([x - h_1, 0)) < \infty$,

$$\lim_{n \to \infty} F_{\mu}(x - h_n) = \lim_{n \to \infty} -\mu([x - h_n, 0)) = -\mu([x, 0)) = F_{\mu}(x).$$

2. Let F_{μ} be defined as in question 1 and let $\nu_{F_{\mu}}(([a,b)) = F_{\mu}(b) - F_{\mu}(a)$ for all $a \leq b$, $a,b \in \mathbb{R}$. Show that $\nu_{F_{\mu}}$ extends uniquely to a measure on $\mathcal{B}(\mathbb{R})$ and $\nu_{F_{\mu}} = \mu$.

Answer: Recall that $S = \{[a,b) : a \leq b, a,b \in \mathbb{R}\}$ is a semi-ring (if $a = b, [a,a) = \emptyset$). Given F_{μ} , we define $\nu_{F_{\mu}} : S \to [0,\infty)$ as $\nu_{F_{\mu}}([a,b)) = F_{\mu}(b) - F_{\mu}(a)$ for all $a \leq b$. Since F_{μ} is monotonically increasing, $F_{\mu}(b) - F_{\mu}(a) \geq 0$ and $\nu_{F_{\mu}}([a,a) = \emptyset) = F_{\mu}(a) - F_{\mu}(a) = 0$. Also, $\nu_{F_{\mu}}$ is finitely additive since for a < c < b, we have that $[a,b) = [a,c) \cup [c,b)$ and $\nu_{F_{\mu}}([a,b)) = F_{\mu}(b) - F_{\mu}(a) = F_{\mu}(c) - F_{\mu}(a) + F_{\mu}(b) - F_{\mu}(c) = \nu_{F_{\mu}}([a,c)) + \nu_{F_{\mu}}([c,b))$. We now show that $\nu_{F_{\mu}}$ is σ -additive, i.e., for $[a_n,b_n)$, $n \in \mathbb{N}$ a disjoint collection such that $[a,b) = \bigcup_{n \in \mathbb{N}} [a_n,b_n)$, we have $\nu_{F_{\mu}}([a,b)) = \sum_{n \in \mathbb{N}} \nu_{F_{\mu}}([a_n,b_n))$. Fix ϵ_n , $\epsilon > 0$ and note that $(a_n - \epsilon_n,b_n) \supset [a_n,b_n)$. Hence, $\bigcup_{n \in \mathbb{N}} (a_n - \epsilon_n,b_n) \supset \bigcup_{n \in \mathbb{N}} [a_n,b_n) = [a,b) \supset [a,b-\epsilon]$. Since $\bigcup_{n \in \mathbb{N}} (a_n - \epsilon_n,b_n)$ is an open cover for the compact set $[a,b-\epsilon]$, by the Heine-Borel Theorem, there exists $N \in \mathbb{N}$ such that

$$\bigcup_{n=1}^{N} \left[a_n - \epsilon_n, b_n \right] \supset \bigcup_{n=1}^{N} \left(a_n - \epsilon_n, b_n \right) \supset \left[a, b - \epsilon \right] \supset \left[a, b - \epsilon \right). \tag{2.1}$$

Now, since $\bigcup_{n\in\mathbb{N}}[a_n,b_n)=[a,b)$ we have $\bigcup_{n=1}^N[a_n,b_n)\subset[a,b)$ and

$$\nu_{F_{\mu}}([a,b)) \ge \nu_{F_{\mu}}\left(\bigcup_{n=1}^{N} [a_n,b_n)\right) = \sum_{n=1}^{N} \nu_{F_{\mu}}\left([a_n,b_n)\right) \text{ by finite additivity.}$$

Hence, we have

$$0 \leq \nu_{F_{\mu}}([a,b)) - \sum_{n=1}^{N} \nu_{F_{\mu}}([a_{n},b_{n}))$$

$$= \nu_{F_{\mu}}([a,b-\epsilon)) + \nu_{F_{\mu}}([b-\epsilon,b)) - \sum_{n=1}^{N} \left(\nu_{F_{\mu}}([a_{n}-\epsilon_{n},b_{n})) - \nu_{F_{\mu}}([a_{n}-\epsilon_{n},a_{n}))\right)$$

$$= \nu_{F_{\mu}}([a,b-\epsilon)) - \sum_{n=1}^{N} \nu_{F_{\mu}}([a_{n}-\epsilon_{n},b_{n})) \text{ this term } < 0 \text{ by } (2.1)$$

$$+ \nu_{F_{\mu}}([b-\epsilon,b)) + \sum_{n=1}^{N} \nu_{F_{\mu}}([a_{n}-\epsilon_{n},a_{n}))$$

$$\leq \nu_{F_{\mu}}([b-\epsilon,b)) + \sum_{n=1}^{N} \nu_{F_{\mu}}([a_{n}-\epsilon_{n},a_{n})) = F_{\mu}(b) - F_{\mu}(b-\epsilon) + \sum_{n=1}^{N} (F_{\mu}(a_{n}) - F_{\mu}(a_{n}-\epsilon_{n})).$$

By left-continuity of F_{μ} , we can choose ϵ such that $F_{\mu}(b) - F_{\mu}(b - \epsilon) < \eta/2$ and ϵ_n such that $F_{\mu}(a_n) - F_{\mu}(a_n - \epsilon_n) < 2^{-n} \eta/2$. Hence,

$$0 \le \nu_{F_{\mu}}([a,b)) - \sum_{n=1}^{N} \nu_{F_{\mu}}([a_n,b_n)) \le \frac{\eta}{2} \left(1 + \sum_{n=1}^{N} 2^{-n}\right).$$

Letting $N \to \infty$ we have that $\nu_{F_{\mu}}([a,b)) = \sum_{n=1}^{\infty} \nu_{F_{\mu}}([a_n,b_n))$.

Since $\nu_{F_{\mu}}$ is a pre-measure on a semi-ring, by Carathéodory's Theorem, it has an extension to $\sigma(S) = \mathcal{B}(\mathbb{R})$. Furthermore, since for $n \in \mathbb{N}$, $[-n, n) \uparrow \mathbb{R}$ and $\nu_{F_{\mu}}([-n, n)) = F_{\mu}(n) - F_{\mu}(-n) = \mu([0, n)) + \mu([-n, 0)) < \infty$, this extension is unique.

To verify that $\nu_{F_{\mu}} = \mu$, it suffices to verify that $\nu_{F_{\mu}} = \mu$ on \mathcal{S} , since $\nu_{F_{\mu}}$ extends uniquely to $\mathcal{B}(\mathbb{R})$. There are three cases:

Case 1
$$(0 \le a < b)$$
: $\nu_{F_{\mu}}([a,b)) = F_{\mu}(b) - F_{\mu}(a) = \mu([0,b)) - \mu([0,a)) = \mu([0,a)) + \mu([a,b)) - \mu([0,a)) = \mu([a,b))$, since $[0,b) = [0,a) \cup [a,b)$,

Case 2
$$(a < 0 < b)$$
: $\nu_{F_{\mu}}([a, b)) = F_{\mu}(b) - F_{\mu}(a) = \mu([0, b)) + \mu([a, 0)) = \mu([a, b))$, since $[a, b) = [a, 0) \cup [0, b)$,

Case 3
$$(a < b \le 0)$$
: $\nu_{F_{\mu}}([a,b)) = F_{\mu}(b) - F_{\mu}(a) = -\mu([b,0)) + \mu([a,0)) = \mu([a,b))$, since $[a,b) = [a,0) - [b,0)$, which completes the proof.

3. If F is a distribution function, show that it can have an infinite number of jump discontinuities, but at most countably many.

Answer: A jump of F, denoted by $J_F(x)$ exists if $J_F(x) = F(x) - \lim_{h \to 0} F(x - h) > 0$ for h > 0. This happens if and only if $P(\{x\}) > 0$. Now, the collection of events $E_x := \{\{x\} : P(\{x\}) > 0\}$ is disjoint and all have positive probability. We now show that this collection is countable. Let $C_n = \{E_x : P(E_x) > \frac{1}{n} \text{ and } x \in \mathbb{R}\}$. The elements of C_n are disjoint events and

$$P\left(\bigcup_{x_m} E_{x_m}\right) = \sum_{m=1}^{\infty} P(E_{x_m}) = \infty,$$

where the last equality follows from the fact that $P(E_{x_m}) > 0$. So, it must be that C_n has finitely many elements. Also, $\{E_x\}_{x \in \mathbb{R}} = \bigcup_{n=1}^{\infty} C_n$, which is countable since it is a countable union of finite sets.

4. Show that $\lambda^1((a,b)) = b - a$ for all $a,b \in \mathbb{R}$, $a \le b$. State and prove the same for λ^n . **Answer:** Let a < b and note that $[a + \frac{1}{k}, b) \uparrow (a, b)$ as $k \to \infty$. Thus, by continuity of measures,

$$\lambda((a,b)) = \lim_{k \to \infty} \lambda([a+1/k,b)) = \lim_{k \to \infty} (b-a-1/k) = b-a.$$

Since $\lambda([a,b)) = b - a$, this proves that $\lambda(\{a\}) = 0$.

- 5. Consider the measure space $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \lambda^n)$. Show that for every $B \in \mathcal{B}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$, $x+B \in \mathcal{B}(\mathbb{R}^n)$ and that $\lambda^n(x+B) = \lambda^n(B)$. Note: $x+B := \{z : z = x+b, b \in B\}$. Answer: First, we need to show that $x+B \in \mathcal{B}(\mathbb{R}^n)$ for all $x \in \mathbb{R}^n$ and for all $B \in \mathcal{B}(\mathbb{R}^n)$. Let $\mathcal{A}_x = \{B \in \mathcal{B}(\mathbb{R}^n) : x+B \in \mathcal{B}(\mathbb{R}^n)\}$ and note that $\mathcal{A}_x \subset \mathcal{B}(\mathbb{R}^n)$. Also, \mathcal{A}_x is a σ -algebra associated with \mathbb{R}^n , since:
 - (a) $\mathbb{R}^n \in \mathcal{A}_x$ given that $x + b \in \mathbb{R}^n$ for all $b \in \mathbb{R}^n$ and $\mathbb{R}^n \in \mathcal{B}(\mathbb{R}^n)$,
 - (b) $B \in \mathcal{A}_x \implies x + B \in \mathcal{B}(\mathbb{R}^n) \implies (x + B)^c \in \mathcal{B}(\mathbb{R}^n)$. But since $(x + B)^c = x + B^c$ and $B^c \in \mathcal{B}(\mathbb{R}^n)$, $B^c \in \mathcal{A}_x$.
 - (c) $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{A}_x\implies x+A_n\in\mathcal{B}(\mathbb{R}^n)$ for all $n\in\mathbb{N}$. Since $\mathcal{B}(\mathbb{R}^n)$ is a σ -algebra $\bigcup_{n\in\mathbb{N}}(x+A_n)=x+\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{B}(\mathbb{R}^n)$. But since $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{B}(\mathbb{R}^n)$, $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}_x$.

Now, let $R^{n,h} = \times_{i=1}^n [l_i, u_i] \in \mathcal{I}^{n,h} \subset \mathcal{B}(\mathbb{R}^n)$ and note that $x + R^{n,h} \in \mathcal{I}^{n,h} \subset \mathcal{B}(\mathbb{R}^n)$. Hence, $R^{n,h} \in \mathcal{A}_x \implies x + R^{n,h} \in \mathcal{A}_x$. Hence,

$$\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{I}^{n,h}) \subset \mathcal{A}_x \subset \mathcal{B}(\mathbb{R}^n),$$

which implies that $x + B \in \mathcal{B}(\mathbb{R}^n)$ for all $x \in \mathbb{R}^n$ and for all $B \in \mathcal{B}(\mathbb{R}^n)$.

Now, set $v(B) = \lambda^n(x+B)$. If $B = \emptyset$, $v(\emptyset) = \lambda^n(x+\emptyset) = \lambda^n(\emptyset) = 0$. Also, for a pairwise disjoint sequence $\{A_n\}_{n\in\mathbb{N}}$, $v\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \lambda^n\left(x+\bigcup_{n\in\mathbb{N}}A_n\right) = \lambda^n\left(\bigcup_{n\in\mathbb{N}}(x+A_n)\right) = \sum_{n\in\mathbb{N}}\lambda^n(x+A_n) = \sum_{n\in\mathbb{N}}v(A_n)$. Hence, v is a measure and

$$v(R^{n,h}) = \lambda^n(x + R^{n,h}) = \prod_{i=1}^n (u_i + x_i - (l_i + x_i)) = \prod_{i=1}^n (u_i - l_i) = \lambda^n(R^{n,h}).$$

Hence, $v(R^{n,h}) = \lambda^n(R^{n,h})$ for every $R^{n,h} \in \mathcal{I}^{n,h}$. Since $\mathcal{I}^{n,h}$ is a π -system, generates $\mathcal{B}(\mathbb{R}^n)$ and admits an exhausting sequence $[-k,k) \uparrow \mathbb{R}^n$ with $\lambda^n([-k,k)^n) = (2k)^n < \infty$, we have by Carathéodory Theorem that $\lambda^n = v$ on $\mathcal{B}(\mathbb{R}^n)$.