
Chapter 2

Exercises

1. Let µ be a measure on (R,B(R)) such that µ([�n, n)) < 1 for all n 2 N. Define,

Fµ(x) :=

8
<

:

µ([0, x)) if x > 0,
0 if x = 0,
�µ([x, 0)) if x < 0.

Show that Fµ : R! R is monotonically increasing and left continuous.

Answer: Given that µ([�n, n)) < 1, Fµ takes values in R. First, we show that all
x < x

0, Fµ(x)  Fµ(x0). There are three cases to be considered

(a) (0  x < x
0): if 0 < x < x

0, Fµ(x0) � Fµ(x) = µ([0, x0)) � µ([0, x)). Since
[0, x0) = [0, x) [ [x, x0), �-additivity of µ gives µ([0, x0)) = µ([0, x)) + µ([x, x0)) or
µ([x, x0)) = µ([0, x0))�µ([0, x)) = Fµ(x0)�Fµ(x) � 0. If x = 0, Fµ(x0)�Fµ(0) =

µ([0, x0)) � 0.

(b) (x < 0  x
0): If x0

> 0, Fµ(x0) � Fµ(x) = µ([0, x0)) + µ([x, 0)) � 0. If x0 = 0,
Fµ(0)� Fµ(x) = µ([x, 0)) � 0.

(c) (x < x
0
< 0): Fµ(x0)�Fµ(x) = �µ([x0

, 0))+µ([x, 0)). Since [x, 0) = [x, x0)[[x0
, 0),

�-additivity of µ gives µ([x, 0)) = µ([x, x0)) + µ([x0
, 0)) or µ([x, 0))� µ([x0

, 0)) =

Fµ(x0)� Fµ(x) = µ([x, x0)) � 0.

Second, we must show that lim
n!1

Fµ(x � hn) = Fµ(x) for all x 2 R. Let n 2 N,
h1 � h2 � h3 � · · · with hn # 0 as n ! 1, and h1 > 0. There are three cases to
consider.
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(a) (x > 0): Choose h1 2 (0, x) and define An = [0, x � hn). Then, A1 ⇢ A2 ⇢ · · ·
and lim

n!1
An =

S
n2N

An = [0, x). By continuity of measure from below,

lim
n!1

Fµ(x� hn) = lim
n!1

µ([0, x� hn)) = µ([0, x)) = Fµ(x).

(b) (x = 0): Define An = [�hn, 0). Then, A1 � A2 � · · · and lim
n!1

An =
T
n2N

An = ;.

By continuity of measures from above, and given that µ([�h1, 0)) < 1,

lim
n!1

Fµ(�hn) = lim
n!1

µ([�hn, 0)) = µ(;) = 0 = Fµ(0).

(c) (x < 0): Define An = [x� hn, 0). Then, A1 � A2 � · · · and lim
n!1

An = \1
n=1An =

[x, 0). By continuity of measures from above and given that µ([x� h1, 0)) < 1,

lim
n!1

Fµ(x� hn) = lim
n!1

� µ([x� hn, 0)) = �µ([x, 0)) = Fµ(x).

2. Let Fµ be defined as in question 1 and let ⌫Fµ (([a, b)) = Fµ(b) � Fµ(a) for all a  b,
a, b 2 R. Show that ⌫Fµ extends uniquely to a measure on B(R) and ⌫Fµ = µ.

Answer: Recall that S = {[a, b) : a  b, a, b 2 R} is a semi-ring (if a = b, [a, a) = ;).
Given Fµ, we define ⌫Fµ : S ! [0,1) as ⌫Fµ([a, b)) = Fµ(b)�Fµ(a) for all a  b. Since
Fµ is monotonically increasing, Fµ(b)�Fµ(a) � 0 and ⌫Fµ([a, a) = ;) = Fµ(a)�Fµ(a) =

0. Also, ⌫Fµ is finitely additive since for a < c < b, we have that [a, b) = [a, c)[[c, b) and
⌫Fµ([a, b)) = Fµ(b)� Fµ(a) = Fµ(c)� Fµ(a) + Fµ(b)� Fµ(c) = ⌫Fµ([a, c)) + ⌫Fµ([c, b)).
We now show that ⌫Fµ is �-additive, i.e., for [an, bn), n 2 N a disjoint collection such
that [a, b) = [

n2N
[an, bn), we have ⌫Fµ([a, b)) =

P
n2N

⌫Fµ([an, bn)). Fix ✏n, ✏ > 0 and note

that (an � ✏n, bn) � [an, bn). Hence, [
n2N

(an � ✏n, bn) � [
n2N

[an, bn) = [a, b) � [a, b� ✏].
Since [

n2N
(an� ✏n, bn) is an open cover for the compact set [a, b� ✏], by the Heine-Borel

Theorem, there exists N 2 N such that

[N

n=1 [an � ✏n, bn) � [N

n=1(an � ✏n, bn) � [a, b� ✏] � [a, b� ✏). (2.1)

Now, since [n2N[an, bn) = [a, b) we have [N

n=1[an, bn) ⇢ [a, b) and

⌫Fµ([a, b)) � ⌫Fµ

�
[N

n=1[an, bn)
�
=

NX

n=1

⌫Fµ ([an, bn)) by finite additivity.
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Hence, we have

0  ⌫Fµ([a, b))�
NX

n=1

⌫Fµ ([an, bn))

= ⌫Fµ([a, b� ✏)) + ⌫Fµ([b� ✏, b))�
NX

n=1

�
⌫Fµ([an � ✏n, bn))� ⌫Fµ([an � ✏n, an))

�

= ⌫Fµ([a, b� ✏))�
NX

n=1

⌫Fµ([an � ✏n, bn)) this term < 0 by (2.1)

+ ⌫Fµ([b� ✏, b)) +
NX

n=1

⌫Fµ([an � ✏n, an))

 ⌫Fµ([b� ✏, b)) +
NX

n=1

⌫Fµ([an � ✏n, an)) = Fµ(b)� Fµ(b� ✏) +
NX

n=1

(Fµ(an)� Fµ(an � ✏n)).

By left-continuity of Fµ, we can choose ✏ such that Fµ(b)�Fµ(b� ✏) < ⌘/2 and ✏n such
that Fµ(an)� Fµ(an � ✏n) < 2�n

⌘/2. Hence,

0  ⌫Fµ([a, b))�
NX

n=1

⌫Fµ ([an, bn)) 
⌘

2

 
1 +

NX

n=1

2�n

!
.

Letting N ! 1 we have that ⌫Fµ([a, b)) =
P1

n=1 ⌫Fµ ([an, bn)).

Since ⌫Fµ is a pre-measure on a semi-ring, by Carathéodory’s Theorem, it has an exten-
sion to �(S) = B(R). Furthermore, since for n 2 N, [�n, n) " R and ⌫Fµ([�n, n)) =

Fµ(n)� Fµ(�n) = µ([0, n)) + µ([�n, 0))) < 1, this extension is unique.

To verify that ⌫Fµ = µ, it suffices to verify that ⌫Fµ = µ on S, since ⌫Fµ extends
uniquely to B(R). There are three cases:

Case 1 (0  a < b): ⌫Fµ([a, b)) = Fµ(b) � Fµ(a) = µ([0, b)) � µ([0, a)) = µ([0, a)) +

µ([a, b))� µ([0, a)) = µ([a, b)), since [0, b) = [0, a) [ [a, b),

Case 2 (a < 0 < b): ⌫Fµ([a, b)) = Fµ(b)� Fµ(a) = µ([0, b)) + µ([a, 0)) = µ([a, b)), since
[a, b) = [a, 0) [ [0, b),

Case 3 (a < b  0): ⌫Fµ([a, b)) = Fµ(b) � Fµ(a) = �µ([b, 0)) + µ([a, 0)) = µ([a, b)),
since [a, b) = [a, 0)� [b, 0), which completes the proof.

3. If F is a distribution function, show that it can have an infinite number of jump
discontinuities, but at most countably many.
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Answer: A jump of F , denoted by JF (x) exists if JF (x) = F (x) � lim
h!0

F (x � h) > 0

for h > 0. This happens if and only if P ({x}) > 0. Now, the collection of events
Ex := {{x} : P ({x}) > 0} is disjoint and all have positive probability. We now show
that this collection is countable. Let Cn = {Ex : P (Ex) >

1
n

and x 2 R}. The elements
of Cn are disjoint events and

P ([xmExm) =
1X

m=1

P (Exm) = 1,

where the last equality follows from the fact that P (Exm) > 0. So, it must be that Cn

has finitely many elements. Also, {Ex}x2R = [1
n=1Cn, which is countable since it is a

countable union of finite sets.

4. Show that �1((a, b)) = b� a for all a, b 2 R, a  b. State and prove the same for �n.

Answer: Let a < b and note that [a+ 1
k
, b) " (a, b) as k ! 1. Thus, by continuity of

measures,

�((a, b)) = lim
k!1

�([a+ 1/k, b) = lim
k!1

(b� a� 1/k) = b� a.

Since �([a, b)) = b� a, this proves that �({a}) = 0.

5. Consider the measure space (Rn
,B(Rn),�n). Show that for every B 2 B(Rn) and x 2

Rn, x+B 2 B(Rn) and that �n(x+B) = �
n(B). Note: x+B := {z : z = x+b, b 2 B}.

Answer: First, we need to show that x + B 2 B(Rn) for all x 2 Rn and for all
B 2 B(Rn). Let Ax = {B 2 B(Rn) : x + B 2 B(Rn)} and note that Ax ⇢ B(Rn).
Also, Ax is a �-algebra associated with Rn, since:

(a) Rn 2 Ax given that x+ b 2 Rn for all b 2 Rn and Rn 2 B(Rn),

(b) B 2 Ax =) x+B 2 B(Rn) =) (x+B)c 2 B(Rn). But since (x+B)c = x+B
c

and B
c 2 B(Rn), Bc 2 Ax.

(c) {An}n2N ⇢ Ax =) x + An 2 B(Rn) for all n 2 N. Since B(Rn) is a �-
algebra

S
n2N(x + An) = x +

S
n2NAn 2 B(Rn). But since

S
n2NAn 2 B(Rn),

S
n2NAn 2 Ax.

Now, let R
n,h = ⇥n

i=1[li, ui) 2 In,h ⇢ B(Rn) and note that x + R
n,h 2 In,h ⇢ B(Rn).

Hence, Rn,h 2 Ax =) x+R
n,h 2 Ax. Hence,

B(Rn) = �(In,h) ⇢ Ax ⇢ B(Rn),
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which implies that x+B 2 B(Rn) for all x 2 Rn and for all B 2 B(Rn).

Now, set v(B) = �
n(x+B). If B = ;, v(;) = �

n(x+;) = �
n(;) = 0. Also, for a pairwise

disjoint sequence {An}n2N, v
�S

n2NAn

�
= �

n
�
x+

S
n2NAn

�
= �

n
�S

n2N(x+ An)
�
=

P
n2N �

n(x+ An) =
P

n2N v(An). Hence, v is a measure and

v(Rn,h) = �
n(x+R

n,h) =
nY

i=1

(ui + xi � (li + xi)) =
nY

i=1

(ui � li) = �
n(Rn,h).

Hence, v(Rn,h) = �
n(Rn,h) for every R

n,h 2 In,h. Since In,h is a ⇡-system, generates
B(Rn) and admits an exhausting sequence [�k, k) " Rn with �

n([�k, k)n) = (2k)n <

1, we have by Carathéodory Theorem that �
n = v on B(Rn).
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