Chapter 3

Exercises

1. Suppose (Ω, \mathcal{F}) and $(\mathbb{Y}, \mathcal{G})$ are measure spaces and $f : \Omega \to \mathbb{Y}$. Show that: a) $I_{f^{-1}(A)}(\omega) = (I_A \circ f)(\omega)$ for all ω ; b) f is measurable if, and only if, $\sigma(\{f^{-1}(A) : A \in \mathcal{G}\}) \subset \mathcal{F}$.

Answer: a) For any subset $A \subset Y$, we have $f^{-1}(A) = \{\omega : f(\omega) \in A\}$. Then,

$$I_{f^{-1}(A)}(\omega) = I_{\{\omega: f(\omega) \in A\}}(\omega) = I_A(f(\omega)) = (I_A \circ f)(\omega).$$

- b) Since f is measurable, $f^{-1}(\mathcal{G}) \subset \mathcal{F}$. By monotonicity of σ -algebras, $\sigma(f^{-1}(\mathcal{G})) = \sigma(\{f^{-1}(A) : A \in \mathcal{G}\}) \subset \mathcal{F}$. Now, $\sigma(f^{-1}(\mathcal{G})) = f^{-1}(\sigma(\mathcal{G})) = f^{-1}(\mathcal{G}) \subset \mathcal{F}$. The last set containment implies measurability.
- 2. Show that for any function $f: \mathbb{X} \to \mathbb{Y}$ and any collection of subsets \mathcal{G} of \mathbb{Y} , $f^{-1}(\sigma(\mathcal{G})) = \sigma(f^{-1}(\mathcal{G}))$

Answer: $f^{-1}(\sigma(\mathcal{G}))$ is a σ -algebra associated with \mathbb{X} . Since $\mathcal{G} \subset \sigma(\mathcal{G})$, $f^{-1}(\mathcal{G}) \subset f^{-1}(\sigma(\mathcal{G}))$ and consequently $\sigma(f^{-1}(\mathcal{G})) \subset f^{-1}(\sigma(\mathcal{G}))$.

Now, as in Theorem 3.1, $\mathcal{U} = \{U \in 2^{\mathbb{Y}} : f^{-1}(U) \in \sigma(f^{-1}(\mathcal{G}))\}$ is a σ -algebra. By definition of \mathcal{U}

$$f^{-1}(\mathcal{U}) \subset \sigma(f^{-1}(\mathcal{G})).$$

Also, $\mathcal{G} \subset \mathcal{U}$ since $f^{-1}(\mathcal{G}) \subset f^{-1}(\mathcal{U}) \subset \sigma(f^{-1}(\mathcal{G}))$. Since \mathcal{U} is a σ -algebra we have that $\sigma(\mathcal{G}) \subset \mathcal{U}$. So,

$$f^{-1}(\sigma(\mathcal{G})) \subset f^{-1}(\mathcal{U}) \subset \sigma(f^{-1}(\mathcal{C})).$$

The last set containment combined with the reverse obtained on the last paragraph completes the proof.

- 3. Let $i \in I$ where I is an arbitrary index set. Consider $f_i : (X, \mathcal{F}) \to (X_i, \mathcal{F}_i)$.
 - (a) Show that for all i, the smallest σ -algebra associated with \mathbb{X} that makes f_i measurable is given by $f_i^{-1}(\mathcal{F}_i)$.
 - (b) Show that $\sigma\left(\bigcup_{i\in I} f_i^{-1}(\mathcal{F}_i)\right)$ is the smallest σ -algebra associated with X that makes all f_i simultaneously measurable.

Answer: a) f_i is measurable if $f_i^{-1}(\mathcal{F}_i) \subset \mathcal{F}$. But by monotonicity of $\sigma(\cdot)$ we have $\sigma(f_i^{-1}(\mathcal{F}_i)) = f_i^{-1}(\mathcal{F}_i) \subset \mathcal{F}$ since $f_i^{-1}(\mathcal{F}_i)$ is a σ -algebra. b) $f_i^{-1}(\mathcal{F}_i) \subset \mathcal{F}$ for all $i \in I$ because f_i is measurable. But any sub- σ -algebra of \mathcal{F} that makes all f_i measurable functions must contain all $f_i^{-1}(\mathcal{F}_i)$, i.e., $\bigcup_{i \in I} f_i^{-1}(\mathcal{F}_i)$. However, unions of σ -algebras are not necessarily σ -algebras. Hence, we consider $\sigma\left(\bigcup_{i \in I} f_i^{-1}(\mathcal{F}_i)\right)$, the smallest σ -algebra that makes all f_i simultaneously measurable.

- 4. Let $X: (\Omega, \mathcal{F}, P) \to (S, \mathcal{B}_S)$ where $S \subset \mathbb{R}^k$ and $\mathcal{B}_S = \{B \cap S : B \in \mathcal{B}^k\}$ be a random vector with $k \in \mathbb{N}$, and $g: (S, \mathcal{B}_S) \to (T, \mathcal{B}_T)$ be measurable where $T \subset \mathbb{R}^p$ with $p \in \mathbb{N}$. If Y = g(X), show that
 - (a) $\sigma(Y) := Y^{-1}(\mathcal{B}_T) \subset \sigma(X) := X^{-1}(\mathcal{B}_S),$
 - (b) if k = p and g is bijective, $\sigma(Y) = \sigma(X)$.

Answer: (a) $E \in Y^{-1}(\mathcal{B}_T) \implies E = Y^{-1}(B_T)$ for some $B_T \in \mathcal{B}_T$. Now,

$$E = \{\omega : Y(\omega) \in B_T\} = \{\omega : g(X(\omega)) \in B_T\} = \{\omega : X(\omega) \in g^{-1}(B_T)\}\$$
$$= X^{-1}(g^{-1}(B_T)).$$

Since g is measurable, $g^{-1}(B_T) \in \mathcal{B}_S$ and since X is a random vector $X^{-1}(g^{-1}(B_T)) \in \sigma(X) := X^{-1}(\mathcal{B}_S)$. Hence, $\sigma(Y) \subset \sigma(X)$.

(b) First, observe that since g is bijective, it must be that k = p and S = T. For any $B_T \in \mathcal{B}_T$,

$$g^{-1}(B_T) = g^{-1}(g(B))$$
 for some $B \subset S$
= $B \in \mathcal{B}_S$ since g^{-1} is an inverse function and g is measurable.

Hence, any $B_T \in \mathcal{B}_T$ is such that $B_T = g(B)$ where $B \in \mathcal{B}_S$. Similarly, due to the existence of the inverse g^{-1} , for any $B_S \in \mathcal{B}_S$, $B_S = g^{-1}(B)$ where $B \in \mathcal{B}_T$. Hence, if

 $\mathcal{C} := \{g^{-1}(B) : B \in \mathcal{B}_T\}$ then $\mathcal{B}_S \subset \mathcal{C}$. But measurability of g assures that $\mathcal{C} \subset \mathcal{B}_S$ Hence, $X^{-1}(\mathcal{B}_S) := \sigma(X) = X^{-1}(\mathcal{C}) = \{X^{-1}(g^{-1}(B)) : B \in \mathcal{B}_T\} = \sigma(Y)$.