
Chapter 4

Exercises

1. Prove Theorem 4.2.

Answer: Let f =
P

I

i=0 yiIAi and f =
P

J

j=0 yjIBj be standard representations of f
and g. Then,

f ± g =
IX

i=0

JX

j=0

(yi ± zj)IAi\Bj

and

fg =
IX

i=0

JX

j=0

(yizj)IAi\Bj

with (Ai \Bj)\ (Ai0 \Bj0) = ; whenever (i, j) 6= (i0, j0). After relabeling and merging
the double sums into single sums we have the result. The case for cf is obvious. f

simple implies f
+ and f

� are simple by definition, and since |f | = f
+ + f

�, |f | is
simple.

2. Show that if f is a non-negative measurable simple function, its integral, as defined in
Definition 4.3 is equal to Iµ(f).
Answer: Since f is simple and f  f , f is one of the simple functions (denoted by
�) appearing in Definition 21 of the class notes. Hence,

R
fdµ � Iµ(f). Also, if � is a

simple function such that �  f , by monotonicity of the integral of simple functions
we have Iµ(�)  Iµ(f), hence

sup
�

Iµ(�) :=

Z
fdµ  Iµ(f).

Combining the two inequalities we have
R
fdµ = Iµ(f).
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3. Let (X,F) be a measurable space and {µn}n2N be a sequence of measures defined on
it. Noting that µ =

P
n2N µn is also a measure on (X,F) (you don’t have to prove

this), show that

Z

X

fdµ =
X

n2N

Z

X

fdµn

for f non-negative and measurable.

Answer: First, let f = IF � 0 for F 2 F . Then, f is measurable and

Z

X

fdµ =

Z

X

IFdµ = µ(F ) =
X

n2N

µn(F ) =
X

n2N

Z

X

IFdµn =
X

n2N

Z

X

fdµn.

Hence, the result holds for indicator functions. Now, consider a simple non-negative
function f =

P
m

j=0 ajIAj where aj � 0 and Aj 2 F . Then,

Z

X

fdµ =

Z

X

mX

j=0

ajIAjdµ =
mX

j=0

aj

Z

X

IAjdµ =
mX

j=0

ajµ(Aj) =
mX

j=0

aj

X

n2N

µn(Aj)

=
X

n2N

mX

j=0

ajµn(Aj) =
X

n2N

Z

X

fdµn.

Hence, the result holds for simple non-negative functions. Lastly, let f be non-negative
and measurable. By Theorem 3.3 in the class notes, there exists a sequence {�n}n2N
of non-negative, non-decreasing, measurable simple function such that sup

n2N
�n = f . By

Beppo-Levi’s Theorem

Z

X

fdµ = sup
n2N

Z

X

�ndµ.
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Hence,
Z

X

fdµ = sup
n2N

Z

X

�ndµ = sup
n2N

1X

j=1

Z

X

�ndµj

= sup
n2N

sup
m2N

mX

j=1

Z

X

�ndµj since
R
X
�ndµj is nondecreasing.

= sup
m2N

sup
n2N

mX

j=1

Z

X

�ndµj = sup
m2N

lim
n!1

mX

j=1

Z

X

�ndµj

= sup
m2N

mX

j=1

lim
n!1

Z

X

�ndµj

= sup
m2N

mX

j=1

Z

X

lim
n!1

�ndµj by Beppo-Levi’s Theorem

= sup
m2N

mX

j=1

Z

X

fdµj =
X

j2N

Z

X

fdµj.

4. Let (X,F , µ) be a measure space and f : (X,F , µ) ! (R,B) be measurable and non-
negative. For every F 2 F consider

R
IFfdµ. Is this a measure?

Answer: Let v(F ) =
R
IFfdµ. Then v is a [0,1]-valued set function defined for

F 2 F . Then,

(a) I; = 0 and clearly v(;) = 0.

(b) Let F = [i2NFi be a union of pairwise disjoint sets in F . Then,
P1

i=1 IFi = IF

and

v(F ) =

Z  1X

i=1

IFi

!
fdµ =

Z  1X

i=1

IFif

!
dµ

=
1X

i=1

Z
IFifdµ =

1X

i=1

v(Fi)

.

5. Let (⌦,F , P ) be a probability space and {Fn}n2N ⇢ F .

(a) Prove that Ilim inf
n!1

Fn = lim inf
n!1

IFn and Ilim sup
n!1

Fn = lim sup
n!1

IFn .

(b) Prove that P

⇣
lim inf
n!1

Fn

⌘
 lim inf

n!1
P (Fn).

21



(c) Prove that lim sup
n!1

P (Fn)  P

✓
lim sup
n!1

Fn

◆
.

Answer: Part (a) is straightforward by noting that I\Fn = inf IFn and I[Fn =

sup IAn . (b) Part (a) combined with Fatou’s Lemma gives,

P (lim inf Fn) =

Z
Ilim inf FndP =

Z
lim inf IFndP  lim inf

Z
IFndP.

(c) Again, by Fatou’s Lemma (the reverse) we have,

P (lim supFn) =

Z
Ilim supFndP =

Z
lim sup IFndP � lim sup

Z
IFndP.
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