
Chapter 5

Exercises

1. Prove Theorem 4.2.

Answer: Let f =
P

I

i=0 yiIAi and f =
P

J

j=0 yjIBj be standard representations of f
and g. Then,

f ± g =
IX

i=0

JX

j=0

(yi ± zj)IAi\Bj

and

fg =
IX

i=0

JX

j=0

(yizj)IAi\Bj

with (Ai \Bj)\ (Ai0 \Bj0) = ; whenever (i, j) 6= (i0, j0). After relabeling and merging
the double sums into single sums we have the result. The case for cf is obvious. f

simple implies f
+ and f

� are simple by definition, and since |f | = f
+ + f

�, |f | is
simple.

2. Prove Theorem 4.10.

Answer: Since f = f
+ � f

� and f
+ and f

� are nonnegative, use Theorems 4.6 and
4.8 in your notes.

3. Use Markov’s inequality to prove the following for a > 0 and g : (0,1) ! (0,1) that
is increasing:

P (|X(!)| � a)  1

g(a)

Z
g(|X|)dP

Answer: Since g is increasing, {! : |X(!)| � a} = {! : g(|X(!)|) � g(a)}. Hence,
since g is positive

g(a)I{!:|X(!)|�a} = g(a)I{!:g(|X(!)|)�g(a)}  g(|X(!)|).
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Integrating both sides we have g(a)P ({! : |X(!)| � a}) 
R
g(|X(!)|)dP . This

completes the proof as g(a) > 0.

4. Let X be a random variable defined in the probability space (⌦,F , P ) with E(X2) < 1.
Consider a function f : R ! R. What restrictions are needed on f to guarantee that
f(X) is a random variable with E(f(X)2) < 1?

Answer: Recall that if X : (⌦,F , P ) ! (R,BR), we say that X is a random variable
(measurable real valued function) if, and only if, for all B 2 BR we have X

�1(B) 2 F .
Hence, if h(!) := f(X(!)) = (f �X)(!) : (⌦,F , P ) ! (R,BR) we require that for all
B 2 BR we have h

�1(B) = (f �X)�1(B) = X
�1(f�1(B)) 2 F . That is, f�1(B) 2 BR.

Since X is a random variable (measurable) and given that f�1(B) 2 BR for all B 2 BR,
f(X) is a random variable (measurable). Since the f 2 is a continuous function of f , f 2 is
also a random variable (measurable). Hence, we can consider the integrability (or not)
of f(X)2, i.e., whether or not E(f(X)2) < 1. We give two general restrictions on f

that give E(f(X)2) < 1. First, suppose that sup
!2⌦ |h(!)| = sup

!2⌦ |(f �X)(!)| < C.
Then, ����

Z
f
2
dP

���� 
Z

h
2
dP  C

2

Z
dP = C

2
.

Second, suppose that h
2  X

2 for all ! 2 ⌦. Then,
R
h
2
dP 

R
X

2
dP < 1.

Note that, in general, it is not true that E(f(X)2) < 1 even if E(X2) < 1. For
example, suppose that X ⇠ U [0, 1]. Then, E(X2) = 1/3. Now, let Y := f(X) =

tan
�
⇡(X � 1

2

�
) and we can easily obtain that the probability density of Y is

fY (y) =

����
d

dy
f
�1(y)

���� =
����
d

dy

✓
1

2
+

1

⇡
arctan(y)

◆���� =
1

⇡

1

1 + y2
, y 2 R.

But this is the Cauchy density and
R
y
2
fY (y)dy does not exist.

5. Let X : (⌦,F , P ) ! (R,B) be a random variable. Show that if V (X) := E ((X � E(X)))2 =

0 then X is a constant with probability 1.

Answer: From your notes, if
R
⌦ X

2
dP = 0 then X

2 = 0 almost everywhere. If N
is a null set

R
⌦ X

2
dP =

R
N
X

2
dP +

R
Nc X

2
dP =

R
N
X

2
dP +

R
Nc 0dP = 0. Thus,

P (X2 = x) = 0 for x 6= 0 and P (X2 = 0) = 1. But this is equivalent to P (X = 0) = 1.
Hence, V (X) = E ((X � E(X)))2 = 0 implies P (X�E(X) = 0) = P (X = E(X)) = 1.
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6. Consider the following statement:f is continuous almost everywhere if, and only if, it
is almost everywhere equal to an everywhere continuous function. Is this true or false?
Explain, with precise mathematical arguments.

Answer: False. Consider the function IQ(x), where x 2 R. This function is nowhere
continuous in R, but it is equal to 0 almost everywhere, an everywhere continuous
function. Alternatively, the function I[0,1)(x) is continuous everywhere except at {0},
a set of measure zero. So, it is continuous almost everywhere. However, there is no
everywhere continuous function in R that is equal I[0,1)(x) almost everywhere.

7. Adapt the proof of Lebesgue’s Dominated Convergence Theorem in your notes to show
that any sequence {fn}n2N of measurable functions such that limn!1 fn(x) = f(x)

and |fn|  g for some g with g
p nonnegative and integrable satisfies

lim
n!1

Z
|fn � f |pdµ = 0.

Answer: (3 points) First, note that |fn � f |p  (|fn| + |f |)p. Since |fn � f | ! 0 we
have that |fn| ! |f |. Consequently, for all ✏ > 0 there exists N✏ 2 N such that for
n � N✏ we have

|fn|� ✏  |f |  |fn|+ ✏  g + ✏

since |fn| < g. Consequently, |f |  g, |f |p  g
p and |fn � f |p  2pgp where g

p is
nonnegative and integrable. Now, letting �n = |fn � f |p we have that lim

n!1
�n = 0 and

by Lebesgue’s dominated convergence theorem in the class notes

lim
n!1

Z

X

�ndµ =

Z

X

lim
n!1

�ndµ = 0.

8. Let � be the one-dimensional Lebesgue measure for the Borel sets of R. Show that for
every integrable function f , the function

g(x) =

Z

(0,x)

f(t)d�, for x > 0

is continuous.
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Answer: Consider a sequence {yn}n2N with 0 < x < yn such that lim
n!1

yn = x. Then,

g(yn)� g(x) =

Z

(0,yn)

fd��
Z

(0,x)

fd� =

Z

(0,1)

I(0,yn)fd��
Z

(0,1)

I(0,x)fd�

=

Z

(0,1)

(I(0,yn) � I(0,x))fd� =

Z

(0,1)

I(x,yn)fd�

|g(yn)� g(x)| 
Z

(0,1)

I[x,yn)|f |d�.

Now, I[x,yn)|f |  |f | and
R
(0,1) |f |d� < 1 since f is integrable. Also, lim

n!1
I[x,yn)f = 0

almost everywhere (ae). Thus, by dominated convergence in the class notes

lim
n!1

|g(yn)� g(x)|  lim
n!1

Z

(0,1)

I(x,yn)|f |d�

=

Z

(0,1)

lim
n!1

I(x,yn)|f |d� = 0.

By repeating the argument for yn " x we obtain continuity of g at x.

9. Show that if X is a random variable with E(|X|p) < 1 then |X| is almost everywhere
real valued.

Answer: Let N = {! : |X(!)| = 1} = {! : |X(!)|p = 1}. Then N = \n2N{! :

|X(!)|p � n}. Then,

P (N) = P (\n2N{! : |X(!)|p � n})

= lim
n!1

P ({! : |X(!)|p � n}) by continuity of probability measures

 lim
n!1

1

k

Z

⌦

|X|pdP by Markov’s Inequality

= 0 since
R
⌦ |X|pdP is finite.

10. Suppose X : (⌦,F , P ) ! (R,B) is a random variable with E(|X|) < 1. Let N 2 F
be such that P (N) = 0 and define

Y (!) =

⇢
X(!) if ! /2 N

c if ! 2 N
,

where c 2 R. Is Y integrable? Is E(X) = E(Y )?

Answer: Yes, for both questions. We can change an integrable random variables at
any set of measure zero without changing the integral.
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