Chapter 5

Exercises

1. Prove Theorem 4.2.

Answer: Let $f = \sum_{i=0}^{I} y_i I_{A_i}$ and $f = \sum_{j=0}^{J} y_j I_{B_j}$ be standard representations of f and g. Then,

$$f \pm g = \sum_{i=0}^{I} \sum_{j=0}^{J} (y_i \pm z_j) I_{A_i \cap B_j}$$

and

$$fg = \sum_{i=0}^{I} \sum_{j=0}^{J} (y_i z_j) I_{A_i \cap B_j}$$

with $(A_i \cap B_j) \cap (A_{i'} \cap B_{j'}) = \emptyset$ whenever $(i, j) \neq (i', j')$. After relabeling and merging the double sums into single sums we have the result. The case for cf is obvious. f simple implies f^+ and f^- are simple by definition, and since $|f| = f^+ + f^-$, |f| is simple.

2. Prove Theorem 4.10.

Answer: Since $f = f^+ - f^-$ and f^+ and f^- are nonnegative, use Theorems 4.6 and 4.8 in your notes.

3. Use Markov's inequality to prove the following for a>0 and $g:(0,\infty)\to(0,\infty)$ that is increasing:

$$P(|X(\omega)| \ge a) \le \frac{1}{g(a)} \int g(|X|) dP$$

Answer: Since g is increasing, $\{\omega : |X(\omega)| \ge a\} = \{\omega : g(|X(\omega)|) \ge g(a)\}$. Hence, since g is positive

$$g(a)I_{\{\omega:|X(\omega)|\geq a\}} = g(a)I_{\{\omega:g(|X(\omega)|)\geq g(a)\}} \leq g(|X(\omega)|).$$

Integrating both sides we have $g(a)P(\{\omega : |X(\omega)| \ge a\}) \le \int g(|X(\omega)|)dP$. This completes the proof as g(a) > 0.

4. Let X be a random variable defined in the probability space (Ω, \mathcal{F}, P) with $E(X^2) < \infty$. Consider a function $f : \mathbb{R} \to \mathbb{R}$. What restrictions are needed on f to guarantee that f(X) is a random variable with $E(f(X)^2) < \infty$?

Answer: Recall that if $X: (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, we say that X is a random variable (measurable real valued function) if, and only if, for all $B \in \mathcal{B}_{\mathbb{R}}$ we have $X^{-1}(B) \in \mathcal{F}$. Hence, if $h(\omega) := f(X(\omega)) = (f \circ X)(\omega) : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ we require that for all $B \in \mathcal{B}_{\mathbb{R}}$ we have $h^{-1}(B) = (f \circ X)^{-1}(B) = X^{-1}(f^{-1}(B)) \in \mathcal{F}$. That is, $f^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$.

Since X is a random variable (measurable) and given that $f^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$ for all $B \in \mathcal{B}_{\mathbb{R}}$, f(X) is a random variable (measurable). Since the f^2 is a continuous function of f, f^2 is also a random variable (measurable). Hence, we can consider the integrability (or not) of $f(X)^2$, i.e., whether or not $E(f(X)^2) < \infty$. We give two general restrictions on f that give $E(f(X)^2) < \infty$. First, suppose that $\sup_{\omega \in \Omega} |h(\omega)| = \sup_{\omega \in \Omega} |(f \circ X)(\omega)| < C$. Then,

$$\left| \int f^2 dP \right| \le \int h^2 dP \le C^2 \int dP = C^2.$$

Second, suppose that $h^2 \leq X^2$ for all $\omega \in \Omega$. Then, $\int h^2 dP \leq \int X^2 dP < \infty$.

Note that, in general, it is not true that $E(f(X)^2) < \infty$ even if $E(X^2) < \infty$. For example, suppose that $X \sim U[0,1]$. Then, $E(X^2) = 1/3$. Now, let $Y := f(X) = \tan\left(\pi(X-\frac{1}{2})\right)$ and we can easily obtain that the probability density of Y is

$$f_Y(y) = \left| \frac{d}{dy} f^{-1}(y) \right| = \left| \frac{d}{dy} \left(\frac{1}{2} + \frac{1}{\pi} \arctan(y) \right) \right| = \frac{1}{\pi} \frac{1}{1 + y^2}, \ y \in \mathbb{R}.$$

But this is the Cauchy density and $\int y^2 f_Y(y) dy$ does not exist.

5. Let $X : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$ be a random variable. Show that if $V(X) := E((X - E(X)))^2 = 0$ then X is a constant with probability 1.

Answer: From your notes, if $\int_{\Omega} X^2 dP = 0$ then $X^2 = 0$ almost everywhere. If N is a null set $\int_{\Omega} X^2 dP = \int_{N} X^2 dP + \int_{N^c} X^2 dP = \int_{N} X^2 dP + \int_{N^c} 0 dP = 0$. Thus, $P(X^2 = x) = 0$ for $x \neq 0$ and $P(X^2 = 0) = 1$. But this is equivalent to P(X = 0) = 1. Hence, $V(X) = E((X - E(X)))^2 = 0$ implies P(X - E(X)) = 0 = P(X = E(X)) = 1.

6. Consider the following statement: f is continuous almost everywhere if, and only if, it is almost everywhere equal to an everywhere continuous function. Is this true or false? Explain, with precise mathematical arguments.

Answer: False. Consider the function $I_{\mathbb{Q}}(x)$, where $x \in \mathbb{R}$. This function is nowhere continuous in \mathbb{R} , but it is equal to 0 almost everywhere, an everywhere continuous function. Alternatively, the function $I_{[0,\infty)}(x)$ is continuous everywhere except at $\{0\}$, a set of measure zero. So, it is continuous almost everywhere. However, there is no everywhere continuous function in \mathbb{R} that is equal $I_{[0,\infty)}(x)$ almost everywhere.

7. Adapt the proof of Lebesgue's Dominated Convergence Theorem in your notes to show that any sequence $\{f_n\}_{n\in\mathbb{N}}$ of measurable functions such that $\lim_{n\to\infty} f_n(x) = f(x)$ and $|f_n| \leq g$ for some g with g^p nonnegative and integrable satisfies

$$\lim_{n \to \infty} \int |f_n - f|^p d\mu = 0.$$

Answer: (3 points) First, note that $|f_n - f|^p \le (|f_n| + |f|)^p$. Since $|f_n - f| \to 0$ we have that $|f_n| \to |f|$. Consequently, for all $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that for $n \ge N_{\epsilon}$ we have

$$|f_n| - \epsilon \le |f| \le |f_n| + \epsilon \le g + \epsilon$$

since $|f_n| < g$. Consequently, $|f| \le g$, $|f|^p \le g^p$ and $|f_n - f|^p \le 2^p g^p$ where g^p is nonnegative and integrable. Now, letting $\phi_n = |f_n - f|^p$ we have that $\lim_{n \to \infty} \phi_n = 0$ and by Lebesgue's dominated convergence theorem in the class notes

$$\lim_{n \to \infty} \int_{\mathbb{X}} \phi_n d\mu = \int_{\mathbb{X}} \lim_{n \to \infty} \phi_n d\mu = 0.$$

8. Let λ be the one-dimensional Lebesgue measure for the Borel sets of \mathbb{R} . Show that for every integrable function f, the function

$$g(x) = \int_{(0,x)} f(t)d\lambda$$
, for $x > 0$

is continuous.

Answer: Consider a sequence $\{y_n\}_{n \in \mathbb{N}}$ with $0 < x < y_n$ such that $\lim_{n \to \infty} y_n = x$. Then,

$$g(y_n) - g(x) = \int_{(0,y_n)} f d\lambda - \int_{(0,x)} f d\lambda = \int_{(0,\infty)} I_{(0,y_n)} f d\lambda - \int_{(0,\infty)} I_{(0,x)} f d\lambda$$

$$= \int_{(0,\infty)} (I_{(0,y_n)} - I_{(0,x)}) f d\lambda = \int_{(0,\infty)} I_{(x,y_n)} f d\lambda$$

$$|g(y_n) - g(x)| \leq \int_{(0,\infty)} I_{[x,y_n)} |f| d\lambda.$$

Now, $I_{[x,y_n)}|f| \leq |f|$ and $\int_{(0,\infty)} |f| d\lambda < \infty$ since f is integrable. Also, $\lim_{n \to \infty} I_{[x,y_n)} f = 0$ almost everywhere (ae). Thus, by dominated convergence in the class notes

$$\lim_{n \to \infty} |g(y_n) - g(x)| \le \lim_{n \to \infty} \int_{(0,\infty)} I_{(x,y_n)} |f| d\lambda$$
$$= \int_{(0,\infty)} \lim_{n \to \infty} I_{(x,y_n)} |f| d\lambda = 0.$$

By repeating the argument for $y_n \uparrow x$ we obtain continuity of g at x.

9. Show that if X is a random variable with $E(|X|^p) < \infty$ then |X| is almost everywhere real valued.

Answer: Let $N = \{\omega : |X(\omega)| = \infty\} = \{\omega : |X(\omega)|^p = \infty\}$. Then $N = \bigcap_{n \in \mathbb{N}} \{\omega : |X(\omega)|^p \ge n\}$. Then,

$$\begin{split} P\left(N\right) &= P\left(\bigcap_{n \in \mathbb{N}} \{\omega : |X(\omega)|^p \geq n\}\right) \\ &= \lim_{n \to \infty} P\left(\{\omega : |X(\omega)|^p \geq n\}\right) \text{ by continuity of probability measures} \\ &\leq \lim_{n \to \infty} \frac{1}{k} \int_{\Omega} |X|^p dP \text{ by Markov's Inequality} \\ &= 0 \text{ since } \int_{\Omega} |X|^p dP \text{ is finite.} \end{split}$$

10. Suppose $X:(\Omega,\mathcal{F},P)\to(\mathbb{R},\mathcal{B})$ is a random variable with $E(|X|)<\infty$. Let $N\in\mathcal{F}$ be such that P(N)=0 and define

$$Y(\omega) = \begin{cases} X(\omega) & \text{if } \omega \notin N \\ c & \text{if } \omega \in N \end{cases},$$

where $c \in \mathbb{R}$. Is Y integrable? Is E(X) = E(Y)?

Answer: Yes, for both questions. We can change an integrable random variables at any set of measure zero without changing the integral.