Chapter 7

Exercises

1. Let {X, }nenw C LP for p € [1,00) be a sequence of non-negative functions. Show that
1D Xl < D 1%l
n=1 n=1

Answer: Let S, = 25:1 X,. Since X,, > 0foralln, 0 < S; <8y < ---. Given
that [Sy[? < 223N | [X,|P. we have [, |Sy[PdP <203 [ |X,[?dP < oo. Conse-
quently, Sy € LP. By Minkowski’s inequality

N ('s)
1Snllp < D 11Xl <D 11Xl (7.1)
n=1 n=1

which implies [|Sy|[? < (3°07, [ Xallp)”. By Beppo-Levi’s Theorem

supHSzvﬂg—Sup/SﬁfdP—/supSﬁ,dP—/sup <ZX> dP
nelN nelN Q nelN Q nelN
:/ <supZX> P = |3 X, (7.2)
n=1

nelN

Hence, by inequality (7.1)) and ((7.2)) we have

o) [e'e) p
SEHQHSN\ P=1) Xl < (Z HXan>
n n=1 n=1

Consequently, || 32,2 Xullp < 3202 1 Xanllp-
2. Show that if ) 2, converges absolutely, then it converges.
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Answer: Suppose N1, Ny € N, N; < Ny and > x, converges absolutely. Note that
nelN

ZnNil |Tn| — 25;1 |zn| = ZnNiN1+1 |z,|. If N — oo, then Zg; |z | — 25;1 |[zn| — 0,

as every convergent sequence is Cauchy. Also, since

N2
TNy 41+ T+ | <D ),
n=N1+1
No N, Ny
\Zmn—zxn\leN1+1+xN2+1+--~xN2|§ Z |2n| = 0.
n=1 n=1 n=N1+1

: . : N
Since R is complete, Nh_)]rr;O > _| T CONVETgES.

. Prove Theorem 7.9.

Answer: Let’s first prove that 1 = 2. If {X,, },,en is uniformly integrable, then X,
is clearly integrable for all n, and consequently F|X,| < oo for all n. By the proof of
Theorem 7.3, X,, & X implies that there exists a subsequence Xn() B X as j — oo.

By Fatou’s Lemma
E|X|=F <liminf|Xn(j)]) < liminfE| X, ;)| < supE|X,| < oo,
J—00 J]—00 n

where the last inequality follows from Theorem 7.6. Now, for € > 0 let A,, = {|X,, —
X| > €}

E|Xn - X’ = E(|Xn - X|I\Xn—X\<E + |Xn - X|]\Xn—X|26)
< e+ E(|Xnl|la,) + E(|X]14,).

P(A,) = 0asn — oo, hence E(|X,,|14,) — 0 by Theorem 7.6. Similarly, F(|X|14,) —

0, which gives the result.
That 2 = 3 follows from the fact that by the triangle inequality F|X,| — F|X]| <
E|Xn_X‘ and _(E|Xn’_E|X|) > _E|Xn_X|7 hence |E|Xn|_E|X|| < E|Xn_X|

Now we prove that 3 = 1. Note that E(|X,|/x,za) = E|Xs| — E(|Xallx,1<a) =
BIXul = B(Xallazxyea) = EIXa| — E((X,)), if we let u(@) = |2l an(x). By
Theorem 7.15 X,, & X — X, % X. But since u(z) is bounded and continuous, we
have that using Definition 7.5 and by Theorem 7.11,

E(u(Xy)) = E(u(X))
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if a and —a are points of continuity of the distribution Fx of X. Hence, for a a point

of continuity of F'y, we have
E(|Xnllx,12a) = E(| X[ x>0)-

For any € > 0 there exists a point of continuity b of Fx such that E(|X|/jx>5) < €.
Using this b and E(|.X,|/|x,>5) = E|Xn| — E(|Xn|I_s<x,<s) there exists N such that
foralln > N,

E(| Xl x,1>b) < 2.

Also, there exists ¢ > 0 such that F(| X[/ x,|>c) < 2¢ for all £ < N since there are only

finitely many terms involved. Hence, if a > max{b, ¢} we have uniform integrability.

4. Let {gn}n=12.. be a sequence of real valued functions that converge uniformly to g on
an open set S, containing x, and ¢ is continuous at z. Show that if {X, },—12.. is a

sequence of random variables taking values in S such that X,, = X, then
9n(Xn) 7 g(X).

Note: Recall that a sequence of real valued functions {g, },—12,.. converges uniformly
to g on a set S if, for every € > 0 there exists N, € IN (depending only on €) such that
for all n > N, |gn(z) — g(z)| < € for every z € S.

Answer: Let €, > 0 and define the following subsets of the sample space: S} = {w :
|9n(Xn) —g(X)| <€}, S5 ={w : |gn(Xn) —g(Xn)| < €/2}, S5 = {w : [9(Xn) —g(X)| <
€/2}, S} = {w : X,, € S}. By the triangle inequality, S} 2 S¥ N S¥. By continuity
of g at X and openness of S, there exists 7. such that whenever | X, — X| < 7.,
l9(X,) — g(X)] < ¢/2 and X,, € S. Letting, St = {w : |X,, — X| < 7}, we
see that SP C S¥ N Sy. Since X, % X and uniform convergence of g,, there ex-
ists N5, such that whenever n > Ns., |g.(X) — g(X)| < €/2 for all X € S and
P(S?) > 1—9. Thus, n > N;, implies S} C S7. Consequently, n > N;. implies
St D SENSE D SN Sy DSE. Thus, P(S}) > P(SE) > 1—6.

5. Show that X,, = X is equivalent to P ({w : sup;s, | X; — X| > €e}) — 0 for all e > 0 as n — oco.
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Answer: For any € > 0 and k£ € IN let Ag(e) = {w : | Xi(w) — X (w)| > €}. If for all
n € IN we have that P (Ugs,Ag(€)) > 0 then it must be that X,, % X. Consequently,

X, B3 X < lim P (UppAr(e)) =0

n—oo

& P({w:sup]Xj—X\>e})—>0asn—>oo.

j=n

. Prove item 1 of Remark 7.1.

Answer: For € > 0 we have that
{w: | Xp+Y, =X =Y|>e} CH{w: | X, — X|>¢/2} U{w: |V, - Y] >¢€/2}

The probability of the events on the union on right-hand side go to zero as n — oc.

By monotonicity of probability measures we have the results.
. Let n € N and h,, > 0 such that h, — 0 as n — oo. Show that if > 7 P({w :
| X, — X| > hy,}) < oo then X,, & X.

Answer: From question 5,

X, B X < lim P (UperAr(hy)) = 0.
n—oo

But P (Up<xAx(hy)) < Zkz” P(Ag(e)) and if > 7 P{{w : |X, — X| > h,}) < o0
then it must be that lim ), . P(Ax(e)) = 0. Since convergence almost surely implies
n—oo -

convergence in probability, the proof is complete.

. Show that if ¥, % Y then Y, = O,(1).

Answer: Without loss of generality let a > 0. Provided that a and —a are continuity
points of Fy, we can write that,P(|Y,| > a) — P(|Y| > a) as n — oco. Hence, for every
€ > 0 there exists NV, such that,

|P(|Y,| > a) — P(|Y]| > a)| <eforalln> N,

or
P(Y|>a)—e< P(|Y,| >a) < P(JY|>a)+e.
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10.

We can choose a such that P(|Y| > a) < § for any 6 > 0. Thus, P(|Y,| > a) < +¢€
for all n > N..

Let g : S € R be continuous on S, and X; and X, be random variables defined on
(Q, F, P) taking values in S. Show that: a) if X; is independent of X, then g(X;)
is independent of ¢(Xj); b) if X; and X are identically distributed, then ¢(X;) and
g(X) are identically distributed.

Answer: Let Y; = g(X;) and Y; = g(X;). g continuous assures that both Y; and Yj

are random variables.

a) Iy, y,(a,b) = P(S ={w:Y; <aand Y; <b}). Let S; = {X}(w) : Yi(w) <a},Ss =
{Xs(w) : Ys(w) < b}. Since, S = S; N Ss and by independence P(S) = P(S;)P(Ss)
which implies Fy, y,(a,b) = Fy,(a)Fy,(b).

b) Fy,(a) = P(5) = P({Xs(w) : Y(w) < a}) = Fy,(a).

Let {X,} be a sequence of independent random variables that converges in probability

to a limit X. Show that X is almost surely a constant.

Answer: Recall that if X is almost surely a constant, say ¢, P({w : X(w) # ¢}) = 0.
Then, the distribution function F' associated with X is given by

if
F(x):{o, ifx<ec

1, ifx>c

If X is not a constant, there exists a ¢ and 0 < € < 1/2 such that P(X < ¢) > 2¢
and P(X < c+e€) <1—2o0r P(X >c+e¢) > 2 Since X,, > X than X, 4 X,

Consequently, for n sufficiently large and ¢ a point of continuity of F' we have
F(c)—e< F,(c) < F(c) +e¢

which implies that € < F,(c¢). Also, 1 — F,,(c+¢€) > 1 — F(c + €) — € which implies
P(X, >c+¢€ > P(X >c+e) —e>e Since X, 2 X, for n sufficiently large
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11.

12.

13.

P{w:|X, — Xi| >€}) <€ Since {w: | X, —Xs| >e} ={w: X, — X, >e} U{w:
X, — X < —€} we note that if X, < cand X > ¢+ € then X, — X, > € is equivalent
to X, — X, < —e. Consequently,

P{w: | X, = Xs| >€}) < P{w: X, <cand X > c+e€}).

But since X, and X, are independent P({w : X, < cand X; > c+¢€}) = P{w: X, <
cHP({w: X > c+€}) > €% Hence,

&> P({w:|X, — X,| >€}) > &,

a contradiction.

., d .
Suppose Xg £ = Z where the non-random sequence o, — 0 as n — oo, and ¢ is a

function which is differentiable at . Then, show that W Ny

n

Answer: From question 2, if Z, 7 then Z, = 0,(1). Let Z, = XZ—;“ and write
Xy =+ 0,2, = p+ Op(0y,). By Taylor’s Theorem

L o) — 9lp) = g(”(u)M

On On

+ 0p(1).

. _,d
Since @ — 7, we have the result.

Show that if {X,},ew and X are random variables defined on the same probability
space and » > s > 1 and X, i> X, then X, L> X.

Answer: For arbitrary W let Z = |[W|*, Y = 1 and p = r/s. Then, by Holder’s
Inequality

EIZY | < 1 Z[LIY /-1
Substituting Z and Y gives E(|W|*) < E(|W|*?)Y/? = E(|]W
to 1/s gives

s5)*/". Raising both sides

E(W[*)' < BE(W[)".
Setting W = X,, — X and taking limits as n — oo gives the result.

Let £ := {X : Q@ — R such that, there exists C' > 0, with P({w : | X(w)| > C}) =
0}. For this space of random variables define the norm || X ||« = inf{C > 0: P({w :
| X (w)| > C}) = 0}. Establish that this space is complete.
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Answer: If {X,},en is a Cauchy sequence in L, we can set
Apy = {1Xe] > | Xilloo} U {1 Xk = Xo > | X0 — Xilloo}, A= | Apae
klEN

By definition P(Ag;) = 0 and P(A) = 0, so that || X, /4]l = 0 for all n. On the set
A° { X, }new converges uniformly to a bounded function X, i.e., X1 € LF as well as
(X, — X)1acl|oo — 0.
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Chapter 8

Exercises

1. Let U and V be two points in an n-dimensional unit cube, i.e., [0,1]" and X,, be the

Euclidean distance between these two points which are chosen independently and uni-

X, P 1
formly. Show that N ARV
Answer: Let U’ = (U --- U, JandV'=(V; --- V, ). Then, X, = (X1, (U; — V;)2)/?

and we can write

ZE U; — V;)? // u—v)*dudv = 1/6

where the last equality follows from routine integration. Then, since E(|(U — V)?|) =

E((U —V)?) < oo, by Kolmogorov’s Law of Large Numbers

1 1<
“X2=2N (U, -V)2 5 1/6.
n=D )? 51/

n 5
=1
Since, f(z) = z'/? is a continuous function [0, 00), by Slutsky Theorem if 1 X2 = 1/6
then f (% n) f(1/6). Consequently,
1
—X
Vn

2. Show that if { X} jew be a sequence of random variables with £(X;) = 0and 37 SE(|X;lP) <

oo for some p > 1 and a sequence of positive constants {a;}en. Then,

2 1/V6.

ZP|X|>a] < oo and Z |EX]{w\X\<a]})|<OO
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Furthermore, for any r > p,

<1
27 (X" T x5 1<a51) <
7=1 J

Use this result to prove Theorem 8.4 in your class notes with convergence in probability.

Answer: Note that
P({w:|Xj] >a;}) =1 - P({w: |Xj] <a;}) = /Q (1 = Iwixy)<asy) AP,

Ifwe {w:|X;] <a;}, then P({w: |X)| > a;}) = 0. If |[Xj| > aj, then |X;[P > o and
| X;|P/a% > 1. Hence,

1
P 11> a)) < [ IXP/aip = SE(XP)
J

and
o0 o0 1
D PUw: X > a}) < D SE(IX)) <
=1 =1
Now,
1 1 )
;\E(Xjf{w:|xj|§aj})| = ;|E(Xj) — E(Xjl{ux;|<a;3)]; since E(X;) = 0.
J J
1
< —F (|Xt|(1 - [{M\Xﬂéaa’})
a;
1 p .
<= (|X P(1— It 1X,|<a; }) since l)ijpl > ? if p>1.
aj j i
1 P
< P B (|1X5]7).
j
Hence,
o0 1 [e.e] 1 p
Za— (X e x;1<a, )] Z—p (1X;17)
j=1 j=1 J

Lastly, if |X;| < a; we have that aij\Xj| < 1. Then, forr >p>1

1, 1 1
Xl iz S 51X Twixg e S 1 XGH wix 12053
J 7 J

1. 1
E <7|Xj| f{wz|xj|3aj}) <FE <—p|Xj|pf{w:|Xj|Saj}) :
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Hence,
Z ( |1 L, |<aj}>

In Theorem 8.4, the sequence of random variables {X,};en is independent and has
expectation p;. Hence, if W; := X; — p;, we have E(W;) = 0. Furthermore, in
Theorem 8.4 it is assumed that for some § > 0

> E(IW.|1+o

A

7146
=1 )

1+5) 146
Now, note that for any n € IN we have Z I:ﬁlg < Z] 1 |Ij/‘1/+‘§ ) and

B(w'*) _ = B(WM)
T}E{}oz i+o ) < Jim > =55 < oo
j=1
Now, in the first part of this answer, take a; = n for all j and for any r > 1+ 4. Then,

we have

ZP|W|>n <ooandz E(W;|" Lww;1<ny) <

Hence, taking r = 2 the conditions on Theorem 8.2 are met and we have

n

1 & 1 & 1 AN
- Z Wj_ﬁ Z E (Wilww, <ny) = - Z(Xj_/v‘j)_ﬁ Z E (W;lwiw;i<ny) = 0p(1).
j=1 i=1 j=1 i=1

But since E(W;) = 0, we have E (Wl w,<n}) — 0 as n — oo. Thus, %Z?ZI(XJ- -
i) = op(1).
. Let {X;}i—23,... be a sequence of independent random variables such that

1 1
- P 1-
2ilog i

1log1
Show that 237" ) X; 5 0.
Answer: Let S, = >, X; and note that E(X;) = 0. Hence, by independence

2

U’ n
ZE :;bgiglogn'

Hence, V(S,/n) = 5V(S,) = 5E(S2) < 5 = — 0 asn — oo. Consequently,

logn 1og n

%Sn % 0 by Chebyshev’s mequahty.
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Chapter 9

Exercises

1. Assess the veracity of the following statement: “Since knowledge of X implies knowl-
edge of f(X), conditioning on X is the same as conditioning on f(X). Hence, E(Y|f(X)) =

E(Y|X).” Explain using mathematical arguments.

Answer: The statement is false. Recall that conditioning on a random variable
X means conditioning on the sub-o-algebra generated by X, i.e., X *(B). Hence,
conditioning on f(X) means conditioning on the sub-c-algebra generated by f(X),
ie., X1 f~Y(B)) which is generally different from X~!(B). Take, for example, the
following random vector: (Y, X) : @ — R? with (Y (w), X (w)) = (1,—1) if w € F; and
(Y(w), X(w)) =(2,-1)ifw € Ey, (Y(w),X(w)) =(1,1)ifw € B3 and (Y(w), X (w)) =
(2,1) if w € Ey, with P(E;) = 1/6 for j = 1,2, P(E3) = 3/6, P(E,;) = 1/6 and
Q=U}_ E; and E; U E; = () for i # j. Now, let f(X) = X?. Then,

(15 X =—1 ~
E(Y|X) _{ s fx—1 ond B(YIX?)=8/6

2. Let X and Y be independent random variables defined in the same probability space.
Show that if E(|Y|) < oo then

P(E(Y|X)=E(Y)) =1.

Answer: Let Fx be the o-algebra generated by X. Let £ € Fx and note that there
exists B such that £ = {w: X(w) € B}.

/ YdP = / YI.dP = / YixepdP = BE(YIxep) = E(Y)E(Ixes)
A Q Q
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where the last equality follows by independence. Now,
BE(Y)E(Ixen) = E(Y) / IvepdP = E(Y) / [adP = / B(Y)dP.
Q Q A

Consequently, since A is arbitrary in Fx

/AYdP = /AE(Y)dP or /A(Y — E(Y))dP =0

By definition of conditional expectation we have that E(Y|X) = E(Y) since A is ar-
bitrary in Fx.

. Let (92, F, P) be a probability space. The set of random variables X : Q@ — R such
that [, X2dP < oo is denoted by L2(€, F,P). On this set |X|| = (J, X2dP)"?
is a norm and < X,Y >= fQ XYdP is an inner product. If G is a o-algebra and
G C F, the conditional expectation of X with respect to G, denoted by E(X|G) is the
orthogonal projection of X onto the closed subspace L%(Q, G, P) of L?(Q2, F, P). Prove
the following results:
(a) For X|Y € L*(Q, F, P) wehave < E(X|G),Y >=< E(Y|G)), X >=< E(X|G), E(Y|G) >.
(b) If X =Y almost everywhere then E(X|G) = E(Y|G) almost everywhere.
(c) For X € L*(Q,G, P) we have E(X|G) = X.
(d) If H C G is a o-algebra, then E(E(X|G)|H) = E(X|H).
(e) If Y € L*(Q,G, P) and there exists a constant C' > 0 such that P(|Y| > C) = 0,
we have that E(Y X|G) = YE(X|G).
(f) If {Y, }new, X € L*(Q, F,P) and ||Y, — X|| — 0 as n — oo, then E(Y,|G) &
E(X|G) as n — co.

Answer: (a) By definition of conditional expectation, for all measurable s € L*(, G, P),
E([X — E(X|G)]s) =0 < E(Xs)=FE(E(X]|39)s). (9.1)

Since E(Y|G) € L*(Q,G, P), we have E(XE(Y|G)) = E(E(X|G)E(Y|G)). But by def-
inition of the inner product the last equality is < E(Y|G)), X >=< E(X|G), E(Y|G) >.
Similarly, changing X for Y in equation we obtain E(Ys) = E(E(Y|G)s). Let-
ting, s = E(X|G) we get E(YE(X|G)) = E(E(Y|G)E(X|G)) and E(YE(X|G)) =
E(XE(Y|G)), which is equivalent to < E(X|G),Y >=< E(YG)), X >.
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(b) Let y = E(Y|G) and z = E(X|G). Then,

(y—z)? = Wy-Y+Y—-2)y—2)=wy-Y)y—2)+ Y —2)(y — )
= -Y)y—-2)+ Y -X)y—2)+ (X —2)(y —z)

But from item 1, E(y —2)? = ||ly —z[|? = EY - X)(y —2) < E|(Y = X)(y —2)| <
IIY — X |||y — x||, which gives ||y —z|| < ||Y — X||. Lastly, if X =Y almost everywhere,
then ||Y — X|| = 0 and z = y almost everywhere.

(c) Since X € L*(Q2,G, P), it follows from the projection theorem that E(X|G) = X.

(d) From item (a), we have < E(E(X|G)|H),Y >=< E(X|G9), E(Y|H) >=< X, E(E(Y|H)|G) >.
Since E(Y|H) € L*(Q,G,P), we have that by item (c¢) < X, E(E(Y|H)|G) >=<
X,E(Y|H) >=< E(X|H),Y >. Hence, E(E(X|G)|H) = F(X|H) almost everywhere.

(e) Since L*(Q2,G, P) is a closed linear subspace of L*(Q, F, P) and E(:|G) is a linear
projector, any X € L?(2, F, P) can be written as
X = B(X|g) + (X — B(X|9)) 92)
where (X — E(X|G)) is orthogonal to any element of L?(Q, G, P). Hence, gives
XY = BE(X|G)Y + (X — E(X|G))Y. (9.3)

Now, note that for any s € L*(©,G,P) and Y € L*(,G, P) bounded almost ev-
erywhere, as assumed in the question, we have sY € L*(Q,G, P). Hence, E((X —
E(X|G))sY) = 0 and using (9.3) we have

E(sXY) = E(sE(X|G)Y) < E([XY — E(X|G)Y]s) =0,

and the conclusion that E(XY|G) = E(X|G)Y.
(f) From item (b)
IE(Ya|G) — E(Z|G) < [[Yn = Z].
Taking limits on both sides as n — oo we obtain ||E(Y,|G) — E(Z|G)| — 0, since
IIY,,—Z|| — 0 by assumption. That is, £(Y,|G) converges in quadratic mean to E(Z|G).

But by Chebyshev’s inequality, convergence in quadratic mean implies convergence in
probability. Hence, E(Y,|G) 2 E(Z|G).
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4. Let X,Y € L£*(Q, F, P) be random variables and assume that F(Y|X) = aX where
a€R.

(a) Show that if E(X?) >0, a= E(XY)/E(X?).
(b) If {(V; X;)T}, is a sequence of independent random vectors with components

having the same distribution as (Y X)T, show that

—ZXQ E(X?) and — ZYX E(XY).

(c) Let a, = (£ 370, XZ?)_1 L5 YiX;. Does a, =+ a? Can a, be defined for all n?
Explain.

Answer: (a) Note that E(Y|X) = argmin [,(Y — aX)?dP. Now,

/ (Y —aX)*dP = / Y2dP + a? / X?dP — 2a / XYdP,
Q Q Q Q

d 2

da
Hence, setting the first derivative equal to zero gives, E(Y|X) [, X?dP = [, XYdP <=

B(Y|x) = 250,

(b) Since X7 = ( 0 1)( )(

they are measurable function of

quences. Since, E(X?) = E(X

for IID random variables

(Y aX)?dP = 2a / X2dP—2 / XYdP and — [ (Y—aX)*dP =2 / X2dP > 0.
Q

aQ Q

Xxkx

) Hence, {X?}iew and {X;Y;}ien are 11D se-

7

)T Tand X;Y; = (1 0)<§i)(§i)T(o1
dE

(X; E(XY) by the law of large numbers

—ZX2—>E ) >0 and — ZYX—>E(XY)

=1

(¢) To define a,, we need =37 | X2 > 0 which is not assured from the assumptions.
What can be said is that £ 37" | X2 % E(X?) > 0. Hence, a, exists in probability as

n — oQ.

5. Prove the following:
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(a)

IfY € L(Q,F,P) and G C F is a o-algebra, show that |[E(Y|G)| < E([Y]|9).
Answer: |Y| =YY" — Y~ where Y, Y~ > 0. By linearity of conditional expec-
tation

E([Y1I9) = EYTI9) + E(Y™|G)
and from Theorem 7.9 E(Y"|G) > 0, E(Y~|G) > 0. Hence,

[EYIG)| = [E(YTIG) — E(Y™|G)] < [E(YTIG)| + |E(YT|G)]
= E(Y'|G) + E(Y™1G) = E(]Y]|9)

Let ¢ be a scalar constant and suppose X = ¢ almost surely. Show that E(X|G) =

¢ almost surely.

Answer: It suffices to show that [, |c — E(X|G)|dP = 0. Now,

/|c—E(X|g)|dP _ / (c—E(X|g))dP+/ (E(X|G) — c)dP.
Q c>E(X|G)

c<E(X|G)

Now, [ pixig(c — BE(X[G)dP = [y(c — B(X|G))(>E(xigydP. Now, since
E(X|G) € L(Q,G,P), Iic>px|g)) is G-measurable. Hence, by the definition of

conditional expectation

/ (c— E(X|G))dP = 0.
c>E(X|G)
Similarly, [

C<E(X|g)(E(X|Q) —¢)dP = 0. Hence, ¢ = E(X|G) almost surely.
IfY € L(Q,F,P) and G C F is a o-algebra, show that for a > 0
1
P({w: V()] 2 a}[G) < —E(Y (w)IIG)-
What is the definition of P ({w : |Y(w)| > a}|G)? Is this a legitimate probability

measure?

Answer: Note that alg,.y(w)>e < |Y(w)] and

0 (Ipviz|0) < BIY@)IG) = E (Iupzald) < -E(Y()0)

If we define £ (I{me)‘za}\g) = P({w:|Y(w)| > a}|G) we have

—_

P({w: [Y(w)] 2 a}[G) < —E(|Y (w)||G)-
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Now, to verify that P(-|G) is a legitimate probability measure note that, E (Ig|G) =
E(1|G) =1 = P (Q|G) almost surely. Also, if {E;};cn is a countable collection of

disjoint events Iy, yg, = Z]E]N I, and

P (UjewEj|G) = E (1u,en,1G) = (Z I, \g) =Y E(I5|G) =>_ P(E)G).

jEN jEN jEN
6. Let Y and X be random variables such that Y, X € £%(Q,F,P) and define ¢ =
Y — B(Y]X).
(a) Show that F(e|X) =0 and E(e) = 0.
(b) Let V(Y|X) = E(Y?X) — E(Y|X)? Show that V(Y|X) = V(¢|X), V(e) =
B(V(Y|X)):
(¢) Cov(e, h(X)) =0 for any function of X whose expectation exists.
(d) Assume that E(Y|X) = a + X where a, 5 € R. Let E(Y) = py, E(X) = px,
V(Y) =02, V(X) = 0% and p = €25V Ghow that,

oOxXoy

X and E(V(Y|X)) = (1 — p*)o?.

E(Y|X) = iy + poy>—
Answers:

(a) E(|X)=E(Y —EYI|X)|X)=EY|X)— E(Y|X)=0. By the law on iterated
expectations E(e) = E(E(e|X)) = 0.

(b) V(Y|X) = E(Y — E(Y|X))*|X) = E(£?|X) = V(]| X) since E(¢|X) = 0. Also,
since E(e) = 0 we have that V(e) = E(e?) = E(E(e}X)) = E(V(e]X)) =
E(V(Y|X)).

(c¢) Cov(e,h(X)) = E(eh(X)) — E(e)E(h(X)) = E(eh(X)) since E(e) = 0. But by
definition of conditional expectation

E(eh(X)) = E(h(X)E(e]X)) = 0 since E(¢]X) = 0.
(d) First note that
uy = B(E(Y|X)) = E(a + 8X) = a + Bux. (9.4)
Now, by definition of conditional expectation

E(XY) = B(X(a+ BX)) = apix + BE(X?) = apx + B(0% + 13).
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Also, E(XY) = Cov(X,Y) + uxpy = poxoy + pxiy. Then, we have

apx + B0k + 1) = poxoy + pxpiy-. (9.5)

Equations (9.4) and (9.5 form a system with two unknowns («, £). The solution

is given by,
PoOY
ﬁ_—anda—,uy—ux—
0x 0x

Substituting o and § into E(Y|X) = a + 8X gives the desired result.
Lastly,

oy =V(Y)=E(Y - E(Y))'=E(Y ~ E(Y|X) + E(Y|X) ~ E(Y))’
E((Y - E(Y]X))*) + E ((E(Y]X) - E(Y))")

+2E((Y - E(Y[X)(E (Y\X) EY))))

= E((Y - E(Y[X))?) + V(E(Y|X)) + 2E ((E(Y|X) — E(Y)))

= E(V(Y]X)) + (E(Y|X))-

Consequently,
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Chapter 10

Exercises

1. Suppose {X;}iz12.. is a sequence of independent and identically distributed random
variables and Y;(x) = Ij..x,<s}, Where I is the indicator function of the set A. Now

define
1 n
Fo@) == 3 Yila)
i=1

for fixed x. Obtain the asymptotic distribution of v/n(F,(z) — F(x)). You can use a

Central Limit Theorem, but otherwise show all your work.

Answer: (3 points) First, note that E(Y;(z)) = P{w : X; < z}) = F(x) and
V(Yi(x)) = Fx) - F(2)* = F(z)(1 - F(x)).

i=1

Now, since the sequence is {Y;(x)} is IID, this is so because I 4 is measurable, by Lévy’s
CLT

LS (o) - BO) _

F(z)(1-F(z)) VF()(1—F(z)) VF()(1 - F(x))

n

im(Yi(w) — BYi(2)) _ vn(Fu(@) = F@) o, N(0, 1)

2. Let {X, }nz12.. and {Y, },—12.. be sequences of random variables defined on the same
probability space. Suppose X, 2 X and Y, % Y and assume X, and Y,, are indepen-
dent for all n and X and Y are independent. Show that X,, + Y, 4 x + Y. Hint: use

the characteristic function for a sum of independent random variables.

Answer: The characteristic function of X,, 4+ Y, is given by
Px,+v, (1) = Elexpit(Xy +Yy)) = E(expit(Xy) expit(Yy)) = Eexp it(Xy)) E(expit(Ya)) = ¢x,, (£)dy,
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where the next to last equality follows by independence of X,, and Y,,. Since, X, A x
and Y, % Y, it must be that ox, (t) = ¢x(t) and ¢y, (t) — ¢y (t). So,

Oxnty, (1) = 0x, (D) y, (1) = dx )y () = Px v (1),

where the last equality follows from independence of X and Y. Thus, X,+Y,, A X1y,

. Let {X;}iz12... be a sequence of independent and identically random variables with
E(X;) =1 and 0%, = 0® < co. Show that if S, =" | X;

; (S12 —n¥?) 4 Z ~ N(0,1).

Answer: Note that,

2 2 a2 1/2 1/2 1/2

;(Sn—n):;(Sn —n'?) (Sy? 4+ n'?)

= 2 (SY2 — ') 2 ((Su/m) 4 1)
So that,
2V ((Sufn) 1) = 2 (S = n') ((Su/m)' + 1)

and

((Su/m)"? + 1) g\/ﬁ((sn/m )= ; (SY2 — ).

Since, {X;}iz12.. is a sequence of independent and identically random variables with
E(X;) =1, by Slutsky Theorem ((S,/n)"/? + 1)71 % 271 and since 0%, = 0% < o0, by
Lévy’s CLT 1/n ((S,/n) — 1) % N(0,1). Hence, 2 (S,yg — n1/2> % 7 ~ N(0,1).
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