
Chapter 7

Exercises

1. Let {Xn}n2N ⇢ Lp for p 2 [1,1) be a sequence of non-negative functions. Show that

k
1X

n=1

Xnkp 
1X

n=1

kXnkp.

Answer: Let Sn =
P

N

n=1 Xn. Since Xn � 0 for all n, 0  S1  S2  · · · . Given
that |SN |p  2p

P
N

n=1 |Xn|p. we have
R
⌦ |SN |pdP  2p

P
N

n=1

R
⌦ |Xn|pdP < 1. Conse-

quently, SN 2 Lp. By Minkowski’s inequality

kSNkp 
NX

n=1

kXnkp 
1X

n=1

kXnkp, (7.1)

which implies kSNkpp  (
P1

n=1 kXnkp)p. By Beppo-Levi’s Theorem

sup
n2N

kSNkpp = sup
n2N

Z

⌦

S
p

N
dP =

Z

⌦

sup
n2N

S
p

N
dP =

Z

⌦

sup
n2N

 
NX

n=1

Xn

!p

dP

=

Z

⌦

 
sup
n2N

NX

n=1

Xn

!p

dP = k
1X

n=1

Xnkpp. (7.2)

Hence, by inequality (7.1) and (7.2) we have

sup
n2N

kSNkpp = k
1X

n=1

Xnkpp 
 1X

n=1

kXnkp

!p

.

Consequently, k
P1

n=1 Xnkp 
P1

n=1 kXnkp.

2. Show that if
P

n2N xn converges absolutely, then it converges.
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Answer: Suppose N1, N2 2 N, N1 < N2 and
P
n2N

xn converges absolutely. Note that
P

N2

n=1 |xn|�
P

N1

n=1 |xn| =
P

N2

n=N1+1 |xn|. If N1 ! 1, then
P

N2

n=1 |xn|�
P

N1

n=1 |xn| ! 0,
as every convergent sequence is Cauchy. Also, since

|xN1+1 + xN2+1 + · · · xN2 | 
N2X

n=N1+1

|xn|,

|
N2X

n=1

xn �
N1X

n=1

xn| = |xN1+1 + xN2+1 + · · · xN2 | 
N2X

n=N1+1

|xn| ! 0.

Since R is complete, lim
N!1

P
N

n=1 xn converges.

3. Prove Theorem 7.9.

Answer: Let’s first prove that 1 =) 2. If {Xn}n2N is uniformly integrable, then Xn

is clearly integrable for all n, and consequently E|Xn| < 1 for all n. By the proof of
Theorem 7.3, Xn

p! X implies that there exists a subsequence Xn(j)
as! X as j ! 1.

By Fatou’s Lemma

E|X| = E

✓
lim inf
j!1

|Xn(j)|
◆

 lim inf
j!1

E|Xn(j)|  sup
n

E|Xn| < 1,

where the last inequality follows from Theorem 7.6. Now, for ✏ > 0 let An = {|Xn �
X| > ✏}

E|Xn �X| = E(|Xn �X|I|Xn�X|<✏ + |Xn �X|I|Xn�X|�✏)

 ✏+ E(|Xn|IAn) + E(|X|IAn).

P (An) ! 0 as n ! 1, hence E(|Xn|IAn) ! 0 by Theorem 7.6. Similarly, E(|X|IAn) !
0, which gives the result.

That 2 =) 3 follows from the fact that by the triangle inequality E|Xn| � E|X| 
E|Xn�X| and �(E|Xn|�E|X|) � �E|Xn�X|, hence |E|Xn|�E|X||  E|Xn�X|.

Now we prove that 3 =) 1. Note that E(|Xn|I|Xn|�a) = E|Xn| � E(|Xn|I|Xn|<a) =

E|Xn| � E(|Xn|I�a<Xn<a) = E|Xn| � E(u(Xn)), if we let u(x) = |x|I(�a,a)(x). By
Theorem 7.15 Xn

p! X =) Xn

d! X. But since u(x) is bounded and continuous, we
have that using Definition 7.5 and by Theorem 7.11,

E(u(Xn)) ! E(u(X))
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if a and �a are points of continuity of the distribution FX of X. Hence, for a a point
of continuity of FX , we have

E(|Xn|I|Xn|�a) ! E(|X|I|X|�a).

For any ✏ > 0 there exists a point of continuity b of FX such that E(|X|I|X|�b) < ✏.
Using this b and E(|Xn|I|Xn|�b) = E|Xn| � E(|Xn|I�b<Xn<b) there exists N such that
for all n > N ,

E(|Xn|I|Xn|�b) < 2✏.

Also, there exists c > 0 such that E(|Xk|I|Xk|�c) < 2✏ for all k < N since there are only
finitely many terms involved. Hence, if a > max{b, c} we have uniform integrability.

4. Let {gn}n=1,2,··· be a sequence of real valued functions that converge uniformly to g on
an open set S, containing x, and g is continuous at x. Show that if {Xn}n=1,2,··· is a
sequence of random variables taking values in S such that Xn

p! X, then

gn(Xn)
p! g(X).

Note: Recall that a sequence of real valued functions {gn}n=1,2,··· converges uniformly
to g on a set S if, for every ✏ > 0 there exists N✏ 2 N (depending only on ✏) such that
for all n > N✏, |gn(x)� g(x)| < ✏ for every x 2 S.

Answer: Let ✏, � > 0 and define the following subsets of the sample space: Sn

1 = {! :

|gn(Xn)� g(X)| < ✏}, Sn

2 = {! : |gn(Xn)� g(Xn)| < ✏/2}, Sn

3 = {! : |g(Xn)� g(X)| <
✏/2}, Sn

4 = {! : Xn 2 S}. By the triangle inequality, Sn

1 ◆ S
n

2 \ S
n

3 . By continuity
of g at X and openness of S, there exists �✏ such that whenever |Xn � X| < �✏,
|g(Xn) � g(X)| < ✏/2 and Xn 2 S. Letting, S

n

5 = {! : |Xn � X| < �✏}, we
see that S

n

5 ✓ S
n

3 \ S
n

4 . Since Xn

p! X and uniform convergence of gn, there ex-
ists N�,✏ such that whenever n > N�,✏, |gn(X) � g(X)| < ✏/2 for all X 2 S and
P (Sn

5 ) > 1 � �. Thus, n > N�,✏ implies S
n

4 ✓ S
n

2 . Consequently, n > N�,✏ implies
S
n

1 ◆ S
n

2 \ S
n

3 ◆ S
n

4 \ S
n

3 ◆ S
n

5 . Thus, P (Sn

1 ) � P (Sn

5 ) > 1� �.

5. Show that Xn

as! X is equivalent to P
�
{! : sup

j�n
|Xj �X| � ✏}

�
! 0 for all ✏ > 0 as n ! 1.
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Answer: For any ✏ > 0 and k 2 N let Ak(✏) = {! : |Xk(!) � X(!)| > ✏}. If for all
n 2 N we have that P ([k>nAk(✏)) > 0 then it must be that Xn

as9 X. Consequently,

Xn

as! X , lim
n!1

P ([n<kAk(✏)) = 0

, P

✓
{! : sup

j�n

|Xj �X| > ✏}
◆

! 0 as n ! 1.

6. Prove item 1 of Remark 7.1.
Answer: For ✏ > 0 we have that

{! : |Xn + Yn �X � Y | > ✏} ✓ {! : |Xn �X| > ✏/2} [ {! : |Yn � Y | > ✏/2}

The probability of the events on the union on right-hand side go to zero as n ! 1.
By monotonicity of probability measures we have the results.

7. Let n 2 N and hn > 0 such that hn ! 0 as n ! 1. Show that if
P1

n=1 P ({! :

|Xn �X| � hn}) < 1 then Xn

p! X.

Answer: From question 5,

Xn

as! X , lim
n!1

P ([n<kAk(hn)) = 0.

But P ([n<kAk(hn)) 
P

k�n
P (Ak(✏)) and if

P1
n=1 P ({! : |Xn � X| � hn}) < 1

then it must be that lim
n!1

P
k�n

P (Ak(✏)) = 0. Since convergence almost surely implies
convergence in probability, the proof is complete.

8. Show that if Yn

d! Y then Yn = Op(1).

Answer: Without loss of generality let a > 0. Provided that a and �a are continuity
points of FY , we can write that,P (|Yn| > a) ! P (|Y | > a) as n ! 1. Hence, for every
✏ > 0 there exists N✏ such that,

|P (|Yn| > a)� P (|Y | > a)| < ✏ for all n � N✏

or
P (|Y | > a)� ✏ < P (|Yn| > a) < P (|Y | > a) + ✏.
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We can choose a such that P (|Y | > a) < � for any � > 0. Thus, P (|Yn| > a) < � + ✏

for all n � N✏.

9. Let g : S ✓ R be continuous on S, and Xt and Xs be random variables defined on
(⌦,F , P ) taking values in S. Show that: a) if Xt is independent of Xs, then g(Xt)

is independent of g(Xs); b) if Xt and Xs are identically distributed, then g(Xt) and
g(Xs) are identically distributed.

Answer: Let Yt = g(Xt) and Ys = g(Xs). g continuous assures that both Yt and Ys

are random variables.

a) FYt,Ys(a, b) = P (S = {! : Yt  a and Ys  b}). Let St = {Xt(!) : Yt(!)  a}, Ss =

{Xs(!) : Ys(!)  b}. Since, S = St \ Ss and by independence P (S) = P (St)P (Ss)

which implies FYt,Ys(a, b) = FYt(a)FYs(b).

b) FYt(a) = P (St) = P ({Xs(!) : Ys(!)  a}) = FYs(a).

10. Let {Xn} be a sequence of independent random variables that converges in probability
to a limit X. Show that X is almost surely a constant.

Answer: Recall that if X is almost surely a constant, say c, P ({! : X(!) 6= c}) = 0.

Then, the distribution function F associated with X is given by

F (x) =

(
0, if x < c

1, if x � c
.

If X is not a constant, there exists a c and 0 < ✏ < 1/2 such that P (X < c) > 2✏

and P (X  c + ✏) < 1 � 2✏ or P (X > c + ✏) > 2✏. Since Xn

p! X than Xn

d! X.
Consequently, for n sufficiently large and c a point of continuity of F we have

F (c)� ✏ < Fn(c) < F (c) + ✏

which implies that ✏ < Fn(c). Also, 1 � Fn(c + ✏) > 1 � F (c + ✏) � ✏ which implies
P (Xn > c + ✏) > P (X > c + ✏) � ✏ > ✏. Since Xn

p! X, for n sufficiently large
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P ({! : |Xr � Xs| > ✏}) < ✏
3. Since {! : |Xr � Xs| > ✏} = {! : Xr � Xs > ✏} [ {! :

Xr �Xs < �✏} we note that if Xr < c and Xs > c+ ✏ then Xr �Xs > ✏ is equivalent
to Xr �Xs < �✏. Consequently,

P ({! : |Xr �Xs| > ✏})  P ({! : Xr < c and Xs > c+ ✏}).

But since Xr and Xs are independent P ({! : Xr < c and Xs > c+ ✏}) = P ({! : Xr <

c})P ({! : Xs > c+ ✏}) > ✏
2. Hence,

✏
3
> P ({! : |Xr �Xs| > ✏}) > ✏

2
,

a contradiction.

11. Suppose Xn�µ

�n

d! Z where the non-random sequence �n ! 0 as n ! 1, and g is a
function which is differentiable at µ. Then, show that g(Xn)�g(µ)

g(1)(µ)�n

d! Z.

Answer: From question 2, if Zn

d! Z then Zn = Op(1). Let Zn = Xn�µ

�n
and write

Xn = µ+ �nZn = µ+Op(�n). By Taylor’s Theorem

1

�n

g(Xn)� g(µ) = g
(1)(µ)

(Xn � µ)

�n

+ op(1).

Since Xn�µ

�n

d! Z, we have the result.

12. Show that if {Xn}n2N and X are random variables defined on the same probability
space and r > s � 1 and Xn

Lr�! X, then Xn

Ls�! X.

Answer: For arbitrary W let Z = |W |s, Y = 1 and p = r/s. Then, by Hölder’s
Inequality

E|ZY |  kZkpkY kp/(p�1).

Substituting Z and Y gives E(|W |s)  E(|W |sp)1/p = E(|W |s r
s )s/r. Raising both sides

to 1/s gives
E(|W |s)1/s  E(|W |r)1/r.

Setting W = Xn �X and taking limits as n ! 1 gives the result.

13. Let L1
P

:= {X : ⌦ ! R such that, there exists C > 0, with P ({! : |X(!)| � C}) =

0}. For this space of random variables define the norm kXk1 := inf{C > 0 : P ({! :

|X(!)| � C}) = 0}. Establish that this space is complete.
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Answer: If {Xn}n2N is a Cauchy sequence in L1
P

, we can set

Ak,l := {|Xk| > kXkk1} [ {|Xk �Xl| > kXk �Xlk1}, A :=
[

k,l2N

Ak,l.

By definition P (Ak,l) = 0 and P (A) = 0, so that kXnIAk1 = 0 for all n. On the set
A

c, {Xn}n2N converges uniformly to a bounded function X, i.e., XIAc 2 L1
P

as well as
k(Xn �X)IAck1 ! 0.
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Chapter 8

Exercises

1. Let U and V be two points in an n-dimensional unit cube, i.e., [0, 1]n and Xn be the
Euclidean distance between these two points which are chosen independently and uni-
formly. Show that Xnp

n

p! 1p
6
.

Answer: Let U 0 =
�
U1 · · · Un

�
and V

0 =
�
V1 · · · Vn

�
. Then, Xn = (

P
n

i=1(Ui � Vi)2)
1/2

and we can write

1

n
E(X2

n
) =

1

n

nX

i=1

E((Ui � Vi)
2) =

Z 1

0

Z 1

0

(u� v)2dudv = 1/6

where the last equality follows from routine integration. Then, since E(|(U � V )2|) =
E((U � V )2) < 1, by Kolmogorov’s Law of Large Numbers

1

n
X

2
n
=

1

n

nX

i=1

(Ui � Vi)
2 p! 1/6.

Since, f(x) = x
1/2 is a continuous function [0,1), by Slutsky Theorem if 1

n
X

2
n

p! 1/6

then f
�
1
n
X

2
n

� p! f(1/6). Consequently,

1p
n
Xn

p! 1/
p
6.

2. Show that if {Xj}j2N be a sequence of random variables with E(Xj) = 0 and
P1

j=1
1
a
p
j
E(|Xj|p) <

1 for some p � 1 and a sequence of positive constants {aj}j2N. Then,

1X

j=1

P (|Xj| > aj) < 1 and
1X

j=1

1

aj
|E(XjI{!:|Xj |aj})| < 1.
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Furthermore, for any r � p,
1X

j=1

1

ar
j

E(|Xj|rI{!:|Xj |aj}) < 1.

Use this result to prove Theorem 8.4 in your class notes with convergence in probability.

Answer: Note that

P ({! : |Xj| > aj}) = 1� P ({! : |Xj|  aj}) =
Z

⌦

�
1� I{!:|Xj |aj}

�
dP.

If ! 2 {! : |Xj|  aj}, then P ({! : |Xj| > aj}) = 0. If |Xj| > aj, then |Xj|p > a
p

j
and

|Xj|p/apj > 1. Hence,

P ({! : |Xj| > aj}) <
Z

⌦

|Xj|p/apjdP =
1

a
p

j

E (|Xj|p)

and
1X

j=1

P ({! : |Xj| > aj}) <
1X

j=1

1

a
p

j

E (|Xj|p) < 1.

Now,

1

aj
|E(XjI{!:|Xj |aj})| =

1

aj
|E(Xj)� E(XjI{!:|Xj |aj})|, since E(Xj) = 0.

 1

aj
E
�
|Xt|(1� I{!:|Xj |aj}

�

 1

a
p

j

E
�
|Xj|p(1� I{!:|Xj |aj}

�
since |Xj |p

a
p
j

� |Xj |
aj

if p � 1.

 1

a
p

j

E (|Xj|p) .

Hence,
1X

j=1

1

aj
|E(XjI{!:|Xj |aj})| <

1X

j=1

1

a
p

j

E (|Xj|p) < 1.

Lastly, if |Xj|  aj we have that 1
aj
|Xj|  1. Then, for r � p � 1

1

ar
j

|Xj|rI{!:|Xj |aj} 
1

a
p

j

|Xj|pI{!:|Xj |aj} 
1

aj
|Xj|I{!:|Xj |aj}

and
E

✓
1

ar
j

|Xj|rI{!:|Xj |aj}

◆
 E

✓
1

a
p

j

|Xj|pI{!:|Xj |aj}

◆
.
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Hence,
1X

j=1

E

✓
1

ar
j

|Xj|rI{!:|Xj |aj}

◆
< 1.

In Theorem 8.4, the sequence of random variables {Xj}j2N is independent and has
expectation µj. Hence, if Wj := Xj � µj, we have E(Wj) = 0. Furthermore, in
Theorem 8.4 it is assumed that for some � > 0

1X

j=1

E(|Wj|1+�)

j1+�
< 1.

Now, note that for any n 2 N we have
P

n

j=1
E(|Wj |1+�)

n1+� 
P

n

j=1
E(|Wj |1+�)

j1+� and

lim
n!1

nX

j=1

E(|Wj|1+�)

n1+�
 lim

n!1

nX

j=1

E(|Wj|1+�)

j1+�
< 1.

Now, in the first part of this answer, take aj = n for all j and for any r > 1+ �. Then,
we have

1X

j=1

P (|Wj| > n) < 1 and
1X

j=1

1

nr
E(|Wj|rI{!:|Wj |n}) < 1.

Hence, taking r = 2 the conditions on Theorem 8.2 are met and we have

1

n

nX

j=1

Wj�
1

n

nX

i=1

E
�
WjI{!:|Wj |n}

�
=

1

n

nX

j=1

(Xj�µj)�
1

n

nX

i=1

E
�
WjI{!:|Wj |n}

�
= op(1).

But since E(Wj) = 0, we have E
�
WjI{!:|Wj |n}

�
! 0 as n ! 1. Thus, 1

n

P
n

j=1(Xj �
µj) = op(1).

3. Let {Xi}i=2,3,··· be a sequence of independent random variables such that

P (Xi = i) = P (Xi = �i) =
1

2i log i
, P (Xi = 0) = 1� 1

i log i

Show that 1
n

P
n

i=2 Xi

p! 0.

Answer: Let Sn =
P

n

i=2 Xi and note that E(Xi) = 0. Hence, by independence

E(S2
n
) =

nX

i=2

E(X2
i
) =

nX

i=2

i

log i
 n

2

log n
.

Hence, V (Sn/n) =
1
n2V (Sn) =

1
n2E(S2

n
)  1

n2
n
2

logn = 1
logn ! 0 as n ! 1. Consequently,

1
n
Sn

p! 0 by Chebyshev’s inequality.
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Chapter 9

Exercises

1. Assess the veracity of the following statement: “Since knowledge of X implies knowl-
edge of f(X), conditioning on X is the same as conditioning on f(X). Hence, E(Y |f(X)) =

E(Y |X).” Explain using mathematical arguments.

Answer: The statement is false. Recall that conditioning on a random variable
X means conditioning on the sub-�-algebra generated by X, i.e., X

�1(B). Hence,
conditioning on f(X) means conditioning on the sub-�-algebra generated by f(X),
i.e., X

�1(f�1(B)) which is generally different from X
�1(B). Take, for example, the

following random vector: (Y,X) : ⌦ ! R2 with (Y (!), X(!)) = (1,�1) if ! 2 E1 and
(Y (!), X(!)) = (2,�1) if ! 2 E2, (Y (!), X(!)) = (1, 1) if ! 2 E3 and (Y (!), X(!)) =

(2, 1) if ! 2 E4, with P (Ej) = 1/6 for j = 1, 2, P (E3) = 3/6, P (E4) = 1/6 and
⌦ = [4

j=1Ej and Ei [ Ej = ; for i 6= j. Now, let f(X) = X
2. Then,

E(Y |X) =

⇢
1.5 if X = �1
5/4 if X = 1

and E(Y |X2) = 8/6.

2. Let X and Y be independent random variables defined in the same probability space.
Show that if E(|Y |) < 1 then

P (E(Y |X) = E(Y )) = 1.

Answer: Let FX be the �-algebra generated by X. Let E 2 FX and note that there
exists B such that E = {! : X(!) 2 B}.

Z

A

Y dP =

Z

⌦

Y IAdP =

Z

⌦

Y IX2BdP = E(Y IX2B) = E(Y )E(IX2B)
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where the last equality follows by independence. Now,

E(Y )E(IX2B) = E(Y )

Z

⌦

IX2BdP = E(Y )

Z

⌦

IAdP =

Z

A

E(Y )dP.

Consequently, since A is arbitrary in FX

Z

A

Y dP =

Z

A

E(Y )dP or
Z

A

(Y � E(Y ))dP = 0

By definition of conditional expectation we have that E(Y |X) = E(Y ) since A is ar-
bitrary in FX .

3. Let (⌦,F , P ) be a probability space. The set of random variables X : ⌦ ! R such
that

R
⌦ X

2
dP < 1 is denoted by L

2(⌦,F , P ). On this set kXk =
�R

⌦ X
2
dP
�1/2

is a norm and < X, Y >=
R
⌦ XY dP is an inner product. If G is a �-algebra and

G ⇢ F , the conditional expectation of X with respect to G, denoted by E(X|G) is the
orthogonal projection of X onto the closed subspace L

2(⌦,G, P ) of L2(⌦,F , P ). Prove
the following results:

(a) For X, Y 2 L
2(⌦,F , P ) we have < E(X|G), Y >=< E(Y |G)), X >=< E(X|G), E(Y |G) >.

(b) If X = Y almost everywhere then E(X|G) = E(Y |G) almost everywhere.

(c) For X 2 L
2(⌦,G, P ) we have E(X|G) = X.

(d) If H ⇢ G is a �-algebra, then E(E(X|G)|H) = E(X|H).

(e) If Y 2 L
2(⌦,G, P ) and there exists a constant C > 0 such that P (|Y | � C) = 0,

we have that E(Y X|G) = Y E(X|G).

(f) If {Yn}n2N, X 2 L
2(⌦,F , P ) and kYn � Xk ! 0 as n ! 1, then E(Yn|G)

p!
E(X|G) as n ! 1.

Answer: (a) By definition of conditional expectation, for all measurable s 2 L
2(⌦,G, P ),

E ([X � E(X|G)]s) = 0 () E(Xs) = E (E(X|G)s) . (9.1)

Since E(Y |G) 2 L
2(⌦,G, P ), we have E(XE(Y |G)) = E (E(X|G)E(Y |G)). But by def-

inition of the inner product the last equality is < E(Y |G)), X >=< E(X|G), E(Y |G) >.
Similarly, changing X for Y in equation (9.1) we obtain E(Y s) = E (E(Y |G)s). Let-
ting, s = E(X|G) we get E(Y E(X|G)) = E (E(Y |G)E(X|G)) and E(Y E(X|G)) =

E(XE(Y |G)), which is equivalent to < E(X|G), Y >=< E(Y |G)), X >.
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(b) Let y = E(Y |G) and x = E(X|G). Then,

(y � x)2 = (y � Y + Y � x)(y � x) = (y � Y )(y � x) + (Y � x)(y � x)

= (y � Y )(y � x) + (Y �X)(y � x) + (X � x)(y � x)

But from item 1, E(y � x)2 := ky � xk2 = E(Y �X)(y � x)  E|(Y �X)(y � x)| 
kY �Xkky�xk, which gives ky�xk  kY �Xk. Lastly, if X = Y almost everywhere,
then kY �Xk = 0 and x = y almost everywhere.

(c) Since X 2 L
2(⌦,G, P ), it follows from the projection theorem that E(X|G) = X.

(d) From item (a), we have < E(E(X|G)|H), Y >=< E(X|G), E(Y |H) >=< X,E(E(Y |H)|G) >.
Since E(Y |H) 2 L

2(⌦,G, P ), we have that by item (c) < X,E(E(Y |H)|G) >=<

X,E(Y |H) >=< E(X|H), Y >. Hence, E(E(X|G)|H) = E(X|H) almost everywhere.

(e) Since L
2(⌦,G, P ) is a closed linear subspace of L2(⌦,F , P ) and E(·|G) is a linear

projector, any X 2 L
2(⌦,F , P ) can be written as

X = E(X|G) + (X � E(X|G)) (9.2)

where (X � E(X|G)) is orthogonal to any element of L2(⌦,G, P ). Hence, (9.2) gives

XY = E(X|G)Y + (X � E(X|G))Y. (9.3)

Now, note that for any s 2 L
2(⌦,G, P ) and Y 2 L

2(⌦,G, P ) bounded almost ev-
erywhere, as assumed in the question, we have sY 2 L

2(⌦,G, P ). Hence, E((X �
E(X|G))sY ) = 0 and using (9.3) we have

E(sXY ) = E(sE(X|G)Y ) () E([XY � E(X|G)Y ]s) = 0,

and the conclusion that E(XY |G) = E(X|G)Y .

(f) From item (b)
kE(Yn|G)� E(Z|G)k  kYn � Zk.

Taking limits on both sides as n ! 1 we obtain kE(Yn|G) � E(Z|G)k ! 0, since
kYn�Zk ! 0 by assumption. That is, E(Yn|G) converges in quadratic mean to E(Z|G).
But by Chebyshev’s inequality, convergence in quadratic mean implies convergence in
probability. Hence, E(Yn|G)

p! E(Z|G).
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4. Let X, Y 2 L2(⌦,F , P ) be random variables and assume that E(Y |X) = aX where
a 2 R.

(a) Show that if E(X2) > 0, a = E(XY )/E(X2).

(b) If {(Yi Xi)T}ni=1 is a sequence of independent random vectors with components
having the same distribution as (Y X)T , show that

1

n

nX

i=1

X
2
i

p! E(X2) and
1

n

nX

i=1

YiXi

p! E(XY ).

(c) Let an =
�
1
n

P
n

i=1 X
2
i

��1 1
n

P
n

i=1 YiXi. Does an
p! a? Can an be defined for all n?

Explain.

Answer: (a) Note that E(Y |X) = argmin
a

R
⌦(Y � aX)2dP . Now,

Z

⌦

(Y � aX)2dP =

Z

⌦

Y
2
dP + a

2

Z

⌦

X
2
dP � 2a

Z

⌦

XY dP,

d

da

Z

⌦

(Y�aX)2dP = 2a

Z

⌦

X
2
dP�2

Z

⌦

XY dP and
d
2

da2

Z

⌦

(Y�aX)2dP = 2

Z

⌦

X
2
dP > 0.

Hence, setting the first derivative equal to zero gives, E(Y |X)
R
⌦ X

2
dP =

R
⌦ XY dP ()

E(Y |X) = E(XY )
E(X2) .

(b) Since X2
i
=
�
0 1

�✓ Yi

Xi

◆✓
Yi

Xi

◆T �
0 1

�T and XiYi =
�
1 0

�✓ Yi

Xi

◆✓
Yi

Xi

◆T �
0 1

�T ,

they are measurable function of
✓

Yi

Xi

◆
. Hence, {X2

i
}i2N and {XiYi}i2N are IID se-

quences. Since, E(X2
i
) = E(X2) and E(XiYi) = E(XY ) by the law of large numbers

for IID random variables

1

n

nX

i=1

X
2
i

p! E(X2) > 0 and
1

n

nX

i=1

YiXi

p! E(XY ).

(c) To define an we need 1
n

P
n

i=1 X
2
i
> 0 which is not assured from the assumptions.

What can be said is that 1
n

P
n

i=1 X
2
i

p! E(X2) > 0. Hence, an exists in probability as
n ! 1.

5. Prove the following:
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(a) If Y 2 L(⌦,F , P ) and G ⇢ F is a �-algebra, show that |E(Y |G)|  E(|Y ||G).
Answer: |Y | = Y

+ � Y
� where Y

+
, Y

� � 0. By linearity of conditional expec-
tation

E(|Y ||G) = E(Y +|G) + E(Y �|G)

and from Theorem 7.9 E(Y +|G) � 0, E(Y �|G) � 0. Hence,

|E(Y |G)| = |E(Y +|G)� E(Y �|G)|  |E(Y +|G)|+ |E(Y �|G)|

= E(Y +|G) + E(Y �|G) = E(|Y ||G)

(b) Let c be a scalar constant and suppose X = c almost surely. Show that E(X|G) =
c almost surely.

Answer: It suffices to show that
R
⌦ |c� E(X|G)|dP = 0. Now,

Z

⌦

|c� E(X|G)|dP =

Z

c�E(X|G)
(c� E(X|G))dP +

Z

c<E(X|G)
(E(X|G)� c)dP.

Now,
R
c�E(X|G)(c � E(X|G))dP =

R
⌦(c � E(X|G))I{c�E(X|G)}dP . Now, since

E(X|G) 2 L(⌦,G, P ), I{c�E(X|G)} is G-measurable. Hence, by the definition of
conditional expectation

Z

c�E(X|G)
(c� E(X|G))dP = 0.

Similarly,
R
c<E(X|G)(E(X|G)� c)dP = 0. Hence, c = E(X|G) almost surely.

(c) If Y 2 L(⌦,F , P ) and G ⇢ F is a �-algebra, show that for a > 0

P ({! : |Y (!)| � a}|G)  1

a
E(|Y (!)||G).

What is the definition of P ({! : |Y (!)| � a}|G)? Is this a legitimate probability
measure?

Answer: Note that aI{!:|Y (!)|�a}  |Y (!)| and

aE
�
I{!:|Y (!)|�a}|G

�
 E(|Y (!)||G) () E

�
I{!:|Y (!)|�a}|G

�
 1

a
E(|Y (!)||G).

If we define E
�
I{!:|Y (!)|�a}|G

�
:= P ({! : |Y (!)| � a}|G) we have

P ({! : |Y (!)| � a}|G)  1

a
E(|Y (!)||G).
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Now, to verify that P (·|G) is a legitimate probability measure note that, E (I⌦|G) =
E (1|G) = 1 = P (⌦|G) almost surely. Also, if {Ej}j2N is a countable collection of
disjoint events I[j2NEj =

P
j2N IEj and

P ([j2NEj|G) = E
�
I[j2NEj |G

�
= E

 
X

j2N

IEj |G
!

=
X

j2N

E
�
IEj |G

�
=
X

j2N

P (Ej|G) .

6. Let Y and X be random variables such that Y,X 2 L2(⌦,F , P ) and define " =

Y � E(Y |X).

(a) Show that E("|X) = 0 and E(") = 0.

(b) Let V (Y |X) = E(Y 2|X) � E(Y |X)2. Show that V (Y |X) = V ("|X), V (") =

E(V (Y |X));

(c) Cov(", h(X)) = 0 for any function of X whose expectation exists.

(d) Assume that E(Y |X) = ↵ + �X where ↵, � 2 R. Let E(Y ) = µY , E(X) = µX ,
V (Y ) = �

2
Y
, V (X) = �

2
X

and ⇢ = Cov(X,Y )
�X�Y

. Show that,

E(Y |X) = µY + ⇢�Y

X � µX

�X

and E(V (Y |X)) = (1� ⇢
2)�2

Y
.

Answers:

(a) E("|X) = E(Y � E(Y |X)|X) = E(Y |X)� E(Y |X) = 0. By the law on iterated
expectations E(") = E(E("|X)) = 0.

(b) V (Y |X) = E((Y � E(Y |X))2|X) = E("2|X) = V ("|X) since E("|X) = 0. Also,
since E(") = 0 we have that V (") = E("2) = E(E("2|X)) = E(V ("|X)) =

E(V (Y |X)).

(c) Cov(", h(X)) = E("h(X)) � E(")E(h(X)) = E("h(X)) since E(") = 0. But by
definition of conditional expectation

E("h(X)) = E(h(X)E("|X)) = 0 since E("|X) = 0.

(d) First note that

µY = E(E(Y |X)) = E(↵ + �X) = ↵ + �µX . (9.4)

Now, by definition of conditional expectation

E(XY ) = E(X(↵ + �X)) = ↵µX + �E(X2) = ↵µX + �(�2
X
+ µ

2
X
).
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Also, E(XY ) = Cov(X, Y ) + µXµY = ⇢�X�Y + µXµY . Then, we have

↵µX + �(�2
X
+ µ

2
X
) = ⇢�X�Y + µXµY . (9.5)

Equations (9.4) and (9.5) form a system with two unknowns (↵, �). The solution
is given by,

� =
⇢�Y

�X

and ↵ = µY � µX

⇢�Y

�X

.

Substituting ↵ and � into E(Y |X) = ↵ + �X gives the desired result.

Lastly,

�
2
Y
:= V (Y ) = E (Y � E(Y ))2 = E (Y � E(Y |X) + E(Y |X)� E(Y ))2

= E
�
(Y � E(Y |X))2

�
+ E

�
(E(Y |X)� E(Y ))2

�

+ 2E ((Y � E(Y |X))(E(Y |X)� E(Y ))))

= E
�
(Y � E(Y |X))2

�
+ V (E(Y |X)) + 2E ("(E(Y |X)� E(Y )))

= E(V (Y |X)) + V (E(Y |X)) .

Consequently,

E(V (Y |X)) = �
2
Y
� V

✓
µY + ⇢�Y

X � µX

�X

◆

= �
2
Y
� ⇢

2
�
2
Y
= �

2
Y
(1� ⇢

2)
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Chapter 10

Exercises

1. Suppose {Xi}i=1,2,··· is a sequence of independent and identically distributed random
variables and Yi(x) = I{!:Xix}, where IA is the indicator function of the set A. Now
define

Fn(x) =
1

n

nX

i=1

Yi(x)

for fixed x. Obtain the asymptotic distribution of
p
n(Fn(x) � F (x)). You can use a

Central Limit Theorem, but otherwise show all your work.

Answer: (3 points) First, note that E(Yi(x)) = P ({! : Xi  x}) = F (x) and
V (Yi(x)) = F (x)� F (x)2 = F (x)(1� F (x)).

p
n(Fn(x)� F (x)) =

p
n

 
1

n

nX

i=1

(Yi(x)� E(Yi(x)))

!
.

Now, since the sequence is {Yi(x)} is IID, this is so because IA is measurable, by Lévy’s
CLT
1
n

P
n

i=1(Yi(x)� E(Yi(x)))q
F (x)(1�F (x))

n

=
p
n

1
n

P
n

i=1(Yi(x)� E(Yi(x)))p
F (x)(1� F (x))

=

p
n(Fn(x)� F (x))p
F (x)(1� F (x))

d! Z ⇠ N(0, 1)

2. Let {Xn}n=1,2,··· and {Yn}n=1,2,··· be sequences of random variables defined on the same
probability space. Suppose Xn

d! X and Yn

d! Y and assume Xn and Yn are indepen-
dent for all n and X and Y are independent. Show that Xn + Yn

d! X + Y . Hint: use
the characteristic function for a sum of independent random variables.

Answer: The characteristic function of Xn + Yn is given by

�Xn+Yn(t) = E(exp it(Xn + Yn)) = E(exp it(Xn) exp it(Yn)) = E(exp it(Xn))E(exp it(Yn)) = �Xn(t)�Yn(t)
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where the next to last equality follows by independence of Xn and Yn. Since, Xn

d! X

and Yn

d! Y , it must be that �Xn(t) ! �X(t) and �Yn(t) ! �Y (t). So,

�Xn+Yn(t) = �Xn(t)�Yn(t) ! �X(t)�Y (t) = �X+Y (t),

where the last equality follows from independence of X and Y . Thus, Xn+Yn

d! X+Y .

3. Let {Xi}i=1,2,··· be a sequence of independent and identically random variables with
E(Xi) = 1 and �

2
Xi

= �
2
< 1. Show that if Sn =

P
n

i=1 Xi

2

�

�
S
1/2
n

� n
1/2
�

d! Z ⇠ N(0, 1).

Answer: Note that,

2

�
(Sn � n) =

2

�

�
S
1/2
n

� n
1/2
� �

S
1/2
n

+ n
1/2
�

=
2

�

�
S
1/2
n

� n
1/2
�
n
1/2
�
(Sn/n)

1/2 + 1
�

So that,

2

�

p
n ((Sn/n)� 1) =

2

�

�
S
1/2
n

� n
1/2
� �

(Sn/n)
1/2 + 1

�

and

�
(Sn/n)

1/2 + 1
��1 2

�

p
n ((Sn/n)� 1) =

2

�

�
S
1/2
n

� n
1/2
�
.

Since, {Xi}i=1,2,··· is a sequence of independent and identically random variables with
E(Xi) = 1, by Slutsky Theorem

�
(Sn/n)1/2 + 1

��1 p! 2�1 and since �
2
Xi

= �
2
< 1, by

Lévy’s CLT 1
�

p
n ((Sn/n)� 1)

d! N(0, 1). Hence, 2
�

⇣
S
1/2
n � n

1/2
⌘

d! Z ⇠ N(0, 1).
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