EXERCISES FOR MATH CAMP - SET 1

by

Carlos Brunet Martins-Filho
Department of Economics
256 UCB
University of Colorado at Boulder
Boulder, CO 80309-0256 USA
email: carlos.martins@colorado.edu

- 1. Prove Theorem 1 in your notes.
- 2. Prove item 2 of Theorem 3 on your class notes.
- 3. Let I_A be the indicator function of a set $A \subseteq X$. If $A_i \subseteq X$ and $i \in I$ where I is an arbitrary index set. Prove the following for any two $i, j \in I$:
 - (a) $I_{A_i \cap A_j} = I_{A_i} I_{A_j}$,
 - (b) $I_{A_i \cup A_j} = \min\{I_{A_i} + I_{A_j}, 1\},\$
 - (c) $I_{A_i A_j} = I_{A_i} I_{A_i \cap A_j}$,
 - (d) $I_{A_i \cup A_j} = I_{A_i} + I_{A_j} I_{A_i \cap A_j}$
 - (e) $I_{A_i \cup A_j} = \max\{I_{A_i}, I_{A_j}\},$
 - (f) $I_{A_i \cap A_i} = \min\{I_{A_i}, I_{A_i}\}.$
- 4. Use the principle of induction to prove that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- 5. Show that $(A B) \cap C = (A \cap C) (B \cap C)$.
- 6. Show that $A \cup B = A$ and $A \cap B = A$ imply A = B
- 7. let $i \in I$ where I is an arbitrary index set. Show that $\bigcup_{i \in I} A_i \bigcup_{i \in I} B_i \subseteq \bigcup_{i \in I} (A_i B_i)$.
- 8. Let $f: \mathbb{X} \to \mathbb{Y}$ be a function and consider $A_1, A_2 \subseteq \mathbb{X}$ and $B_1, B_2 \subseteq \mathbb{Y}$. Show that,

$$f^{-1}(B_1^c) = (f^{-1}(B_1))^c$$
 and

$$f(A_1^c) = (f(A_1))^c$$
 and $f(A_1 - A_2) = f(A_1) - f(A_2)$ if f is bijective.

- 9. Let $f: \mathbb{X} \to \mathbb{Y}$ be a function and consider $A \subseteq \mathbb{X}$ and $B \subseteq \mathbb{Y}$. Show that, $f(f^{-1}(B)) \subseteq B$, $A \subseteq f^{-1}(f(A))$.
- 10. Show the equality on item 3 of Remark 2 in your notes.
- 11. In Theorem 13 of your notes, show that f in the proof is strictly increasing in (0,1).
- 12. Let $\{A_i\}_{i\in\mathbb{N}}$ be a sequence of sets of cardinality \mathcal{C} . Show that the cardinality of $\bigcup_{i\in\mathbb{N}} A_i = \mathcal{C}$

- 13. Let V be a real vector space and $v_1, v_2, \dots, v_n \in V$. Let W be the collection of all linear combinations of v_1, v_2, \dots, v_n . Show that W is a subspace of V.
- 14. Show that the following subset of \mathbb{R}^2 is a subspace: all (x,y) such that x+4y=0.
- 15. Show that the following subsets of \mathbb{R}^3 are subspaces: b.1) all (x, y, z) such that x + y + z = 0; b.2) all (x, y, z) such that x = y and 2y = z.
- 16. Let $x = \{x_1, x_2, \dots\}$ be a sequence of real numbers. We say that a sequence is bounded if there exists a constant $M \in \mathbb{R}$ such that $|x_k| < M$ for all k. Define another sequence $y = \{y_1, y_2, \dots\}$ and $x + y = \{x_1 + y_1, x_2 + y_2, \dots\}$ and $ax = \{ax_1, ax_2, \dots\}$ for $a \in \mathbb{R}$. Show that the set of all bounded sequences is a vector space.
- 17. Let $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ be a double sequence with typical value given by f(m, n). Assume that
 - (a) for every $n \in \mathbb{N}$, $f(m_1, n) \leq f(m_2, n)$ whenever $m_1 \leq m_2$,
 - (b) for every $m \in \mathbb{N}$, $f(m, n_1) \leq f(m, n_2)$ whenever $n_1 \leq n_2$.

Show that
$$\lim_{n\to\infty} \left(\lim_{m\to\infty} f(m,n)\right) = \lim_{m\to\infty} \left(\lim_{n\to\infty} f(m,n)\right) = \lim_{n\to\infty} f(n,n)$$
.
As a corollary, show that if $f(m,n) \geq 0$ then $\sum_{n\in\mathbb{N}} \sum_{m\in\mathbb{N}} f(m,n) = \sum_{m\in\mathbb{N}} \sum_{n\in\mathbb{N}} f(m,n)$.

- 18. Prove items 4, 5 and 6 in Theorem 21 of your notes.
- 19. Show that if S is a convex set in a normed vector space, its interior and its closure are convex.
- 20. Let $(X, \|\cdot\|)$ be a normed vector space. Show that any norm $\|\cdot\|$ is a continuous function.
- 21. Let $V = \{x : \text{such that } x = (x_1, \dots, x_n, 0, \dots) \text{ and } n \in \mathbb{N} \}$ with norm $||x|| = \max_{1 \le i \le n} |x_i|$. Let $f(x) = \sum_{i=1}^n ix_i$. Show that f is linear but is not bounded.
- 22. If $f, g \in L(X, Y)$ show that $f \circ g \in L(X, Y)$.
- 23. Show that the set of all bounded sequences is a vector space.
- 24. Let \mathcal{C} be any collection of subsets of \mathbb{X} . Show that there exists a smallest topology that contains \mathcal{C} .