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Abstract The introduction of directional distance func-
tions has given researchers an alternative to Shephard

distance functions. In this paper we conduct a Monte

Carlo study to investigate the performance of distance
functions as an approximation for models of technology.

Our results indicate that quadratic representations of

technology have better approximation properties than
translog parameterizations.
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Distance functions play a central role in modeling produc-
tion technologies, creating indexes and productivity mea-

sures, as well as in duality theory. With the introduction of

shortage functions (Luenberger 1992) or, as they have also
been called, directional distance functions (Chambers et al.

1998), researchers have been given alternatives to the
Shephard input and output distance functions (Shephard

1953, 1970). Both sets of functions fully represent a tech-

nology but they differ in that directional distance functions
meet the translation property, whereas the Shephard dis-

tance functions are homogeneous of degree one. This dif-

ference has a profound impact on what parameterization
may be chosen.

In this paper we discuss various parametric forms that

belong to the family of generalized quadratic functions.1

These functions are linear in parameters and quadratic.

Combining them with the translation or homogeneity

property yields parametric representations, such as the
quadratic and the translog function. We conduct a Monte

Carlo study as a means to suggest the ‘best’ distance

function to approximate a production technology. Our
simulations suggest that the output set is better parame-

terized via a quadratic output directional distance function

than with a translog Shephard output distance function.
Other papers that investigate the properties of various

parametric functional forms include Guilkey et al. (1983),
Perroni and Rutherford (1998), Vardanyan and Noh (2006)

and Färe et al. (2008). Guilkey et al. examined the behavior

of three functions that are used to model cost functions.
They set up a Monte Carlo experiment and estimate cost

functions to show that the translog functional form,

although not perfect, is acceptable, as it outperforms other
parameterizations, such as the generalized Leontief func-

tional form (Diewert 1971). Perroni and Rutherford (1998)

studied the global properties of the cost function by cali-
brating its parameters to satisfy a particular structure of the
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production technology. Their results indicate that the tran-

slog functional form often violates regularity conditions and
note that better behaved parametric specifications, such as

the nonseparable nested constant elasticity of substitution

function (Perroni and Rutherford 1995), are available.2

Vardanyan and Noh (2006) used data from the U.S. electric

utility industry to show that the translog function has poor

global approximation properties relative to the quadratic
function when parameterizing the production technologies

that are associated with the production of socially undesir-

able outputs. Finally, more recently the comparison
between the translog and quadratic functions was also car-

ried out in the context of consumer choice theory (Färe et al.

2008). The authors used a Monte Carlo simulation to
compare the performance of translog expenditure function

to that of quadratic benefit function and found that quadratic

parameterizations perform better based on the fraction of
monotonicity and curvature violations.

1 Functional forms

Let x 2 <K
þ represent inputs used to produce outputs y 2

<M
þ and T ¼ ðx; yÞ 2 <KþM

þ : x can produce y
! "

denote the

production technology. For all (x,y) [ T this technology

can also be represented by the output sets

PðxÞ ¼ y : ðx; yÞ 2 Tf g; x 2 <K
þ: ð1Þ

We assume that P(x) satisfies standard axioms (Färe and
Primont 1995), which include compactness and free

disposability of inputs and outputs. The Shephard output

distance function is defined in terms of the output setsP(x) as

Dðx; yÞ ¼ inf u[ 0 : y=u 2 PðxÞf g: ð2Þ

The two properties of this function that are important for

this paper are, namely:

(i) Homogeneity: D(x,ly) = lD(x,y), l[ 0,

(ii) Representation: D(x,y) B 1 if and only if y [ P(x).

The homogeneity property follows from the definition of

the distance function, and the representation is due to the
assumption of free disposability of outputs. See Färe and

Primont (1995) or Shephard (1970) for further discussion

of this distance function.
To define the directional output distance function, a

directional vector g 2 <M
þ , g 6¼ 0 is required. This vector

determines the direction in which the production frontier is
approached. In case of Shephard it is the output vector

itself, i.e. g = y. Thus, the directional distance function is

defined as

D~ðx; y; gÞ ¼ supfw[ 0 : ðyþ wgÞ 2 PðxÞg: ð3Þ

This function meets:

iii) Translation: D~ðx; yþ ag; gÞ ¼ D~ðx; y; gÞ & a; a 2 <,
iv) Representation: D~ðx; y; gÞ' 0 if and only if y [ P(x).

The translation property follows from the definition of

the function and the representation property is due to the

assumption of strong disposability of outputs. See Färe and
Grosskopf (2004) for more on the properties of directional

output distance functions.

Both distance functions meet representation and are
therefore dual to the revenue function,

Rðx; pÞ ¼ max py : y 2 PðxÞf g; ð4Þ

where p 2 <M
þ denotes output prices. If g = y then

D~ðx; y; gÞ ¼ 1

Dðx; yÞ & 1: ð5Þ

To generate parametric functional forms for the two

types of distance functions we will restrict ourselves to the
class of functions which are linear in parameters.3 This

class has been referred to as the class of transformed

quadratic functions (Diewert 2002), or the functions that
can be represented as second-order Taylor series

approximations (Färe and Sung 1986). For any q 2 <I

with component qi, and twice differentiable functions h :
< ! < and q : < ! < with an inverse q&1, a function in

this class can be written as

FðqÞ ¼ q&1 a0 þ
XI

i¼1
aihðqiÞ þ

XI

i¼1

XI

i0¼1
aii0hðqiÞhðqi0Þ

# $
:

ð6Þ

Färe and Sung (1986)4 solve for functions that are

simultaneously transformed quadratic and homogeneous of

degree one, i.e. functions that meet (6) and i), and find two
solutions: the translog function (Christensen et al. 1971),

FðqÞ ¼ a0 þ
XI

i¼1
ai ln qi þ

XI

i¼1

XI

i0¼1
aii0 ln qi ln qi0

ð7Þ

and the quadratic mean of order r function,

FðqÞ ¼
XI

i¼1

XI

i0¼1
aii0q

r=2
i qr=2i0

# $1=r
: ð8Þ

2 Note that the generalized Leontief function does not belong to the
family of generalized quadratic functions and is therefore not
considered here.

3 There are two reasons why the functions that are nonlinear in
parameters have been excluded from our analysis. First, linear-in-
parameters specifications are the most common functional forms used
in economics. Second, to our knowledge the functional equations that
are associated with nonlinear-in-parameters functions that satisfy
homogeneity or translation have not yet been solved.
4 The authors assume I = 2.

J Prod Anal

123



Färe and Lundberg (2005)5 solve for functions that are

simultaneously transformed quadratic and satisfy the

translation property, i.e. functions that meet (6) and iii),
and find the only two solutions: the quadratic function,6

FðqÞ ¼ a0 þ
XI

i¼1
aiqi þ

XI

i¼1

XI

i0¼1
aii0qiqi0 ð9Þ

and

FðqÞ ¼ 1

2k
ln
XI

i¼1

XI

i0¼1
aii0 expðkqiÞ expðkqi0Þ: ð10Þ

The translog and the quadratic functions are the only

ones we will compare in this paper. These functions have
both first- and second-order terms, while the other two

functions have second-order terms only. It is likely that the

quality of approximation of the true technology attained by
specifications (7) and (9) will be different, thus a reliable

benchmark is needed. We investigate the quality of these
approximations by designing a Monte Carlo experiment

that allows us to shed light on the relative strengths and

weaknesses of these two models, as well as to pinpoint the
factors that can affect the quality of approximation for

each of them. We compare the translog and the qua-

dratic functions with respect to the functions themselves,
their first-order derivatives (shadow prices), and their

second-order derivatives (Morishima (1967) elasticities of

substitution).

2 Monte Carlo experiments

In our simulation study we consider two sets of true

technologies. The first set consists of three representations
of polynomial-of-order-four technologies, whereas the

second set includes three versions of translog-of-order-four

technologies. We assume that two inputs produce two
outputs, i.e. K = M = 2. The polynomial technology is

given by

PQðxÞ ¼
!
y1; y2ð Þ : y2 ¼ bQ0 þ bQ1 y1 þ bQ2 y

2
1 þ bQ3 y

3
1

þbQ4 y
4
1 þ x0:91 x0:82 ( f Qðy1; xÞ

"
; x 2 <2

þ:

ð11Þ

The parameter vector bQ ¼ bQ0 ; b
Q
1 ; b

Q
2 ;b

Q
3 ; b

Q
4

% &
models

the varying rate of change in the opportunity cost of one
output in terms of the other, or the marginal rate of

transformation. It is chosen in the following way:

Model Q1 Model Q2 Model Q3

bQ0 10.70 10.10 9.60

bQ1 -0.91 -0.72 -0.54

bQ2 0.50 9 10-5 0.50 9 10-4 0.10 9 10-2

bQ3 0.10 9 10-4 0.10 9 10-3 0.10 9 10-2

bQ4 -0.45 9 10-3 -0.12 9 10-2 -0.24 9 10-2

The corresponding plots of the output set boundaries across
the valid range of y1 and assuming x1 = x2 = 1 are given

in Panel I of Fig. 1. This choice of parameters is primarily

motivated by the curvature requirements that must be met
with regards to the output set frontiers, i.e. their concavity.

Note that Model Q1 assumes the lowest rate of change in

the marginal rate of transformation, whereas Model Q3 is
the ‘‘most concave’’ of the three.7

We generate the quantities y1 by randomly drawing

sample sizes (N) of 50, 100, 500, and 1,000 observations
from a gamma distribution characterized by the density

function pðy1Þ ¼ yk&1
1 e&y1=h CðkÞhk

% &&1
, where Cð!Þ is the

gamma function, ðk; hÞ 2 <2
þ. For each of three true

models we consider two different values for ðk; hÞ:

Type-A Models-yA1 )Gamma k ¼ 5; h ¼ 0:5ð Þ;

Type-B Models-yB1 )Gammaðk ¼ 18; h ¼ 0:25Þ:

The input quantities are drawn from the uniform

distribution as xk )Uniform 0; 1ð Þ; k ¼ 1; 2. Finally, the
values of the second output are obtained in the following

way:

y2 ¼ f Qðy1; xÞ & t; ð12Þ

where t is an exponentially distributed random noise that

captures technical inefficiency with the density function

pðtÞ ¼ expf&tg. Note that type-A and type-B models
differ by the area of PQ(x) around which the output

quantities are clustered. While in type-A models the

quantity of the second output is generally greater than that
of the first output for the majority of observations in the

sample, type-B models are associated with more balanced

quantities of y2 and y1. Figure 2 illustrates the scatter plots
for just two samples sizes and both of these models

assuming x1 = x2 = 1.

5 The authors assume that a0 = 0 in (6).
6 These two functions were suggested for the parameterization of the
directional distance function by Chambers (1998) who took k ¼ 1=2
in (10).

7 During the initial stages of our analysis we experimented with a
number of other forms of the true technology, including polynomials
of orders both higher and lower than four. The outcomes of these
trials were always in line with ones we summarize here for a more
limited number of true models. Hence, the decision to include only a
small number of true technologies does not result in a significant loss
of generality and it allow us to keep the simulation results easily
interpretable—a welcomed characteristic in any Monte Carlo study.
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The translog technology is given by

PLðxÞ ¼
!
y1; y2ð Þ : ln y2ð Þ ¼ bL0 þ bL1 ln y1ð Þ
þbL2 ln y1ð Þ½ +2þbL3 ln y1ð Þ½ +3þbL4 ln y1ð Þ½ +4

þx0:91 x0:82 ( f L y1; x
&% "

; x 2 <2
þ:

ð13Þ

We choose the parameter vector bL ¼ bL0 ; b
L
1 ; b

L
2 ; b

L
3 ; b

L
4

% &

in the following way:

Model L1 Model L2 Model L3

bL0 3.000 2.845 2.690

bL1 -3.500 -3.400 -3.300

bL2 3.900 4.000 4.100

bL3 -1.500 -1.475 -1.415

bL4 -0.140 -0.220 -0.330

As shown in Panel II of Fig. 1, all of the true frontiers
produced by these parameters satisfy the concavity prop-

erty. Model L1 is the ‘‘least concave’’ of the three, whereas

Model L3 is associated with the highest rate of increase in

the opportunity cost of one output in terms of the other.8

Samples of size N = 50, 100, 500, and 1,000 observa-

tions are drawn from a uniform distribution as ln y1ð Þ)
Uniform 0:7; 1:4ð Þ. This particular choice of the support for
the logarithm of y1 guarantees that all of our true output set
frontiers have non-decreasing marginal rate of transforma-

tion at each value of y1 in the sample. Finally, the input
quantities are generated in the same way as before and the

technical inefficiency is introduced in the following way:

ln y2ð Þ ¼ ln exp f L y1ð Þ
! "

& t
% &

: ð14Þ

The translog and the quadratic output distance functions
are given respectively by

D x; yð Þ ¼ exp
!
c0 þ c1 lnðy1Þ þ c2 lnðy2Þ þ

c11
2

lnðy1Þð Þ2

þ c22
2

lnðy2Þð Þ2þc12 lnðy1Þ lnðy2Þ

þ c3 lnðx1Þ þ c4 lnðx2Þ þ
c33
2

lnðx1Þð Þ2

þ c44
2

lnðx2Þð Þ2þc34 lnðx1Þ lnðx2Þ

þc13 lnðy1Þ lnðx1Þ þ c14 lnðy1Þ lnðx2Þ
þc23 lnðy2Þ lnðx1Þ þ c24 lnðy2Þ lnðx2Þ

"
; ð15Þ

D~ x; yð Þ ¼ d0 þ d1y1 þ d2y2 þ
d11
2

y21 þ
d22
2

y22 þ d12y1y2

þ d3x1 þ d4x2 þ
d33
2

x21 þ
d44
2

x22 þ d34x1x2

þ d13y1x1 þ d14y1x2 þ d23y2x1 þ d24y2x2: ð16Þ

The parameters of these functions are computed using the
linear programming procedure of Aigner and Chu (1968).9

We consider 200 replications for each of the nine model

types and both parameterizations.10
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Fig. 1 I. True frontiers of the output set; polynomial technologies. II.
True frontiers of the output set; translog technologies

8 As with the polynomial technologies, a number of alternative
specifications for true translog models were considered at the initial
stages of the study. Since the quality of approximation provided by
the quadratic directional distance function versus the translog
Shephard distance function was very similar across various true
technologies, we decided to summarize the results from just three of
them.
9 Linear programming methodology facilitates a straightforward
modeling of all of the functions’ properties, such as representation,
monotonicity, as well as homogeneity (in the case of the Shephard
distance function), and translation (in the case of the directional
distance function). See Färe et al. (2005) or Vardanyan and Noh
(2006) for a more detailed analysis of the computation procedures.
10 We have also considered models that include interaction terms
between y1 and the inputs in the expressions representing true
technology. Since all simulation results remained qualitatively
unaffected, we imposed separability between inputs and outputs in
our data generating process (DGP). We note that such assumption is
not incorporated in equations (15) and (16), reflecting the potential
ignorance about the true DGP and our desire to evaluate the
performance of generalized quadratic specifications.
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The empirical analogues of the frontier of the production

technology can be recovered using the vectors of parameter
estimates ĉ and d̂ and by assuming technical efficiency for

every observation in the sample, i.e., D~
nðx; y; gÞ ¼ 0 and

Dnðx; yÞ ¼ 1 for all n = 1,…,N. Using the first output y1n
and assuming xkn ¼ !xk; k ¼ 1; 2, we can solve N quadratic

equations and simulate the optimal output quantities y,2nðĉÞ
and y,2nðd̂Þ, which put every observation on the frontier
of the estimated set P̂ !xð Þ, thereby allowing us to compare

it to the true set P !xð Þand assess the quality of approxi-

mation provided by the translog versus the quadratic
parameterizations.11

We choose the following three benchmarks in order to

investigate the desirability of the parametric approxima-
tions: (1) the average Euclidean distance between the true

and simulated quantity of the second output; (2) the aver-

age relative shadow price discrepancy; and (3) the mean
Euclidean distance between the true and estimated

Morishima elasticities of substitution for the two

parameterizations.
Our first benchmark is obtained using the true and

simulated quantities of the second output. It is defined as

!Dð!Þ ¼ N&1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n¼1
y,2nð!Þ & y2n þ tnð Þ
( )2

r
: ð17Þ

The second benchmark can be interpreted as the average
discrepancy between the true and estimated marginal rate

of transformation evaluated at frontier points. From duality

theory, the relative shadow price can be defined as (Färe

and Primont 1995; Färe and Grosskopf 2004)

p1
p2

¼ oDðx; yÞ=oy1
oDðx; yÞ=oy2

¼
oD~ðx; y; gÞ

*
oy1

oD~ðx; y; gÞ
*
oy2

: ð18Þ

Hence, the average Euclidean distance between the true

and the estimated relative shadow price is equal to

!XðĉÞ ¼ N&1
XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pn þ
o lnDðx; y1n; y2nÞ=o lnðy1Þ
o lnDðx; y1n; y2nÞ=o lnðy2Þ

y2n
y1n

+ ,2
s

ð19Þ

and

!Xðd̂Þ ¼ N&1
XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pn þ
oD~ðx; y1n; y2n; gÞ

*
oy1

oD~ðx; y1n; y2n; gÞ
*
oy2

" #2
vuut ; ð20Þ

where pn is the negative of the true shadow price for

observation n. Note that pn ¼ of Qðy1n;xÞ
oy1

in the case of poly-

nomial technologies and pn ¼ of Lðy1n;xÞ
o lnðy1Þ

y2n
y1n

for translog

technologies.
Finally, our third benchmark assesses the relative error

in the approximation of the Morishima elasticity of sub-

stitution, a measure of the curvature. It is defined as
o ln p1=p2ð Þ=o ln y2=y1ð Þ and we have

eðĉÞ ¼ 1&
o2 lnDðx; yÞ

.
o ln y1ð Þ2

o lnDðx; yÞ=o lnðy1Þ

þ
o2 lnDðx; yÞ

*
o lnðy1Þo lnðy2Þ

o lnDðx; yÞ=o lnðy2Þ
; ð21Þ
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Fig. 2 Scatter plots of type-A and type-B models

11 One can alternatively use y2 to simulate the optimal quantity of the
first output.
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and

eðd̂Þ ¼ y1
o2D~ðx; y; gÞ

*
oy1oy2

oD~ðx; y; gÞ
*
oy2

&
o2D~ðx; y; gÞ

*
oy21

oD~ðx; y; gÞ
*
oy1

 !

:

ð22Þ

Therefore, the average Euclidean distance between the true
and estimated elasticity is equal to

and

where en is the negative of the true elasticity of substitution

for observation n. Also, note that en ¼
o2f Lðy1n;xÞ=o lnðy1Þ2
of Lðy1n;xÞ=o lnðy1Þ & 1

and en ¼ y1n
o2f Qðy1n;xÞ=oy21
of Qðy1n;xÞ=oy1 for translog and polynomial

technologies, respectively.

3 Results

The results of our experiment are summarized in Table 1
for the true polynomial technologies and Table 2 for the

true translog technologies. For each of the quadratic

models we specify three directional vectors g ( gy1 ; gy2
% &

,
namely g = (1,5), g = (1,1), and g = (5,1).12 We assess

both the translog and the quadratic estimates using the

three benchmarks and their weighted average. The first
benchmark was assigned a 50 percent weight, whereas the

shadow price and the elasticity discrepancy were assigned

a 25 percent weight each. We also report the fraction of
models that resulted in a normal convergence, denoted by

‘‘%’’ in the second column of the tables, since in some of

our models this fraction declined quite considerably with

an increase in sample size.
Figures 3 and 4, which contain the plots corresponding

to just two polynomial production technologies Model

Q1A and Model Q3B for sample sizes N = 50 and
N = 1,000, suggest that the quadratic directional distance

function performs better than the translog Shephard

distance function. For example, all of the quadratic frontier

estimates (panels A through C) seem to be doing a better

job of enveloping the true frontier compared to the translog
estimate (panel D). This result is not surprising, since

quadratic functions are simply second-order approxima-

tions to these true technologies, which are fourth-order
polynomials. In fact, the Shephard distance functions pro-

duce frontier estimates that have a wrong curvature in all of
the true polynomial models. We attempted to impose
concavity by restricting the estimated elasticity of substi-

tution to be non-positive, but none of these restricted
specifications managed to converge to a normal solution in
type-A models. As a result, we only report their convex

plots in panel D of Fig. 3, but not their benchmark values.
Interestingly, the same concavity restrictions imposed on

the parameters of the Shephard distance function produce

the desired concave contour of the frontier in type-B
models, as is illustrated in panel D of Fig. 4, provided the

sample size is not very large.13 However, even when the

estimated translog frontier is concave, it does not seem to
fare as well as quadratic estimates (panels A through C of

Fig. 4). Note that due to this need for curvature constraints

the fraction of converging translog parameterizations

!EðĉÞ ¼ N&1
XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

en þ 1&
o2 lnDðx; y1n; y2nÞ

.
o ln y1ð Þ2

o lnDðx; y1n; y2nÞ=o lnðy1Þ
þ
o2 lnDðx; y1n; y2nÞ

*
o lnðy1Þo lnðy2Þ

o lnDðx; y1n; y2nÞ=o lnðy2Þ

2

4

3

5
2

vuuut ; ð23Þ

!EðĉÞ ¼ N&1
XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

en þ 1&
o2 lnDðx; y1n; y2nÞ

.
o ln y1ð Þ2

o lnDðx; y1n; y2nÞ=o lnðy1Þ
þ
o2 lnDðx; y1n; y2nÞ

*
o lnðy1Þo lnðy2Þ

o lnDðx; y1n; y2nÞ=o lnðy2Þ

2

4

3

5
2

vuuut ; ð23Þ

12 Note that the methods we use to add technical inefficiency in (12)
and (14) ignore different scale effects entailed by these directional
vectors. For a detailed discussion of scaling using directional vectors
see Färe and Grosskopf (2004).

13 We do not report any of the benchmark values unless the fraction
of converging simulations is greater than one.

J Prod Anal

123



T
ab

le
1

R
es
ul
ts

of
th
e
M
on

te
C
ar
lo

ex
pe
ri
m
en
t;
po

ly
no

m
ia
l
te
ch
no

lo
gi
es

M
od

el
Q
1A

%
a

M
ea
n
E
uc
li
de
an

ou
tp
ut

di
st
an
ce

[! D
ð!Þ

]

M
ea
n
E
uc
li
de
an

sh
ad
ow

pr
ic
e

di
st
an
ce

[! X
ð!Þ

]

M
ea
n
E
uc
li
de
an

el
as
ti
ci
ty

of
su
bs
ti
tu
ti
on

di
st
an
ce

[! E
ð!Þ

]

W
ei
gh

te
d

E
uc
li
de
an

di
st
an
ce

M
od

el
Q
1B

%
M
ea
n
E
uc
li
de
an

ou
tp
ut

di
st
an
ce

[! D
ð!Þ

]

M
ea
n
E
uc
li
de
an

sh
ad
ow

pr
ic
e

di
st
an
ce

[! X
ð!Þ

]

M
ea
n
E
uc
li
de
an

el
as
ti
ci
ty

of
su
bs
ti
tu
ti
on

di
st
an
ce

[! E
ð!Þ

]

W
ei
gh

te
d

E
uc
li
de
an

di
st
an
ce

Q
ua
dr
at
ic

di
re
ct
io
na
l
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

Q
ua
dr
at
ic

di
re
ct
io
na
l
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

g
=

(1
,5
)

g
=

(1
,5
)

N
=

50
67

.8
11

5.
43

11
9.
96

23
0.
63

14
5.
35

N
=

50
62

.2
12

4.
00

11
6.
10

38
4.
34

18
7.
11

N
=

10
0

76
.0

65
.6
4

62
.0
0

13
0.
82

81
.0
2

N
=

10
0

64
.4

62
.1
0

63
.5
9

22
2.
04

10
2.
46

N
=

50
0

70
.1

20
.9
0

25
.7
5

80
.8
9

37
.1
1

N
=

50
0

69
.1

20
.2
8

29
.0
8

16
9.
97

59
.9
0

N
=

1,
00

0
76

.6
14

.4
2

20
.3
9

77
.0
9

31
.5
8

N
=

1,
00

0
73

.1
16

.1
0

24
.9
5

17
0.
93

57
.0
2

g
=

(1
,1
)

g
=

(1
,1
)

N
=

50
59

.0
12

4.
17

10
8.
63

11
6.
93

11
8.
47

N
=

50
65

.9
11

8.
19

11
3.
28

23
9.
90

14
7.
39

N
=

10
0

61
.8

66
.7
0

58
.6
8

89
.4
5

70
.3
8

N
=

10
0

66
.6

63
.4
4

62
.9
0

21
7.
52

10
1.
83

N
=

50
0

64
.4

18
.8
5

24
.4
0

78
.7
8

35
.2
2

N
=

50
0

69
.1

18
.1
2

24
.6
7

24
9.
78

77
.6
7

N
=

1,
00

0
66

.6
13

.8
5

20
.8
0

80
.1
5

32
.1
6

N
=

1,
00

0
71

.9
13

.5
0

21
.8
8

26
1.
69

77
.6
4

g
=

(5
,1
)

g
=

(5
,1
)

N
=

50
59

.7
11

8.
20

12
8.
76

10
0.
52

11
6.
42

N
=

50
64

.7
12

0.
16

11
5.
15

38
8.
76

18
6.
06

N
=

10
0

62
.8

72
.0
6

78
.7
8

10
0.
91

80
.9
5

N
=

10
0

70
.9

69
.1
5

75
.3
0

40
2.
62

15
4.
05

N
=

50
0

72
.3

26
.9
9

32
.2
2

10
8.
95

48
.7
9

N
=

50
0

75
.6

24
.4
5

33
.4
8

41
4.
29

12
4.
17

N
=

1,
00

0
75

.4
20

.3
8

25
.3
2

11
1.
21

44
.3
2

N
=

1,
00

0
74

.4
18

.2
2

28
.1
4

41
7.
63

12
0.
55

T
ra
ns
lo
g
S
he
ph

ar
d
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

T
ra
ns
lo
g
S
he
ph

ar
d
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

N
=

50
0.
0

–
–

–
–

N
=

50
55

.5
20

5.
28

11
8.
73

46
3.
28

24
8.
14

N
=

10
0

0.
0

–
–

–
–

N
=

10
0

56
.5

22
6.
93

96
.4
6

42
4.
63

24
3.
74

N
=

50
0

0.
0

–
–

–
–

N
=

50
0

14
.7

42
8.
32

78
.7
7

39
5.
98

33
2.
85

N
=

1,
00

0
0.
0

–
–

–
–

N
=

1,
00

0
3.
2

45
3.
16

77
.8
6

40
1.
16

34
6.
33

J Prod Anal

123



T
ab

le
1

co
nt
in
ue
d

M
od

el
Q
2A

%
M
ea
n
E
uc
li
de
an

ou
tp
ut

di
st
an
ce

[! D
ð!Þ

]

M
ea
n
E
uc
li
de
an

sh
ad
ow

pr
ic
e

di
st
an
ce

[! X
ð!Þ

]

M
ea
n
E
uc
li
de
an

el
as
ti
ci
ty

of
su
bs
ti
tu
ti
on

di
st
an
ce

[! E
ð!Þ

]

W
ei
gh

te
d

E
uc
li
de
an

di
st
an
ce

M
od

el
Q
2B

%
M
ea
n
E
uc
li
de
an

O
ut
pu

t
D
is
ta
nc
e

[! D
ð!Þ

]

M
ea
n
E
uc
li
de
an

sh
ad
ow

pr
ic
e

di
st
an
ce

[! X
ð!Þ

]

M
ea
n
E
uc
li
de
an

el
as
ti
ci
ty

of
su
bs
ti
tu
ti
on

di
st
an
ce

[! E
ð!Þ

]

W
ei
gh

te
d

E
uc
li
de
an

di
st
an
ce

Q
ua
dr
at
ic

di
re
ct
io
na
l
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

Q
ua
dr
at
ic

di
re
ct
io
na
l
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

g
=

(1
,5
)

g
=

(1
,5
)

N
=

50
69

.1
11

9.
95

11
4.
02

31
0.
01

16
5.
98

N
=

50
67

.1
11

8.
27

11
6.
40

50
7.
26

21
5.
05

N
=

10
0

72
.0

67
.8
7

77
.4
1

24
2.
82

11
3.
99

N
=

10
0

64
.3

66
.5
1

74
.2
7

37
3.
03

14
5.
08

N
=

50
0

72
.8

29
.7
3

48
.8
7

19
6.
75

75
.7
7

N
=

50
0

66
.6

27
.5
5

47
.8
6

35
3.
20

11
4.
04

N
=

1,
00

0
77

.1
25

.5
7

42
.5
7

19
3.
54

71
.8
1

N
=

1,
00

0
67

.1
26

.4
3

47
.4
2

35
9.
33

11
4.
90

g
=

(1
,1
)

g
=

(1
,1
)

N
=

50
58

.3
12

2.
69

10
8.
37

20
3.
00

13
9.
19

N
=

50
64

.6
12

4.
98

10
8.
30

57
8.
88

23
4.
29

N
=

10
0

63
.4

65
.9
0

63
.7
3

18
8.
08

95
.9
0

N
=

10
0

64
.3

68
.1
4

69
.2
2

62
4.
91

20
7.
60

N
=

50
0

63
.1

24
.7
2

38
.5
3

19
9.
72

71
.9
2

N
=

50
0

66
.6

20
.8
1

39
.3
1

65
1.
18

18
3.
03

N
=

1,
00

0
64

.0
22

.7
4

36
.5
4

20
6.
83

72
.2
2

N
=

1,
00

0
71

.7
18

.4
4

37
.3
3

65
4.
05

18
2.
06

g
=

(5
,1
)

g
=

(5
,1
)

N
=

50
49

.5
11

4.
78

12
2.
32

29
5.
77

19
1.
91

N
=

50
59

.4
12

0.
94

14
2.
16

97
6.
79

34
0.
21

N
=

10
0

60
.6

67
.4
9

79
.4
8

29
2.
04

12
6.
63

N
=

10
0

62
.3

79
.8
8

10
9.
69

98
5.
87

31
3.
83

N
=

50
0

65
.0

34
.4
4

44
.0
6

30
0.
35

10
3.
32

N
=

50
0

68
.9

53
.2
9

93
.8
4

99
6.
86

29
9.
32

N
=

1,
00

0
69

.1
32

.5
5

40
.0
4

30
0.
62

10
1.
44

N
=

1,
00

0
72

.6
58

.5
1

97
.6
1

1,
00

4.
03

30
4.
66

T
ra
ns
lo
g
S
he
ph

ar
d
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

T
ra
ns
lo
g
S
he
ph

ar
d
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

N
=

50
0.
0

–
–

–
–

N
=

50
48

.3
22

5.
67

17
9.
71

85
0.
44

37
0.
37

N
=

10
0

0.
0

–
–

–
–

N
=

10
0

37
.5

28
6.
18

17
4.
90

83
4.
37

39
5.
41

N
=

50
0

0.
0

–
–

–
–

N
=

50
0

2.
2

50
0.
56

20
2.
65

93
0.
06

53
3.
46

N
=

1,
00

0
0.
0

–
–

–
–

N
=

1,
00

0
\
1.
0

–
–

–
–

J Prod Anal

123



T
ab

le
1

co
nt
in
ue
d

M
od

el
Q
3A

%
M
ea
n
E
uc
li
de
an

ou
tp
ut

di
st
an
ce

[! D
ð!Þ

]

M
ea
n
E
uc
li
de
an

sh
ad
ow

pr
ic
e

di
st
an
ce

[! X
ð!Þ

]

M
ea
n
E
uc
li
de
an

el
as
ti
ci
ty

of
su
bs
ti
tu
ti
on

di
st
an
ce

[! E
ð!Þ

]

W
ei
gh

te
d

E
uc
li
de
an

di
st
an
ce

M
od

el
Q
3B

%
M
ea
n
E
uc
li
de
an

ou
tp
ut

di
st
an
ce

[! D
ð!Þ

]

M
ea
n
E
uc
li
de
an

sh
ad
ow

pr
ic
e

di
st
an
ce

[! X
ð!Þ

]

M
ea
n
E
uc
li
de
an

el
as
ti
ci
ty

of
su
bs
ti
tu
ti
on

di
st
an
ce

[! E
ð!Þ

]

W
ei
gh

te
d

E
uc
li
de
an

di
st
an
ce

Q
ua
dr
at
ic

di
re
ct
io
na
l
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

Q
ua
dr
at
ic

di
re
ct
io
na
l
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

g
=

(1
,5
)

g
=

(1
,5
)

N
=

50
71

.3
12

2.
27

13
0.
72

66
7.
47

26
0.
69

N
=

50
64

.8
11

8.
93

11
5.
78

62
5.
41

24
4.
77

N
=

10
0

72
.0

71
.4
5

96
.8
1

43
9.
85

16
9.
89

N
=

10
0

62
.3

66
.4
5

75
.1
9

53
1.
40

18
4.
87

N
=

50
0

72
.3

44
.2
1

75
.0
8

36
7.
10

13
2.
65

N
=

50
0

65
.5

29
.6
1

53
.9
9

52
5.
71

15
9.
73

N
=

1,
00

0
71

.0
44

.0
7

73
.2
5

36
1.
88

13
0.
82

N
=

1,
00

0
63

.1
30

.9
6

56
.5
3

53
9.
90

16
4.
59

g
=

(1
,1
)

g
=

(1
,1
)

N
=

50
63

.3
12

1.
06

11
0.
00

35
8.
69

17
7.
70

N
=

50
61

.5
12

9.
21

15
6.
97

1,
11

3.
20

38
2.
15

N
=

10
0

59
.5

64
.6
5

70
.9
4

34
8.
88

13
7.
28

N
=

10
0

68
.8

78
.9
8

12
8.
87

1,
13

2.
37

35
4.
80

N
=

50
0

62
.0

28
.2
1

48
.6
1

36
1.
10

11
6.
53

N
=

50
0

71
.0

62
.8
8

12
4.
67

1,
19

3.
58

36
1.
00

N
=

1,
00

0
61

.3
30

.8
2

48
.3
6

36
8.
06

11
9.
52

N
=

1,
00

0
68

.0
69

.6
3

12
8.
33

1,
21

2.
97

37
0.
14

g
=

(5
,1
)

g
=

(5
,1
)

N
=

50
40

.2
13

8.
58

17
5.
17

57
9.
41

25
7.
94

N
=

50
53

.3
15

6.
58

24
5.
51

1,
59

9.
83

53
9.
62

N
=

10
0

44
.3

10
5.
19

15
3.
96

59
7.
12

24
0.
37

N
=

10
0

52
.5

11
9.
50

22
7.
52

1,
61

0.
27

51
9.
20

N
=

50
0

49
.8

11
2.
46

16
5.
04

60
6.
24

24
9.
05

N
=

50
0

60
.3

12
6.
44

22
8.
31

1,
62

9.
83

52
7.
76

N
=

1,
00

0
55

.8
12

2.
32

16
0.
23

60
9.
44

25
3.
58

N
=

1,
00

0
64

.8
13

8.
23

23
2.
12

1,
63

3.
65

53
5.
56

T
ra
ns
lo
g
S
he
ph

ar
d
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

T
ra
ns
lo
g
S
he
ph

ar
d
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

N
=

50
0.
0

–
–

–
–

N
=

50
35

.7
31

4.
91

31
7.
94

1,
35

4.
54

57
5.
58

N
=

10
0

0.
0

–
–

–
–

N
=

10
0

19
.0

39
0.
29

33
1.
72

1,
40

9.
77

63
0.
52

N
=

50
0

0.
0

–
–

–
–

N
=

50
0

\
1.
0

–
–

–
–

N
=

1,
00

0
0.
0

–
–

–
–

N
=

1,
00

0
\
1.
0

–
–

–
–

E
ac
h
of

th
e
m
ea
n
be
nc
hm

ar
ks

ha
s
be
en

m
ul
ti
pl
ie
d
by

10
3

a
S
ho

w
s
th
e
pe
rc
en
t
of

si
m
ul
at
io
ns

th
at

co
nv

er
ge
d
to

a
no

rm
al

so
lu
ti
on

J Prod Anal

123



T
ab

le
2

R
es
ul
ts

of
th
e
M
on

te
C
ar
lo

ex
pe
ri
m
en
t;
tr
an
sl
og

te
ch
no

lo
gi
es

M
od

el
L
1

%
a

M
ea
n

E
uc
li
de
an

ou
tp
ut

di
st
an
ce

[! D
ð!Þ

]

M
ea
n

E
uc
li
de
an

sh
ad
ow

pr
ic
e

di
st
an
ce

[! X
ð!Þ

]

M
ea
n

E
uc
li
de
an

el
as
ti
ci
ty

of
su
bs
ti
tu
ti
on

di
st
an
ce

[! E
ð!Þ

]

W
ei
gh

te
d

E
uc
li
de
an

di
st
an
ce

M
od

el
L
2

%
M
ea
n

E
uc
li
de
an

ou
tp
ut

di
st
an
ce

[! D
ð!Þ

]

M
ea
n

E
uc
li
de
an

sh
ad
ow

pr
ic
e

di
st
an
ce

[! X
ð!Þ

]

M
ea
n

E
uc
li
de
an

el
as
ti
ci
ty

of
su
bs
ti
tu
ti
on

di
st
an
ce

[! E
ð!Þ

]

W
ei
gh

te
d

E
uc
li
de
an

di
st
an
ce

Q
ua
dr
at
ic

di
re
ct
io
na
l
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

Q
ua
dr
at
ic

di
re
ct
io
na
l
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

g
=

(1
,5
)

g
=

(1
,5
)

N
=

50
74

.3
1,
05

6.
24

86
4.
82

2,
08

7.
17

1,
26

6.
12

N
=

50
77

.0
1,
09

9.
20

1,
57

4.
73

2,
77

7.
10

1,
63

7.
56

N
=

10
0

72
.2

94
1.
17

72
3.
92

2,
02

3.
46

1,
15

7.
43

N
=

10
0

75
.8

88
9.
87

1,
64

6.
19

2,
69

4.
08

1,
53

0.
00

N
=

50
0

25
.3

90
7.
75

70
7.
20

2,
05

3.
22

1,
14

3.
98

N
=

50
0

25
.3

85
9.
38

1,
69

9.
24

2,
74

5.
74

1,
54

0.
94

N
=

1,
00

0
23

.8
94

3.
38

67
0.
56

2,
04

9.
94

1,
15

1.
81

N
=

1,
00

0
25

.0
90

9.
47

1,
70

6.
38

2,
75

3.
10

1,
56

9.
60

g
=

(1
,1
)

g
=

(1
,1
)

N
=

50
76

.2
92

1.
71

84
5.
38

2,
06

9.
57

1,
18

9.
59

N
=

50
76

.5
89

4.
21

1,
80

8.
82

2,
81

2.
67

1,
60

2.
48

N
=

10
0

81
.2

81
3.
48

82
4.
05

2,
08

4.
61

1,
13

3.
91

N
=

10
0

84
.0

78
8.
26

1,
79

0.
19

2,
84

5.
71

1,
55

3.
10

N
=

50
0

32
.9

95
3.
41

75
6.
79

2,
07

5.
40

1,
18

4.
75

N
=

50
0

35
.0

85
2.
99

1,
74

7.
63

2,
83

2.
69

1,
57

1.
58

N
=

1,
00

0
33

.8
1,
08

0.
13

73
3.
32

2,
07

9.
90

1,
24

3.
37

N
=

1,
00

0
31

.5
96

3.
74

1,
73

8.
54

2,
82

9.
44

1,
62

3.
86

g
=

(5
,1
)

g
=

(5
,1
)

N
=

50
5.
8

1,
20

2.
13

1,
00

3.
26

2,
10

6.
68

1,
37

8.
55

N
=

50
5.
3

1,
10

6.
58

1,
87

0.
25

2,
85

2.
13

1,
73

3.
89

N
=

10
0

3.
6

85
2.
24

1,
00

6.
06

2,
09

8.
88

1,
20

2.
36

N
=

10
0

2.
8

95
3.
29

1,
88

8.
92

2,
82

8.
35

1,
65

5.
96

N
=

50
0

7.
8

75
3.
25

87
6.
87

2,
07

3.
11

1,
11

4.
12

N
=

50
0

7.
9

77
9.
47

1,
83

0.
50

2,
82

7.
23

1,
55

4.
17

N
=

1,
00

0
8.
3

79
5.
14

85
7.
41

2,
07

6.
28

1,
13

0.
99

N
=

1,
00

0
8.
4

85
6.
68

1,
82

7.
84

2,
82

8.
66

1,
59

2.
46

T
ra
ns
lo
g
S
he
ph

ar
d
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

T
ra
ns
lo
g
S
he
ph

ar
d
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

N
=

50
58

.8
1,
15

5.
19

1,
21

1.
56

1,
97

7.
01

1,
37

4.
73

N
=

50
54

.8
1,
13

5.
67

1,
35

0.
01

2,
71

7.
65

1,
58

4.
75

N
=

10
0

34
.3

98
0.
44

1,
13

2.
26

2,
02

4.
72

1,
27

9.
46

N
=

10
0

32
.7

1,
00

7.
25

1,
20

2.
48

2,
74

0.
91

1,
48

9.
47

N
=

50
0

2.
4

1,
90

0.
91

79
3.
80

2,
05

4.
47

1,
66

2.
52

N
=

50
0

1.
8

1,
65

1.
56

94
9.
55

2,
76

4.
41

1,
75

4.
27

N
=

1,
00

0
\
1.
0

–
–

–
–

N
=

1,
00

0
\
1.
0

–
–

–
–

J Prod Anal

123



T
ab

le
2

co
nt
in
ue
d

M
od

el
L
3

%
M
ea
n
E
uc
li
de
an

ou
tp
ut

di
st
an
ce

[! D
ð!Þ

]

M
ea
n
E
uc
li
de
an

sh
ad
ow

pr
ic
e

di
st
an
ce

[! X
ð!Þ

]

M
ea
n
E
uc
li
de
an

el
as
ti
ci
ty

of
su
bs
ti
tu
ti
on

di
st
an
ce

[! E
ð!Þ

]

W
ei
gh

te
d

E
uc
li
de
an

di
st
an
ce

Q
ua
dr
at
ic

di
re
ct
io
na
l
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

g
=

(1
,5
)

N
=

50
75

.5
1,
16

7.
22

1,
20

8.
60

4,
11

9.
96

1,
91

5.
75

N
=

10
0

73
.8

1,
05

8.
69

1,
11

5.
60

4,
15

2.
17

1,
84

8.
29

N
=

50
0

24
.8

93
2.
81

1,
16

0.
60

4,
33

0.
91

1,
83

9.
28

N
=

1,
00

0
23

.1
99

3.
97

1,
24

4.
68

4,
35

8.
44

1,
89

7.
77

g
=

(1
,1
)

N
=

50
77

.8
92

1.
27

1,
40

3.
15

4,
44

6.
21

1,
92

2.
98

N
=

10
0

83
.8

77
5.
00

1,
36

2.
59

4,
49

5.
09

1,
85

1.
92

N
=

50
0

35
.5

87
3.
96

1,
26

9.
01

4,
48

0.
62

1,
87

4.
39

N
=

1,
00

0
38

.9
95

2.
36

1,
24

4.
23

4,
48

1.
40

1,
90

7.
59

g
=

(5
,1
)

N
=

50
5.
2

1,
10

2.
76

1,
54

6.
12

4,
55

0.
18

2,
07

5.
45

N
=

10
0

4.
0

93
0.
35

1,
47

9.
09

4,
48

3.
33

1,
95

5.
78

N
=

50
0

8.
3

89
8.
17

1,
39

6.
87

4,
49

1.
95

1,
92

1.
29

N
=

1,
00

0
9.
9

95
6.
33

1,
36

8.
01

4,
48

4.
08

1,
94

1.
19

T
ra
ns
lo
g
S
he
ph

ar
d
ou

tp
ut

di
st
an
ce

fu
nc
ti
on

N
=

50
41

.6
1,
19

7.
41

1,
10

0.
68

4,
27

3.
83

1,
94

2.
33

N
=

10
0

16
.3

1,
13

7.
27

1,
14

0.
86

4,
34

4.
02

1,
93

9.
86

N
=

50
0

\
1.
0

–
–

–
–

N
=

1,
00

0
\
1.
0

–
–

–
–

E
ac
h
of

th
e
m
ea
n
be
nc
hm

ar
ks

ha
s
be
en

m
ul
ti
pl
ie
d
by

10
3

a
S
ho

w
s
th
e
pe
rc
en
t
of

si
m
ul
at
io
ns

th
at

co
nv

er
ge
d
to

a
no

rm
al

so
lu
ti
on

J Prod Anal

123



declines quite dramatically with an increase in the sample

size and, for example, is equal to only around 3 percent in

Model Q1B when N = 1,000.

As far as the true translog technologies are concerned,

both the directional and the Shephard distance function

models require that the curvature conditions be imposed.

Fig. 3 a The true and estimated frontiers of the output set; model Q1A, N = 50; b model Q1A, N = 1,000
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The plots of these estimated frontiers, which are presented

in Fig. 5 only for Model L2, suggest that the difference
in the quality of approximation between the two

parameterizations is not as significant as in the case

of polynomial technologies. However, as shown in the
second and the eighth column of Table 2, the fraction of

Fig. 4 a The true and estimated frontiers of the output set; model Q3B, N = 50; b model Q3B, N = 1,000
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converging specifications drops sharply as the sample size

is increased, and the rate of this decline is more pronounced

than in polynomial models. To some extent, this precipitous

decline can be explained by a dramatic increase in the

number of representation, monotonicity, and especially

curvature constraints that must be satisfied in large samples.

Fig. 5 a The true and estimated frontiers of the output set; model L2, N = 50; b model L2, N = 1,000
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A more rigorous assessment of the approximation

properties of the quadratic versus translog functions can be
performed by comparing their corresponding benchmark

values, which we did in Table 1 for polynomial technolo-

gies and Table 2 for translog technologies. Recall that
three of them were defined in the previous section: the

mean Euclidean distance between the true and the simu-

lated quantity of y2, denoted by !Dð!Þ and reported in the
third and the ninth column of Tables 1 and 2, as well as the

average relative shadow price discrepancy [!Xð!Þ] and the
mean Euclidean distance between the true and estimated

elasticity of substitution [!Eð!Þ].
The numbers suggest that in the case of the true poly-

nomial technologies, the quadratic function’s global

behavior is clearly superior to that of the translog func-

tion.14 For example, in type-B models the directional dis-
tance function’s weighted average benchmarks, which

steadily decrease as the sample size grows, are always

lower than their Shephard distance function counterparts
(column 12 of Table 1).15 On the contrary, with an increase

in N the translog’s performance is in fact getting worse, not

better. For instance, in Model Q2B its average benchmark
goes up from 370.4 to 395.4 as the sample size grows from

50 to 100 observations and then continues to rise to 533.5

as the sample is increased to N = 500.
As far as the true tranlsog technologies are concerned,

the difference in the quality of approximation between the

two parameterizations is not always so apparent—a result
that is consistent with plots in Fig. 5. For example, for all

three directional vectors the quadratic function continues to

fare better than the translog in Model L1, but not in Model
L2. For example, when N = 100 the mean benchmark

corresponding to the translog Shephard distance function

equals approximately 1,279 and 1,489 in Model L1 and
Model L2, respectively (bottom of column 6 and column

12 of Table 2), compared to the maximum average

benchmark of 1,202 in Model L1 and 1,656 in Model L2 in
the case of the quadratic directional distance function.16

In other words, the quadratic function can sometimes

approximate the true technology better than can the

translog function even when the true technology is translog

itself!
The behavior of the directional distance functions seems

to be affected to some extent by the choice of the direc-

tional vector g. For example, the approximation quality
achieved in parameterizations that assume g = (5,1) is

consistently poorer compared to models based on the other

two directional vectors. This difference is most noticeable
in type-B models, but is generally never very large. For

instance, the mean benchmark associated with this direc-
tional vector in Model Q1B when N = 500 equals 124.17

(Column 12 of Table 1), compared to the average bench-

mark values of 59.9 and 77.7 for the other two directional
vectors from the same model. In addition, only a relatively

small fraction of quadratic parameterizations that are based

on g = (5,1) managed to converge to a normal solution in
all three of our true translog models (column 2 and column

8 of Table 2). Hence, the estimation results are not entirely

invariant to the choice of the directional vector.
The fraction of translog simulations converging to a

normal solution appears to be susceptible to the extent of

the curvature of the underlying true frontier. For example,
in the case of polynomial technologies the fraction of

converging translog models falls from more than 56% in

Model Q1B to just 19% in Model Q3B when N = 100
(bottom of column 8 of Table 1). Similarly, in the case of

the true translog technologies this percentage drops from

about 34% in Model L1 to 16% in Model L3 (bottom of
column 2 of Table 2).

Finally, among the three types of polynomial technolo-

gies that we consider the best quality of approximation is
achieved in Model Q1, which is associated with the lowest

average marginal rate of transformation. After that, the

performance gradually deteriorates in both the translog and
quadratic parameterizations, as is reflected by a steady

increase in the values of all mean benchmarks reported in

column 6 for type-A models and column 12 for type-B
models. One possible explanation to this trend may be our

assumption regarding the true production technologies,

which are polynomials of order four, whereas the functions
that are used to approximate them are processes of order

two. Consequently, these second-order parameterizations

would be better suited to approximate the frontiers that are
relatively ‘‘flat,’’ such as in Model Q1 or Model Q2. As far

as the true translog technologies are concerned, the

weighted average benchmarks reach their lowest level in
Model L1 (bottom of column 6 of Table 2) and steadily

increase thereafter.

To summarize, the unrestricted translog function tends
to produce convex estimates of the output set frontier and is

rather inflexible if subjected to concavity restrictions.

These restrictions are always necessary, and the conver-
gence can be achieved only if the sample size is not very

14 Note that the benchmark values associated with the Shephard
distance function are not reported for any of our type-A models due to
the wrong (convex) curvature of the corresponding frontier estimates
and the failure of the estimation algorithms to converge after the
imposition of appropriate curvature constraints.
15 There are a few instances in quadratic models when the average
benchmark value increased as the sample size went up from 100 to
500 to 1,000 observations. The rate of this increase was the highest in
Model Q3A and Model Q3B, i.e. the two frontiers with the most
curvature.
16 Note that these maxima are obtained across three quadratic
parameterizations, each of which corresponds to a specific value of
the directional vector, and that both of the maxima reported are from
parameterizations that assume g = (5,1).
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large. Quite often the tranlsog distance function fails to

converge to a normal solution altogether. In addition, the
behavior of translog parameterizations deteriorates signif-

icantly in models whose output set frontier has plenty of

curvature. Studies have shown that the translog functional
form performs well when used to approximate cost func-

tions (Guilkey et al. 1983), and is a popular choice when

parameterizing Shephard input distance functions (Atkin-
son et al. 2003a, b). However, both the cost function and

the input distance functions are defined with respect to the
input sets LðyÞ ¼ x : ðx; yÞ 2 Tf g, which have convex

boundaries, making translog a natural choice for parame-

terizing the technology.
On the other hand, depending on the nature of true

technology, the unrestricted quadratic function can produce

either convex or concave estimates of the output set fron-
tier. Unlike with the translog function, concavity can

always be established simply by imposing appropriate

restrictions. Hence, although it is certainly not perfect, the
quadratic function seems to be much more flexible com-

pared to translog for the family of true technologies

included in our study. It performs well regardless of the
type of the true technology, as well as in both small and big

samples.

Our analysis can be extended by expanding the class of
functional forms to include nonlinear-in-parameters speci-

fications, as well as by assigning a parametric structure to

the component that represents technical inefficiency.
Future research can be expanded even further by general-

izing the true technologies to include allocative ineffi-

ciency terms as well.

4 Conclusion

The modeling of production technologies with output dis-

tance functions can be performed using either a translog
Shephard output distance function or a quadratic direc-

tional output distance function. In this paper we have

compared the performance of these parameterizations by
means of a Monte Carlo experiment that assumes two types

of true production technologies—polynomial and translog.

Our results are in line with earlier studies by Vardanyan
and Noh (2006) and Färe et al. (2008) and indicate that

quadratic models outperform translog parameterizations

regardless of the type of the true technology. We also
demonstrate that the translog models are characterized by

rather poor economic approximation properties and are

quite inflexible when subjected to curvature restrictions.
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