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Chapter 1

Probability spaces

It is universally accepted, and intuitively understood, that the probability associated with
the occurrence of an arbitrary event can be expressed by a number between 0 and 1. For
example, we may be informed by a meteorological service that the probability that it will
snow tomorrow is 70%. In fact, in many settings we can easily assess the probabilities
associated with certain events. Thus, stating that the probability of observing heads after
tossing a fair coin is 50% is normally taken to be self-evident. In this chapter we develop
a mathematical framework that will allow a formal treatment of the notions of event and
probability. The development of this framework, which relies on concepts and results from
measure theory, leads us to the notion of probability spaces, foundational to all subsequent

topics in this monograph.

1.1 o-algebras

A set formed by subsets of a fixed set X is called a system of sets. Systems are commonly
described by certain properties that involve taking unions, intersections and differences of
their elements. In what follows, we will introduce several systems that will be useful in
constructing probability spaces. We start with the definition of the most important of these

systems in the study of probability, they are called o-algebras.



Definition 1.1. Let X be an arbitrary set. A o-algebra F is a system of subsets of X having

the following properties:
1. XeF
2. Ac F = A°c F
3. AiEFfOTiGIN — UA,LE.F
ieN
In this context we say that F is a o-algebra associated with X. It is evident from this
definition that many o-algebras may be associated with a set X. As a matter of terminology,

if A € F it is said to be an F-measurable set and the pair (X, F) is called a measurable

space.

Remark 1.1. 1. Since X € F, by property 2, X¢ = X — X = () € F. Hence, every
o-algebra contains the empty set. Note that complementation is taken with respect to

the set X.

2. By de Morgan’s Laws <U Ai> = (A5 and by properties 2 and 3, if A; € F for
i€N ieN
i € N, then A € F and () A € F.
i€N

3. Given Definition and Remark[1.11 2 we say that F is “closed” under complementa-

tion, countable unions and countable intersections.

4. For Ay, Ay € F, and given that As — Ay = Ay N A we have that Ay — Ay € F. Also,
denoting the symmetric difference between sets Ay and Ay by AjAAy == (A — As) U
(As — Ay), we have that A;AA; € F.

5. A system of subsets of X is said to be an algebra if properties 1 and 2 in Definition
hold and if A; € F fori=1,--- ,m then J;" | A; € F with m € N. Clearly, every

o-algebra is also an algebra.



We now provide examples of o-algebras.

Example 1.1. 1. For any X, F := {X,0} is a o-algebra. It is called the minimal o-

algebra.

2. For any X, the collection 2% of all subsets of X is a o-algebra. It is called the mazimal

o-algebra.
3. Let A C X. Then, F :={X, A, A°,0} is a o-algebra.

4. Let S C X and F a o-algebra associated with X. Then, Fg := SNF :={SNF : F € F}
1s a o-algebra associated with S. It is called the trace o-algebra. We verify that Fg is

a o-algebra by establishing the properties of Definition [1.1]:

1. S e Fs.

Note that since X € F, then SNX =S5 € Fg.

2. Ae Fg = A° € Fg (note that A° =S — A, complementation relative to S).

Ae Fs — dJF € F 5 A=8SnNF € Fg. Since F € F then F¢ € F and
SNF° e Fs. Furthermore, S = (SNF)U(SNF°) = AU(SNF°). But by definition,
AUA =S, hence A= SNF°e Fg.

3. A€ Fg forie N = UAz‘GJ:S-

iEN

A e Fs = JF, € F3 A, =SNF;,. Hence, |JA; = J(SNEF;)=5N (UE)
ieN iEN iEN
But since F; € F, we have |J F; € F, hence |J A; € Fs.
iEN iEN

5. Let f : X — Y be a function, Y be a o-algebra associated with Y and f~1(S) =
{r € X : f(z) € S} denote the inverse image of the set S under f. Then, F =
X)) ={f1S) : S € Y} is a og-algebra associated with X. F is called the inverse

image o-algebra. Again, we verify that F is a o-algebra by establishing the properties

of Definition[1.1]



1. X e F.

Since Y is a o-algebra associated with Y, Y € Y. f71(Y)={z e X: f(z) e Y} =X.
Thus, X € F.

2. Ac F — A°e F.

AeF = IS4 €Y 23 A=f1S4). Now, Sy€Y = S,:=Y—-S,€Y and
FUY = S4) =X — f71(Sa). Thus, f~N(Y —S4) =X — A= A° € F.

3.Ai€ff07’?:€IN:> UAIE.F
€N
AZ'G]: — HSAiGyBAi:ffl(SAi). Now, SAiGy,ViE]l\I — USAiEy

1€IN

ond 1 (USa) = Ussa) = Uare 7

ieN ieN ieN
The following theorem shows that the intersection of an arbitrary collection of o-algebras

associated with X is itself a o-algebra.

Theorem 1.1. Let F' := {F : F is a o-algebra associated with the set X}. Then, T :=

() F is a o-algebra associated with X, i.e., T € F.
FeFr

Proof. We verify that Z satisfies Definition [1.1]
1. Since X € FV F € F' then X € T.
2.A€el = A€ FVY FeF. Then, A€ FVY F € F. Consequently, A° € 7.
3. Let A; € T for : € N. Then, A; € F V F € F. Hence, U A; € FY F € F, which implies
UAd:ieZ 1 ZE]N
ieN
Since Z C F V F € F, we can say that Z is the smallest o-algebra in F'.
It is often the case that o-algebras are obtained from arbitrary systems of sets associated
with X by expanding the systems in such a way that the defining properties in Definition

[I.1] are met. In this context it is possible to consider the smallest o-algebra generated from

a system. This motivates the following definition.
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Definition 1.2. Let C be any collection of subsets of X. The o-algebra generated by C,

denoted by o(C), is a o-algebra satisfying:
1. CCo(C)
2. If F is a o-algebra such that C C F, then o(C) C F.

Property 2 characterizes o(C) as the smallest o-algebra containing C. The existence of this

o-algebra is showed in the next theorem.

Theorem 1.2. For an arbitrary collection of subsets C of X, there exists a unique smallest

o-algebra containing C.

Proof. Let F' = {F : F is a o-algebra associated with X and C C F} be the set of all o-
algebras containing C. F # () since 2% is a o-algebra. By Theorem , () F is a o-algebra.

FeF

Since C is in all 7, C € (| F. Thus, () F € F. But by construction it is the smallest
FeF FeF

o-algebra in /.
Evidently, if C is a o-algebra then o(C) = C. The generation of the smallest o-algebra
associated with a collection of subsets C of X is “monotonic” in a sense demonstrated in the

following theorem.

Theorem 1.3. Let C and D be two nonempty collections of subsets of X. If C C D then
a(C) C o(D).

Proof. Let Fe := {H : H is a o-algebra associated with X and C C H} be the collection of

all o-algebras that contain C and Fp := {G : G is a o-algebra associated with X and D C G}

be the collection of all o-algebras that contain D. Since, C C D C G, G is a o-algebra that

contains C, therefore G € Fe. Hence, Fp C Fe and () H C () G. By definition,
HeFe GeFp

cC)= NHC N G=0oD). N

HeFe GeFp



Example [I.1]4 shows that if F is a o-algebra associated with X and S C X, we can
easily obtain a og-algebra associated with S by taking S N F. The next theorem shows that
if F:=0(C),then FNS=0o(CNS).

Theorem 1.4. Let S C X, C be a collection of subsets of X and CNS ={ANS:AeC}.

Then, o(CNS) =0c(C)N S is a o-algebra associated with S.

Proof. First, note that since C C o(C) we have CNS C o(C)NS. From Example[1.1}4, o(C)NS
is a o-algebra associated with S. Then, it follows from Theorem|[L.3|that o(CNS) C o(C)NS.
We need only show that (CNS) D o(C) NS to conclude that o(CNS) =0o(C)NS. To this
end, consider the collection of subsets of X (not necessarily in C) such that their intersection
with S'isin o(CNS),ie. G:={BCX:BNSealCnNSI)}.

By construction, C C Gsince Ae C = ANSeclCnS colCnS). Thus, A € g
by definition. We will show that G is a o-algebra associated with X. If this is the case,
o(C) C G. But from the definition of G, if A € ¢(C) then ANS € ¢(CN.S). This means that
aglC)nS caolnS).

1. XeGsinceXNS=Se€a(CnNSI).

22 A, A=X—-Aand A°NS=X-4)NS=5—-(ANS). But since A € G,
ANS € o(CNS) which implies that S — (AN S) € o(CNS), so A° € G.

3. Let A; € G,i € IN and note that

(UAZ) nS={Jins).

1€IN 1€N

Since, A;,NS ea(CNS), JUA;NS)ea(CnNS)and |JA; €G.

i€N 1€IN

Thus, G is a o-algebra associated with X.

In what follows, it will often be the case that X := R"™ for n € IN. In this case, an

important o-algebra is the one generated by the collection Or~ of open sets of R", denoted
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by o (Ogrn). The elements of this o-algebra are called Borel sets of R™ and o (Og») is called

the Borel o-algebra, which is denoted by B(R™). If dx is a metric on X we say that
OcCXisopen <= VreOdJe>0 3 B(x,¢) CO,

where B(x,€) := {y € X : dx(x,y) < €}. In this more general setting, we denote by Ox
the collection of open sets of X. When X := R" a usual choice of metric is dgn(z,y) =
|z —yll = Qo (z — yi)Q)l/ ? called the Euclidean metric. The next theorem shows that

B(R™) can be generated by systems of rectangles in R™. Before we prove the theorem we

define these rectangles.

Definition 1.3. Let a;,b; € R fori=1,--- ,n, n € N. Then,
1. R™ := X" ,(a;,b;) is called an open rectangle in R,
2. R™M = X1 [a;, b;) is called a half-open rectangle in R™.

If b; < a; for some i, R™° = R"" = (). When a; and b; are restricted to be rational numbers,
i.e., a;, b; € Q we write R&’O and R%’h. The collections of all open and half-open rectangles
in R" are denoted by T° and IT™". Similarly, I&° and Ig’h denote the collections of all

open and half-open rectangles in R™ having rational endpoints.
Theorem 1.5. B(R") = ¢(I"°) = o(I™") = 0(Z3°) = O'(Ig’h).

Proof. We start by noting that R™° is an open set. To verify this, choose any x € R™°.
Since (a;, b;) is open for all 4, there exists 6 > 0 such that (z; — d,2; + 0) C (a;,b;). Let
B(z,8) = {y : |ly — z|| < ¢} and note that ||y —z|| < § <= >0 (i — ;) < 0* =
(i —2i)? < 0? =270y —2;)? <8 = |yi—wi| <0 = yi € (x; — 0,2 +9) C (a;,b;)
for all i. Hence, B(z,d) C R™. Since, Zy° C I™° C Ogn, we have 0(Zy°) C o(I™°) C

7(Oge) := B(R™).



Let O € Or» and consider the set nLOJ Ry Tt e nLOJ Ry then x € Ry C O,
Ry°CO Ry°CO

Hence, |J Rg” CO.
RG°CO
Now, choose = € O. Since O is open, there exists B(z,e¢) C O. Let R™° = {y € R™:
a; <y; <b; fori=1,--- n} be an open rectangle that contains x. Then, |y; — z;| < b; — a;
and >0 (y; — x;)* < Do (b — a;)* < nm? where m,, = max (b — a;). Ilf m, < Z» then
S (yi — 2:)* < € and we conclude that R™° C B(z,¢€). Since the set of all points in R"

with rational coordinates is a dense subset of R", we can find R” C R™° C B(w,¢€). Hence,

every r € O belongs to a rectangle Rg” C O and, consequently, z € U Rg°. Hence,

R{°CO
Q
oc u R%’o. Combining this set containment with the one in the previous paragraph we
R'I’L,OCO
Q
O= U Ry
Ry?CO

Since the open rectangles in HLOJ R&’O have rational endpoints, the union has countably
many elements. Furthermore, si}lececg—algebras are closed under countable unions, we have
that O € 0(Zy”). Hence, 0(Ogrn) C 0(Zy°). Combining this set containment with o(Zy”) C
o(I™°) C o(Ogn) := B(R"), we conclude that ¢(Zy°) = 0(Z™°) = 0(Orn) := B(R").

Lastly, note that if a;, b; € @ for all i, Rgh = N (ag —1/i,by) x -+ % (a, — 1/i,b,) and

i€N
Ry’ = igN[al +1/i,by) X -+ X [ay,+1/i,b,). Similarly, if a;, b; € R, R™" = iQN(al —1/i,by) x
<X (a, —1/i,b,) and R = |J a1 +1/i,by) X - - - x [a, +1/i,b,) we have o(Z°) = o(Z™")

€N
and 0(Zy°) = U(I(g’h), which completes the proof. B
The collections of rectangles in Definition [1.3|are not the only systems of R that generate
the Borel sets. The next theorem shows that the collection of closed sets of R"™, denoted by

Cgrn, and the collection of compact sets of R", denoted by Krn, also generate the Borel sets.
Theorem 1.6. Let Crn, Kgrn be the collections of closed and compact subsets of R". Then,
B(R™) = 0(Crn) = o(Kgn).

Proof. Let A C R". Then, A compact <= A closed and bounded. Thus, gr» C Cgn.
Hence, by Theorem [1.3| o(Kgn) C o(Crn).



Now, if C' € Cr» and B(0,k) = {z € R™ : ||z]| < k, k € N} is a closed ball with
radius k centered at § = (0,---,0)T € R", then C), := C N B(0, k) is closed and bounded.
Boundedness follows by construction and closeness follows from the fact that complements
of open sets are closed, De Morgan’s Laws and the fact that arbitrary unions of open sets
are open. Hence, Cy € Kgn for all £ € IN. By construction, C' = |J Cy, thus C € o(Kgn)
and 0(Crn) C 0(Kgrn). Hence, combining this set containment WiktelllNa(lCRn) C o(Cgrn) we
obtain o(Crr) = o(Kgn).

Since Crn = (ORn )¢, we have that Cr» C 0(Ogrn) and consequently o(Cgrn) C 0(Ogn).

The converse 0(Orn) C 0(Cgrn) follows similarly to give 0(Crn) = 0(Orn). B

1.2 The structure of R and its Borel sets

Recall that an open interval on R is a set (a,b) := {z € R:a <z < b} and a closed interval
is a set [a,b] := {x € R:a < x <b}. They are said to be finite if a,b € R and infinite if

a = —00 or b= oo.

Definition 1.4. Let S be an open subset of R. An open finite or infinite interval I is called

a component interval of S if I C S and if # an open interval J such that I C J C S.

Theorem 1.7. Let I denote a component interval of the open set S. If x € S, then 31 >

xel. Ifxel, then x & J where J is any other component interval of S.

Proof. Since S is open, for any x € S there exists an open interval [ such that x € [
and I C S. There may be many such intervals, but the largest is I, = (a(z),b(x)), where
a(z) = inf{a : (a,x) C S}, b(z) = sup{b: (z,b) C S}. Note, a may be —oco and b may be
+00. There is no open interval J 3 [, C J C S and by definition I, is a component interval
of S. If J, is another component interval containing z, I, U J, is an open interval with
I,cl,JJ,CSand.J, CI,UJ, CS. By definition of a component interval I, U J, = I,

and [, UJ, =J;,s0 [, =J,. &



Theorem 1.8. Let S C R be open and nonempty. Then, S = |J I, where {I,}nen is a
nelN

collection of component intervals of S.

Proof. By Theorem if x € S, then x belongs to one, and only one, component interval
I,. Note that |J I, = S and by the definition of component intervals and the proof of the
previous theor:rens, the collection of component intervals is disjoint (if  belongs to I, and J,,
both component intervals, I, = J,). Let {q1, s, -} be the collection of rational numbers
(countable). In each component interval, there may be infinitely many of these, but among
these there is exactly one with smallest index n. Define a function F', F'(I,) = n if I, contains
the rational number g,,. If F(I,) = F(I,) = n then I, and I, contain ¢,, and I, = I,,. Thus,

the collection of component intervals is countable, since F' is a bijection between a subset of

IN and the intervals I,. W

Remark 1.2. Several collections of subsets of R generate B(R). In particular, we have:

1. Let Ay ={I:1 = (a,b) with —oo < a <b< oo}. Since (a,b) is open in R, A; C Or
and o(Ay) C 0(Or) = B(R). Every nonempty open set O C R can be written as
O = { I, where I,, is a component interval of O. I,, € Ay ¥n and I,, € o(Ay), hence
(ONS T;E(ﬂjéll). Thus, Or C 0(A;) and 0(Ogr) C o(A;). Together with o(A;) C 0(ORr)
gwes 0(Or) = o(Ay).

2. Since [a,b] = () (a — 1/n,b+ 1/n), we have [a,b] € o(A;). Hence, the collection
of closed mtergcezg Ay = {1 : I = [a,b],a,b € R} is such that Ay C o(Ay). Hence
o(A2) C o(Ay). Also, since (a,b) = |J [a+1/n,b—1/n], we have that (a,b) € o(As).
Hence, the collection of open mtervalze.ﬂl is such that Ay C 0(Az) and o(Ay) C o(As).
Hence, 0(Ay) = 0(Az). But since, 0( A1) = 0(Or), 0(Az) = o(OR).

8. Let A3 = {I : I = (a,b] : —00 < a < b < oo}. Note that since (a,b) = | (a,b— %]

nelN

we have that (a,b) € o(Asz). Consequently, Ay C o(As) and o(A;) C o(As). Also,
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since (a,b] = |J (a,b+ 2) we have that (a,b] € o(A;). Consequently, As C o(A;) and
nelN

o(As) C o(Ay). Thus, o(As) = o(Ay).

4. Let Ay ={I : I = (—o0,d] : a € R}. Note that (—oo,a] = () (—o0,a+ =) € o(A).

Hence, Ay C 0( A1) and 0(A4) C 0(Ay). Now, fora <b "
(a,b) = (—o00,b)N(a,o0) = (—00,b) N (—00,al
_ (U (—o0,b— %]) A (=00, d]° € o(Ay).

Hence, Ay C o(Ay) and o(Ay) C o(Ag). Together with the reverse set containment

and item 1. in this remark, we have o(Ogr) = 0(A1) = o(Ay).

1.3 Measures

Given a measurable space (X, F), we are ready to define what is meant by a measure. The
goal is to associate with a measurable set a non-negative number that conveys an idea of
its “size.” This general idea of size must inherit the properties we intuitively associate to

measures of length, area or volume.

Definition 1.5. Let (X, F) be a measurable space. A measure p is a function p : F — [0, 00]

having the following properties:
1 pw(0)=0

2. if {Ai}iew € F is a disjoint collection, i.e., A;NA; =0Vi#j, u (Lﬁ\}Ai) = %M(Ai)-
1€ S

The triple (X, F, u) is called a measure space. We note that the definition of y requires
the specification of F, and that knowledge of F implies knowledge of X, its largest element.
Hence, knowledge of u is equivalent to knowledge of the measure space.

A pre-measure is a set function that satisfies the properties of a measure but is defined
on a system that is not a o-algebra. In this case, it must be that () and U A; are elements
of the system whenever A; is in the system for i € IN . ’G]N
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Remark 1.3. 1. Property 2 in Definition|1.5]is called o-additivity or countable additivity

of .

2. If u(X) < oo, the measure u is called a finite measure. In this case, (X, F, p) is called

a finite measure space.

3. A sequence {Ay, Ay,---} € F such that Ay C Ay C --- is said to be erhausting
if UA: = X. A measure p is called o-finite if there is an exhausting sequence
iEN
{A1, Ay, - -} € F such that p(A;) < oo for all i.
4. If we assume that for at least one set A € F we have u(A) < oo, then property 1

follows from property 2 by letting Ay = A and Ay = Az = --- = (.

We are now ready to provide the definition of a probability space and, introduce notation

and terminology that will be used henceforth.

Definition 1.6. Let (2, F, P) be a measure space such that P(Q) = 1. We call (2, F,P) a

probability space and P 1s called a probability measure.

In the context of probability spaces, €2 is called the outcome space and the elements of F
are called events. The construction of useful measure, or probability, spaces requires some
effort as we will soon discover. What follows are simple examples of measure or probability

spaces.

Example 1.2. 1. Let (X, F) be a measurable space and F € F. Define py(F) = oo if
F' has infinitely many elements and py(F) = number of elements (cardinality) of F
(denoted by #F') if F' has finitely many elements. iy is called the counting measure

and (X, F, pug) is a measure space.

We wverify that iy satisfies the defining properties in Definition [1.9. It is evident that

for any F € F, py(F) € [0,00], and since the empty set has no elements pi4(0) = 0.

12



For property 2 in Deﬁm'tion consider {A; }iew € F, a disjoint collection. There are
three cases to consider: a) for at least one i, A; has infinitely many elements. In this

case, pip(A;) = oo and since |J A; has infinitely many elements jiy (U Ai> = 00.
ieN iEN
Also, Y u(A;) = #A1+ -+ 00+ -+ = 00; b) Vi, A; has finitely many elements
iEN
and there are only N of these sets that are non-empty. Relabel the sets such that the

first N are non-empty. Then, py (U Ai) = pp (A U---UAy) = Zfil pu(A;) =
€N
Yo ke (Ay); ¢) Vi, A; has finitely many elements and there are only N of these sets

that are empty. Then, as in case a) py (U Ai) =00 and Y pu(A;) = #A; + #As +
ieN iEN

o e e (X)'

. Let (X, F) be a measurable space and for v € X and F € F let u (F) =1 ifz € F

and . (F) =0 if « ¢ F. This is called the unit mass at x or Dirac’s delta measure.

(X, F, ug) is a probability space.

Clearly, for firedx € X and any F € F, pu,(F) € {0,1} C [0,00]. Also, since the empty
set has no elements, x ¢ 0, hence u,(0) = 0. For property 2 in Deﬁmtion consider

{A;}iew € F, a disjoint collection. If x € |J A;, then it must be that it belongs to one,
1€IN

and only one, A;. Then, fi, (U Ai) =1land > 7 pe(A;) =140+0+---=1. Ifr ¢

€N

J A, then it does not belong to any A;. Thus, ji, (U Ai) =0and ) 2, p(A4;) =0.

€N i€N
. Let Q = {w; }iew and p; € [0,1] fori € N with >, . pi = 1. Let (Q,2%) be a measurable

space, then the set function

P(A) = Z pi = Zpiﬂwi(A>7 AcCQ

Lw;EA €N

15 a probability measure.

Since every A € F is a finite or infinite collection of w;’s and Y, pi = 1,

0<P(A)= > pi=> pip(4) <1,

Lw;EA i€IN
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where (i, is Dirac’s delta measure. Hence, we vmmediately have that
P(0) = pipr, (0) = 0.
ieN
For property 2 in Definition consider {A; }iew € F, a disjoint collection. Then,

P (UAi) =D _pit, (UA,-) =570 e (4) = 30 p, (A)

€N JEN 1€IN JjEN €N i€IN jeIN

= ZP(Az‘)

iE€N
The second equality follows from the properties of the Dirac measure, and the third

follows from the possibility of interchanging infinite sums in this context.

. Consider tossing a coin, and define the possible outcomes as heads H or tails T'. Hence,
the outcome space is Q = {H, T} and associate with it the following o-algebra, F =
{0,,{H},{T}}. Now, define P :F — [0,1] as follows

P(0) =0, P({H}) = 0.5, P({T}) = 0.5,

implying by that P(Q2) = 1 by o-additivity. (2, F, P) is a probability space.

1.3.1 Properties and characterization of measures

The following theorem gives properties of measures that follow directly from Definition

and basic operations with sets.

Theorem 1.9. Let (X, F, p) be a measure space and {A;}iew € F. Then,

1. Ay C Ay = u(As) < p(Ay) (monotonicity) and if pn(As) < oo, u(A; — Ag) =

(A1) — p(Az).

2. (AL U As) = pu(Ar) 4 p(Az) — p(Ar N Ay)

3. ( UA1> < > u(A;) (sub-additivity)
i€N €N
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Proof. 1. Note that Ay = Ay U (A; — Ay) and that Ay and A; — A, are disjoint sets. Hence,

(A1) = n(Ax U (A — Ay)) = u(As) + p(Ay — As), which implies p(As) < p(A;). Now, if

1(As) < 00, p(Ar) — p(As) = pu(A2) — p(Az) + p(Ar — As) = p(A; — As).

2. AsUA; = Ay U (A] — Ap) and Ay = (A2 N Ap) U (A — As). By the second equality, given

that (A N A;) and (A; — Ag) are disjoint, u(A;) = p(Axs N Ay) + u(A; — As). By the first,

w(As U Ay) = p(Az) + p(Ay — As). Hence, pu(Ay) = p(As N Ay + pu(As U Ay) — (As), which

gives 2.

3. Let B, = Ay, By = Ay — Ay, B3 = A3 — U?zlAj,--- {B;}ien is a disjoint collection

and B; C A; for all . Since, |JA4; = U B, u (UA,) =u (U Bi) = D ew i(Bi) <
iEN iEN i€N iEN

Diew H(A;). W

Theorem establishes for measurable sets and arbitrary measures what seems intuitive
for intervals of R and their lengths. Hence, if we “measure” open or half-open intervals of
the type (a,b) or (a,b] by their length, [ = (b — a), then it is easily verified [ satisfies all
properties in Theorem [1.9]

Measures have continuity properties that will play an important role in our study of
probability spaces. For this purpose we define what is meant by the limit of a sequence of

sets.
Definition 1.7. Let {A, }ew be a sequence of sets.

1. [fA1CA2CA3C then hmAn = UAn;

2. ZfAl D) AQ D) Ag D .-« then hmAn = ﬂ An;
n—00

nelN

3. if {Ai}iew is an arbitrary sequence of sets and n € N, let B, = [\ A; (note that

>n
By CByC---)and C, = |JA; (note that Cy D Cy D -+ ). Then, let B = lim B,, =
>n n—o00
U NAi and C = lim C, = (| UA;. We say that A = lim A, exists if B = C,
neN i>n n—reo neN i>n n—reo
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and we write A = B = C. B is called the limit inferior of {A,}nen and denoted by

liminf A,, and C is called the limit superior of { A, }nen and denoted by lim sup A;.

n—oo n—oo

Theorem 1.10. Let (X, F, 1) be a measure space. Then,

1. if Ay C Ay C -+, pu(A) = lim p(A,), where A= lim A, and

n—o0 n—oo

2. if Ay D Ay D -+ and u(Ay) < oo, pu(A) = lim p(A,), where A = lim A,.
n—oo

n—oo
Proof. 1. Let By = Ay, By = Ay— Ay, By = A3— A, - -+ and note that A, = |J;_, B;. Hence,
p(A,) = p(U, B;). Since BN B; =0 for all i # j, pu(A,) =Y i, pu(B;). Taking limits
on both sides of the last equality gives,
lim pi(A,) = lim Y p(B) =) p(Bi) = n (UBz) ,
i=1 i€N i€N
where the last equality follows from o-additivity of p. Since, |J B; = |J 4; = A, we have
ieN i€N

Tim p (A,) = p(A).

2. Since A; is the largest set in the sequence {A;}iew, we put AS := A; — A; and note that

A§ C A5 C A5 C ---. Since A = () A;, by de Morgan’s Laws A° = |J A¢ and, consequently,
i€N i€
(A —A)=p ( U Af) = lim pu (A; — A,), where the last equality follows from part 1. By
ieN n—oo
monotonicity of measures, u(A4;) < co = u(A,), u(A) < coVn, and by part 1 of Theorem

[1.9] we have

(A= A) = (A1) — p(A) = lim g (Ay — A,) = lim (u(Ar) — p(An) = (A1) — lim pu(A,),

n—o00 n—o00 n—oo
giving p(A) = lim p(A,). B
n—oo

As a matter of terminology, we say that part 1 of Theorem establishes continuity of
measures from below, whereas part 2 establishes continuity of measures from above.
The next theorem gives necessary and sufficient conditions for a set function m : F —

[0, 0] to be a measure.
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Theorem 1.11. Let (X, F) be a measurable space. A function m : F — [0, 00] is a measure

if, and only if,
1. m(0) =0,
2. for Ay, Ay € F disjoint m(A; U As) = m(Ay) + m(As),
3. for A1, Ag,--- € F and Ay C Ay C --- with A = lim,,_,o A,, we have

m(A) = nh—>nolom(An>
Proof. If m is a measure then conditions 1 and 2 in this theorem follow directly from prop-
erties 1 and 2 from the definition of measure. Condition 3 follows from part 1 of Theorem
.10}
Now, assume that m satisfies conditions 1-3 in this theorem. Since condition 1 in this
theorem is the same as property 1, we need only show that m satisfies property 2 from

the definition of measure. Let {B;};en be any pairwise disjoint sequence in F and define

A, = U;L=1 B;. Then, Ay C Ay C--- and A:= lim A, = |J A, = U B;. By condition 2,
n—00 neN JEN
we have m(A,) = > 7_, m(B;) and from condition 3 we conclude that

m (U&-) = m(A) = lim m(A,) = lim (mej)) = m(B).

establishing that m is o-additive.ll

Remark 1.4. Condition 3 in Theorem can be replaced by the assumption that m is
continuous from above if m(X) < co. To see this, note that if m is a measure, it is continuous
from above by part 2 of Theorem [1.10. Now, assume that m is continuous from above

and consider a sequence {B;}jen of disjoint sets in F. Put A, = U?:l B; and note that
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ASDAGD - andm(A;):m(X—An):m<x—szlBj).

Jirgom(/l;) =m (X — U B]-) =m(X) — nlg&m <U B]) since m(X) < oo

j=1 j=1
=m(X) — nh_}rEOZm( Zm ;) by additivity of m.  (1.1)
j=1 j=1
Now,
lim m(AS) = <ﬂAC> by continuity of m from above
n—oo
JeEN

m ((UAJ> ) by de Morgan’s Laws
:m(X)—m<UAj> =m(X —m(UBj>. (1.2)

Combining (1.1) and (1.2)) gives m ( UB; | =>m(B)).
JEN JEN

Similarly, condition 3 in Theorem can be replaced by the assumption that m is

continuous at O if m(X) < oo. Continuity at the O means that if Ay D Ay D -+ and
lim A, = 0 with p(A;) < oo and lim u(A,) = 0.

n—oo n—oo

Since probability measures are finite, Theorem and Remark provide characteri-

zations for probabilities. Consequently, we state the following theorem without proof.

Theorem 1.12. Let (2, F) be a measurable space. A function P : F — [0,1] is a probability

measure if, and only if,
1. P(®) =0,
2. for Ay, Ay € F disjoint P(A1 U Ay) = P(A;) + P(As),
3. for Ay, Ay, --- € F and Ay C Ay C - -+ with A = lim,,_,, A,, we have
P(A) = nh_}ngo P(A,).

Condition 3 can be substituted by either
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3. Ay, Ay, € F and Ay D Ay D -+ with A =lim,,_.o, A,, we have
P(A) = lim P(A,)

n—o0

or
3" A Ay, o€ F and Ay D Ay D -+ with lim,, oo A,, = 0 we have

lim P(A,) = P(}) = 0.

n—oo

In addition, since in probability spaces P(£2) = 1, P has properties that general measures

do not have. In the next theorem we establish some of these properties.
Theorem 1.13. Let (2, F, P) be a probability space. Then,

1. P(A)=1—-P(A)VA e F,

2. ACB = P(A) < P(B)VA, Be F,

3. if {A;}P, € F forn € N then

P (O Ai> = iP(Ai) — Z P(A;, N Ay) + Z P(A;, NA;, NA;)

1<i1<i2<n 1<i1<i2<iz<n

e (<P (ﬁ AZ-) (1.3)

Proof. 1. Q=AU A°. Hence, 1 = P(Q) = P(A) + P(A°) = P(A°)=1—- P(A).
2. follows from Theorem [1.9]1.

3. Let n = 2. Then, from Theorem [1.9]2 we have

P(AUA) = P(A) + P(Ay) — P(A; N Ay). (1.4)
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NOW, let B1 :Al, B2 :B1UA2 :A1UA2, Bg :BQUA3 :A1UA2UA3, oy Bn—l =
B, ,UA,1=AU---UA,_1. Now, suppose

P(B,_1)=P (U A,-) = nzl P(A)— ) P(A,NA)

i=1 1< <ig<n—1

+ > PALNAL VA A+ (1) P(A N AN N Ay). (L)

1<i1<ig<i3<n—1

We will show that ((1.4) and ((1.5)) imply ((1.3]), establishing 3. by induction. From ((1.4)) we
have that

P(B,) = P (U A;) = P(Boy UA,) = P(Bo_y) + P(A,) — P(Bu_1 N Ay)
= P(B,1) + P(A,) = P((UiZ A) N A,)
= P(B,-1) + P(An) — P(US (AN Ay))

= P(Bn—l) + P(An) - P(Ufz_llCZ), where Cz = (Az N An)

But,
n—1
P(UZ'C) =) P(C)— > P(C,NCy,)+ > P(C;, N Cy, N Cyy )+
i=1 1<iy<ig<n—1 1<y <ig<izg<n—1
R (-1)”P(Cl N 02 n---N Cnfl),
with
n—1 n—1
Y P(Ci) =) P(AiNnA,)
n=1 =1
Y P(CNCy,)= ). PA,NANA,NA)
1<iy<ig<n—1 1<iy<ig<n—1

= ) P(A,NA,NA,)
1<i1<i2<n

> P(C;, NCy,NCL,) = > P(A;, N Ay, N A, NA)

1<i1<12<i3<n—1 1<i1<i3<iz<n—1

P(ClﬂCgﬂﬂCn_l):P(AlﬂﬂAn)
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Then, we have

n—1

P(A)— Y P(A,NAy)+ > PANANA)+

=1 1<i1<i2<n—1 1<i1<i2<i3<n—1
o (=1)"P(A N AN N A,) + P(A)
n—1
—Y P(AiNnA)+ > P(A,NA,NA)
i=1 1<iy<ig<n—1

- > P(A, N A, N A NA) + -+ (=) P(A, NN A

1<i1<ig<iz<n—1

:Zn:p( =) P(A,NAL)+ Y P(A, NA,NA,) +
1=1

11<12 11 <i2<i3

+(=1)" T P(NL, Ay).
|
Remark 1.5. Note that the terms on the right side of (1.3) alternate in sign.

The next theorem shows that probability measures are continuous set functions.

Theorem 1.14. Let (2, F, P) be a probability space and { A, }new € F. Suppose A = lim A,
n—oo
exists. Then, A € F and P(A,)) = P(A) as n — oc.

Proof. Since {A,}nen C F has a limit, there exist C; D Cy D C3 D --- and By C By C
Bs C --- as in Definition Furthermore, since F is closed under countable unions and

intersections, B,,C, € FVn € N. Since A exists, B= |JB, = ((C, = C = A and

nelN nelN
A € F. By construction, B = ByU(By— B)U(B3— By)U--- = x1Ux2U---. The collection

{x1, x2," -+ } is pairwise disjoint. By c-additivity of measures we have P(B) = Y P(y;) =
i€N

lim " P(x;). But, > | P(x;) = P(By), where B,, = BiU(By— B;)U---U(B,, — B,_1).
n—oo
Hence, P(B) = lim P(B,).

n—oo
By De Morgan’s Laws C' = () C; = ( U C’f) . Therefore, P(C) =1-P ( U C’f). Now,
‘€N iEN €N
UCs=Csu(Cs—CHU(CS—C8) -+ =0, Uy Ubs-- -, where the collection {0;,6s,---}

i€IN
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is pairwise disjoint. Hence, P < U Cf) = > P(0;) = lim > P(6;). But >, P(6;) =

ieN i€N
P(C¢) and P(C;) =1— P(C,). Hence, P (U C’f) = lim (1 — P(C,)) = 1 — lim P(C,).
Consequently, P(C') =1 — <1 — lim P(Cn)> = lim P(C,).
n—oo n—oo
Finally, by construction, B,, C A, C C,, for all n. Therefore, P(B,) < P(A,) < P(C,)
and lim P(B,) < lim P(A4,) < lim P(C,) or P(B) < lim P(A,) < P(C) and consequently
n—0o0 n— 00 n— 00 n—0o0

since A= B =C, lim P(4,) =P(A). &

n—oo

Definition 1.8. Let (X, F,u) be a measure space. N € F is called a p-null set or, simply,

a null set if f(N) = 0. The collection containing all p-null sets in F is denoted by N,,.

Since () € F and p(0) = 0 we have that ) € N,,. Also, if N e N,, M C N and M € F,

by monotonicity of measures 0 < p(M) < u(N) = 0. Hence, M € N,. In addition, if

{N;}jen € N,, by sub-additivity of measures 0 < p < U Nj> < > u(N;) = 0. Hence,
jEN jEN

UN; e N,..

jEN
Note that there might be subsets M of p-null sets that are not in F. This motivates the

following definition.

Definition 1.9. A measure space (X, F, ) is said to be complete if every subset of p-null

sets are elements of F.

The next theorem shows that any measure space can be “completed” in such a way that

the resulting measure space is complete.
Theorem 1.15. Let (X, F, u) be a measure space and define:

1. F={FUM:F € F and M € S} where S is the collection of all subsets of p-null

sets,

2. ji: F — [0,1] such that ji(F U M) = u(F).
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(X, F, ji) is a complete measure space and F C F.

Proof. We start by showing that F is a o-algebra. Note that since ) € S, we have V F € F
that FUQ = F € F. Hence, F C F. Now, we verify the that F satisfies the defining

characteristics for o-algebras.
1. X € F. This follows from the fact that X € F C F.

22AcF = A°cF.AecF = A=FUM whereF € Fand M € Sand M C N €
N,. A® = FenM® = FenMenX = FEAMCN(NCUN) = (FENMNN)U(FeNMeNN).
Since M C N, M¢ D N¢ and therefore A° = (F°NN°) U (F°N M°N N). But since
(FeNN¢) € F and F°N M°N N C N, by definition A° € F.

3. {Aj}jewe F = |J A, € F. Since A; € F, A; = F;UM, where F; € F and M, € S.

jEN
Now,
U4, =JEuM) = (Uﬂ) U (UMJ> :
jEN jEN jEN jEN
Now, JF; € Fand UM; € UN; where N; € N,. Hence, |JN,; € N, and
jEN jEN jeN T jEN
U M; € S. Then, by definition |J A; € F.
jEN jEN

We now show that i is a measure on F. Note that A € F is not uniquely represented
as we may have GUO = A = F'U M. Note that for i to be well-defined we need u(G) =
AGUO) = i(A) = il(FUM) = pu(F), e, p(G) = p(F). Now,

F C FUM = GUO C GUN where N € N, and G C GUO = FUM C FUN' where N’ € N,,.

Consequently, u(F) < u(G) 4+ u(N) and u(G) < u(F) + pw(N'). Since u(N) = u(N') = 0 we
have u(F) = u(G).

Now, we verify that i satisfies the defining properties of measures.

1. Since ) = QU € F, we have ji(0) = u(0) = 0.
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2. Let {A,}jen € F be a pairwise disjoint collection. Since A; = F;UM;, it must be that

{F;};en is a pairwise disjoint collection.

(W) e ) o {(n) o ()

= p (UFJ> =Y u(Fy) = a(F;u M) = i(4))

jEN jEN jeN N

Hence, (X, F, i) is a measure space. We now verify that it is complete. Take N € N, n and
A C N. We need to shaw that A € F. Note that A C N = FUM where F € F and M € S.
Since 0 = (N) = p(F) and M is a subset of a p-null set (N'), then

ACN=FUMCFUN' € F and p(FUN') < u(F) 4+ u(N') =0.

Hence, A is a subset of a p-null set and therefore A € S. In particular, A = AU () and
Aernm

1.4 Independence of events and conditional probability

We start by defining probabilistic independence of events.

Definition 1.10. Let (2, F, P) be a probability space, 2 <n € N and {E;}1<i<n C F. The
events Ey,--- , B, € F are said to be independent if
P(ﬂEm> HP ) for all I C{1,--- ,n} with #1 > 2 . (1.6)
mel mel

Z ) = 2" —n — 1 equations. All of them

Remark 1.6. Note that (1.06) contains >, (

must hold to characterize independence of the events Ey,--- ,E, € F.

If two events are independent, their complements are independent and so are any of the

events with complement of the other.
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Theorem 1.16. Let (2, F, P) be a probability space. If Ey, Es € F are independent, then:

1. Ey and ES are independent (or Ef and Ey are independent).

2. By and Ef are independent.
Proof. 1. Recall that Ey U Ey = Ey U (E; N ES) and P(E, U Ey) = P(E2) + P(E; N ES).
The last equality together with Theorem [1.9]2 gives P(E;) — P(Ey N E») = P(E; N ES).
Now, by independence of E; and Fy we have P(E; N ES) = P(E;) — P(E,)P(E,). Hence,
P(Ey N E3) = P(Ey)(1 = P(Ey)) = P(Ey)P(E3).
2. Note that
E{N ES = (Ey U E3)° by DeMorgan’s Laws. Hence,
P(ET N E3) = P((E1U E»)°)
P(E{NES) =1— P(E; U Ey) by Theorem [1.13]
=1— (P(Fy) + P(E,) — P(E,)P(E>)) by independence of E; and Es
= (1= P(E1))(1 - P(Ez)) = P(EY)P(E3),

as desired. W

There is a useful probability measure that can easily be defined from knowledge of

(Q, F, P). It is called conditional probability. What follows is a definition.

Definition 1.11. Let (2, F, P) be a probability space. Given any E € F such that P(E) > 0,
we define P(-|E) : F — [0,1] as

P(ANE)
P(E)

Note that P(0|E) = P(0NE)/P(E) = P(0)/P(E) = 0 and P(Q|E) = P(QNE)/P(E) =

P(A|E) = VA e F.

P(E)/P(F) = 1. In addition, if {E;};en forms a pairwise disjoint collection of events

P(E)

P(E) P(E)

((4e)os) rlgmnm) o
P(UE]-\E): I S S = (£, 0 ):ZP(EJ-|E).

jeN JjeN jeN
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Hence, P(-|E) is a probability measure on (2, F) and P(A|E) is called the probability of A
conditional on E.
The notion of independence between two events is related to the notion of conditional

probability. In fact, as the next theorem demonstrates, if knowledge of event E does not

change the probability of event A, i.e., if P(A|E) = P(A), A and E are independent.

Theorem 1.17. Let (Q, F, P) be a probability space and Ey, Es € F such that P(E3) > 0.
E, and Ey are independent <= P(E,|E2) = P(E)).

Proof. (=) Since E; and Ej are independent P(EyNEy) = P(E))P(Ey) and since P(E}|Ey) =
Mg we have P(Ey|Ey) = ZE0) = P(E,).

(<:) P(E1|E2) = P(El) — P(El N EQ)/P(EQ) = P(El) Hence, P(El N EQ) =
P(E,)P(E;) = FE; and FE, are independent. B

Theorem 1.18. Let (2, F, P) be a probability space and {E; }1<j<, C F. If P ( N Ej> >

1<j<n—1

0 then

P ( N E]) — P(E,)P(Fo|E\)P(Es|Ey N Ey)---P(EJEyNEyN---NE,_1). (1.7

1<j<n

Proof. Note that if P (N E;j| >0then P{ () E;| >0 forall m <n—1. Hence,
1<j<n-1 1<5<m

all conditional probabilities on the right-hand side of (|1.7)) are well defined.

For n = 2, we have that if P(E;) > 0, P(Ey|E,) = P(E, N Ey)/P(E;) which implies
P(Ey N Ez) = P(Ey)P(Es|Ey). (1.8)
Now, assume that

P< N Ej>_P(El)P(E2|E1)P(E3]E1ﬂE2)~~~P(En_1|E1ﬂE2ﬁ~'-ﬂEn_2) (1.9)

1<j<n—1
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and define B, = (Ey N Ey---E,_1) N E,. Then,

P(B,) =P(E,N---NE,_)P(E,|JE,N---N E,_;) by (.8

= P(Ey)P(E3|Ey)---P(Eyq|ExNEsN---NE, o)P(E,|E1N---NE,_1) by (1.9).
The result follows by induction. W

The next theorem provides the total probability formula for an event. It is the foundation
for Bayes’ Theorem, which plays an important role in statistics. First, we define a partition

of a set Q.

Definition 1.12. {E}, Es,---} is a partition of Q if |JE; = Q and E; N E; = 0, for all
i€N
i .
Theorem 1.19. Let (2, F, P) be a probability space and {Ey, Ey,---} € F be a partition of
Q with P(E;) >0 foralli e N. If A e F,
P(A) =) P(A|E)P(E).
i€N
Proof. A=ANQ=AnN ( U EZ) = U (AN E;). The collection {(ANE}),(ANEy),---}is
i€ i€N
pairwise disjoint. Therefore, P(A) = . .y P(ANE;) = . .n P(A|E)P(E;). B
Theorem 1.20. (Bayes” Theorem) Let (Q2, F, P) be a probability space and {E;};enw C F be
a partition of Q with P(E;) > 0 for alli € N. Let A € F such that P(A) > 0. Then,

P(A|E;) P(E:)
> P(AIE))P(E;)

jEN

Proof. By Theorem (1.19) P(A) = >  P(A|E;)P(E;) # 0. Hence,
jEN

P(Ei‘A) =

P(E;NA)  P(A|E)P(E)
PIEN) = =5 ~ Y. P(A|E)P(E))

JEN

which establishes the desired result. B
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In the context of Bayes’ Theorem, P(E;) is called the prior probability of E; and P(FE;|A)
is called the posterior probability of E; given the event A. The following example illustrates

how posterior probabilities can be obtained from priors.

Example 1.3. Suppose that each student in a class can be classified as good G or bad B.
The probability of selecting a good student from a class is P(G) = 0.7 and, consequently, the
probability of selecting a bad student is P(B) = 0.3. A student may pass A or fail F' a class.
The probability that a good student will pass is P(A|G) = 0.9 and the probability that a bad
student will pass is P(A|B) = 0.4. We are interested in the probability that a student that
fails is a good student, i.e., P(G|F). From Bayes’ Theorem,

P(F|G)P(G) 0.1 % 0.7

(FIGP(G) + P(FIB)P(B) _ 01x07+06x03 %

P(GIF) =

Taking the prior probabilities as given, minimization P(G|F) involves mazimizing P(F|B)

and minimizing P(F|G).
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Chapter 2

Construction of probability measures

We have revealed a number of properties of measures, but we have not discussed their

existence (in general) or how to construct them.

Definition 2.1. 1. A system P associated with X is called a m-system if A,B € P =
ANBeP.

2. A system D associated with X is called a Dynkirll] system if:

a) XeD
b)) AeD = A°eD

C) {A]}je]NCDcmdAZUA]:@VZ%j, 1,7 € N = UAjED.
jeN

It is evident from this definition that a o-algebra associated with X is also a Dynkin

system associated with X.

Theorem 2.1. Let C C 2%. There exists a smallest Dynkin system §(C) such that C C §(C).

It is called the Dynkin system generated by C. In addition, 6(C) C o(C).

Proof. Existence and characterization of §(C) is proved as in Theorem [1.2] Since o(C) is a
Dynkin system 6(c(C)) = o(C). Since C C o(C), 6(C) C §(c(C)) = o(C) as in Theorem [1.3]
|

!'Eugene Borisovich Dynkin was a Russian mathematician that made important contributions to algebra
and probability. He was a student of Andrei Kolmogorov.
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The next theorem shows that a Dynkin system is a o-algebra if, and only if, it is a

m-system.
Theorem 2.2. A Dynkin system D 1is a o-algebra <= A, Be€D = ANBeD.

Proof. (=) If D is a o-algebra, then A, Be D = ANB = (A°UB°)° e D.

(<) If D is a Dynkin system it satisfies requirements 1 and 2 for o-algebras in Definition
H. Let A; € D for ¢« € IN, we must show that U A; € D. Define By := Ay, By .= Ay — B, =
AsN Bf, By := A3 — U2 B; = A3N (UL B)° ~Z-€-]NBH = A, —U"'B; = A,N (U B;)¢. The

collection { B, };cw is pairwise disjoint, and since each B; is the intersection of two sets in D,

using closeness under finite intersections, |JB; = |JA; € D. R
i€N i€N

Theorem 2.3. If P C 2% is a w-system, then 6(P) = o(P).

Proof. From Theorem 2.1, §(P) C o(P) and from Theorem [2.2if 6(P) is a m-system it is a
o-algebra. Since o(P) is the smallest o-algebra it must be that §(P) = o(P), so it suffices
to show that 6(P) is a m-system. For any D € §(P), let Dp = {A C X : AN D € 4(P)}.
First, we show that Dp is a Dynkin system. We verify conditions a), b) and c¢) in Definition
21

a) Note that X N D = D € §(P), hence X € Dp.

b)If A € Dp, then AND € 6(P). Now, A°ND = (A°UD°)ND = (AND)‘ND = ((AND)uD®)*
where AN D and D¢ are disjoint. Also, since D € 6(P) so is D¢, and AN D € §(P) by
assumption, so ((AN D) U D) € 6(P). Thus A° € Dp.

c) Let A; for i € IN be pairwise disjoint with A; N D € §(P) and note that {(A; N D)}ien
forms a disjoint collection. Thus, U (A;NnD)=Dn U A; and U A; € Dp. Thus, Dp is a
Dynkin system. ZGIN - -

Fix G € P. Then, G € §(P) and we can define Dg = {A C X: ANG € 6(P)}. Now,

consider G’ € P. Since, P is a w-system, G' NG € P C §(P). Hence, G' € D¢, showing
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that P C Dg for all G € P. But D¢ is a Dynkin system and consequently, by definition
§(P) C Dg, VG € P.

Thus, we have that if D € §(P) and G € P, then GND € §(P) and P C Dp (by
definition of Dp). Then, §(P) C Dp for all D € 6(P) implying that §(P) is a m-system by
definition of Dp. W

The following theorem shows that under some conditions, measures that coincide on some

generating class G coincide on o(G).

Theorem 2.4. Let (X, 0(P)) be a measurable space and P a collection of subsets of X, such

that:

1. P is a m-system,

2. there exists {P;}jew C P with P, C Py C --- such that |J P; := lim P; = X (the
jEN j—o0
sequence {P;}jen is ezhausting).

Then, if i and v are measures that coincide on P and are finite for all P;, u(A) = v(A), for
all A € o(P).

Proof. For j € Nlet D; ={A € o(P): p(ANP;) =v(ANP;)}. First, we show that D; is a

Dynkin system.
1. X € D; since (XN P;) = p(P;) =v(P) =v(XNPF).
2. Let A € D;. Note that P; = (AN P;) U (A°N P;) and note that the two sets in
the union are disjoint. Since p is a measure p(P;) = (AN P;) + p(A°N P;). Hence,

u(A°NP;) = p(P;)—pu(ANP;). Since p and v coincide in P we have that v(P;) = u(P;)

and since A € D; we have that u(AN P;) = v(AN P;). Hence,
W(A° 0 P) = p(P) — (AN Py) = o(Py) — o( A0 By) = o(A° 1 P,
Thus, A° € D;.
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3. Let Ay, Ay, --- be a pairwise disjoint collection in D;.

(o) Q) o

v(A; N P;) since A; € D,
) fol)

Since P is a m-system, by Theorem d(P) = o(P) and P C D; by definition of §(P),

i[]e

and consequently, U;ewA4; € D;.

hence o(P) C D;. But by construction D; C o(P) and we conclude that D; = o(P). So, for

all A€ o(P)and j =1,2,---,
WA P) = o(ANE). 1)

By continuity of measures from below and noting that (A, N P;) C (AN Py) C ---, letting
j — oo in (2.1)) we have for all A € o(P),

manm) = (m(an£)) = (g anm)

~u(an(ge)) s

= u(4)
Similarly, lim; . v(A N P;) = v(A) and we conclude that p(A4) =v(A4). R

We take the following path to construct a measure on F. We start with a class of subsets
S of X, such that F = o(S), and define a pre-measure p on S. If S and p satisfy the
requirements of Theorem [2.4] then p will extend uniquely to F, provided we are able to
extend it from S to F. The result that provides the conditions and possibility for such an
extension is known as Carathéodory’s Extension Theorem. Before stating this theorem we

need the following definition and some remarks.
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Definition 2.2. A semi-ring, denoted by S, is a system associated with X having the fol-

lowing properties:
1. 0es,
2. ABeS = ANBEeS,

3. for all A,B € S there exists m € N and {S;}72, C S that is pairwise disjoint such

Remark 2.1. 1. A semi-ring is a w-system in view of condition 2.

2. Property 3 in Definition 1s equivalent to the following:

3. ifA,Be Sand AC B, then B= AU (U;n:l Sj) where the collection {A, Sy, Sy} C

S 1s pairwise disjoint.

To verify that 3 = 3’ note that ACB =— B=AU(B—A)=AU (U;nzl Sj> by
3, where {A,S1,--- Sy} C S is pairwise disjoint. Now, to verify that 3> = 3 note
that B = (BN A)U (B — A). Since (BNA) C B, by 3 B = (BN A) U (U;“:lsj)
Thus, (BNA)U(B—A)=(BNA)U (U;”:l Sj> which implies that B — A = J;_, S;

where {S;}7L, C S is pairwise disjoint.

3. A ring R is a non-empty system of sets associated with X such that A,B € R —
AUBeR and A—BeR. fA€ R then A—A=0e€R. Also, if A,B € R, and
noting that ANB = A— (A — B), we have that ANB € R. Nowlet AC B, A,B € R.
Since B=AU (B — A) and (B — A) € R, we conclude that every ring is a semi-ring

using property 3’

4. If A is an algebra, then for A, B € A we have that AU B,AN B, B € A, and since

A—B=ANBe A, an algebra is a ring.
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It follows from these remarks that we have the following hierarchy of systems: A (algebras)

are R (rings) are S (semi-rings) are m-systems.

Theorem 2.5. (Carathéodory) Let S be a semi-ring of subsets of X and p : S — [0, 00] be a
pre-measure. Then, p has an extension to a measure v on o(S). If there exists {E;}jeny € S

with Ey C Ey--- such that lim E; — X and p(E;) < oo for all j, then the extension is

J—00

unique.

Proof. Step 1. We start by defining the set function u* : 2X — [0,00]. For any A C X

define the collection of countable covers for A that are composed of sets in S by
C(A) == {{Sj}je]N C S A C jg]NSj}.

If A cannot be covered by some ,U]NSj, then C'(A) = (). Now, define
je
i (A) o= inf {Zu(%) (S)hen € c<A>} |
jeN

where inf ) := co. Note that,
a) p*(0) =0, by taking S =Se =--- =10

b) A C B implies that every cover for B is also a cover for A, ie., C(B) C C(A).

Therefore,

p*(A) = inf {Z 1(S5) : {Sj}jen € C(A)} < inf {Z w(T5) < {Tj}jew € C(B)} = p*(B).

JEN JEN

c) Let A, C X for n € IN and, without loss of generality, assume that p*(A,) < oo (that
is C(A,,) # (). Choose € > 0 and let {S,x}ren € C(A,) be such that
S H(Sue) < 4 (An) + /2
keN
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Now, U A, C UIN U Spr and by the definition of infimum and sub-additivity of
nelN kcN

pre-measures

w (ngINAn> <Yl Sk)

nelN keIN
< Z ) +€/2") = Z,u*(A
nelN nelN

Hence, p* ( U]NAn> < S wur(Ay). If p*(A,) = oo for some n, then the last inequality
ne

nelN
holds trivially.

Since p* satisfies properties a)-c), it is called an outer-measure on 2%,
Step 2. We now show that u* extends p (defined on S) to 2X. By this we mean that
w (S) = pu(S) for S € S.

First, let Sy = {S : S = UL,S5;,8; € §,8NS; = 0Vi # jandm € N} be the
collection of sets that can be written as disjoint finite unions of elements of S and let
i(S) = >0, 1(S;j) for S € Spy. Note that ji(S) is invariant to the pairwise disjoint finite
union used to represent S. To see this, suppose S = U7,S; and S = Up_ T} for m,n € IN.
Then, UTL,S; = Up_ T}, and S; = S; N (U Ty) = UR_,(S; NTy) and S; NT € S, since a
semi-ring is a m-system. Since p is a pre-measure on S, and {7} }}_; is a pairwise disjoint

collection, p(S;) = _ lu(TkﬂS) Then,

— Zu(Sj) = Z ZM(Tk ns;) = Z#(Tk)-

We now show that Sy is closed under (arbitrary) finite intersections and unions. If
A,B € Sy then ANB = (U;nzlsj) N (Up_,T}) where the two unions are over pairwise disjoint
sets. Then, ANB = UL, Up_, (S;NT}) € Sy since S;NT}, € S for all j, k and {S; ﬁTk}] k=1
is pairwise disjoint.

Also, since S;, T}, € S, their difference can be written as a finite union of pairwise disjoint

elements of S. Hence, S; — T}, € Sy. Now,
A-B= U;'n:ISj - UZ:lTk: = U;‘nzl ﬂZ:1 (Sj N ch) = U;‘nzl r\'713:1 (Sj - Tk)-
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Since, S; —T}, € Sy and given that we have shown that Sy is closed under finite intersections,
NE_,(S; — 1)) € Sy. Hence, A — B is the finite union of pairwise disjoint elements in Sy
and we conclude that A — B € Sy, since Sy is closed under pairwise disjoint unions. Lastly,
since AUB =(A—B)U(ANB)U (B — A) and all sets in the union are disjoint and in Sy,
we conclude that AU B € Sp.

We now show that i is o-additive on Sy, i.e., a pre-measure. Let {T}}rew C Sy such that
{T) }rew is pairwise disjoint and such that T := kLEJ]NTk € Sy. Since T, € Sy, by definition

there exist {S;}jen € S and a sequence of 0 =ny < ny < --- of integers such that
Tk = Sn(k—l)""l U Sn(k—1)+2 U---u Snk for k € ]N,

where the collection {.Sy,,_, 41, Sn;,_, +2,°** ,Sn, | is pairwise disjoint and

7= D S;.

k€elN j:n(k,1)+1

Also, since T' € Sy, it can be written as T = Uf\; U, where N € N with U; € § and {U;}iY,

a pairwise disjoint collection. Hence,

N ng
Ji-U U s
=1 kelN

J=ng-—1+1

Defining disjoint subsets Ji,--- , Jy of N such that UY,J; = IN we write U; = |J S; and
JEJ
note that U; € S. Now, T'= |J T}, = U ,U; and
kEN

Mz

a(T) =Y wu(U;) by definition of f

N
Il
—

Z ;) by p being a pre-measure on S
eJ;

Nk

ST uls) =S a(m).

J=n@k-1+1 kelN

Il
™ I-

>
E

€
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Now, for any S € S and any S-covering of S, i.e., {S;};en € C(S5)

p(S) = p(S)

,1<Usjm5> since § €S = S €Sy
JEN

< Z A(S; N.S) since [ is a pre-measure and sub-additive
jEN

D_H(S;N8) <) ulS)).

jeN

Taking the infimum over C(S), we have u(S) < p*(S). Now, taking (S,0,---) € C(S) gives

1 (S) < p(S). Combining the two inequalities, we have
p(S) = u(S) for all S € S.
Step 3. We will show that S C A* where
A= {ACX (@) = ' (QN A) + 1 (@A), Q C X}, 22)

Let S,T € S and note that 7' = (T'NS)U(T'NS°) = (T'NS)U(T - S) = (T'NS)U(US;)

7j=1
with {S;}7, disjoint, m € IN and where the last equality follows from the third defining
property of semi-rings. Since pu is a pre-measure on S we have

m

W(T) = (T S)+ 3 uls)).

j=1
Since p* and p coincide on S and TN S € S, and since p* is sub-additive, from ¢) in Step
1, we have p*(T' = S) = p*(UL,55) < 3770, p*(S;) = 2275, pu(S;). Consequently,

m

wT) = (T OS)+ D p(S)) = p (T NS)+p (T = S). (2.3)

j=1
Take @@ C X and {7}};en € C(Q). Using p*(7;) = p(7;) and summing (2.3)) over j taking
T-1,

M u(SNT) + > (T = 8) <> p(Ty).

jeN JjeEN JjeN
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Sub-additivity and monotonicity of u* together with @ C |J T} give
jEN

QN S) + (@~ 8) < 1 (Ujen(Ty N 8)) + ' (Uyen (T — S))

<D w(T) =) wIy).

jEN jEN
Taking the infimum over C(Q), p*(Q NS) + p*(Q — S) < p*(Q). The reverse inequality
follows easily from sub-additivity of u*. Consequently, if S € S we have that S € A*.
Step 4. We show that A* is a o-algebra and p* is a measure on (X, A*).
1. Forall Q c X, QN X =Q and Q N X = (. Since p*(#) = 0 we have that X € A*.

2. For all Q C X suppose A € A* i.e.
p(Q) = p (@NA) +p(QN AY).

But by symmetry of the right hand side of the equality due to (A°)¢ = A, we have A° € A*.
3. A A € A% for all Q C X
W(Q N (AU A) 1 47(Q — (AU AY))

— 1 (QN(AU (A — A)) + p(Q — (AU A))

= (@NA VRN A —A)) +p'(Q— (AUA))

<SP Q@NA) + QN (A = A)) + (@ — (AU A))

using subadditivity of p*

= (Q@NA) +p (@ —A)NA) + 7 ((Q — A) — A)

= (QNA)+p'(Q—A)=p"(Q)

using the defining expression for A* twice, once for @ — A and once for Q.

Thus,

p(QN(AUAY)) + 17 (Q — (AU AY)) < 17 (Q). (2.4)
Now, @ ={QN(AUA)}U{Q N (AU A")}. By sub-additivity of u*

pH(Q) < (@N(AUA)) +p7(Q — (AU A')). (2.5)

38



Combining inequalities (2.4)) and (2.5 we conclude that p*(Q) = p*(QN(AUA)) + u*(Q —

(AU A’)) and consequently A* is closed under finite unions.

If A, A" € A* such that AN A’ = (), then for Q@ = (AU A") N P with P C X the equality

QN A) + 4*(Q — A) = y*(Q) becomes
p((AUAYNP)=p* (PNA) +up(PNA)VYPCX.

For a disjoint collection {A;}7, € A%,

m

(UL A) NP = 3 i (P 4y).

j=1
If A=UjenA;, where {A,} is a disjoint collection,

m

w(PNA) 2 1 (PRULA)) = S W (PNA).

j=1
Since UL, A; € A" we have that
pH(P) = (PN (UGL Ag)) + (P = UL, A4j)
> (PN (UL 4)) + p' (P — A)

m

=Y w(PNA) +p'(P—A).

J=1

Let m — oo, to conclude
H(P) = 30 (PO A+ (P = A) 2 (PO A) (P = A)
j=1
The reverse inequality follows directly from sub-additivity of p*. Thus,
pr(P)=p"(PNA)+p(P—A), VP CX.

Consequently, A = UjewA; where the collection {A;};en is pairwise disjoint is in A*. Con-
sequently, A* is a Dynkin system that is closed under finite unions. By DeMorgan Laws, A*

is closed under finite intersections, and by Theorem A* is a o-algebra.
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Now, we show that p* is a measure on ¢(S). From above, S C A*, so o(S) C A*. Also,
w* is a measure on A* and on ¢(S§), which extends p on S. By Theorem , and under the

conditions in the enunciation of this theorem, any two extensions p* and v* of u coincide on

o(S).

Remark 2.2. (X, A% u*) is a complete measure space. To verify completeness, let E € A*
such that p*(E) = 0, and consider B C E. We must verify that B € A*, i.e., for any

Q C X, it must be that

pH(Q) = p(QNB)+u (QNB°).
Now, QN BCQNECFE = p"(QNB) < pu*(E)=0 and, consequently u*(QQ N B) = 0.
Also, QN B C Q = p*(QNB°) < u*(Q). Hence,

P (Q) =z pH(Q N BY) + 1 (Q N B). (2.6)
By sub-additivity

p(Q) < p(QN B+ u(@nN B) (2.7)

Given (2.6) and (2.7) we have p*(Q) = p*(Q N B¢) + pu*(Q N B). In addition, p*(B) =0

follows from monotonicity of measures.

Theorem 2.6. Let R™" = x™_[a;,b;) for n € N be a half-open rectangle in R"™ and I™" be

the collection formed by all such rectangles with real endpoints. I™" is a semi-ring.
Proof. Let T5" = {[a;, b;) : a; < b; where a;, b; € R} and note that:

1. if bz = Qy, [ai,bi) = (Z),

b)) eIhh

2. if [as, b, [ay.by) € T then [as,by) M [ay,by) = 4 0" :
et ot o fon b (1B lai,b;) €IV
[a’iybi) GIl’h
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3. if a1, b1) C [ag, be) then [ag, by) = [az, ay) U [a1, by) U [by, be), where the members in the

union are all disjoint.

Hence, Z'" is a semi-ring.
Now, suppose Z™" is a semi-ring. We will verify that Z"*%" is a semi-ring. First, note
that Zn+1h = 7k x T and since () € Z™" we immediately conclude that § € Z"*%". The

intersection of two rectangles in Z"*1" is given by
(Rn,h % Rl’h) N ([n,h X [1,h) — (Rn,h N In,h) % (Rl’h N [1,h)

where I™" is a half-open rectangle in R™ and the righthand side of the equality is an element

of It Also, (R™" x RM) — (I™h x IVh) = (R™h x RMY) N (1™ x TY)¢ and note that

(I™h < "M = {(2,y) cx g ™"y g I, or o € I™" and y € I™", or o ¢ I™" and y € I""}

— ((In,h)c % (]l’h)c) U (]n’h % (Il,h)c) U ((In,h)c % ]l,h)
where the components of the union are disjoint. Thus,

(R™" x RM") — (I™" s IV = [(R™" x RV 1 (I™")¢ s (IMM))] U [(R™" x RYY) (I x (IM1)9)]
U[(R™ x RY™) N ((I™")¢ x I"M)]
= [(R™ = ™M) x (RV" = I"™)] U [(R™" N I x (RM — 1M

U [(Rn,h o ]n,h) % (Rl,h N Il’h)].

By the induction assumption, R™" — I"™" and R'" — I'"" can be expressed as finite unions

of disjoint rectangles, which completes the proof. Il

Definition 2.3. Let \" : I™" — [0,00) be defined as N"(R™") = []'_,(b; — a;) whenever

Jj=1

bj >a; forj=1,--- n and \"(R™") =0 if b; < a; for some j.

Theorem 2.7. \" is a pre-measure on I™".
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Proof. We start by showing that \! is a pre-measure on Z%". Let [a,b) € Z"" and [a,b) =

U?zl[ai, bl) with a; = a, s = bl, as — bg, e, Qp = bnfl, bn =b. Then,

Z)\l([aiabi)) = —a1)+ (by—az)+ -+ (b1 — an_1) + (b — ay)
=(ag —a)+ (a3 —az) + -+ (an —an1) +(b—a,) =b—a

— N ([a,5) = A (U2 [ai, b))

Therefore, A! is finitely additive. For o-additivity, we need to show that for [a,b) = | [as, b;)
i€N

where {[a;, ;) }ien is a pairwise disjoint collection we have b —a =",

For any n € IN, let {[a;,b;)}?, be a pairwise disjoint collection. Then, since Z'" is a

semi-ring, we can write
[a,0) — Ui, [a;, b;) = UT:llja

where the last set is the finite union of pairwise disjoint half-open rectangles. Thus, since !

is finitely additive on Z*"

m n

M(la,0) = > A (las, b)) + YA L) 2 Z A (lai, b))

i=1 j=1

ooy M ([ai, i)

Thus, A ([a,b)) =b—a > lim, 00 Y1y Aai, b)) =
We need only show that b—a < 32, M ([as, b;)) to complete the proof. Let 0 < e < b—a

and note that

[a,b—¢) C la,b—¢ CUZ (a; —2 %, b)
C U™ (a; — 27", b;) for some n € N, by the Heine-Borel Theorem
C U?:l[ai - 2_i€, bz)
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But A ([a;, b;)) = M ([a; — 277, b;)) — 5-¢. Hence,
- 1

AL b <§ M Ja; — —=€,b;) | by subadditivit

([a+¢€b)) < 2 ([aZ 56 )) y subadditivity

i=1
n n

b—a—eSZ(bi—ai)—l—eZ%or

i=1 i=1

b—agzn:(bi—ai)—ke(l—kzn:%).
i=1

i=1
Taking limits as n — oo on both sides of the last inequality gives b —a < 3 2, (b — a;),
which combined with the previously obtained reverse inequality gives b—a =Y oo, (b — a;).
Hence, A! is a pre-measure on Z'".

Clearly, \*(()) = 0. The proof is completed by using induction on n, the dimension of

the space. Hence, we assume that \" is o-additive on Z™" for some n and show that \"*! is

o-additive on Z"*%". This final step is left as an exercise. W

Theorem 2.8. There exists a unique extension of \* from I™" to a measure on the Borel

sets B(R™). This extension is denoted by \* and is called Lebesgue measure.

Proof. We know that B(R") = ¢(Z™") from Theorem [L.5 Since, [k, k)" = [k, k) x
[—k,k)--- x [k, k) T R™ as k — oo is an exhausting sequence of n-rectangles, and since

A ([=k, k)™) = (2k)™ < oo, all conditions of Carathéodory’s Theorem are fulfilled. B

Remark 2.3. Let (R,0(Z"") = B(R)) be a measurable space. From Theorem if we
set S =[0,1) and consider T = I'"" NS = {[0,1)NA: A€ I""} then o(Z"" N [0,1)) =
B(R)N[0,1) is a o-algebra associated with [0,1). Thus, we define By 1y == o(Z*" N [0,1))
and note that

([0,1), Bo,1) := (7))
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is a measurable space where T = {[a,b) : 0 < a < b < 1}. Define the set function X\ : T —
[0,1] such that AX(D) = 0 and \([a,b)) = b — a. Since \ is o-additive (pre-measure) on T (a

semi-ring), using Carathéodory’s Theorem, we can state that
([0,1), Bjo1y := o(Z),\")

is a measure space, where \* is the unique extension of X\ from I to o(Z). In addition,

A*([0,1)) = 1. Thus, we have constructed a specific probability space.

We will now construct probability measures on (R, B(R)). This will be done using dis-

tribution functions.
Definition 2.4. Let F' : R — [0, 1] be a function with the following properties:

1. l}%lF(:v—i—h) = F(z+)=F(z) forallz € R and h > 0,

2. F(x) < F(y) ifx <y,

3. lim F(z) =1, lim F(z)=0.

w500 w——00
F is called distribution function (df). If only conditions 1 and 2 are met, F is called a
defective df .

Remark 2.4. 1. Let F(z—) := llglol F(x—nh) for h > 0. The left jump of F at x is defined as
LJp(z) = F(x)— F(z—) and the right jump of F at = is defined as RJp(x) = F(x+)— F(x).
The jump of F at x is defined as Jp(x) = LJp(x) + RJp(x) = F(2+) — F(x—). If F is a df,
RJp(x) =0 forallz € R and Jp(z) = F(x)— F(xz—). In addition, since F' is nondecreasing
Jp(x) > 0. If Jp(x) = 0 then F is continuous at x.

2. For any two x <y € R we have that 0 < F(y) — F(z) <1
Definition 2.5. The left (generalized) inverse of a df F, denoted by F~, is defined as

F~(p) :=inf{x: F(x) > p for p € (0,1]}.
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Note that {z : F(z) > 0} = R and the infimum of R does not exist. Hence, F'~ is not
defined at 0. Also, {z : F(z) > 1} = {z: F(x) = 1} is either the empty set or [a, c0), where

a € R. In the first case, F~(1) = inf(()) = oo and in the second case F'~(1) = inf([a, 00)) = a.
Theorem 2.9. Let S(p) = {x: F(z) > p} for p € (0,1]. Then,

1. S(p) is a closed set.

2.t<F (p) < F(t)<porF (p) <t < p<F(1).

Proof. 1. If s,, € S(p) and s, | s, bp right continuity of F' we have p < F(s,,) | F(s). Thus,
p < F(s)and s € S(p). If s, € S(p) and s, T s, we have p < F(s,,) T F(s—) < F(s). Thus,
p < F(s) which implies that s € S(p). Consequently, by a characterization of closed sets,
S(p) is closed.

2. Since S(p) is closed, its infimum F~(p) € S(p) and therefore F'(F~(p)) > p. t <

F~(p) = t¢& S(p) = F(t) < p. The reverse implications all apply. B

Theorem 2.10. Let A C R, Sp(A) = {p € (0,1] : F~(p) € A} and T' = {(a,b] : —o0 <
a<b<oo}. If A€ B(R), then Sp(A) € By = o(Z") N (0,1].

Proof. Let G = {A CR:8p(A) € Bo,}. Note that

Sr((a,0]) ={p € (0,1] : F~(p) € (a,0]} ={p € (0,1] : a < F~(p) < b}
={p € (0,1]: F(a) < p < F(b)} by Theorem [2.9]

= (F(a), F(b)] € B,y-

Hence, (a,b] € G and Z' C G. If G is a o-algebra, o(Z') = B(R) C G. Hence, A € B(R)
implies Sp(A) € Bo,1). Consequently, we need only show that G is a o-algebra associated

with R.

1. Sr(R)={pe (0,1]: F~(p) e R} =(0,1) = U (0,1 —n"'] € By, thus R € G.

nelN
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2. By definition of Sg

Sp(A9) = {pe(0,1]: F (p) e A% ={pec(0,1]: F (p) ¢ A}

= (8r(A4))" € By
where the last inclusion statement follows if A € G and the fact that By is a o-algebra.

3. If {A,}new € G we have by definition of Sg

F<UAn> = {p (0, UA}—{pE (0,1] : F~(p) € A, for some n}

nelN nelN

= U{pe01]: F(p) € A} = | JSr(An) € B (2.8)

nelN nelN
where the last inclusion statement follows since A,, € G and the fact that B is a

o-algebra.
[

Definition 2.6. Let A € B(R) and define Pp(A) = \{(Sr(A)) where \' is the Lebesque

measure on B ).

Theorem 2.11. Let Pp be given in Definition [2.6. Then, (R,B(R), Pr) is a probability

space.

Proof. First, note that
Pe(0) = N (Sk(0)) = N ({p € (0,1] : F~(p) € 0}) = A (D) = 0.

Second, if {A,}new is a pairwise disjoint collection of sets in B(R) then

o (et - (e An)) (s 5F<An>) .

i)\l Sr(A ZPF
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where the next to last equality follows from the fact that A\! is a measure and {Sr(A,) }nen
is a pairwise disjoint collection.

Lastly,

Pp(R) = \(Sr(R)) = M ({p € (0,1] : F~(p) € R}) = \'((0,1))

=\ (U(0,1—n1]> = A ((0,1/2] U (1/2,2/3] U (2/3,3/4U---)

nelN

—1/2+(2/3—-1/2)+ (3/4—2/3) 4+ --- = 1.
m

Remark 2.5. Note that

Pp ((—00,]) = X' (Sr((—00,2])) = A'({p € (0,1] : F(p) € (—o00,2]})

=M({pe(0.1]:p < F(a)}) = A ((0,F(z)]) = F(a).
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Chapter 3

Measurable functions

In this chapter we will define measurable functions and study some of their properties. We

start with the following definition.

Definition 3.1. Let (X, F) and (E, &) be two measurable spaces. A function f: (X, F) —
(E, €) is said to be F — & measurable if for all A€ &, f~1(A) € F.

Remark 3.1. 1. Since f~Y(E) is a o-algebra, measurability of f is equivalent to stating
that =€) C F. It is standard notation to write o(f) := f~1(E) and call this o-algebra

the o-algebra generated by f.

2. If X = Q, (Q,F,P) is a probability space and f is F — E measurable, we say that
f is a random element. If, in addition, (E,&) = (R,B(R)) we will refer to f :
(Q,F,P) — (R,B(R)) as a random variable. We will normally represent random

elements or random variables by uppercase roman letters, e.q., X orY.

The next theorem shows that measurability of a function f can be established by ex-
amining inverse images of sets in a collection that generates the measurable sets associated

with the co-domain of f.

Theorem 3.1. Let C be a collection of subsets of E such that o(C) = E. Then, f: (X, F) —
(E, ) is F — & measurable <= f~(C) C F.
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Proof. (=) Assume f is F —& measurable. f measurable <= forall A € &, f~1(A) € F.
In particular, let A be an element of C, then f~*(A) € F, hence f~(C) C F.
(<=) Assume that f~1(C) C F,ie., f[7}(C) € F, for all C € C. We must prove that VA € &,
Ay e Flor fFUYE)C F). Let G={A €& : f1(A) € F} and by construction C C G.
If G is a o-algebra, then 0(C) = £ C G. Also, by construction G C &, hence £ = G, which is
what must be proven.

We need only show that G is a o-algebra. Consider a sequence Aj, A, - - - € £ such that
f~YA;) € F,ie, Aj,Ay--- € G. Then, since £ is a o-algebra, |JA; € £ And since

i€l
! (U Ai) = U f'(4;), which is the union of elements in F, f~* (U Al) €F.
i€N i€N iE€N

Now, if A € & is such that f~!(A) € F, ie, A € G, then A° € £ and f~1(A°) =
fSYE) — f71(A) =X — f71(A) which is in F. Hence G is a o-algebra. W
Example 3.1. Let Ay = {(—o0,a] : a € R} be the collection Ay in Remark [1.24. Since
U(A4) = B(R)7

X:(QF,P)— (R,0(As) =B(R))

is a random variable if, and only if, X ' (A4) C F. Equivalently we can state X is a random
variable if, and only if, X '((—o00,a]) = {w € N: X(w) <a} € FVa €R.

The next theorem shows that continuous functions are measurable.

Theorem 3.2. Let O; and Oy be collections of open sets associated with Xy and Xo. If

[ (X4,0(01)) = (Xy,0(02)) is continuous, then f is measurable.

Proof. f~1(Oy) C O; by continuity. But O; C ¢(0;). Thus, by Theorem , f is measur-
able. H

The composition of measurable functions is measurable.

Theorem 3.3. Let f : (X, F) — (X1, F) and g : (X4, F1) — (Xg, F2) be measurable
functions. Let (go f) : (X, F) = (Xy,F2). Then, (go f) is F — Fy measurable.
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Proof. Let F, € 2%,

(go /) H(Fo) ={z e X :g(f(z)) € B} ={reX: f(z) e g ' (F)}
={reX:z¢€ f_l(g_l(Fg))}.

If I, € F>, and given that g is measurable, g~'(F,) € F;. Since f is measurable, f~* (g7 (Fy)) €
F. Hence, (go f) is F — F, measurable. B

The next theorem shows that measurable functions can be used to transfer measures

between spaces.

Theorem 3.4. Let (X, F, u) be a measure space, (I, E) be a measurable space and f : X —

be a F — & measurable function. Then,
m(E) = pu(f Y(E)) forall E€ &
is a measure on (E,&).

Proof. We verify the two defining properties of measures. First, note that if E = (), m(0) =
u(f~HD)) = u(@) = 0 since p is a measure. Second, if {E,},en is a pairwise disjoint
collection of sets in £ then

() =n (7 (g8)) = (G E) = Eutr8) = LB

nelN nelN
where the next to last equality follows from the fact that p is a measure and the last equality

follows from the definition of m. B

Example 3.2. Let (X, F,u) := (Q,F,P), (E, &) = (R,BR)), and f =X : (Q,F,P) —
(R, B(R)) then Px(B) := P(X~Y(B)) is a measure on B(R).

The measurability of real valued functions can be characterized differently. In Example

it is shown that a function f : (X, F) — (R, B(R)) is said to be F — B(R) measurable
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if for all @ € R, the set S, = {z € X : f(z) < a} € F. But since S, € F and F is a
o-algebra, S¢ € F. Hence, f is measurable if S¢ = {z € X : f(z) > a} € F. Also, consider

SC

a—1/n

={reX: f(r)>a—-1/n}andlet S, = N{r e X: f(x) >a—1/n} ={z €
nelN

X : f(z) > a}. Clearly, by the properties of o-algebras S/ € F. Hence, f is measurable if

{r e X: f(x) >a} € F. Since, {x € X: f(z) <a} ={z € X: f(z) > a}°, measurability

could also be defined in terms of {z € X : f(x) < a}.

Example 3.3. 1. Let f: X — R, such that for all x € X, f(x) =c¢, c€ R. Leta € R
and consider S¢ ={x € X : f(z) >a} ={x eX:c>a}. Ifa>c, SE=0, and if

c>a, S¢=X. Since o-algebras always contain O and X, f(x) = ¢ is measurable.

2. Let E € F (F a o-algebra). Recall that the indicator function of E is

_J1 dfz ekl
[E(a:)_{o ifo ¢ E

Ifa>1,5=0;if0<a<1,SE=FE;ifa<0S5=X. Since X, € F (always) and

E € F by construction, Ig is measurable.

3. Let X = R and F = B(R). If f is monotone increasing, i.e., Vo < 2', f(z) < f(2'),
f is measurable. Note that in this case, S¢ = {x : x >y for some y € R} = (y,00) or

S;={x:x >y} =[y,00), which are Borel sets.

Theorem 3.5. Let f and g be measurable real valued functions and let ¢ € R. Then,

cf, 2, f+g, fg,|f| are measurable.

Proof. It ¢ =0, ¢f = 0 is a constant and consequently, measurable. If ¢ > 0, then {z € X:
cf(x) >a} ={x € X: f(z) > a/c} € F. Similarly for ¢ < 0. If a < 0, {z € X : (f(x))* >
a}) =Xand X € F. Ifa>0,{z € X: f2z) >a} = {x e X: flz) >a?or f(z) <
—a'/?}y ={z e X: f(z) > a?}U{z € X : f(x) < —a'/?}. The first set in the union is in F
by assumption (f is measurable) and the second is in F by the comments following Example

3.2
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Now, g(z) + f(z) > a = f(z) > a — g(x) which implies that there exists a rational
number r such that f(x) > r > a — g(x). Hence, {z € X : g(x) + f(z) > a} = Y {9[: €
X : f(z) >r}Nn{zr € X :g(xr) > a—r} Since the rational numbers are countable Tg@
is countable. Since f and g are measurable, and unions of countable measurable sets are
measurable {x € X : g(z) + f(z) > a} € F. Note that —f = (—1)f. Hence if f is
measurable, — f is also measurable and so is f + (—g) = f — g.

Now, fg=1/2[(f +9)* — (f* + ¢*)]. Since f%,¢% f +g,f — g and cf are measurable, if
f, g are measurable, so is fg.

Lastly, {z € X : |f(z)| > a} ={z € X : f(zx) >aor f(z) < —a} ={zr e X : f(z) >
alU{r eX: f(z) < —a} ={r e X: f(z) >a}U{r € X: —f(z) > a}. Since f and —f

are measurable, {xr € X : |f(z)| >a} € F. R

Recall that if {z, },en is a sequence of real numbers

lim inf z,, 1= sup 1nf{xj} and lim sup z,, := mf sup{:vj}.
n—00 keINJ=> n—00 ]>k

Theorem 3.6. Let fi(x) : X — R fori = 1,2,--- be measurable. Then sup{fi,---, fn},

inf{f1, -, fu}, sup fp, inf f,, limsup f, and liminf f, are all measurable functions.

Proof. Let h(x) = sup{fi(z),---, fu(x)}. Then, S, = {z € X : h(z) > a} = U {z :
fi(z) > a}. Consequently, since f; is measurable, S, € F. Similarly if g(x) = supf,(z),
ne€lN

Se={reX:g(x)>a} = U {z: fu(xz) > a} € F. The same argument can be made for

inf. Since limsup f,, = mf sup fk, limsup f,, is measurable. The same for liminf f,,. B
N—00 Lg>n n—00

Definition 3.2. Let i € I an arbitrary index set and f; : (X, F) — (X;, F;) be F — F;
measurable. If G C F is a o-algebra, we say that f; is measurable with respect to G if

o(f;) € G. The smallest o-algebra G that makes all f; measurable with respect to G is
o (Ufz_l(}])) and is denoted by o(f; 1 i € I).

el
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Chapter 4

Integration

4.1 Simple functions

Often, it is necessary to use the symbols —oo or oo in calculations. In these cases we work
with the extended real line, i.e., R := RU{—00} U {oo} = [—00,0]. Functions that take
values in R are called numerical functions. The Borel sets associated with the extended
real line are denoted by B := B(R) and are defined as the collection of sets B such that
B = BUS where B € B(R) and S € {0, {—00}, {oo}, {—00,00}}. It can be verified that B is
a o-algebra and that B(R) = RNB(R) := {RUB : B € B(R)}. In addition, B is generated

by a collection of sets of the form [a, 00| (or (a, ], [-00,al, [-00,a)) where a € R.
Theorem 4.1. B = o(C), where C := {[a,00] : a € R} .

Proof. Let C := {[a,oc] : @ € R} and G := ¢ (C). Note that since [a, 0] = [a,00) U {o0},
[a,00] € B and C C B. Then, since B is a o-algebra o(C) := G C B. Now, let C; =
{la,b) : —00 < a < b < oo} and note that [a,b) = [a,00] — [b,00] € G. Hence, C; C G and
o(C1) = B(R) C G since G is a o-algebra.
Note that {0} = () [, 0], {—o0} = [ [-00,—n) = ) [-n, 0] and, consequently,
neN neN neN

{o0},{—00c} € G. Then, for all B € B(R) and S € {0,{—o0}, {oo}, {—00,0}} we have
BUS € G, showing that BC G. B
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Let (X, F) and (R, B) be measurable spaces. Since the indicator function of a measurable
set is a measurable function, it follows from Theorem [3.5] that if {A;}"_, with n € N is a

pairwise disjoint collection in F and a; € R for j = 1,--- ,n, the linear combination

@) =3 4L, (@) (4.1)
i=1
is a F — B-measurable function.

Definition 4.1. A real-valued function on a measurable space (X, F) is said to be simple if

it has the representation (4.1). A standard representation of a simple function is given by
flz) = Zaj[Ai (z) with ag =0 and Ag = (Uj_; A;)°. (4.2)
§=0

Remark 4.1. 1. If f: (X, F) — (R, B) is measurable and takes on finitely many values,
say {a;}7_, then it is a simple function. To see this, note that B; = {x : f(x) = a;} is
measurable, since B; = {z : f(z) < a;} —{x : f(z) < a;} and f is measurable. Also,

note that the collection {B;}}_, is pairwise disjoint. Hence,
f(.il?) = Z ajIBj (33) = Z ajf{gc:f(x):aj}(a:). (4.3)
=1 j=1
Conwversely, if f is simple it takes on finitely many values.

2. Representation (4.2)) is not unique, but a simple function has at least one representation
such as (4.2)) .

The next theorem shows that certain functions of simple functions are simple functions.

Theorem 4.2. Let f : (X, F) — (R,B) and g : (X, F) — (R, B) be simple functions. Then,
fEg,cf forc>0, fg, fT =max{f,0}, f~ = —min{f,0} and |f| are simple functions.
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4.2 Integral of simple functions

Definition 4.2. Let f : (X, F,u) — (R, B) be a non-negative simple function with standard

representation (4.2)). The integral of f with respect to u, denoted by fx fdu, is given by
[ fin =Y ajuta) € 0,00 (4.4)
X s

By definition a; € R for j = 0,1,--- ,n, but since p takes values in [0, oo] we can have
fx fdu = oo. If p is a finite measure, e.g., a probability measure P, then it must be that
fx fdpu € R. When X := ) an outcome space, f := X is a random variable and p := P
is a probability measure we write Ep(X) := [, XdP and call it the expectation of X given
probability P.

It will be convenient, in the case of simple functions, to write 1,(f) := fx fdu.

Remark 4.2. Since the representation (4.2)) is not unique, for uniqueness, the definition
of integral requires that it be invariant to the representation used. To see this, suppose that

fx) =30 gaila;(x) = 3 g bilp, (x). Then, X = Uj_yA; = Ui By and

Since p is finitely additive and the sets in the above unions are disjoint we have that

Yoau(A) =D a; > p(A;NBy) =YY au(A; 0 By).
j=0 j=0 k=0 j=0 k=0

Similarly,
k=0 k=0  j=0 §=0 k=0

But a; = by whenever A; N By # 0, and when A; N By = 0, p(A; N By) = 0. Thus,
ajp(A; N By) = bpp(A; N By) for all pairs (j,k), and I1,(f) is invariant to the representation

of the simple function.
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Theorem 4.3. Let f : (X, F,u) = (R,B) and g : (X, F, ) — (R, B) be simple non-negative

functions. Then,
1. [efdu=c[fdp for ¢ >0 and [Igdu = p(E) for E € F.
X X X
2. [(f+9)du= [fdu+ [gdp,
X X X

3. If for E € F, we define m(E) = [ fIpdu, then m is a measure on F.
X

4- [ <g = [fdu< [gdp.
X X

Proof. For 1., note that ¢ > 0 = c¢f > 0 with representation cf(z) = Z;L:O ca;lq,; ().
Therefore, [ cfdp = 377 caju(A;) = ¢y i gaju(A;) = ¢ [ fdu. For the second part,
note that Ip(z) = Ig(x) + 0Ipe(x). Hence, [Ipdp = p(E).
For 2., let f(x) = > 7 a;la,(x) and 3;(3:) = > bl (x). Then, f(z)+ g(z) =
> =0 2ol + bi)la;np, () With (A; N By) N (Ay N By) = 0 whenever (j,k) # (5, k).
Then,
/X(f+g)du = ZZ aj + bg)(Aj N By)

]OkO
n

= ZGJZ’MA ﬂBk Zb Z (A ﬂBk)
J=0 =0 j=0
= Zagu +Zbku (B,

since X is the union of both {A;} and {By}. Then, by definition [, (f + g)du = [ fdu +

Jx gdp.
For 3., note that f(2)/g(r) = >_7_ja;jlane(z). From b) and a),

E) = / Jedp = Z a; / Tanp(x)dp = Zaj,u(Aj NE).
X Jj=0 @ J=0

But p1(A;NE) is a measure, and we have expressed A(E) as a linear combination of measures

on F, hence \ is a measure on F.
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For 4., write g = f + (g9 — f). Note that g — f is simple and non-negative since g > f.

Hence, I,(g9) = 1,(f) + I.(9 = f) = 1,(f). W

4.3 Integral of non-negative functions

We start with the following fundamental theorem.

Theorem 4.4. Let f: (Q,F) — (R, B) be a non-negative measurable function. Then, there

exists a sequence , : (2, F) — (R, B) of simple non-negative functions such that:
1. pp(w) < vpi1(w), for allw € Q and n € N

2. lim ¢, (w) = f(w), for allw € Q.

n—o0

Proof. 1. For each n =1,2,--- define the sets

27’L 7 27‘L 27L

B - {wEQ:zﬁnSf(w)<2ﬁn+2%}=f_l([ﬁﬁ—l—i))fork:zo,l,---,nQ"—l
S {weQ: f(w)>n} = f[n,oo]) for k =n2".

For each n, the sets {Ej,, : K =0,1,--- ,n2"} are disjoint by construction, belong to F since
f is measurable and Up2 By, = Q. Now, let

n2m
k

Pule) = 5T ()

k=0

Fix w € 1 and for any n € IN we note that w € Ej, ,, for some ky. By definition

50 if kg =0,1,---,n2" —1
Pn(w) = . n
n if kg = n2".
First, let kg € {0,1,-- ,n2"—1} and consider n+1. The lower bound on [’2‘“—2, 5—2—1—2%) must co-

incide with %, which gives k = 2ko. Thus, Ey 41 = Eoggnt1 = f! ([ 2k 2ko 4 2n1+1)) =

2n+l7 2n+l
F7([55 55 + zr)) and

— k’o 1 k?() 2 _ ko 1 k?o 1
Eiiint1 = Boggrinsr = f ! ([2—n + onil’ o0 + ﬁ)) =f ! ([2—n + ol gn + 2—n) )
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Consequently, Ei, ,, = Eipni1UEprin11 = Eoggnt1 U Eoggt1nt1- I w € Eopgnp1 C By, then

i1 (W) = 22 and @41 (W) — Pp(w) = 220 — 42 = 0. Alternatively, if w € Eajys1,,41 then

Pni1(w) = 22 and g, (w) — pn(w) = 2ol — 2o — L5 (. Consequently, if w € Ej,

then 90n+1(w) - cpn(w) > 0.
Second, if kg = n2" then Ey, , = f~([n, 00]). Now, ifw € f~!([n+1, 00]) then ¢, 1 (w) =

n+ 1 and ¢,(w) = n. Consequently, ¢, 1(w) — @p(w) =1> 0. Ifw € f~([n,n + 1]) then

n(w) = n and @uy1(w) = 557 if w € f7H (557, 557 + 507)). Setting the lower bound

of the interval equal to n gives k = n2"™ and ¢,41(w) = nif w € f([n,n + 5257)),

giving @n1(w) — en(w) = 0. If w € f7H([n + 5, m + z27)) then pnp(w) = "Z5H

and consequently ¢,41(w) — ¢n(w) = 55 > 0. Continuing in this fashion for subsequent

sub-intervals of [n,n + 1] gives ¢,11(w) — pn(w) > 0.

2. From item 1, we have that ¢1(w) < @o(w) < -+ < f(w) forallw € Q. Hence, lim ¢, (w) =
n—oo

sup o, (w). But 0 < f(w) — pp(w) < 55 and taking limits as n — oo we have f(w) =

nelN 2"
lim ¢, (w) = sup pp(w). W
nelN

n—oo

Definition 4.3. Let f : (X, F,u) — (R,B) be a non-negative measurable function. The
integral of f with respect to p is given by
/ fdp = sup/ @(z)dp = sup I,(p) € [0,00], (4.5)
X ¢ JX ©

where the sup is taken over all simple functions ¢ which are non-negative satisfying o(x) <

f(z) for all z € X.
Remark 4.3. If f is a non-negative simple function [y fdu = I,(f).

Theorem 4.5. (Beppo-Levi Theorem) Let (X, F,u) be a measure space and {f;}jen be
an increasing sequence of mon-negative measurable functions f; : (X, F) — (R,B). Then

f =supf; s a non-negative measurable function and

jEN
/fdp ::/supfjdp:sup/ fidp.
X X jeN JEN JX
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Proof. That f is a non-negative measurable function follows from Theorem [3.6, Note that

if g and h are non-negative measurable functions, we have by definition that

/ gdp = sup/ wdp where ¢ < g, ¢ a simple function.
X ¢ Jx

But if g < h,

/gd,ufsup/ gpd,u:/ hdy where ¢ < h.
X ¢ Jx X

Now, f; < f :=supf;. By the monotonicity of integrals, which we just established,

JEN
[ tidn< [ sn

Taking sup on both sides gives sup [ fidu < [ fdp.
jEN jEN
Now, we establish the reverse inequality, i.e., sup fx fidp > fx fdu. Let o(x) be a simple
jEN

non-negative function such that ¢ < f. If we can show that

o) = [ edn <sup [ fan (4.6)
X jEN Jx

we will have the desired inequality since we can take sup over all simple functions on both

sides of (4.6) to give
sup [ pdui= [ fdu <su [ fid
X X X

¥ JeN
Let ¢ be a simple non-negative function such that ¢ < f. Since f(z) := supf;(z), for every
jEN
r € X and € € (0,1), there exists N, such that

[i(z) > ep(x) whenever j > N, ).

Now, if A; = {z : fi(z) > ep(x)} we note that the sets A; increase as j — oo since

fi < fo---. Furthermore, these sets are measurable by measurability of f; and ¢. By

definition of A;
L, ()p(e) < I (2)f,(@) < fy(w) (4.7
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Since ¢ is a simple function it has a standard representation ¢(z) = >\ vl (z) and
EIA]' <I> Z yi]Bi (l‘) =€ Z inBiﬂAJ‘ (l‘)
i=0 i=0

Thus, the integral of the simple function in this expression is given by €Y ", y;u(B; N A;).
By monotonicity of integrals and using we have

G;ym(& NA;) < /ijdu < ?lelnlg/xfjdu-
Since ¢ < f, the collection {A;} grows to X as j — oo. Thus, by the fact that  is continuous
from below

u(B;i N Aj) (B NX) = u(B;) as j — 0o

and

ey yin(B;) = e/ pdu < sup/ fidp.
X X

i=0 JeN

Now, just let € be arbitrarily close to 1 to finish the proof. l

Remark 4.4. 1. If we take f; = ¢; where ¢; are non-negative simple functions and

f =supyj, then
JEN

/fdu=sup/ pjdp.
X JeEN JX

Note that sup can be replaced with lim .

J]—00

2. If E € F, then Ig(x)f(x) is a non-negative measurable function if f > 0. We define

/Efd,u:/X[Efdﬂ- (4.8)

Theorem 4.6. Let (X, F, 1) be a measure space and f, g : (X, F,u) — (R, B) be numerical

non-negative measurable functions. Then
1. [afdp=affdp fora>0,
X X
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2. [(f+g)dp = [fdu+ [gdp,
X X X
8. IfE,FeF and ECF, then [, fdu < [, fdu.
Proof. 1. If a > 0, let ¢, be an increasing sequence of measurable non-negative simple
functions converging to f (such sequence exists by Theorem [4.4). Then, ayp,, is an increasing
sequence converging point wise to af. By Theorem 4.5/ and the fact that I,(ay,) = al, ()

/afd,u = lim /agondp = a lim /gon(w)du = a/fdu
n—oo n—oo
X X

X X

2. Let ¢,,1, be non-negative increasing simple functions converging to f and g. Then

©n + 1, 18 an increasing sequence converging to f 4+ g. Again, by Theorem

/(f +g)dp = lim [ (¢, + ¥,)dp by Beppo-Levi’s Theorem

n—00
X X

= lim [ p,dp+ lim / Ypdp by Theorem
n—oo
X

n—00
X

= /fdu + /gd,u. by Beppo-Levi’s Theorem
X X

3. Since f is non-negative fIgp < fIp therefore

/E fdp = 4 fIpdp < 4 flpdy = /F fdu.

Corollary 4.1. Let {f;};en be a sequence of measurable non-negative numerical functions,

ie., fi: (X, F,pu) = (R,B). Then, > 52y fj is measurable and

Proof. Let Sy, = >0, fj, S = lim >, f; = 377, f; and note that 0 < S < Sy < ---.
m—00
Then, by Theorem [4.6]3 we have that

Spndu = /fd
/X M;X]M
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Taking limits as m — oo and using Theorem we have

lim Spmdp = lim Z/ fjd,uZZ/ fdeZ/ SdM:/ (ny) dp.
m—oo [y m—>oc>j:1 X /X X X \j=1
|

Theorem 4.7. (Fatou’s Lemma): Let {f;}jen be a sequence of measurable non-negative

numerical functions f; : (X, F,u) — (R,B). Then, f :=liminff; is measurable and
j—o0

/fdugliminf/ fidp.
X J7reo Jx

Proof. First, f is measurable by Theorem [3.6] Let g, = inf{f,, foi1,---} forn =1,2,---,

and note that g1 < f1, g1 < fo,-+-. Also, g2 < fo, go < f3--+. Thus, g, < f; for all n < j.
Furthermore, g; < go < ---. Now, recall that f := liminf f; := sup inf f; and
j—roo nelN j=n

lim g, = liminf f; := f.

n—oo j—o0

Also, [y gndp < [ fidp for all n < j and

/ gndp < liminf / fidp.
X I Jx

i h liminf f;, by Th 4.
Since the sequence g, 1 im in fi, by eorem

lim gndu:/ fdugliminf/ fi(w)dp.
X X J7ee Jx

n—oo

4.4 Integral of functions

Let f: (X, F,u) = (R,B) be a measurable numerical function and f* = max{f,0} and
fﬁ = _min{fv O}
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Definition 4.4. Let f : (X, F,u) — (R, B) be a measurable numerical function such that

fx ftdu < oo and fx f~du < oo. In this case, we say that f is u-integrable and we write

/X Fu = /X Frdy - /X fdp

We note that fx fdup € R and denote by Ly the set of integrable real functions and Lg
the set of integrable numerical functions. A non-negative function f is said to be integrable
if, and only if, [ fdu < co. If (X, F,p) := (R",B",A\") we call [, fd\" the Lebesgue

integral.

Theorem 4.8. Let f : (X, F,u) — (R, B) be a measurable function. Then, the following

statements are equivalent:
1. f €Ly,
2. |f| € L,
3. there exists 0 < g € Ly such that |f| < g.

Proof. (1 = 2) Since, |f| = f* + f~ and since integrability of f implies [y fTdu < oo
and [y f7dp < oo we have [y |fldu = [ fTdu+ [ [dp < oo,

(2 = 3) Just take g = |f].

(3 = 1) Since f* < |f| <gand f~ <|f] < g, we have by the monotonicity of the integral

of non-negative functions and the integrability of g that f*, f~ € Lg. Hence, f € L.

Theorem 4.9. Let f,g : (X, F,u) — (R,B) be measurable functions such that f,g € Ly
and a € R. Then,

1. af € Lg and [y afdp=a [ fdu,
2. (f+g) € Lr and [((f +g)du= [ fdu+ [x gdu,

3. max{f, g}, min{f, g} € Ly,
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4. if [ < g then [y fdp < [ gdp.
Proof. Homework. Use Theorems [4.8 and 4.6, W
Remark 4.5. Note that

/de,u‘ﬁ /Xf+du‘+ /Xf_dﬂl:/5§f+dﬁ+/;§f_dﬂz/X(er_'_f_)d/‘:/Xlﬂdl‘-

Theorem 4.10. Let f : (X, F,u) — (R, B) be a non-negative measurable function such that

f €Ly and
m(E) = / fdu for all E € F.
E

Then, m is a measure on JF.

Proof. Since f >0, m(E) > 0. Ift E =10, then fIr =0 and

m(@):/mfd,u:/xffwdu:/XOdu:O.

Now, let {Ej}jen be a disjoint collection of sets in F such that U, F; = E and let

fa(x) = 370 f(2)1g;(x). By Theorem Jxc fadie = 3700 [ flg;dp. Thus, [ fudp =
> -1 m(E;). Note that f; < fo <--- and converges to fIp. Hence, by Theorem
mE:/fId,u:hm/fndp:hm m(E;) = m(E;).
() < E n-s00 Jxc nﬁw; (J) ; (])
|

Remark 4.6. 1. Suppose X : (Q, F,P) — (R, B(R)) is a random variable and Py is the
probability measure induced by X on B(R) as in Example . Then, in Theorem
letting (X, F,u) = (R, B(R), Px), we conclude that

mx(B) = /dePX for all B € B(R)

is a measure on B(R). In particular, if B = (—oo,z] for v € R, mx((—o0,z]) =
f(—oo,a:} fdPX

66



2. m is called the measure with density function f with respect to p and is denoted by
m = fu. If m has a density with respect to p it is traditional in mathematics to
write dm/du for the the density function. We note that with a little more work we can

recognize [ as the Radon-Nikodym derivative of m with respect to the measure .
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Chapter 5

Lebesgue’s convergence theorems and £P
spaces

In this chapter we study two important convergence theorems and some of their uses and

applications.

5.1 Convergence theorems

Theorem 5.1. (Lebesque’s Monotone Convergence Theorem) Let f, : (X, F,u) — (R, B)

forn € IN be integrable functions such that fi < fo <--- and f := hm fn =sup f,. Then,
nelN

fe€Lirp <:>sup/fndu<oo

nelN

In this case,

SUp/ fnduz/supfnduz/fdu-
nelN JX X nelN X

Proof. Since f, € Lg and f; < fo < --- we have that 0 < f,, — fi € Li forms an increasing

sequence of nonnegative measurable functions. Hence, by Theorem

0 < sup /X (o — f)dp = /X sup(f — fu)dp. (5.1)

nelN nelN
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Now, suppose [ € L and note that from the left side of equation (5.1)

zlelﬂg/fndu /fldu /f fi)du, or
sup [ fudn= [ du [ (£~ P

:/Xfldu—l—/xfdu—/xfldlt:/xfdﬂ<OO-

If sup,,c fx fndp < 0o, then from equation (5.1)) we have fx(f — f1)du < oo and since f; is
integrable f = (f — f1) + fi is integrable. Therefore,

[ tan= [t =+ [ fau=sup [ fdn < oo,

We now prove a useful inequality.

Theorem 5.2. (Markov’s Inequality) Let (X, F,pn) be a measure space and f € L. Then,
forall E € F and a >0

iz a0 B < o [ e

Proof. Note that, alf f>ane = al{f>a}lr < |f|/g and consequently, integrating both sides,
ap({|f] > a} N E) < [ |f|dyu. Therefore,

w({f] > a} N E) < / Fldu.

Remark 5.1. Note that if E = X we have u({|f| > a}) < 1 [ |fldp. When (X, F, p) =
(Q, F, P) a probability space and f := X a random variable, the last result is commonly

stated as

P{IX] > a}) < = Ep(|X]).
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Also, note that if f = (X — Ep(X))? we have
P{(X = Ep(X))* > a}) = P{|X — Ep(X)| > a'/?}) < éEP((X — Ep(X))%),

and letting b = a'/? we have

PUIX — Ep(X)| 2 ) < s Ep((X — Ep(X))?),

which s known as Chebyshev’s Inequality.

Recall that for a measure space (X, F,u), N is a null set if N € F and u(N) =0. If a
certain property P(z) that depends on x € X holds for all x € X except x € Np C N, where
N is a null set, we say that the property is true almost everywhere (ae) or almost surely

(as). Note the set Np where the property does not hold need not be a measurable set.
Theorem 5.3. Let (X, F, i) be a measure space and f € Lg. Then,

1. if N s a null set fod,uzo,

2. [ Ifldp=0 < |f| =0 ae.

Proof. 1. For j € N, let f; = min{|f|,j} and note 0 < f; < fo < --- with lim; , f; = |f]
Hence, by Theorem

/Nfdﬂ‘ = /Xfodu‘S/szvlfldu

= lim [ Infidu= 1im/INmin{|f|,j}du§ lim/jINdu
X ] Jx J—oo Jx

0<

j—o0
= 1imj/ Indp = lim ju(N) = 0.
j—00 < j—00

2. (<:) fx |f|d,u = f{m:o} ’f|dﬂ + f{\f#o} |f|d,u = f{m#o} ’f|d,u = 0 by item 1.

(=) Note that by the fact that u is a measure

p{IF1>03) = p (U{Ifl > 1/]'}) <> ul{Ifl = 1/i})

jEN JEN

< i [ flau=0

JEN
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by Markov’s Inequality and the assumption that fx |fldp=0. B

Remark 5.2. 1. If f, g > 0 are measurable, integrable and f = g p-ae then fx fdu =
f{x:f(i)#g(x)} fdu + f{x:f(:c):g(x)} fdu. But by Theorem .], the first integral in this
sum is equal to zero. Consequently, fx fdu = f{x:f(x):g(z)} fdu = f{:v:f(:v):g(x)} gdy =

S pwy2atary 99+ Jiapay=g(ay 990 = Jx 9.

2.If f € Lg and f = g p-ae then g € Li. To see this, note that f = g p-ae implies

ft = g¢" and f~ = g~ p-ae. Using the previous remark on f* and f~ we have

Jx frdp = [ gtdu and [ f~dp = [y g~dup. Hence, g € Lg and [y fdu = [ gdp.
3. If f is measurable and 0 < g € Ly with |f| < g ae, then

Fr<Ifl <gacand f~ < |fl < g ac.

Hence, [ frdu < [ gdp, [« [-dp < [ gdp and f is integrable.

Theorem 5.4. Let f : (X, F,u) — (R,B) be integrable. Then f is real valued almost

everywhere.

Proof. Let {z : |f(z)] = oo} = {x : f(z) = oo} U{z : f(x) = —o0} € B. Note that
N {z :|f(zx)] > n} = (N B, with By D By D ---. Hence, lim B, = (| B, = N. Also,

neN neN n—00 nelN
note that by Markov’s Inequality and integrability of f

w(By) = p({a: |f(2)] > 1}) < /X fldy < oo.

Hence, by continuity of measures from above, and Markov’s Inequality

W(N) = Tim p(B,) = lim p({x : |f(2)] = n}) < lim © / fldu = 0.

n—oo n—oo n—oon
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Theorem 5.5. (Lebesgue’s Dominated Convergence Theorem) Let (X, F,pu) be a measure
space and { fn}nen be a sequence of integrable functions such that |f,| < g for all n, almost
everywhere, where g is some integrable nonnegative function. If lim, o fn(z) = f(x) exists

almost everywhere in R, then f is integrable and

lim fndu:/ lim f,du ::/fdu.

Proof. We start by observing that since the f,, and g are measurable, the set
N ={z: lim f,(z) does not exist} U (U {z:|f(x)] > g(a:)})
n—oo
nelN

is measurable and p(N) = 0. Thus, we proceed by taking N = ) as it does not contribute
to any of the integrals in the proof of the Theorem. By the point wise limit of the sequence

fn, for any € > 0 there exists N, such that for all n > N .

<g+If—fal by lful <9

<g+te

Therefore, [ fdp < oo provided g € Lg(u). Also, |f,| < g <= —g < fu < g. Hence,

fn+ g > 0. By Fatou’s Lemma,

/ligglf(fn+g)du:/(f—l—g)dpgliggf/(fn—i-g)du

= liminf [ f.du+ /gd,u.

n—oo
Therefore,
/fd,uﬁliminf/fnd,u. (5.2)
n—oo
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Also, g — f, > 0 and again by Fatou’s Lemma,

os/@gg@—nwuzfmm—/fm
<imt i~ 1
:/gdu+lirrgi£f—/fndu
:/gd,u—lim_)sup/fnd,u.

The second inequality together with the last equality imply that

fdp > limsup [ fodp. (5.3)
/ /

n—o0

Combining (5.2)) and (5.3) completes the proof. B

We now consider a measurable function that is indexed by a parameter 6 € (a,b) for
a < b. As such, we define f(z,0) : (X, F,u) x (a,b) = (R, B) where f is measurable for all
0 € (a,b).

Theorem 5.6. Let f(x,0) : (X, F,pu) x (a,b) = (R, B) where f is measurable and f € Ly
for all® € (a,b). Also, assume that f(x, ) is continuous for every x € X and | f(z,0)| < g(x)

for all (x,0) € X x (a,b) and some nonnegative integrable function g. Then, the function

=Aﬂawm

Proof. The function h is well defined because of integrability of f(x,#). It suffices to show

h: (a,b) = R given by
1S continuous.

that for any sequence {6,},enw C (a,b) such that 6, — 6 we have h(6,) — h(f). By
continuity of f(x,0), for every x, we have f(x,0,) — f(z,0) and |f(z,0,)] < g(z). By

Lebesgue’s Dominated Convergence Theorem,

lim h(6,) = /hmfx@ Ydp = /fx@du h(8).
X

n—o0 n—oo
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Theorem 5.7. Let f(z,0) : (X, F,pu) x (a,b) = (R, B) where f is measurable and f € Ly
for all 6 € (a,b). Also, assume that f(x,0) is differentiable on (a,b) for every x € X and
|Lf(z,0)] < g(z) for all (6,z) € (a,b) x X and some nonnegative integrable function g.

Then, the function h : (a,b) — R given by

~ [ o)

is differentiable and its derivative is given by

d d
0 = [ g0y

Proof. Recall that 6,6,, € (a,b) with 6, — 0 and 6,, # 0.

for all € X and consequently d% f(x,0) is measurable. By the Mean Value Theorem,
f(z,0,) — f(x,0) = d%f(x,Qm)(Qn —0) with 6,,, = X\,, + (1 — N8, A € (0,1), 0., € (a,b).

Consequently,

‘f(ﬂfﬁn)—f(ﬂfﬁ)' d

6, —0 ag? (=)

< g(z)

so that ‘T

is integrable. Thus,

h(0 fz ,0)
9 —90 / 9 —0 -

Hence, by the Lebesgue’s Dominated Convergence Theorem

lim 10n) = 1O) _ Ay oy / lim £ 00) = J(@,6) , dief(x,ﬁ)d,u

n—00 en -0 N do x oo en -0 X
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5.2 LP spaces

Definition 5.1. The collection of measurable functions f : (X, F,u) — (R, B) such that

Jx | fIPdp < 0o for p € [1,00) is denoted by L5 (1) or L5 (X, F, p).

Let f,g € L& (X, F, ) and define s : (X, F,pu) — (R, B) as s(z) = f(z) + g(x) for all
z € X, Then, [s(z)] < |f(z)] + |g(2)| < 2max{[f(z)],]g(x)[} and

[s(2) " < 2P max{|f(z)], [g(x)[}" = 2 max{[f(x)[", [g(x)["} < 2°([f (@) + [g(2)[")-

Consequently, [y |s|Pdu < 2°( [ | f|Pdu+ [ |gIPdp) < oo. Also, ifa € Rand m : (X, F, u) —
(R, B) is defined as m(z) = af(x) for all z € X, m is measurable and we have |m(x)|P =
laf?|f(x)[P and [y [m[Pdp = |al? [ |fPdp < oo. Lastly, if we take 0(z) = 0 for all z € X to
be the null vector in LL (X, F, p), then L8 (X, F, i) is a vector space.

If f e LR(X,F,u) we define the function || - ||, : LR(X, F,u) — [0,00) as ||f|l, =

(S If |pd,u)1/ P and prove the following inequality.

Theorem 5.8. (Holder’s Inequality) If 1 < p < oo, p ' +q ' =1, f € L, g€ LL, then

fg € Ly and [y |fgldp <[ fllpllgll,-

Proof. It || f||, = 0 then, by Theorem@ |fl =0ae, so|fg] =0 ae. Hence, [ |fgldu =0 and
the inequality holds. Likewise for ||g||, = 0. So, assume ||f||,, [|g]l; # 0. Let x = f/||fl],,
y = g/|lgll,; and note that ||z||, = 1 and ||y||, = 1. It suffices to prove [ |zy|dp < 1.

Now, note that for any a,b >0 and 0 < a < 1,
a®b™* < aa+ (1 — a)b.

To see this, divide by b to obtain (§)* < af + (1 —a). It suffices to show u® < au+(1—a),
for u > 0.
The inequality holds for u = 1. Now, Lu® = au*™! = a—=. Since a € (0,1) we have

that '™ < 1 if u < 1. Consequently, in this case, u*~* > 1 and %uo‘ > «. Also, using
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the same arguments, if v > 1 we have that d%ua < «. By the Mean Value Theorem, for

A€ (0,1)

u —l=aQu+1-N)) " u—-1)<alu-1) = v*<l—a+auifu>1.
Also,

u —l=adu+1-A)) " u—-1)<alu—1) = u*<1l+aou—a, ifu<l.

Thus, u* < au+ (1 — a) for u > 0.

Now, let a« = 1/p, a(w) = |z(w)|P, b(w) = |y(w)|? and 1 — « = 1/q. Then,

([ @) (ly(@)|) < alz(@)P + (1 - a)ly(w)[?, or

[z(W)y(w)| < alz(@)” + (1 = a)ly(w)].

Thus, integrating both sides of the inequality we obtain [ |zy|dp < of/z|,+ (1—a)||yll, = 1.
|

Theorem 5.9. (Minkowski-Riez Inequality) For 1 < p < oo, if f and g are in LP we have

1F+ gl < 171l + llgllp-

Proof. By the triangle inequality

|If+g|lz=/|f+g||f+g|p—1dus/<|f||f+g|p-1+|g||f+g|p‘1) du

= / \fIIf+glP tdu + / lg||f + g[P~'du, and if p = 1 the proof is complete.

If p > 1, by Holder’s Inequality

< I IF + 9P g + Mgl lILf + gl o,

where 1/p+ 1/g = 1 which implies 1/g=1—-1/p = ¢q= z%' Thus,

1F + gz < UFUIF + gl @lg + alloll1f + gPlly = (L1l + Ngll)ILf + gl (5.4)
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Now,

1/q 1/q
I+l = ( fas +apova) = ([ 17+ gpan)

p—1

= ([irvaban) " =nr o

Using this in inequality (5.4) we obtain ||f + gl[5" """ = || f + gll, < [ fll, + llg]l,- ®

Remark 5.3. 1. The Minkowski-Riez Inequality and the fact that for a € R, |laf], =

la||| fll, and || f]|, > 0 shows that || - ||, has almost all of the properties of a norm. The
exception is that ||f|, = 0 does not imply that f(x) =0 for all x € X. It only implies

that f(x) =0 almost everywhere.

f,9 € LR(X, F,u) are taken to be equivalent if they differ at most on a set of u-
measure zero (null set), i.e., f ~ g if {z : f(x) # g(x)} is a null set. Then, for
every [ € Ly(X, F,u) we can define an equivalence class (reflexive, symmetric and
transitive) of LY, functions induced by f, which will be denoted by [f],. The space of
all equivalence classes [f], of functions f € Ly, is denoted by Ly, with norm ||[f],|l, ==
inf{|\gll, : g € Lk and g ~ f}. (LP,| fipllp) is a norm vector space and in what follows

we will dispense with these technicalities and identify [f], with f.

A commonly encountered case, treated in the next theorem, has p = 2 and X,Y :

(Q, F, P) = (R, B) being random variables such that X, Y € L(Q, F, P).

Theorem 5.10. Let X\ Y : (Q,F,P) — (R,B) be random variables such that X,Y €

L34,

1.

2.

3.

F,P).

XY € L(Q,F, P) and | [, XYdP| < ([, X2dP)"* ([, v2dP)"?,

If X € LX(Q, F, P) then X € L(Q, F, P) and (f,, XdP)* < [, X2dP,
L2(Q, F, P) is a vector space.
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Proof. 1. This is just a special case of Holder’s Inequality with p = ¢ = 2. 3. follows from the
comments after Definition . 2. Let X € £* and note that I € £* with [, [odP = [, dP.

1/2 1/2
/XIQdP‘ < (/ XQdP) (/ dP) .
Q Q Q

Since fQ dP =1, we have

/QXdP' < (/QdeP>l/2 or (/QXdP)2 S/QXQdP.

Then,

Remark 5.4. If X € £* we define Vo(X) = [(X — Ep(X))*dP = [, X2dP — ([, XdP)>

and call it the variance of X (under P).

Theorem 5.11. Let X be a random variable defined on the probability space (2, F, P) taking
values in (R, B) and h: (R, B) — (R, B) be measurable.

1. f:=ho X is integrable in (0, F, P) if, and only if, h is integrable in (R, B, Px).

Proof. First, let h be a non-negative simple function. Then we have that f(w) = ZT:O yila;(w)

where A; € F. Consequently,

Ip(f) = /QfdP = ZyjP(Aj) = ZyjP(X*l(Bj)) where B; = {z € R : h(z) = y;}
=S (P oXT)B) = X uiPu(By) = [ dPs = I (1)

Second, let h > 0. Then, by Theorem there exists a sequence of increasing non-negative

simple function ¢,, such that ¢, — h as n — oco. Hence, if we define f,(w) = ¢,(X(w)) =
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(¢ 0 X)(w), it is a sequence of increasing simple function that converges to f.

n—oo

/fdP /hoX)dP:/Qlim (6 © X)dP

= lim [ (¢, o X)dP by Beppo-Levi’s Theorem

n—oo

= lim gbndPX by the first part of the argument for simple functions

n—oo

= / hdPx, by Beppo-Levi’s Theorem.
R

This proves 2. for simple and non-negative h. If h takes values in R, consider |h| and let

¢, be a sequence of increasing non-negative simple function such that ¢, — |h| as n — oo.

[ vrap = [ puiary

But from Remark if |h| is integrable in (R, B, Px) then h is integrable in (R, B, Px),

Then, we have from above that

establishing 1. Now, for arbitrary A we can prove the rest of part 2 by applying the same

arguments to At and A~ and using the fact that h =h* —h~. B

Clearly, taking h(z) = z in the previous theorem gives Ep(X) := [, XdP = [ xdPx ()
where in the last integral we emphasize that the “variable” in integration is taking values in
R. In this proof, there is no requirement that P({2) = 1. Hence, we can take (2, F, P) to

be an arbitrary measure space.

Definition 5.2. The density of a probability measure Px associated with a random variable
X defined on a probability space (2, F, P) is a non-negative Borel measurable function fx

that satisfies
Pel(oc,a) = [ frir= [ Iewafsid
(—00,a] R

where X\ is Lebesque measure on R.

Theorem 5.12. fx is a density <= f]R fxd\ =1, fx is unique almost everywhere.
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Proof. (=) fx adensity implies F'x(a) = Px((—00,a]) = f(_oo o JxdA. 1m0 Px ((—00, al) =
1=limg e [ (—c0.d] fxd\, where the first equality follows from Definition and continuity

of probability measures.

(<= ) Suppose fx is a non-negative Borel measurable function such that [ fxd\ = 1. For

all A € B, we put
Px(A) = / fxd\ = / IafxdA.
A R

By Theorem Py is a measure on B with Py(R) = 1, by assumption. Taking A =
(_OO’ CL],

Pel(=oed) = [ fxan

(7007(1]

and fx is a density for Fly.

Now, suppose gx is another density for Fx. Then, Px(A) = [, gxd\ = [; gxladX.
Let A, = {z : gx(z) > fx(z) +1/n}. Foralln € N, [, gxd\ > [, (fx + 3)d\ =
fAn fxdXA+ £X(A,). Since fAn fxd\ = fAn gxd\ it must be that A\(4,) = 0.

Note that Ay C Ay C ---. lim, 004, = U A, = A = {z: gx(z) > fx(z)} and
A(A) = lim,, 00 A(A,,) = 0. Similarly, we have A(B) = 0 for B = {z : gx(x) < fx(z)}. So,

Mzigx=fx})=1 1

Theorem 5.13. Let X : (U, F,P) — (R,B) be a random variable with density fx and
h:(R,B) = (R, B) be a measurable function such that [, |ho X|dP < oo, i.e., f =hoX is

integrable. Then,

/Q (ho X)dP — /R hdPy — /R h(x) fx(2)dA()

Proof. Homework.
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