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Chapter 1

Probability spaces

It is universally accepted, and intuitively understood, that the probability associated with

the occurrence of an arbitrary event can be expressed by a number between 0 and 1. For

example, we may be informed by a meteorological service that the probability that it will

snow tomorrow is 70%. In fact, in many settings we can easily assess the probabilities

associated with certain events. Thus, stating that the probability of observing heads after

tossing a fair coin is 50% is normally taken to be self-evident. In this chapter we develop

a mathematical framework that will allow a formal treatment of the notions of event and

probability. The development of this framework, which relies on concepts and results from

measure theory, leads us to the notion of probability spaces, foundational to all subsequent

topics in this monograph.

1.1 �-algebras

A set formed by subsets of a fixed set X is called a system of sets. Systems are commonly

described by certain properties that involve taking unions, intersections and differences of

their elements. In what follows, we will introduce several systems that will be useful in

constructing probability spaces. We start with the definition of the most important of these

systems in the study of probability, they are called �-algebras.
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Definition 1.1. Let X be an arbitrary set. A �-algebra F is a system of subsets of X having

the following properties:

1. X 2 F

2. A 2 F =) Ac 2 F

3. Ai 2 F for i 2 N =)
S
i2N

Ai 2 F .

In this context we say that F is a �-algebra associated with X. It is evident from this

definition that many �-algebras may be associated with a set X. As a matter of terminology,

if A 2 F it is said to be an F -measurable set and the pair (X,F) is called a measurable

space.

Remark 1.1. 1. Since X 2 F , by property 2, Xc = X � X = ; 2 F . Hence, every

�-algebra contains the empty set. Note that complementation is taken with respect to

the set X.

2. By de Morgan’s Laws
✓S

i2N

Ai

◆c

=
T
i2N

Ac

i
and by properties 2 and 3, if Ai 2 F for

i 2 N, then Ac

i
2 F and

T
i2N

Ac

i
2 F .

3. Given Definition 1.1 and Remark 1.1.2 we say that F is “closed” under complementa-

tion, countable unions and countable intersections.

4. For A1, A2 2 F , and given that A2 � A1 = A2 \ Ac

1 we have that A2 � A1 2 F . Also,

denoting the symmetric difference between sets A1 and A2 by A1�A2 := (A1 � A2) [

(A2 � A1), we have that A1�A2 2 F .

5. A system of subsets of X is said to be an algebra if properties 1 and 2 in Definition

1.1 hold and if Ai 2 F for i = 1, · · · ,m then
S

m

i=1 Ai 2 F with m 2 N. Clearly, every

�-algebra is also an algebra.
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We now provide examples of �-algebras.

Example 1.1. 1. For any X, F := {X, ;} is a �-algebra. It is called the minimal �-

algebra.

2. For any X, the collection 2X of all subsets of X is a �-algebra. It is called the maximal

�-algebra.

3. Let A ⇢ X. Then, F := {X, A,Ac, ;} is a �-algebra.

4. Let S ⇢ X and F a �-algebra associated with X. Then, FS := S\F := {S\F : F 2 F}

is a �-algebra associated with S. It is called the trace �-algebra. We verify that FS is

a �-algebra by establishing the properties of Definition 1.1:

1. S 2 FS.

Note that since X 2 F , then S \X = S 2 FS.

2. A 2 FS =) Ac 2 FS (note that Ac = S � A, complementation relative to S).

A 2 FS =) 9F 2 F 3 A = S \ F 2 FS. Since F 2 F then F c 2 F and

S \ F c 2 FS. Furthermore, S = (S \ F )[ (S \ F c) = A[ (S \ F c). But by definition,

A [ Ac = S, hence Ac = S \ F c 2 FS.

3. Ai 2 FS for i 2 N =)
S
i2N

Ai 2 FS.

Ai 2 FS =) 9Fi 2 F 3 Ai = S \ Fi. Hence,
S
i2N

Ai =
S
i2N

(S \ Fi) = S \
✓S

i2N

Fi

◆
.

But since Fi 2 F , we have
S
i2N

Fi 2 F , hence
S
i2N

Ai 2 FS.

5. Let f : X ! Y be a function, Y be a �-algebra associated with Y and f�1(S) :=

{x 2 X : f(x) 2 S} denote the inverse image of the set S under f . Then, F :=

f�1(Y) = {f�1(S) : S 2 Y} is a �-algebra associated with X. F is called the inverse

image �-algebra. Again, we verify that F is a �-algebra by establishing the properties

of Definition 1.1:
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1. X 2 F .

Since Y is a �-algebra associated with Y, Y 2 Y. f�1(Y) = {x 2 X: f(x) 2 Y} = X.

Thus, X 2 F .

2. A 2 F =) Ac 2 F .

A 2 F =) 9SA 2 Y 3 A = f�1(SA). Now, SA 2 Y =) Sc

A
:= Y � SA 2 Y and

f�1(Y � SA) = X� f�1(SA). Thus, f�1(Y � SA) = X� A = Ac 2 F .

3. Ai 2 F for i 2 N =)
S
i2N

Ai 2 F .

Ai 2 F =) 9 SAi 2 Y 3 Ai = f�1(SAi). Now, SAi 2 Y, 8i 2 N =)
S
i2N

SAi 2 Y

and f�1

✓S
i2N

SAi

◆
=

S
i2N

f�1(SAi) =
S
i2N

Ai 2 F .

The following theorem shows that the intersection of an arbitrary collection of �-algebras

associated with X is itself a �-algebra.

Theorem 1.1. Let F := {F : F is a �-algebra associated with the set X}. Then, I :=
T

F2F

F is a �-algebra associated with X, i.e., I 2 F .

Proof. We verify that I satisfies Definition 1.1.

1. Since X 2 F 8 F 2 F then X 2 I.

2. A 2 I =) A 2 F 8 F 2 F . Then, Ac 2 F 8 F 2 F . Consequently, Ac 2 I.

3. Let Ai 2 I for i 2 N. Then, Ai 2 F 8 F 2 F . Hence,
S
i2N

Ai 2 F 8 F 2 F , which implies
S
i2N

Ai 2 I. ⌅

Since I ⇢ F 8 F 2 F , we can say that I is the smallest �-algebra in F .

It is often the case that �-algebras are obtained from arbitrary systems of sets associated

with X by expanding the systems in such a way that the defining properties in Definition

1.1 are met. In this context it is possible to consider the smallest �-algebra generated from

a system. This motivates the following definition.
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Definition 1.2. Let C be any collection of subsets of X. The �-algebra generated by C,

denoted by �(C), is a �-algebra satisfying:

1. C ⇢ �(C)

2. If F is a �-algebra such that C ⇢ F , then �(C) ⇢ F .

Property 2 characterizes �(C) as the smallest �-algebra containing C. The existence of this

�-algebra is showed in the next theorem.

Theorem 1.2. For an arbitrary collection of subsets C of X, there exists a unique smallest

�-algebra containing C.

Proof. Let F = {F : F is a �-algebra associated with X and C ⇢ F} be the set of all �-

algebras containing C. F 6= ; since 2X is a �-algebra. By Theorem 1.1,
T

F2F

F is a �-algebra.

Since C is in all F , C 2
T

F2F

F . Thus,
T

F2F

F 2 F . But by construction it is the smallest

�-algebra in F . ⌅

Evidently, if C is a �-algebra then �(C) = C. The generation of the smallest �-algebra

associated with a collection of subsets C of X is “monotonic” in a sense demonstrated in the

following theorem.

Theorem 1.3. Let C and D be two nonempty collections of subsets of X. If C ⇢ D then

�(C) ⇢ �(D).

Proof. Let FC := {H : H is a �-algebra associated with X and C ⇢ H} be the collection of

all �-algebras that contain C and FD := {G : G is a �-algebra associated with X and D ⇢ G}

be the collection of all �-algebras that contain D. Since, C ⇢ D ⇢ G, G is a �-algebra that

contains C, therefore G 2 FC. Hence, FD ⇢ FC and
T

H2FC

H ⇢
T

G2FD

G. By definition,

�(C) =
T

H2FC

H ⇢
T

G2FD

G = �(D). ⌅
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Example 1.1.4 shows that if F is a �-algebra associated with X and S ⇢ X, we can

easily obtain a �-algebra associated with S by taking S \ F . The next theorem shows that

if F := �(C), then F \ S = �(C \ S).

Theorem 1.4. Let S ⇢ X, C be a collection of subsets of X and C \ S = {A \ S : A 2 C}.

Then, �(C \ S) = �(C) \ S is a �-algebra associated with S.

Proof. First, note that since C ⇢ �(C) we have C\S ⇢ �(C)\S. From Example 1.1.4, �(C)\S

is a �-algebra associated with S. Then, it follows from Theorem 1.3 that �(C\S) ⇢ �(C)\S.

We need only show that �(C \ S) � �(C)\ S to conclude that �(C \ S) = �(C)\ S. To this

end, consider the collection of subsets of X (not necessarily in C) such that their intersection

with S is in �(C \ S), i.e. G := {B ⇢ X : B \ S 2 �(C \ S)}.

By construction, C ⇢ G since A 2 C =) A \ S 2 C \ S ⇢ �(C \ S). Thus, A 2 G

by definition. We will show that G is a �-algebra associated with X. If this is the case,

�(C) ⇢ G. But from the definition of G, if A 2 �(C) then A\S 2 �(C \S). This means that

�(C) \ S ⇢ �(C \ S).

1. X 2 G since X \ S = S 2 �(C \ S).

2. A 2 G, Ac = X � A and Ac \ S = (X � A) \ S = S � (A \ S). But since A 2 G,

A \ S 2 �(C \ S) which implies that S � (A \ S) 2 �(C \ S), so Ac 2 G.

3. Let Ai 2 G, i 2 N and note that
 
[

i2N

Ai

!
\ S =

[

i2N

(Ai \ S).

Since, Ai \ S 2 �(C \ S),
S
i2N

(Ai \ S) 2 �(C \ S) and
S
i2N

Ai 2 G.

Thus, G is a �-algebra associated with X. ⌅

In what follows, it will often be the case that X := Rn for n 2 N. In this case, an

important �-algebra is the one generated by the collection ORn of open sets of Rn, denoted
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by � (ORn). The elements of this �-algebra are called Borel sets of Rn and � (ORn) is called

the Borel �-algebra, which is denoted by B(Rn). If dX is a metric on X we say that

O ⇢ X is open () 8x 2 O 9 ✏ > 0 3 B(x, ✏) ⇢ O,

where B(x, ✏) := {y 2 X : dX(x, y) < ✏}. In this more general setting, we denote by OX

the collection of open sets of X. When X := Rn a usual choice of metric is dRn(x, y) :=

kx � yk = (
P

n

i=1(xi � yi)2)
1/2, called the Euclidean metric. The next theorem shows that

B(Rn) can be generated by systems of rectangles in Rn. Before we prove the theorem we

define these rectangles.

Definition 1.3. Let ai, bi 2 R for i = 1, · · · , n, n 2 N. Then,

1. Rn,o := ⇥n

i=1(ai, bi) is called an open rectangle in Rn,

2. Rn,h := ⇥n

i=1[ai, bi) is called a half-open rectangle in Rn.

If bi  ai for some i, Rn,o = Rn,h = ;. When ai and bi are restricted to be rational numbers,

i.e., ai, bi 2 Q we write Rn,o

Q and Rn,h

Q . The collections of all open and half-open rectangles

in Rn are denoted by In,o and In,h. Similarly, In,o

Q and In,h

Q denote the collections of all

open and half-open rectangles in Rn having rational endpoints.

Theorem 1.5. B(Rn) = �(In,o) = �(In,h) = �(In,o

Q ) = �(In,h

Q ).

Proof. We start by noting that Rn,o is an open set. To verify this, choose any x 2 Rn,o.

Since (ai, bi) is open for all i, there exists � > 0 such that (xi � �, xi + �) ⇢ (ai, bi). Let

B(x, �) = {y : ky � xk < �} and note that ky � xk < � ()
P

n

i=1(yi � xi)2 < �2 =)

(yi � xi)2 < �2 �
P

n

j 6=i
(yj � xj)2 < �2 =) |yi � xi| < � () yi 2 (xi � �, xi + �) ⇢ (ai, bi)

for all i. Hence, B(x, �) ⇢ Rn,o. Since, In,o

Q ⇢ In,o ⇢ ORn , we have �(In,o

Q ) ⇢ �(In,o) ⇢

�(ORn) := B(Rn).
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Let O 2 ORn and consider the set
S

R
n,o
Q ⇢O

Rn,o

Q . If x 2
S

R
n,o
Q ⇢O

Rn,o

Q then x 2 Rn,o

Q ⇢ O.

Hence,
S

R
n,o
Q ⇢O

Rn,o

Q ⇢ O.

Now, choose x 2 O. Since O is open, there exists B(x, ✏) ⇢ O. Let Rn,o = {y 2 Rn :

ai < yi < bi for i = 1, · · · , n} be an open rectangle that contains x. Then, |yi � xi| < bi � ai

and
P

n

i=1(yi � xi)2 <
P

n

i=1(bi � ai)2 < nm2
n

where mn = max
1in

(bi � ai). If mn < ✏
p
n
, then

P
n

i=1(yi � xi)2 < ✏2 and we conclude that Rn,o ⇢ B(x, ✏). Since the set of all points in Rn

with rational coordinates is a dense subset of Rn, we can find Rn,o

Q ⇢ Rn,o ⇢ B(x, ✏). Hence,

every x 2 O belongs to a rectangle Rn,o

Q ⇢ O and, consequently, x 2 [
R

n,o
Q ⇢O

Rn,o

Q . Hence,

O ⇢ [
R

n,o
Q ⇢O

Rn,o

Q . Combining this set containment with the one in the previous paragraph we

O = [
R

n,o
Q ⇢O

Rn,o

Q .

Since the open rectangles in
S

R
n,o
Q ⇢O

Rn,o

Q have rational endpoints, the union has countably

many elements. Furthermore, since �-algebras are closed under countable unions, we have

that O 2 �(In,o

Q ). Hence, �(ORn) ⇢ �(In,o

Q ). Combining this set containment with �(In,o

Q ) ⇢

�(In,o) ⇢ �(ORn) := B(Rn), we conclude that �(In,o

Q ) = �(In,o) = �(ORn) := B(Rn).

Lastly, note that if ai, bi 2 Q for all i, Rn,h

Q =
T
i2N

(a1 � 1/i, b1)⇥ · · ·⇥ (an � 1/i, bn) and

Rn,o

Q =
S
i2N

[a1+1/i, b1)⇥ · · ·⇥ [an+1/i, bn). Similarly, if ai, bi 2 R, Rn,h =
T
i2N

(a1�1/i, b1)⇥

· · ·⇥ (an�1/i, bn) and Rn,o =
S
i2N

[a1+1/i, b1)⇥ · · ·⇥ [an+1/i, bn) we have �(In,o) = �(In,h)

and �(In,o

Q ) = �(In,h

Q ), which completes the proof. ⌅

The collections of rectangles in Definition 1.3 are not the only systems of Rn that generate

the Borel sets. The next theorem shows that the collection of closed sets of Rn, denoted by

CRn , and the collection of compact sets of Rn, denoted by KRn , also generate the Borel sets.

Theorem 1.6. Let CRn , KRn be the collections of closed and compact subsets of Rn. Then,

B(Rn) = �(CRn) = �(KRn).

Proof. Let A ⇢ Rn. Then, A compact () A closed and bounded. Thus, KRn ⇢ CRn .

Hence, by Theorem 1.3, �(KRn) ⇢ �(CRn).
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Now, if C 2 CRn and B̄(✓, k) = {x 2 Rn : kxk  k, k 2 N} is a closed ball with

radius k centered at ✓ = (0, · · · , 0)T 2 Rn, then Ck := C \ B̄(✓, k) is closed and bounded.

Boundedness follows by construction and closeness follows from the fact that complements

of open sets are closed, De Morgan’s Laws and the fact that arbitrary unions of open sets

are open. Hence, Ck 2 KRn for all k 2 N. By construction, C =
S
k2N

Ck, thus C 2 �(KRn)

and �(CRn) ⇢ �(KRn). Hence, combining this set containment with �(KRn) ⇢ �(CRn) we

obtain �(CRn) = �(KRn).

Since CRn = (ORn)c, we have that CRn ⇢ �(ORn) and consequently �(CRn) ⇢ �(ORn).

The converse �(ORn) ⇢ �(CRn) follows similarly to give �(CRn) = �(ORn). ⌅

1.2 The structure of R and its Borel sets

Recall that an open interval on R is a set (a, b) := {x 2 R : a < x < b} and a closed interval

is a set [a, b] := {x 2 R : a  x  b}. They are said to be finite if a, b 2 R and infinite if

a = �1 or b = 1.

Definition 1.4. Let S be an open subset of R. An open finite or infinite interval I is called

a component interval of S if I ⇢ S and if @ an open interval J such that I ⇢ J ⇢ S.

Theorem 1.7. Let I denote a component interval of the open set S. If x 2 S, then 9I 3

x 2 I. If x 2 I, then x 62 J where J is any other component interval of S.

Proof. Since S is open, for any x 2 S there exists an open interval I such that x 2 I

and I ⇢ S. There may be many such intervals, but the largest is Ix = (a(x), b(x)), where

a(x) = inf{a : (a, x) ⇢ S}, b(x) = sup{b : (x, b) ⇢ S}. Note, a may be �1 and b may be

+1. There is no open interval J 3 Ix ⇢ J ⇢ S and by definition Ix is a component interval

of S. If Jx is another component interval containing x, Ix [ Jx is an open interval with

Ix ⇢ Ix [ Jx ⇢ S and Jx ⇢ Ix [ Jx ⇢ S. By definition of a component interval Ix [ Jx = Ix

and Ix [ Jx = Jx, so Ix = Jx. ⌅
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Theorem 1.8. Let S ⇢ R be open and nonempty. Then, S =
S
n2N

In where {In}n2N is a

collection of component intervals of S.

Proof. By Theorem 1.7 if x 2 S, then x belongs to one, and only one, component interval

Ix. Note that
S
x2S

Ix = S and by the definition of component intervals and the proof of the

previous theorem, the collection of component intervals is disjoint (if x belongs to Ix and Jx,

both component intervals, Ix = Jx). Let {q1, q2, · · · } be the collection of rational numbers

(countable). In each component interval, there may be infinitely many of these, but among

these there is exactly one with smallest index n. Define a function F , F (Ix) = n if Ix contains

the rational number qn. If F (Ix) = F (Iy) = n then Ix and Iy contain qn, and Ix = Iy. Thus,

the collection of component intervals is countable, since F is a bijection between a subset of

N and the intervals Ix. ⌅

Remark 1.2. Several collections of subsets of R generate B(R). In particular, we have:

1. Let A1 = {I : I = (a, b) with �1  a < b  1}. Since (a, b) is open in R, A1 ⇢ OR

and �(A1) ⇢ �(OR) := B(R). Every nonempty open set O ⇢ R can be written as

O =
S
n2N

In, where In is a component interval of O. In 2 A1 8n and In 2 �(A1), hence

O 2 �(A1). Thus, OR ⇢ �(A1) and �(OR) ⇢ �(A1). Together with �(A1) ⇢ �(OR)

gives �(OR) = �(A1).

2. Since [a, b] =
T
n2N

(a � 1/n, b + 1/n), we have [a, b] 2 �(A1). Hence, the collection

of closed intervals A2 = {I : I = [a, b], a, b 2 R} is such that A2 ⇢ �(A1). Hence

�(A2) ⇢ �(A1). Also, since (a, b) =
S
n2N

[a+1/n, b� 1/n], we have that (a, b) 2 �(A2).

Hence, the collection of open intervals A1 is such that A1 ⇢ �(A2) and �(A1) ⇢ �(A2).

Hence, �(A1) = �(A2). But since, �(A1) = �(OR), �(A2) = �(OR).

3. Let A3 = {I : I = (a, b] : �1  a < b < 1}. Note that since (a, b) =
S
n2N

(a, b � 1
n
]

we have that (a, b) 2 �(A3). Consequently, A1 ⇢ �(A3) and �(A1) ⇢ �(A3). Also,
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since (a, b] =
S
n2N

(a, b+ 1
n
) we have that (a, b] 2 �(A1). Consequently, A3 ⇢ �(A1) and

�(A3) ⇢ �(A1). Thus, �(A3) = �(A1).

4. Let A4 = {I : I = (�1, a] : a 2 R}. Note that (�1, a] =
T
n2N

(�1, a + 1
n
) 2 �(A1).

Hence, A4 ⇢ �(A1) and �(A4) ⇢ �(A1). Now, for a < b

(a, b) = (�1, b) \ (a,1) = (�1, b) \ (�1, a]c

=

 
[

n2N

(�1, b� 1

n
]

!
\ (�1, a]c 2 �(A4).

Hence, A1 ⇢ �(A4) and �(A1) ⇢ �(A4). Together with the reverse set containment

and item 1. in this remark, we have �(OR) = �(A1) = �(A4).

1.3 Measures

Given a measurable space (X,F), we are ready to define what is meant by a measure. The

goal is to associate with a measurable set a non-negative number that conveys an idea of

its “size.” This general idea of size must inherit the properties we intuitively associate to

measures of length, area or volume.

Definition 1.5. Let (X,F) be a measurable space. A measure µ is a function µ : F ! [0,1]

having the following properties:

1. µ(;) = 0

2. if {Ai}i2N 2 F is a disjoint collection, i.e., Ai\Aj = ; 8 i 6= j, µ
✓S

i2N

Ai

◆
=
P
i2N

µ(Ai).

The triple (X,F , µ) is called a measure space. We note that the definition of µ requires

the specification of F , and that knowledge of F implies knowledge of X, its largest element.

Hence, knowledge of µ is equivalent to knowledge of the measure space.

A pre-measure is a set function that satisfies the properties of a measure but is defined

on a system that is not a �-algebra. In this case, it must be that ; and
S
i2N

Ai are elements

of the system whenever Ai is in the system for i 2 N .
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Remark 1.3. 1. Property 2 in Definition 1.5 is called �-additivity or countable additivity

of µ.

2. If µ(X) < 1, the measure µ is called a finite measure. In this case, (X,F , µ) is called

a finite measure space.

3. A sequence {A1, A2, · · · } 2 F such that A1 ⇢ A2 ⇢ · · · is said to be exhausting

if
S
i2N

Ai = X. A measure µ is called �-finite if there is an exhausting sequence

{A1, A2, · · · } 2 F such that µ(Ai) < 1 for all i.

4. If we assume that for at least one set A 2 F we have µ(A) < 1, then property 1

follows from property 2 by letting A1 = A and A2 = A3 = · · · = ;.

We are now ready to provide the definition of a probability space and, introduce notation

and terminology that will be used henceforth.

Definition 1.6. Let (⌦,F , P ) be a measure space such that P (⌦) = 1. We call (⌦,F , P ) a

probability space and P is called a probability measure.

In the context of probability spaces, ⌦ is called the outcome space and the elements of F

are called events. The construction of useful measure, or probability, spaces requires some

effort as we will soon discover. What follows are simple examples of measure or probability

spaces.

Example 1.2. 1. Let (X,F) be a measurable space and F 2 F . Define µ#(F ) = 1 if

F has infinitely many elements and µ#(F ) = number of elements (cardinality) of F

(denoted by #F ) if F has finitely many elements. µ# is called the counting measure

and (X,F , µ#) is a measure space.

We verify that µ# satisfies the defining properties in Definition 1.5. It is evident that

for any F 2 F , µ#(F ) 2 [0,1], and since the empty set has no elements µ#(;) = 0.

12



For property 2 in Definition 1.5, consider {Ai}i2N 2 F , a disjoint collection. There are

three cases to consider: a) for at least one i, Ai has infinitely many elements. In this

case, µ#(Ai) = 1 and since
S
i2N

Ai has infinitely many elements µ#

✓S
i2N

Ai

◆
= 1.

Also,
P
i2N

µ(Ai) = #A1 + · · · + 1 + · · · = 1; b) 8i, Ai has finitely many elements

and there are only N of these sets that are non-empty. Relabel the sets such that the

first N are non-empty. Then, µ#

✓S
i2N

Ai

◆
= µ# (A1 [ · · · [ AN) =

P
N

i=1 µ#(Ai) =
P

1

i=1 µ#(Ai); c) 8i, Ai has finitely many elements and there are only N of these sets

that are empty. Then, as in case a) µ#

✓S
i2N

Ai

◆
= 1 and

P
i2N

µ(Ai) = #A1 +#A2 +

· · · = 1.

2. Let (X,F) be a measurable space and for x 2 X and F 2 F let µx(F ) = 1 if x 2 F

and µx(F ) = 0 if x /2 F . This is called the unit mass at x or Dirac’s delta measure.

(X,F , µx) is a probability space.

Clearly, for fixed x 2 X and any F 2 F , µx(F ) 2 {0, 1} ⇢ [0,1]. Also, since the empty

set has no elements, x /2 ;, hence µx(;) = 0. For property 2 in Definition 1.5, consider

{Ai}i2N 2 F , a disjoint collection. If x 2
S
i2N

Ai, then it must be that it belongs to one,

and only one, Ai. Then, µx

✓S
i2N

Ai

◆
= 1 and

P
1

i=1 µx(Ai) = 1+0+0+ · · · = 1. If x /2

S
i2N

Ai, then it does not belong to any Ai. Thus, µx

✓S
i2N

Ai

◆
= 0 and

P
1

i=1 µx(Ai) = 0.

3. Let ⌦ = {!i}i2N and pi 2 [0, 1] for i 2 N with
P

i2N pi = 1. Let (⌦, 2⌦) be a measurable

space, then the set function

P (A) =
X

i:!i2A

pi =
X

i2N

piµ!i(A), A ⇢ ⌦

is a probability measure.

Since every A 2 F is a finite or infinite collection of !i’s and
P

i2N pi = 1,

0  P (A) =
X

i:!i2A

pi =
X

i2N

piµ!i(A)  1,

13



where µ!i is Dirac’s delta measure. Hence, we immediately have that

P (;) =
X

i2N

piµ!i(;) = 0.

For property 2 in Definition 1.5, consider {Ai}i2N 2 F , a disjoint collection. Then,

P

 
[

i2N

Ai

!
=
X

j2N

pjµ!j

 
[

i2N

Ai

!
=
X

j2N

pj
X

i2N

µ!j(Ai) =
X

i2N

X

j2N

pjµ!j(Ai)

=
X

i2N

P (Ai)

The second equality follows from the properties of the Dirac measure, and the third

follows from the possibility of interchanging infinite sums in this context.

4. Consider tossing a coin, and define the possible outcomes as heads H or tails T . Hence,

the outcome space is ⌦ = {H, T} and associate with it the following �-algebra, F =

{;,⌦, {H}, {T}}. Now, define P : F ! [0, 1] as follows

P (;) = 0, P ({H}) = 0.5, P ({T}) = 0.5,

implying by that P (⌦) = 1 by �-additivity. (⌦,F , P ) is a probability space.

1.3.1 Properties and characterization of measures

The following theorem gives properties of measures that follow directly from Definition 1.5

and basic operations with sets.

Theorem 1.9. Let (X,F , µ) be a measure space and {Ai}i2N 2 F . Then,

1. A2 ⇢ A1 =) µ(A2)  µ(A1) (monotonicity) and if µ(A2) < 1, µ(A1 � A2) =

µ(A1)� µ(A2).

2. µ(A1 [ A2) = µ(A1) + µ(A2)� µ(A1 \ A2)

3. µ

✓S
i2N

Ai

◆


P
i2N

µ(Ai) (sub-additivity)

14



Proof. 1. Note that A1 = A2 [ (A1 �A2) and that A2 and A1 �A2 are disjoint sets. Hence,

µ(A1) = µ(A2 [ (A1 � A2)) = µ(A2) + µ(A1 � A2), which implies µ(A2)  µ(A1). Now, if

µ(A2) < 1, µ(A1)� µ(A2) = µ(A2)� µ(A2) + µ(A1 � A2) = µ(A1 � A2).

2. A2 [A1 = A2 [ (A1 �A2) and A1 = (A2 \A1)[ (A1 �A2). By the second equality, given

that (A2 \ A1) and (A1 � A2) are disjoint, µ(A1) = µ(A2 \ A1) + µ(A1 � A2). By the first,

µ(A2 [A1) = µ(A2) + µ(A1 �A2). Hence, µ(A1) = µ(A2 \A1) + µ(A2 [A1)� µ(A2), which

gives 2.

3. Let B1 = A1, B2 = A2 � A1, B3 = A3 � [2
j=1Aj, · · · {Bi}i2N is a disjoint collection

and Bi ⇢ Ai for all i. Since,
S
i2N

Ai =
S
i2N

Bi, µ

✓S
i2N

Ai

◆
= µ

✓S
i2N

Bi

◆
=

P
i2N µ(Bi) 

P
i2N µ(Ai). ⌅

Theorem 1.9 establishes for measurable sets and arbitrary measures what seems intuitive

for intervals of R and their lengths. Hence, if we “measure” open or half-open intervals of

the type (a, b) or (a, b] by their length, l = (b � a), then it is easily verified l satisfies all

properties in Theorem 1.9.

Measures have continuity properties that will play an important role in our study of

probability spaces. For this purpose we define what is meant by the limit of a sequence of

sets.

Definition 1.7. Let {An}n2N be a sequence of sets.

1. If A1 ⇢ A2 ⇢ A3 ⇢ · · · then lim
n!1

An :=
S
n2N

An,

2. if A1 � A2 � A3 � · · · then lim
n!1

An :=
T
n2N

An,

3. if {Ai}i2N is an arbitrary sequence of sets and n 2 N, let Bn =
T
i�n

Ai (note that

B1 ⇢ B2 ⇢ · · · ) and Cn =
S
i�n

Ai (note that C1 � C2 � · · · ). Then, let B = lim
n!1

Bn =
S
n2N

T
i�n

Ai and C = lim
n!1

Cn =
T
n2N

S
i�n

Ai. We say that A = lim
n!1

An exists if B = C,

15



and we write A = B = C. B is called the limit inferior of {An}n2N and denoted by

lim inf
n!1

An and C is called the limit superior of {An}n2N and denoted by lim sup
n!1

Ai.

Theorem 1.10. Let (X,F , µ) be a measure space. Then,

1. if A1 ⇢ A2 ⇢ · · · , µ(A) = lim
n!1

µ(An), where A = lim
n!1

An, and

2. if A1 � A2 � · · · and µ(A1) < 1, µ(A) = lim
n!1

µ(An), where A = lim
n!1

An.

Proof. 1. Let B1 = A1, B2 = A2�A1, B3 = A3�A2 · · · and note that An =
S

n

i=1 Bi. Hence,

µ (An) = µ (
S

n

i=1 Bi). Since Bi \ Bj = ; for all i 6= j, µ (An) =
P

n

i=1 µ(Bi). Taking limits

on both sides of the last equality gives,

lim
n!1

µ (An) = lim
n!1

nX

i=1

µ(Bi) =
X

i2N

µ(Bi) = µ

 
[

i2N

Bi

!
,

where the last equality follows from �-additivity of µ. Since,
S
i2N

Bi =
S
i2N

Ai = A, we have

lim
n!1

µ (An) = µ(A).

2. Since A1 is the largest set in the sequence {Ai}i2N, we put Ac

i
:= A1 � Ai and note that

Ac

1 ⇢ Ac

2 ⇢ Ac

3 ⇢ · · · . Since A =
T
i2N

Ai, by de Morgan’s Laws Ac =
S
i2N

Ac

i
and, consequently,

µ(A1 �A) = µ

✓S
i2N

Ac

i

◆
= lim

n!1

µ (A1 � An), where the last equality follows from part 1. By

monotonicity of measures, µ(A1) < 1 =) µ(An), µ(A) < 18n, and by part 1 of Theorem

1.9 we have

µ(A1�A) = µ(A1)�µ(A) = lim
n!1

µ (A1 � An) = lim
n!1

(µ(A1)� µ(An)) = µ(A1)� lim
n!1

µ(An),

giving µ(A) = lim
n!1

µ(An). ⌅

As a matter of terminology, we say that part 1 of Theorem 1.10 establishes continuity of

measures from below, whereas part 2 establishes continuity of measures from above.

The next theorem gives necessary and sufficient conditions for a set function m : F !

[0,1] to be a measure.

16



Theorem 1.11. Let (X,F) be a measurable space. A function m : F ! [0,1] is a measure

if, and only if,

1. m(;) = 0,

2. for A1, A2 2 F disjoint m(A1 [ A2) = m(A1) +m(A2),

3. for A1, A2, · · · 2 F and A1 ⇢ A2 ⇢ · · · with A = limn!1 An we have

m(A) = lim
n!1

m(An).

Proof. If m is a measure then conditions 1 and 2 in this theorem follow directly from prop-

erties 1 and 2 from the definition of measure. Condition 3 follows from part 1 of Theorem

1.10.

Now, assume that m satisfies conditions 1-3 in this theorem. Since condition 1 in this

theorem is the same as property 1, we need only show that m satisfies property 2 from

the definition of measure. Let {Bj}j2N be any pairwise disjoint sequence in F and define

An :=
S

n

j=1 Bj. Then, A1 ⇢ A2 ⇢ · · · and A := lim
n!1

An =
S
n2N

An =
S
j2N

Bj. By condition 2,

we have m(An) =
P

n

j=1 m(Bj) and from condition 3 we conclude that

m

 
[

j2N

Bj

!
= m(A) = lim

n!1

m(An) = lim
n!1

 
nX

j=1

m(Bj)

!
=

1X

j=1

m(Bj),

establishing that m is �-additive.⌅

Remark 1.4. Condition 3 in Theorem 1.11 can be replaced by the assumption that m is

continuous from above if m(X) < 1. To see this, note that if m is a measure, it is continuous

from above by part 2 of Theorem 1.10. Now, assume that m is continuous from above

and consider a sequence {Bj}j2N of disjoint sets in F . Put An =
S

n

j=1 Bj and note that

17



Ac

1 � Ac

2 � · · · and m(Ac

n
) = m(X� An) = m

⇣
X�

S
n

j=1 Bj

⌘
.

lim
n!1

m(Ac

n
) = m

 
X�

n[

j=1

Bj

!
= m(X)� lim

n!1

m

 
n[

j=1

Bj

!
since m(X) < 1

= m(X)� lim
n!1

nX

j=1

m (Bj) = m(X)�
1X

j=1

m (Bj) by additivity of m. (1.1)

Now,

lim
n!1

m(Ac

n
) = m

 
\

j2N

Ac

j

!
by continuity of m from above

= m

  
[

j2N

Aj

!c!
by de Morgan’s Laws

= m(X)�m

 
[

j2N

Aj

!
= m(X)�m

 
[

j2N

Bj

!
. (1.2)

Combining (1.1) and (1.2) gives m

 
S
j2N

Bj

!
=

P
j2N

m (Bj).

Similarly, condition 3 in Theorem 1.11 can be replaced by the assumption that m is

continuous at ; if m(X) < 1. Continuity at the ; means that if A1 � A2 � · · · and

lim
n!1

An = ; with µ(A1) < 1 and lim
n!1

µ(An) = 0.

Since probability measures are finite, Theorem 1.11 and Remark 1.4 provide characteri-

zations for probabilities. Consequently, we state the following theorem without proof.

Theorem 1.12. Let (⌦,F) be a measurable space. A function P : F ! [0, 1] is a probability

measure if, and only if,

1. P (;) = 0,

2. for A1, A2 2 F disjoint P (A1 [ A2) = P (A1) + P (A2),

3. for A1, A2, · · · 2 F and A1 ⇢ A2 ⇢ · · · with A = limn!1 An we have

P (A) = lim
n!1

P (An).

Condition 3 can be substituted by either

18



3’. A1, A2, · · · 2 F and A1 � A2 � · · · with A = limn!1 An we have

P (A) = lim
n!1

P (An)

or

3”. A1, A2, · · · 2 F and A1 � A2 � · · · with limn!1 An = ; we have

lim
n!1

P (An) = P (;) = 0.

In addition, since in probability spaces P (⌦) = 1, P has properties that general measures

do not have. In the next theorem we establish some of these properties.

Theorem 1.13. Let (⌦,F , P ) be a probability space. Then,

1. P (Ac) = 1� P (A) 8A 2 F ,

2. A ⇢ B =) P (A)  P (B) 8A, B 2 F ,

3. if {Ai}ni=1 2 F for n 2 N then

P

 
n[

i=1

Ai

!
=

nX

i=1

P (Ai)�
X

1i1<i2n

P (Ai1 \ Ai2) +
X

1i1<i2<i3n

P (Ai1 \ Ai2 \ Ai3)

+ · · ·+ (�1)n+1P

 
n\

i=1

Ai

!
(1.3)

Proof. 1. ⌦ = A [ Ac. Hence, 1 = P (⌦) = P (A) + P (Ac) =) P (Ac) = 1� P (A).

2. follows from Theorem 1.9.1.

3. Let n = 2. Then, from Theorem 1.9.2 we have

P (A1 [ A2) = P (A1) + P (A2)� P (A1 \ A2). (1.4)
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Now, let B1 = A1, B2 = B1 [ A2 = A1 [ A2, B3 = B2 [ A3 = A1 [ A2 [ A3, · · · , Bn�1 =

Bn�2 [ An�1 = A1 [ · · · [ An�1. Now, suppose

P (Bn�1) = P

 
n�1[

i=1

Ai

!
=

n�1X

i=1

P (Ai)�
X

1i1<i2n�1

P (Ai1 \ Ai2)

+
X

1i1<i2<i3n�1

P (Ai1 \ Ai2 \ Ai1) + · · ·+ (�1)nP (A1 \ A2 \ · · · \ An�1). (1.5)

We will show that (1.4) and (1.5) imply (1.3), establishing 3. by induction. From (1.4) we

have that

P (Bn) = P ([n

i=1Ai) = P (Bn�1 [ An) = P (Bn�1) + P (An)� P (Bn�1 \ An)

= P (Bn�1) + P (An)� P (([n�1
i=1 Ai) \ An)

= P (Bn�1) + P (An)� P ([n�1
i=1 (Ai \ An))

= P (Bn�1) + P (An)� P ([n�1
i=1 Ci), where Ci = (Ai \ An).

But,

P
�
[n�1

i=1 Ci

�
=

n�1X

i=1

P (Ci)�
X

1i1<i2n�1

P (Ci1 \ Ci2) +
X

1i1<i2<i3n�1

P (Ci1 \ Ci2 \ Ci3)+

· · ·+ (�1)nP (C1 \ C2 \ · · · \ Cn�1),

with
n�1X

n=1

P (Ci) =
n�1X

i=1

P (Ai \ An)

X

1i1<i2n�1

P (Ci1 \ Ci2) =
X

1i1<i2n�1

P (Ai1 \ An \ Ai2 \ An)

=
X

1i1<i2n�1

P (Ai1 \ Ai2 \ An)

X

1i1<i2<i3n�1

P (Ci1 \ Ci2 \ Ci3) =
X

1i1<i3<i3n�1

P (Ai1 \ Ai2 \ Ai3 \ An)

...

P (C1 \ C2 \ · · · \ Cn�1) = P (A1 \ · · · \ An).
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Then, we have

P (Bn) =
n�1X

i=1

P (Ai)�
X

1i1<i2n�1

P (Ai1 \ Ai2) +
X

1i1<i2<i3n�1

P (Ai \ Aj \ Ak)+

· · ·+ (�1)nP (A1 \ A2 \ · · · \ An�1) + P (An)

�
n�1X

i=1

P (Ai \ An) +
X

1i1<i2n�1

P (Ai1 \ Ai2 \ An)

�
X

1i1<i2<i3n�1

P (Ai1 \ Ai2 \ Ai3 \ An) + · · ·+ (�1)n+1P (Ai1 \ · · · \ An)

=
nX

i=1

P (Ai)�
X

i1<i2

P (Ai1 \ Ai2) +
X

i1<i2<i3

P (Ai1 \ Ai2 \ Ai3) + · · ·

+ (�1)n+1P (\n

i=1Ai).

⌅

Remark 1.5. Note that the terms on the right side of (1.3) alternate in sign.

The next theorem shows that probability measures are continuous set functions.

Theorem 1.14. Let (⌦,F , P ) be a probability space and {An}n2N 2 F . Suppose A = lim
n!1

An

exists. Then, A 2 F and P (An) ! P (A) as n ! 1.

Proof. Since {An}n2N ⇢ F has a limit, there exist C1 � C2 � C3 � · · · and B1 ⇢ B2 ⇢

B3 ⇢ · · · as in Definition 1.7. Furthermore, since F is closed under countable unions and

intersections, Bn, Cn 2 F 8 n 2 N. Since A exists, B =
S
n2N

Bn =
T
n2N

Cn = C = A and

A 2 F . By construction, B = B1[ (B2�B1)[ (B3�B2)[ · · · = �1[�2[ · · · . The collection

{�1,�2, · · · } is pairwise disjoint. By �-additivity of measures we have P (B) =
P
i2N

P (�i) =

lim
n!1

P
n

i=1 P (�i). But,
P

n

i=1 P (�i) = P (Bn), where Bn = B1[ (B2�B1)[ · · ·[ (Bn�Bn�1).

Hence, P (B) = lim
n!1

P (Bn).

By De Morgan’s Laws C =
T
i2N

Ci =

✓S
i2N

Cc

i

◆c

. Therefore, P (C) = 1�P

✓S
i2N

Cc

i

◆
. Now,

S
i2N

Cc

i
= Cc

1 [ (Cc

2 � Cc

1) [ (Cc

3 � Cc

2) · · · = ✓1 [ ✓2 [ ✓3 · · · , where the collection {✓1, ✓2, · · · }
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is pairwise disjoint. Hence, P
✓S

i2N

Cc

i

◆
=

P
i2N

P (✓i) = lim
n!1

P
n

i=1 P (✓i). But
P

n

i=1 P (✓i) =

P (Cc

n
) and P (Cc

n
) = 1 � P (Cn). Hence, P

✓S
i2N

Cc

i

◆
= lim

n!1

(1 � P (Cn)) = 1 � lim
n!1

P (Cn).

Consequently, P (C) = 1�
⇣
1� lim

n!1

P (Cn)
⌘
= lim

n!1

P (Cn).

Finally, by construction, Bn ⇢ An ⇢ Cn, for all n. Therefore, P (Bn)  P (An)  P (Cn)

and lim
n!1

P (Bn)  lim
n!1

P (An)  lim
n!1

P (Cn) or P (B)  lim
n!1

P (An)  P (C) and consequently

since A = B = C, lim
n!1

P (An) = P (A). ⌅

Definition 1.8. Let (X,F , µ) be a measure space. N 2 F is called a µ-null set or, simply,

a null set if µ(N) = 0. The collection containing all µ-null sets in F is denoted by Nµ.

Since ; 2 F and µ(;) = 0 we have that ; 2 Nµ. Also, if N 2 Nµ, M ⇢ N and M 2 F ,

by monotonicity of measures 0  µ(M)  µ(N) = 0. Hence, M 2 Nµ. In addition, if

{Nj}j2N 2 Nµ, by sub-additivity of measures 0  µ

 
S
j2N

Nj

!


P
j2N

µ(Nj) = 0. Hence,
S
j2N

Nj 2 Nµ.

Note that there might be subsets M of µ-null sets that are not in F . This motivates the

following definition.

Definition 1.9. A measure space (X,F , µ) is said to be complete if every subset of µ-null

sets are elements of F .

The next theorem shows that any measure space can be “completed” in such a way that

the resulting measure space is complete.

Theorem 1.15. Let (X,F , µ) be a measure space and define:

1. F̄ := {F [M : F 2 F and M 2 S} where S is the collection of all subsets of µ-null

sets,

2. µ̄ : F̄ ! [0, 1] such that µ̄(F [M) = µ(F ).
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(X, F̄ , µ̄) is a complete measure space and F ⇢ F̄ .

Proof. We start by showing that F̄ is a �-algebra. Note that since ; 2 S, we have 8 F 2 F

that F [ ; = F 2 F̄ . Hence, F ⇢ F̄ . Now, we verify the that F̄ satisfies the defining

characteristics for �-algebras.

1. X 2 F̄ . This follows from the fact that X 2 F ⇢ F̄ .

2. A 2 F̄ =) Ac 2 F̄ . A 2 F̄ =) A = F[M where F 2 F and M 2 S and M ⇢ N 2

Nµ. Ac = F c\M c = F c\M c\X = F c\M c\(N c[N) = (F c\M c\N c)[(F c\M c\N).

Since M ⇢ N , M c � N c and therefore Ac = (F c \ N c) [ (F c \ M c \ N). But since

(F c \N c) 2 F and F c \M c \N ⇢ N , by definition Ac 2 F̄ .

3. {Aj}j2N 2 F̄ =)
S
j2N

Aj 2 F̄ . Since Aj 2 F̄ , Aj = Fj[Mj where Fj 2 F and Mj 2 S.

Now,
[

j2N

Aj =
[

j2N

(Fj [Mj) =

 
[

j2N

Fj

!
[
 
[

j2N

Mj

!
.

Now,
S
j2N

Fj 2 F and
S
j2N

Mj ⇢
S
j2N

Nj where Nj 2 Nµ. Hence,
S
j2N

Nj 2 Nµ and
S
j2N

Mj 2 S. Then, by definition
S
j2N

Aj 2 F̄ .

We now show that µ̄ is a measure on F̄ . Note that A 2 F̄ is not uniquely represented

as we may have G [ O = A = F [M . Note that for µ̄ to be well-defined we need µ(G) =

µ̄(G [O) = µ̄(A) = µ̄(F [M) = µ(F ), i.e., µ(G) = µ(F ). Now,

F ⇢ F[M = G[O ⇢ G[N where N 2 Nµ and G ⇢ G[O = F[M ⇢ F[N 0 where N 0 2 Nµ.

Consequently, µ(F )  µ(G) + µ(N) and µ(G)  µ(F ) + µ(N 0). Since µ(N) = µ(N 0) = 0 we

have µ(F ) = µ(G).

Now, we verify that µ̄ satisfies the defining properties of measures.

1. Since ; = ; [ ; 2 F̄ , we have µ̄(;) = µ(;) = 0.
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2. Let {Aj}j2N 2 F̄ be a pairwise disjoint collection. Since Aj = Fj [Mj, it must be that

{Fj}j2N is a pairwise disjoint collection.

µ̄

 
[

j2N

Aj

!
= µ̄

 
[

j2N

(Fj [Mj)

!
= µ̄

  
[

j2N

Fj

!
[
 
[

j2N

Mj

!!

= µ

 
[

j2N

Fj

!
=
X

j2N

µ(Fj) =
X

j2N

µ̄(Fj [Mj) =
X

N

µ̄(Aj).

Hence, (X, F̄ , µ̄) is a measure space. We now verify that it is complete. Take N 2 Nµ̄ and

A ⇢ N . We need to shaw that A 2 F̄ . Note that A ⇢ N = F [M where F 2 F and M 2 S.

Since 0 = µ̄(N) = µ(F ) and M is a subset of a µ-null set (N 0), then

A ⇢ N = F [M ⇢ F [N 0 2 F and µ(F [N 0)  µ(F ) + µ(N 0) = 0.

Hence, A is a subset of a µ-null set and therefore A 2 S. In particular, A = A [ ; and

A 2 F̄ .⌅

1.4 Independence of events and conditional probability

We start by defining probabilistic independence of events.

Definition 1.10. Let (⌦,F , P ) be a probability space, 2  n 2 N and {Ei}1in ⇢ F . The

events E1, · · · , En 2 F are said to be independent if

P

 
\

m2I

Em

!
=
Y

m2I

P (Em) for all I ⇢ {1, · · · , n} with #I � 2 . (1.6)

Remark 1.6. Note that (1.6) contains
P

n

i=2

✓
n
i

◆
= 2n � n � 1 equations. All of them

must hold to characterize independence of the events E1, · · · , En 2 F .

If two events are independent, their complements are independent and so are any of the

events with complement of the other.
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Theorem 1.16. Let (⌦,F , P ) be a probability space. If E1, E2 2 F are independent, then:

1. E1 and Ec

2 are independent (or Ec

1 and E2 are independent).

2. Ec

1 and Ec

2 are independent.

Proof. 1. Recall that E1 [ E2 = E2 [ (E1 \ Ec

2) and P (E1 [ E2) = P (E2) + P (E1 \ Ec

2).

The last equality together with Theorem 1.9.2 gives P (E1) � P (E1 \ E2) = P (E1 \ Ec

2).

Now, by independence of E1 and E2 we have P (E1 \ Ec

2) = P (E1) � P (E1)P (E2). Hence,

P (E1 \ Ec

2) = P (E1)(1� P (E2)) = P (E1)P (Ec

2).

2. Note that

Ec

1 \ Ec

2 = (E1 [ E2)
c by DeMorgan’s Laws. Hence,

P (Ec

1 \ Ec

2) = P ((E1 [ E2)
c)

P (Ec

1 \ Ec

2) = 1� P (E1 [ E2) by Theorem 1.13

= 1� (P (E1) + P (E2)� P (E1)P (E2)) by independence of E1 and E2

= (1� P (E1))(1� P (E2)) = P (Ec

1)P (Ec

2),

as desired. ⌅

There is a useful probability measure that can easily be defined from knowledge of

(⌦,F , P ). It is called conditional probability. What follows is a definition.

Definition 1.11. Let (⌦,F , P ) be a probability space. Given any E 2 F such that P (E) > 0,

we define P (·|E) : F ! [0, 1] as

P (A|E) =
P (A \ E)

P (E)
8A 2 F .

Note that P (;|E) = P (;\E)/P (E) = P (;)/P (E) = 0 and P (⌦|E) = P (⌦\E)/P (E) =

P (E)/P (E) = 1. In addition, if {Ej}j2N forms a pairwise disjoint collection of events

P

 
[

j2N

Ej|E
!

=

P

  
S
j2N

Ej

!
\ E

!

P (E)
=

P

 
S
j2N

(Ej \ E)

!

P (E)
=
X

j2N

P (Ej \ E)

P (E)
=
X

j2N

P (Ej|E).
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Hence, P (·|E) is a probability measure on (⌦,F) and P (A|E) is called the probability of A

conditional on E.

The notion of independence between two events is related to the notion of conditional

probability. In fact, as the next theorem demonstrates, if knowledge of event E does not

change the probability of event A, i.e., if P (A|E) = P (A), A and E are independent.

Theorem 1.17. Let (⌦,F , P ) be a probability space and E1, E2 2 F such that P (E2) > 0.

E1 and E2 are independent () P (E1|E2) = P (E1).

Proof. (=)) Since E1 and E2 are independent P (E1\E2) = P (E1)P (E2) and since P (E1|E2) =

P (E1\E2)
P (E2)

we have P (E1|E2) =
P (E1)P (E2)

P (E2)
= P (E1).

((=) P (E1|E2) = P (E1) =) P (E1 \ E2)/P (E2) = P (E1). Hence, P (E1 \ E2) =

P (E1)P (E2) =) E1 and E2 are independent. ⌅

Theorem 1.18. Let (⌦,F , P ) be a probability space and {Ej}1jn ⇢ F . If P

 
T

1jn�1
Ej

!
>

0 then

P

 
\

1jn

Ej

!
= P (E1)P (E2|E1)P (E3|E1 \ E2) · · ·P (En|E1 \ E2 \ · · · \ En�1). (1.7)

Proof. Note that if P

 
T

1jn�1
Ej

!
> 0 then P

 
T

1jm

Ej

!
> 0 for all m < n � 1. Hence,

all conditional probabilities on the right-hand side of (1.7) are well defined.

For n = 2, we have that if P (E1) > 0, P (E2|E1) = P (E1 \ E2)/P (E1) which implies

P (E1 \ E2) = P (E1)P (E2|E1). (1.8)

Now, assume that

P

 
\

1jn�1

Ej

!
= P (E1)P (E2|E1)P (E3|E1 \ E2) · · ·P (En�1|E1 \ E2 \ · · · \ En�2) (1.9)
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and define Bn = (E1 \ E2 · · ·En�1) \ En. Then,

P (Bn) = P (E1 \ · · · \ En�1)P (En|E1 \ · · · \ En�1) by (1.8)

= P (E1)P (E2|E1) · · ·P (En�1|E1 \ E2 \ · · · \ En�2)P (En|E1 \ · · · \ En�1) by (1.9).

The result follows by induction. ⌅

The next theorem provides the total probability formula for an event. It is the foundation

for Bayes’ Theorem, which plays an important role in statistics. First, we define a partition

of a set ⌦.

Definition 1.12. {E1, E2, · · · } is a partition of ⌦ if
S
i2N

Ei = ⌦ and Ei \ Ej = ;, for all

i 6= j.

Theorem 1.19. Let (⌦,F , P ) be a probability space and {E1, E2, · · · } 2 F be a partition of

⌦ with P (Ei) > 0 for all i 2 N. If A 2 F ,

P (A) =
X

i2N

P (A|Ei)P (Ei).

Proof. A = A\⌦ = A\
✓S

i2N

Ei

◆
=

S
i2N

(A\Ei). The collection {(A\E1), (A\E2), · · · } is

pairwise disjoint. Therefore, P (A) =
P

i2N P (A \ Ei) =
P

i2N P (A|Ei)P (Ei). ⌅

Theorem 1.20. (Bayes’ Theorem) Let (⌦,F , P ) be a probability space and {Ej}j2N ⇢ F be

a partition of ⌦ with P (Ei) > 0 for all i 2 N. Let A 2 F such that P (A) > 0. Then,

P (Ei|A) =
P (A|Ei)P (Ei)P

j2N

P (A|Ej)P (Ej)
,

Proof. By Theorem (1.19) P (A) =
P
j2N

P (A|Ej)P (Ej) 6= 0. Hence,

P (Ei|A) =
P (Ei \ A)

P (A)
=

P (A|Ei)P (Ei)P
j2N

P (A|Ej)P (Ej)

which establishes the desired result. ⌅
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In the context of Bayes’ Theorem, P (Ei) is called the prior probability of Ei and P (Ei|A)

is called the posterior probability of Ei given the event A. The following example illustrates

how posterior probabilities can be obtained from priors.

Example 1.3. Suppose that each student in a class can be classified as good G or bad B.

The probability of selecting a good student from a class is P (G) = 0.7 and, consequently, the

probability of selecting a bad student is P (B) = 0.3. A student may pass A or fail F a class.

The probability that a good student will pass is P (A|G) = 0.9 and the probability that a bad

student will pass is P (A|B) = 0.4. We are interested in the probability that a student that

fails is a good student, i.e., P (G|F ). From Bayes’ Theorem,

P (G|F ) =
P (F |G)P (G)

P (F |G)P (G) + P (F |B)P (B)
=

0.1⇥ 0.7

0.1⇥ 0.7 + 0.6⇥ 0.3
= 0.28.

Taking the prior probabilities as given, minimization P (G|F ) involves maximizing P (F |B)

and minimizing P (F |G).
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Chapter 2

Construction of probability measures

We have revealed a number of properties of measures, but we have not discussed their

existence (in general) or how to construct them.

Definition 2.1. 1. A system P associated with X is called a ⇡-system if A,B 2 P =)

A \ B 2 P.

2. A system D associated with X is called a Dynkin1 system if:

a) X 2 D

b) A 2 D =) Ac 2 D

c) {Aj}j2N ⇢ D and Ai [ Aj = ; 8 i 6= j, i, j 2 N =)
S
j2N

Aj 2 D.

It is evident from this definition that a �-algebra associated with X is also a Dynkin

system associated with X.

Theorem 2.1. Let C ⇢ 2X. There exists a smallest Dynkin system �(C) such that C ⇢ �(C).

It is called the Dynkin system generated by C. In addition, �(C) ⇢ �(C).

Proof. Existence and characterization of �(C) is proved as in Theorem 1.2. Since �(C) is a

Dynkin system �(�(C)) = �(C). Since C ⇢ �(C), �(C) ⇢ �(�(C)) = �(C) as in Theorem 1.3.

⌅
1
Eugene Borisovich Dynkin was a Russian mathematician that made important contributions to algebra

and probability. He was a student of Andrei Kolmogorov.

29



The next theorem shows that a Dynkin system is a �-algebra if, and only if, it is a

⇡-system.

Theorem 2.2. A Dynkin system D is a �-algebra () A,B 2 D =) A \ B 2 D.

Proof. ( =) ) If D is a �-algebra, then A,B 2 D =) A \B = (Ac [ Bc)c 2 D.

((=) If D is a Dynkin system it satisfies requirements 1 and 2 for �-algebras in Definition

1.1. Let Ai 2 D for i 2 N, we must show that
S
i2N

Ai 2 D. Define B1 := A1, B2 := A2�B1 =

A2\Bc

1, B3 := A3�[2
i=1Bi = A3\ ([2

i=1Bi)c · · · Bn := An�[n�1
i=1 Bi = An\ ([n�1

i=1 Bi)c. The

collection {Bi}i2N is pairwise disjoint, and since each Bi is the intersection of two sets in D,

using closeness under finite intersections,
S
i2N

Bi =
S
i2N

Ai 2 D. ⌅

Theorem 2.3. If P ⇢ 2X is a ⇡-system, then �(P) = �(P).

Proof. From Theorem 2.1, �(P) ⇢ �(P) and from Theorem 2.2 if �(P) is a ⇡-system it is a

�-algebra. Since �(P) is the smallest �-algebra it must be that �(P) = �(P), so it suffices

to show that �(P) is a ⇡-system. For any D 2 �(P), let DD = {A ⇢ X : A \ D 2 �(P)}.

First, we show that DD is a Dynkin system. We verify conditions a), b) and c) in Definition

2.1.

a) Note that X \D = D 2 �(P), hence X 2 DD.

b) If A 2 DD, then A\D 2 �(P). Now, Ac\D = (Ac[Dc)\D = (A\D)c\D = ((A\D)[Dc)c

where A \ D and Dc are disjoint. Also, since D 2 �(P) so is Dc, and A \ D 2 �(P) by

assumption, so ((A \D) [Dc)c 2 �(P). Thus Ac 2 DD.

c) Let Ai for i 2 N be pairwise disjoint with Ai \ D 2 �(P) and note that {(Ai \ D)}i2N

forms a disjoint collection. Thus,
S
i2N

(Ai \D) = D \
S
i2N

Ai and
S
i2N

Ai 2 DD. Thus, DD is a

Dynkin system.

Fix G 2 P . Then, G 2 �(P) and we can define DG = {A ⇢ X : A \ G 2 �(P)}. Now,

consider G0 2 P . Since, P is a ⇡-system, G0 \ G 2 P ⇢ �(P). Hence, G0 2 DG, showing
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that P ⇢ DG for all G 2 P . But DG is a Dynkin system and consequently, by definition

�(P) ⇢ DG, 8G 2 P .

Thus, we have that if D 2 �(P) and G 2 P , then G \ D 2 �(P) and P ⇢ DD (by

definition of DD). Then, �(P) ⇢ DD for all D 2 �(P) implying that �(P) is a ⇡-system by

definition of DD. ⌅

The following theorem shows that under some conditions, measures that coincide on some

generating class G coincide on �(G).

Theorem 2.4. Let (X, �(P)) be a measurable space and P a collection of subsets of X, such

that:

1. P is a ⇡-system,

2. there exists {Pj}j2N ⇢ P with P1 ⇢ P2 ⇢ · · · such that
S
j2N

Pj := lim
j!1

Pj = X (the

sequence {Pj}j2N is exhausting).

Then, if µ and v are measures that coincide on P and are finite for all Pj, µ(A) = v(A), for

all A 2 �(P).

Proof. For j 2 N let Dj = {A 2 �(P) : µ(A\ Pj) = v(A\ Pj)}. First, we show that Dj is a

Dynkin system.

1. X 2 Dj since µ(X \ Pj) = µ(Pj) = v(Pj) = v(X \ Pj).

2. Let A 2 Dj. Note that Pj = (A \ Pj) [ (Ac \ Pj) and note that the two sets in

the union are disjoint. Since µ is a measure µ(Pj) = µ(A \ Pj) + µ(Ac \ Pj). Hence,

µ(Ac\Pj) = µ(Pj)�µ(A\Pj). Since µ and v coincide in P we have that v(Pj) = µ(Pj)

and since A 2 Dj we have that µ(A \ Pj) = v(A \ Pj). Hence,

µ(Ac \ Pj) = µ(Pj)� µ(A \ Pj) = v(Pj)� v(A \ Pj) = v(Ac \ Pj).

Thus, Ac 2 Dj.
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3. Let A1, A2, · · · be a pairwise disjoint collection in Dj.

µ

  
[

i2N

Ai

!
\ Pj

!
= µ

 
[

i2N

(Ai \ Pj)

!
=

1X

i=1

µ(Ai \ Pj)

=
1X

i=1

v(Ai \ Pj) since Ai 2 Dj

= v

 
[

i2N

(Pj \ Ai)

!
= v

 
Pj \

 
[

i2N

Ai

!!

and consequently, [i2NAi 2 Dj.

Since P is a ⇡-system, by Theorem 2.3 �(P) = �(P) and P ⇢ Dj by definition of �(P),

hence �(P) ⇢ Dj. But by construction Dj ⇢ �(P) and we conclude that Dj = �(P). So, for

all A 2 �(P) and j = 1, 2, · · · ,

µ(A \ Pj) = v(A \ Pj). (2.1)

By continuity of measures from below and noting that (A1 \ P1) ⇢ (A \ P2) ⇢ · · · , letting

j ! 1 in (2.1) we have for all A 2 �(P),

lim
j!1

µ(A \ Pj) = µ

✓
lim
j!1

(A \ Pj)

◆
= µ

✓
[

j2N
(A \ Pj)

◆

= µ

✓
A \

✓
[

j2N
Pj

◆◆
= µ (A \X)

= µ(A)

Similarly, limj!1 v(A \ Pj) = v(A) and we conclude that µ(A) = v(A). ⌅

We take the following path to construct a measure on F . We start with a class of subsets

S of X, such that F = �(S), and define a pre-measure µ on S. If S and µ satisfy the

requirements of Theorem 2.4, then µ will extend uniquely to F , provided we are able to

extend it from S to F . The result that provides the conditions and possibility for such an

extension is known as Carathéodory’s Extension Theorem. Before stating this theorem we

need the following definition and some remarks.
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Definition 2.2. A semi-ring, denoted by S, is a system associated with X having the fol-

lowing properties:

1. ; 2 S,

2. A,B 2 S =) A \ B 2 S,

3. for all A,B 2 S there exists m 2 N and {Sj}mj=1 ⇢ S that is pairwise disjoint such

that B � A = [m

j=1Sj.

Remark 2.1. 1. A semi-ring is a ⇡-system in view of condition 2.

2. Property 3 in Definition 2.2 is equivalent to the following:

3’. if A,B 2 S and A ⇢ B, then B = A[
⇣S

m

j=1 Sj

⌘
where the collection {A, S1, · · ·Sm} ⇢

S is pairwise disjoint.

To verify that 3 =) 3’ note that A ⇢ B =) B = A [ (B �A) = A [
⇣S

m

j=1 Sj

⌘
by

3, where {A, S1, · · ·Sm} ⇢ S is pairwise disjoint. Now, to verify that 3’ =) 3 note

that B = (B \ A) [ (B � A). Since (B \ A) ⇢ B, by 3’ B = (B \ A) [
⇣S

m

j=1 Sj

⌘
.

Thus, (B \A) [ (B �A) = (B \A) [
⇣S

m

j=1 Sj

⌘
which implies that B �A =

S
m

j=1 Sj

where {Sj}mj=1 ⇢ S is pairwise disjoint.

3. A ring R is a non-empty system of sets associated with X such that A,B 2 R =)

A [ B 2 R and A � B 2 R. If A 2 R then A � A = ; 2 R. Also, if A,B 2 R, and

noting that A\B = A� (A�B), we have that A\B 2 R. Now let A ⇢ B, A,B 2 R.

Since B = A [ (B � A) and (B � A) 2 R, we conclude that every ring is a semi-ring

using property 3’.

4. If A is an algebra, then for A,B 2 A we have that A [ B,A \ B,Bc 2 A, and since

A� B = A \ Bc 2 A, an algebra is a ring.
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It follows from these remarks that we have the following hierarchy of systems: A (algebras)

are R (rings) are S (semi-rings) are ⇡-systems.

Theorem 2.5. (Carathéodory) Let S be a semi-ring of subsets of X and µ : S ! [0,1] be a

pre-measure. Then, µ has an extension to a measure µ on �(S). If there exists {Ej}j2N 2 S

with E1 ⇢ E2 · · · such that lim
j!1

Ej ! X and µ(Ej) < 1 for all j, then the extension is

unique.

Proof. Step 1. We start by defining the set function µ⇤ : 2X ! [0,1]. For any A ⇢ X

define the collection of countable covers for A that are composed of sets in S by

C(A) = {{Sj}j2N ⇢ S : A ⇢ [
j2N

Sj}.

If A cannot be covered by some [
j2N

Sj, then C(A) = ;. Now, define

µ⇤(A) := inf

(
X

j2N

µ(Sj) : {Sj}j2N 2 C(A)

)
,

where inf ; := 1. Note that,

a) µ⇤(;) = 0, by taking S1 = S2 = · · · = ;

b) A ⇢ B implies that every cover for B is also a cover for A, i.e., C(B) ⇢ C(A).

Therefore,

µ⇤(A) = inf

(
X

j2N

µ(Sj) : {Sj}j2N 2 C(A)

)
 inf

(
X

j2N

µ(Tj) : {Tj}j2N 2 C(B)

)
= µ⇤(B).

c) Let An ⇢ X for n 2 N and, without loss of generality, assume that µ⇤(An) < 1 (that

is C(An) 6= ;). Choose ✏ > 0 and let {Snk}k2N 2 C(An) be such that

X

k2N

µ(Snk)  µ⇤(An) + ✏/2n.
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Now, [
n2N

An ⇢ [
n2N

[
k2N

Snk and by the definition of infimum and sub-additivity of

pre-measures

µ⇤

✓
[

n2N
An

◆

X

n2N

X

k2N

µ(Snk)


X

n2N

(µ⇤(An) + ✏/2n) =
X

n2N

µ⇤(An) + ✏.

Hence, µ⇤

✓
[

n2N
An

◆


P
n2N

µ⇤(An). If µ⇤(An) = 1 for some n, then the last inequality

holds trivially.

Since µ⇤ satisfies properties a)-c), it is called an outer-measure on 2X.

Step 2. We now show that µ⇤ extends µ (defined on S) to 2X. By this we mean that

µ⇤(S) = µ(S) for S 2 S.

First, let SU = {S : S = [m

j=1Sj, Sj 2 S, Si \ Sj = ; 8i 6= j and m 2 N} be the

collection of sets that can be written as disjoint finite unions of elements of S and let

µ̄(S) =
P

m

j=1 µ(Sj) for S 2 SU . Note that µ̄(S) is invariant to the pairwise disjoint finite

union used to represent S. To see this, suppose S = [m

j=1Sj and S = [n

k=1Tk for m,n 2 N.

Then, [m

j=1Sj = [n

k=1Tk and Sj = Sj \ ([n

k=1Tk) = [n

k=1(Sj \ Tk) and Sj \ Tk 2 S, since a

semi-ring is a ⇡-system. Since µ is a pre-measure on S, and {Tk}nk=1 is a pairwise disjoint

collection, µ(Sj) =
P

n

k=1 µ(Tk \ Sj). Then,

µ̄(S) =
mX

j=1

µ(Sj) =
nX

k=1

mX

j=1

µ(Tk \ Sj) =
nX

k=1

µ(Tk).

We now show that SU is closed under (arbitrary) finite intersections and unions. If

A,B 2 SU then A\B = ([m

j=1Sj)\ ([n

k=1Tk) where the two unions are over pairwise disjoint

sets. Then, A\B = [m

j=1[n

k=1 (Sj\Tk) 2 SU since Sj\Tk 2 S for all j, k and {Sj\Tk}m,n

j=1,k=1

is pairwise disjoint.

Also, since Sj, Tk 2 S, their difference can be written as a finite union of pairwise disjoint

elements of S. Hence, Sj � Tk 2 SU . Now,

A� B = [m

j=1Sj � [n

k=1Tk = [m

j=1 \n

k=1 (Sj \ T c

k
) = [m

j=1 \n

k=1 (Sj � Tk).
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Since, Sj�Tk 2 SU and given that we have shown that SU is closed under finite intersections,

\n

k=1(Sj � Tk) 2 SU . Hence, A � B is the finite union of pairwise disjoint elements in SU

and we conclude that A�B 2 SU , since SU is closed under pairwise disjoint unions. Lastly,

since A[B = (A�B)[ (A\B)[ (B �A) and all sets in the union are disjoint and in SU ,

we conclude that A [ B 2 SU .

We now show that µ̄ is �-additive on SU , i.e., a pre-measure. Let {Tk}k2N ⇢ SU such that

{Tk}k2N is pairwise disjoint and such that T := [
k2N

Tk 2 SU . Since Tk 2 SU , by definition

there exist {Sj}j2N 2 S and a sequence of 0 = n0  n1  · · · of integers such that

Tk = Sn(k�1)+1 [ Sn(k�1)+2 [ · · · [ Snk
for k 2 N,

where the collection {Sn(k�1)+1, Sn(k�1)+2, · · · , Snk
} is pairwise disjoint and

T =
[

k2N

nk[

j=n(k�1)+1

Sj.

Also, since T 2 SU , it can be written as T =
S

N

l=1 Ul where N 2 N with Ul 2 S and {Ul}Nl=1

a pairwise disjoint collection. Hence,

N[

l=1

Ul =
[

k2N

nk[

j=n(k�1)+1

Sj.

Defining disjoint subsets J1, · · · , JN of N such that [N

l=1Jl = N we write Ul =
S
j2Jl

Sj and

note that Ul 2 S. Now, T =
S
k2N

Tk = [N

l=1Ul and

µ̄(T ) =
NX

l=1

µ(Ul) by definition of µ̄

=
NX

l=1

X

j2Jl

µ(Sj) by µ being a pre-measure on S

=
X

k2N

nkX

j=n(k�1)+1

µ(Sj) =
X

k2N

µ̄(Tk).
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Now, for any S 2 S and any S-covering of S, i.e., {Sj}j2N 2 C(S)

µ(S) = µ̄(S) = µ̄

 
[

j2N

Sj \ S

!
since S 2 S =) S 2 SU


X

j2N

µ̄(Sj \ S) since µ̄ is a pre-measure and sub-additive

=
X

j2N

µ(Sj \ S) 
X

j2N

µ(Sj).

Taking the infimum over C(S), we have µ(S)  µ⇤(S). Now, taking (S, ;, · · · ) 2 C(S) gives

µ⇤(S)  µ(S). Combining the two inequalities, we have

µ⇤(S) = µ(S) for all S 2 S.

Step 3. We will show that S ⇢ A⇤ where

A⇤ = {A ⇢ X : µ⇤(Q) = µ⇤(Q \ A) + µ⇤(Q \ Ac), 8 Q ⇢ X}. (2.2)

Let S, T 2 S and note that T = (T \S)[ (T \Sc) = (T \S)[ (T �S) = (T \S)[ ([m

j=1Sj)

with {Sj}mj=1 disjoint, m 2 N and where the last equality follows from the third defining

property of semi-rings. Since µ is a pre-measure on S we have

µ(T ) = µ(T \ S) +
mX

j=1

µ(Sj).

Since µ⇤ and µ coincide on S and T \ S 2 S, and since µ⇤ is sub-additive, from c) in Step

1, we have µ⇤(T � S) = µ⇤([m

j=1Sj) 
P

m

j=1 µ
⇤(Sj) =

P
m

j=1 µ(Sj). Consequently,

µ(T ) = µ(T \ S) +
mX

j=1

µ(Sj) � µ⇤(T \ S) + µ⇤(T � S). (2.3)

Take Q ⇢ X and {Tj}j2N 2 C(Q). Using µ⇤(Tj) = µ(Tj) and summing (2.3) over j taking

T = Tj

X

j2N

µ⇤(S \ Tj) +
X

j2N

µ⇤(Tj � S) 
X

j2N

µ⇤(Tj).
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Sub-additivity and monotonicity of µ⇤ together with Q ⇢
S
j2N

Tj give

µ⇤(Q \ S) + µ⇤(Q� S)  µ⇤([j2N(Tj \ S)) + µ⇤([j2N(Tj � S))


X

j2N

µ⇤(Tj) =
X

j2N

µ(Tj).

Taking the infimum over C(Q), µ⇤(Q \ S) + µ⇤(Q � S)  µ⇤(Q). The reverse inequality

follows easily from sub-additivity of µ⇤. Consequently, if S 2 S we have that S 2 A⇤.

Step 4. We show that A⇤ is a �-algebra and µ⇤ is a measure on (X,A⇤).

1. For all Q ⇢ X, Q \X = Q and Q \Xc = ;. Since µ⇤(;) = 0 we have that X 2 A⇤.

2. For all Q ⇢ X suppose A 2 A⇤, i.e.

µ⇤(Q) = µ⇤(Q \ A) + µ⇤(Q \ Ac).

But by symmetry of the right hand side of the equality due to (Ac)c = A, we have Ac 2 A⇤.

3. If A,A0 2 A⇤, for all Q ⇢ X

µ⇤(Q \ (A [ A0)) + µ⇤(Q� (A [ A0))

= µ⇤(Q \ (A [ (A0 � A))) + µ⇤(Q� (A [ A0))

= µ⇤((Q \ A) [ [Q \ (A0 � A)]) + µ⇤(Q� (A [ A0))

 µ⇤(Q \ A) + µ⇤(Q \ (A0 � A)) + µ⇤(Q� (A [ A0))

using subadditivity of µ⇤

= µ⇤(Q \ A) + µ⇤((Q� A) \ A0) + µ⇤((Q� A)� A0)

= µ⇤(Q \ A) + µ⇤(Q� A) = µ⇤(Q)

using the defining expression for A⇤ twice, once for Q� A and once for Q.

Thus,

µ⇤(Q \ (A [ A0)) + µ⇤(Q� (A [ A0))  µ⇤(Q). (2.4)

Now, Q = {Q \ (A [ A0)} [ {Q \ (A [ A0)c}. By sub-additivity of µ⇤

µ⇤(Q)  µ⇤(Q \ (A [ A0)) + µ⇤(Q� (A [ A0)). (2.5)
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Combining inequalities (2.4) and (2.5) we conclude that µ⇤(Q) = µ⇤(Q\ (A[A0)) +µ⇤(Q�

(A [ A0)) and consequently A⇤ is closed under finite unions.

If A, A0 2 A⇤ such that A \A0 = ;, then for Q = (A [A0) \ P with P ⇢ X the equality

µ⇤(Q \ A) + µ⇤(Q� A) = µ⇤(Q) becomes

µ⇤((A [ A0) \ P ) = µ⇤(P \ A) + µ⇤(P \ A0), 8P ⇢ X.

For a disjoint collection {Aj}mj=1 2 A⇤,

µ⇤(([m

j=1Aj) \ P ) =
mX

j=1

µ⇤(P \ Aj).

If A = [j2NAj, where {Aj} is a disjoint collection,

µ⇤(P \ A) � µ⇤(P \ ([m

j=1Aj)) =
mX

j=1

µ⇤(P \ Aj).

Since [m

j=1Aj 2 A⇤ we have that

µ⇤(P ) = µ⇤(P \ ([m

j=1Aj)) + µ⇤(P � [m

j=1Aj)

� µ⇤(P \ ([m

j=1Aj)) + µ⇤(P � A)

=
mX

j=1

µ⇤(P \ Aj) + µ⇤(P � A).

Let m ! 1, to conclude

µ⇤(P ) �
1X

j=1

µ⇤(P \ Aj) + µ⇤(P � A) � µ⇤(P \ A) + µ⇤(P � A)

The reverse inequality follows directly from sub-additivity of µ⇤. Thus,

µ⇤(P ) = µ⇤(P \ A) + µ⇤(P � A), 8P ⇢ X.

Consequently, A = [j2NAj where the collection {Aj}j2N is pairwise disjoint is in A⇤. Con-

sequently, A⇤ is a Dynkin system that is closed under finite unions. By DeMorgan Laws, A⇤

is closed under finite intersections, and by Theorem 2.2, A⇤ is a �-algebra.
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Now, we show that µ⇤ is a measure on �(S). From above, S ⇢ A⇤, so �(S) ⇢ A⇤. Also,

µ⇤ is a measure on A⇤ and on �(S), which extends µ on S. By Theorem 2.4, and under the

conditions in the enunciation of this theorem, any two extensions µ⇤ and v⇤ of µ coincide on

�(S). ⌅

Remark 2.2. (X,A⇤, µ⇤) is a complete measure space. To verify completeness, let E 2 A⇤

such that µ⇤(E) = 0, and consider B ⇢ E. We must verify that B 2 A⇤, i.e., for any

Q ⇢ X, it must be that

µ⇤(Q) = µ⇤(Q \B) + µ⇤(Q \Bc).

Now, Q \ B ⇢ Q \ E ⇢ E =) µ⇤(Q \ B)  µ⇤(E) = 0 and, consequently µ⇤(Q \ B) = 0.

Also, Q \Bc ⇢ Q =) µ⇤(Q \ Bc)  µ⇤(Q). Hence,

µ⇤(Q) � µ⇤(Q \Bc) + µ⇤(Q \B). (2.6)

By sub-additivity

µ⇤(Q)  µ⇤(Q \Bc) + µ(Q \B) (2.7)

Given (2.6) and (2.7) we have µ⇤(Q) = µ⇤(Q \ Bc) + µ⇤(Q \ B). In addition, µ⇤(B) = 0

follows from monotonicity of measures.

Theorem 2.6. Let Rn,h = ⇥n

i=1[ai, bi) for n 2 N be a half-open rectangle in Rn and In,h be

the collection formed by all such rectangles with real endpoints. In,h is a semi-ring.

Proof. Let I1,h = {[ai, bi) : ai  bi where ai, bi 2 R} and note that:

1. if bi = ai, [ai, bi) = ;,

2. if [ai, bi), [aj, bj) 2 In,h then [ai, bi) \ [aj, bj) =

8
>>><

>>>:

; 2 I1,h

[aj, bi) 2 I1,h

[ai, bj) 2 I1,h

[ai, bi) 2 I1,h

,
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3. if [a1, b1) ⇢ [a2, b2) then [a2, b2) = [a2, a1)[ [a1, b1)[ [b1, b2), where the members in the

union are all disjoint.

Hence, I1,h is a semi-ring.

Now, suppose In,h is a semi-ring. We will verify that In+1,h is a semi-ring. First, note

that In+1,h = In,h ⇥ I1,h and since ; 2 In,h we immediately conclude that ; 2 In+1,h. The

intersection of two rectangles in In+1,h is given by

(Rn,h ⇥R1,h) \ (In,h ⇥ I1,h) = (Rn,h \ In,h)⇥ (R1,h \ I1,h)

where In,h is a half-open rectangle in Rn and the righthand side of the equality is an element

of In+1,h. Also, (Rn,h ⇥R1,h)� (In,h ⇥ I1,h) = (Rn,h ⇥R1,h) \ (In,h ⇥ I1,h)c and note that

(In,h ⇥ I1,h)c = {(x, y) : x 62 In,h, y 62 I1,h, or x 2 In,h and y 62 I1,h, or x 62 In,h and y 2 I1,h}

= ((In,h)c ⇥ (I1,h)c) [ (In,h ⇥ (I1,h)c) [ ((In,h)c ⇥ I1,h)

where the components of the union are disjoint. Thus,

(Rn,h ⇥R1,h)� (In,h ⇥ I1,h) = [(Rn,h ⇥R1,h) \ ((In,h)c ⇥ (I1,h)c)] [ [(Rn,h ⇥R1,h) \ (In,h ⇥ (I1,h)c)]

[ [(Rn,h ⇥R1,h) \ ((In,h)c ⇥ I1,h)]

= [(Rn,h � In,h)⇥ (R1,h � I1,h)] [ [(Rn,h \ In,h)⇥ (R1,h � I1,h)]

[ [(Rn,h � In,h)⇥ (R1,h \ I1,h)].

By the induction assumption, Rn,h � In,h and R1,h � I1,h can be expressed as finite unions

of disjoint rectangles, which completes the proof. ⌅

Definition 2.3. Let �n : In,h ! [0,1) be defined as �n(Rn,h) =
Q

n

j=1(bj � aj) whenever

bj > aj for j = 1, · · · , n and �n(Rn,h) = 0 if bj  aj for some j.

Theorem 2.7. �n is a pre-measure on In,h.
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Proof. We start by showing that �1 is a pre-measure on I1,h. Let [a, b) 2 I1,h and [a, b) =

[n

i=1[ai, bi) with a1 = a, a2 = b1, a3 = b2, · · · , an = bn�1, bn = b. Then,

nX

i=1

�1([ai, bi)) = (b1 � a1) + (b2 � a2) + · · ·+ (bn�1 � an�1) + (bn � an)

= (a2 � a) + (a3 � a2) + · · ·+ (an � an�1) + (b� an) = b� a

= �1([a, b)) = �1 ([n

i=1[ai, bi)) .

Therefore, �1 is finitely additive. For �-additivity, we need to show that for [a, b) =
S
i2N

[ai, bi),

where {[ai, bi)}i2N is a pairwise disjoint collection we have b� a =
P

1

i=1(bi � ai).

For any n 2 N, let {[ai, bi)}ni=1 be a pairwise disjoint collection. Then, since I1,h is a

semi-ring, we can write

[a, b)� [n

i=1[ai, bi) = [m

j=1Ij,

where the last set is the finite union of pairwise disjoint half-open rectangles. Thus, since �1

is finitely additive on I1,h

�1([a, b)) =
nX

i=1

�1([ai, bi)) +
mX

j=1

�1(Ij) �
nX

i=1

�1([ai, bi)).

Thus, �1([a, b)) = b� a � limn!1

P
n

i=1 �
1([ai, bi)) =

P
1

i=1 �
1([ai, bi)).

We need only show that b�a 
P

1

i=1 �
1([ai, bi)) to complete the proof. Let 0 < ✏ < b�a

and note that

[a, b� ✏) ⇢ [a, b� ✏] ⇢ [1

i=1(ai � 2�i✏, bi)

⇢ [n

i=1(ai � 2�i✏, bi) for some n 2 N, by the Heine-Borel Theorem

⇢ [n

i=1[ai � 2�i✏, bi).
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But �1([ai, bi)) = �1([ai � 2�i✏, bi))� 1
2i ✏. Hence,

�1([a+ ✏, b)) 
nX

i=1

�1
✓
[ai �

1

2i
✏, bi)

◆
by subadditivity

=
nX

i=1

(bi � ai +
1

2i
✏)

b� a� ✏ 
nX

i=1

(bi � ai) + ✏
nX

i=1

1

2i
or

b� a 
nX

i=1

(bi � ai) + ✏

 
1 +

nX

i=1

1

2i

!
.

Taking limits as n ! 1 on both sides of the last inequality gives b � a 
P

1

i=1(bi � ai),

which combined with the previously obtained reverse inequality gives b� a =
P

1

i=1(bi � ai).

Hence, �1 is a pre-measure on I1,h.

Clearly, �n(;) = 0. The proof is completed by using induction on n, the dimension of

the space. Hence, we assume that �n is �-additive on In,h for some n and show that �n+1 is

�-additive on In+1,h. This final step is left as an exercise. ⌅

Theorem 2.8. There exists a unique extension of �n from In,h to a measure on the Borel

sets B(Rn). This extension is denoted by �n and is called Lebesgue measure.

Proof. We know that B(Rn) = �(In,h) from Theorem 1.5. Since, [�k, k)n = [�k, k) ⇥

[�k, k) · · · ⇥ [�k, k) " Rn as k ! 1 is an exhausting sequence of n-rectangles, and since

�n([�k, k)n) = (2k)n < 1, all conditions of Carathéodory’s Theorem are fulfilled. ⌅

Remark 2.3. Let (R, �(I1,h) = B(R)) be a measurable space. From Theorem 1.4 if we

set S = [0, 1) and consider I = I1,h \ S =
�
[0, 1) \ A : A 2 I1,h

 
then �(I1,h \ [0, 1)) =

B(R) \ [0, 1) is a �-algebra associated with [0, 1). Thus, we define B[0,1) := �(I1,h \ [0, 1))

and note that

([0, 1),B[0,1) := �(I))
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is a measurable space where I = {[a, b) : 0  a  b  1}. Define the set function � : I !

[0, 1] such that �(;) = 0 and �([a, b)) = b � a. Since � is �-additive (pre-measure) on I (a

semi-ring), using Carathéodory’s Theorem, we can state that

([0, 1),B[0,1) := �(I),�⇤)

is a measure space, where �⇤ is the unique extension of � from I to �(I). In addition,

�⇤([0, 1)) = 1. Thus, we have constructed a specific probability space.

We will now construct probability measures on (R,B(R)). This will be done using dis-

tribution functions.

Definition 2.4. Let F : R! [0, 1] be a function with the following properties:

1. lim
h#0

F (x+ h) := F (x+) = F (x) for all x 2 R and h > 0,

2. F (x)  F (y) if x < y,

3. lim
x!1

F (x) = 1, lim
x!�1

F (x) = 0.

F is called distribution function (df). If only conditions 1 and 2 are met, F is called a

defective df .

Remark 2.4. 1. Let F (x�) := lim
h#0

F (x�h) for h > 0. The left jump of F at x is defined as

LJF (x) = F (x)�F (x�) and the right jump of F at x is defined as RJF (x) = F (x+)�F (x).

The jump of F at x is defined as JF (x) = LJF (x)+RJF (x) = F (x+)�F (x�). If F is a df ,

RJF (x) = 0 for all x 2 R and JF (x) = F (x)�F (x�). In addition, since F is nondecreasing

JF (x) � 0. If JF (x) = 0 then F is continuous at x.

2. For any two x  y 2 R we have that 0  F (y)� F (x)  1

Definition 2.5. The left (generalized) inverse of a df F , denoted by F�, is defined as

F�(p) := inf{x : F (x) � p for p 2 (0, 1]}.
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Note that {x : F (x) � 0} = R and the infimum of R does not exist. Hence, F� is not

defined at 0. Also, {x : F (x) � 1} = {x : F (x) = 1} is either the empty set or [a,1), where

a 2 R. In the first case, F�(1) = inf(;) = 1 and in the second case F�(1) = inf([a,1)) = a.

Theorem 2.9. Let S(p) = {x : F (x) � p} for p 2 (0, 1]. Then,

1. S(p) is a closed set.

2. t < F�(p) () F (t) < p or F�(p)  t () p  F (t).

Proof. 1. If sn 2 S(p) and sn # s, bp right continuity of F we have p  F (sn) # F (s). Thus,

p  F (s) and s 2 S(p). If sn 2 S(p) and sn " s, we have p  F (sn) " F (s�)  F (s). Thus,

p  F (s) which implies that s 2 S(p). Consequently, by a characterization of closed sets,

S(p) is closed.

2. Since S(p) is closed, its infimum F�(p) 2 S(p) and therefore F (F�(p)) � p. t <

F�(p) =) t 62 S(p) =) F (t) < p. The reverse implications all apply. ⌅

Theorem 2.10. Let A ⇢ R, SF (A) = {p 2 (0, 1] : F�(p) 2 A} and I1 = {(a, b] : �1 

a < b < 1}. If A 2 B(R), then SF (A) 2 B(0,1] = �(I1) \ (0, 1].

Proof. Let G = {A ⇢ R : SF (A) 2 B(0,1]}. Note that

SF ((a, b]) = {p 2 (0, 1] : F�(p) 2 (a, b]} = {p 2 (0, 1] : a < F�(p)  b}

= {p 2 (0, 1] : F (a) < p  F (b)} by Theorem 2.9

= (F (a), F (b)] 2 B(0,1].

Hence, (a, b] 2 G and I1 ⇢ G. If G is a �-algebra, �(I1) = B(R) ⇢ G. Hence, A 2 B(R)

implies SF (A) 2 B(0,1]. Consequently, we need only show that G is a �-algebra associated

with R.

1. SF (R) = {p 2 (0, 1] : F�(p) 2 R} = (0, 1) =
S
n2N

(0, 1� n�1] 2 B(0,1], thus R 2 G.
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2. By definition of SF

SF (A
c) = {p 2 (0, 1] : F�(p) 2 Ac} = {p 2 (0, 1] : F�(p) /2 A}

= (SF (A))
c 2 B(0,1]

where the last inclusion statement follows if A 2 G and the fact that B(0,1] is a �-algebra.

3. If {An}n2N 2 G we have by definition of SF

SF

 
[

n2N

An

!
=

(
p 2 (0, 1] : F�(p) 2

[

n2N

An

)
= {p 2 (0, 1] : F�(p) 2 An for some n}

=
[

n2N

{p 2 (0, 1] : F�(p) 2 An} =
[

n2N

SF (An) 2 B(0,1] (2.8)

where the last inclusion statement follows since An 2 G and the fact that B(0,1] is a

�-algebra.

⌅

Definition 2.6. Let A 2 B(R) and define PF (A) = �1(SF (A)) where �1 is the Lebesgue

measure on B(0,1].

Theorem 2.11. Let PF be given in Definition 2.6. Then, (R,B(R), PF ) is a probability

space.

Proof. First, note that

PF (;) = �1(SF (;)) = �1({p 2 (0, 1] : F�(p) 2 ;}) = �1(;) = 0.

Second, if {An}n2N is a pairwise disjoint collection of sets in B(R) then

PF

✓
[

n2N
An

◆
= �1

✓
SF

✓
[

n2N
An

◆◆
= �1

✓
[

n2N
SF (An)

◆
by (2.8)

=
1X

n=1

�1(SF (An)) =
1X

n=1

PF (An).
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where the next to last equality follows from the fact that �1 is a measure and {SF (An)}n2N

is a pairwise disjoint collection.

Lastly,

PF (R) = �1(SF (R)) = �1({p 2 (0, 1] : F�(p) 2 R}) = �1((0, 1))

= �1
 
[

n2N

(0, 1� n�1]

!
= �1 ((0, 1/2] [ (1/2, 2/3] [ (2/3, 3/4] [ · · · )

= 1/2 + (2/3� 1/2) + (3/4� 2/3) + · · · = 1.

⌅

Remark 2.5. Note that

PF ((�1, x]) = �1 (SF ((�1, x])) = �1({p 2 (0, 1] : F�(p) 2 (�1, x]})

= �1({p 2 (0, 1] : p  F (x)}) = �1((0, F (x)]) = F (x).
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Chapter 3

Measurable functions

In this chapter we will define measurable functions and study some of their properties. We

start with the following definition.

Definition 3.1. Let (X,F) and (E, E) be two measurable spaces. A function f : (X,F) !

(E, E) is said to be F � E measurable if for all A 2 E, f�1(A) 2 F .

Remark 3.1. 1. Since f�1(E) is a �-algebra, measurability of f is equivalent to stating

that f�1(E) ⇢ F . It is standard notation to write �(f) := f�1(E) and call this �-algebra

the �-algebra generated by f .

2. If X := ⌦, (⌦,F , P ) is a probability space and f is F � E measurable, we say that

f is a random element. If, in addition, (E, E) := (R,B(R)) we will refer to f :

(⌦,F , P ) ! (R,B(R)) as a random variable. We will normally represent random

elements or random variables by uppercase roman letters, e.g., X or Y .

The next theorem shows that measurability of a function f can be established by ex-

amining inverse images of sets in a collection that generates the measurable sets associated

with the co-domain of f .

Theorem 3.1. Let C be a collection of subsets of E such that �(C) = E . Then, f : (X,F) !

(E, E) is F � E measurable () f�1(C) ⇢ F .
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Proof. ( =) ) Assume f is F�E measurable. f measurable () for all A 2 E , f�1(A) 2 F .

In particular, let A be an element of C, then f�1(A) 2 F , hence f�1(C) ⇢ F .

((=) Assume that f�1(C) ⇢ F , i.e., f�1(C) 2 F , for all C 2 C. We must prove that 8A 2 E ,

f�1(A) 2 F (or f�1(E) ⇢ F). Let G = {A 2 E : f�1(A) 2 F} and by construction C ⇢ G.

If G is a �-algebra, then �(C) = E ⇢ G. Also, by construction G ⇢ E , hence E = G, which is

what must be proven.

We need only show that G is a �-algebra. Consider a sequence A1, A2, · · · 2 E such that

f�1(Ai) 2 F , i.e., A1, A2 · · · 2 G. Then, since E is a �-algebra,
S
i2N

Ai 2 E . And since

f�1

✓S
i2N

Ai

◆
=

S
i2N

f�1(Ai), which is the union of elements in F , f�1

✓S
i2N

Ai

◆
2 F .

Now, if A 2 E is such that f�1(A) 2 F , i.e., A 2 G, then Ac 2 E and f�1(Ac) =

f�1(E)� f�1(A) = X� f�1(A) which is in F . Hence G is a �-algebra. ⌅

Example 3.1. Let A4 = {(�1, a] : a 2 R} be the collection A4 in Remark 1.2.4. Since

�(A4) = B(R),

X : (⌦,F , P ) ! (R, �(A4) = B(R))

is a random variable if, and only if, X�1(A4) ⇢ F . Equivalently we can state X is a random

variable if, and only if, X�1((�1, a]) = {! 2 ⌦ : X(!)  a} 2 F 8 a 2 R.

The next theorem shows that continuous functions are measurable.

Theorem 3.2. Let O1 and O2 be collections of open sets associated with X1 and X2. If

f : (X1, �(O1)) ! (X2, �(O2)) is continuous, then f is measurable.

Proof. f�1(O2) ⇢ O1 by continuity. But O1 ⇢ �(O1). Thus, by Theorem 3.1, f is measur-

able. ⌅

The composition of measurable functions is measurable.

Theorem 3.3. Let f : (X,F) ! (X1,F1) and g : (X1,F1) ! (X2,F2) be measurable

functions. Let (g � f) : (X,F) ! (X2,F2). Then, (g � f) is F � F2 measurable.
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Proof. Let F2 2 2X2 .

(g � f)�1(F2) = {x 2 X : g(f(x)) 2 F2} = {x 2 X : f(x) 2 g�1(F2)}

= {x 2 X : x 2 f�1(g�1(F2))}.

If F2 2 F2, and given that g is measurable, g�1(F2) 2 F1. Since f is measurable, f�1(g�1(F2)) 2

F . Hence, (g � f) is F � F2 measurable. ⌅

The next theorem shows that measurable functions can be used to transfer measures

between spaces.

Theorem 3.4. Let (X,F , µ) be a measure space, (E, E) be a measurable space and f : X! E

be a F � E measurable function. Then,

m(E) := µ(f�1(E)) for all E 2 E

is a measure on (E, E).

Proof. We verify the two defining properties of measures. First, note that if E = ;, m(;) =

µ(f�1(;)) = µ(;) = 0 since µ is a measure. Second, if {En}n2N is a pairwise disjoint

collection of sets in E then

m

✓
[

n2N
En

◆
= µ

✓
f�1

✓
[

n2N
En

◆◆
= µ

✓
[

n2N
f�1(En)

◆
=
X

n2N

µ(f�1(En)) =
X

n2N

m(En),

where the next to last equality follows from the fact that µ is a measure and the last equality

follows from the definition of m. ⌅

Example 3.2. Let (X,F , µ) := (⌦,F , P ), (E, E) := (R,B(R)), and f := X : (⌦,F , P ) !

(R,B(R)) then PX(B) := P (X�1(B)) is a measure on B(R).

The measurability of real valued functions can be characterized differently. In Example

3.1 it is shown that a function f : (X,F) ! (R,B(R)) is said to be F � B(R) measurable
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if for all a 2 R, the set Sa = {x 2 X : f(x)  a} 2 F . But since Sa 2 F and F is a

�-algebra, Sc

a
2 F . Hence, f is measurable if Sc

a
= {x 2 X : f(x) > a} 2 F . Also, consider

Sc

a�1/n = {x 2 X : f(x) > a � 1/n} and let S 0

a
=

T
n2N

{x 2 X : f(x) > a � 1/n} = {x 2

X : f(x) � a}. Clearly, by the properties of �-algebras S 0

a
2 F . Hence, f is measurable if

{x 2 X : f(x) � a} 2 F . Since, {x 2 X : f(x) < a} = {x 2 X : f(x) � a}c, measurability

could also be defined in terms of {x 2 X : f(x) < a}.

Example 3.3. 1. Let f : X ! R, such that for all x 2 X, f(x) = c, c 2 R. Let a 2 R

and consider Sc

a
= {x 2 X : f(x) > a} = {x 2 X : c > a}. If a � c, Sc

a
= ;, and if

c > a, Sc

a
= X. Since �-algebras always contain ; and X, f(x) = c is measurable.

2. Let E 2 F (F a �-algebra). Recall that the indicator function of E is

IE(x) =

(
1 if x 2 E

0 if x /2 E

If a � 1, Sc

a
= ;; if 0  a < 1, Sc

a
= E; if a < 0 Sc

a
= X. Since X, ; 2 F (always) and

E 2 F by construction, IE is measurable.

3. Let X = R and F = B(R). If f is monotone increasing, i.e., 8 x < x0, f(x)  f(x0),

f is measurable. Note that in this case, Sc

a
= {x : x > y for some y 2 R} = (y,1) or

Sc

a
= {x : x � y} = [y,1), which are Borel sets.

Theorem 3.5. Let f and g be measurable real valued functions and let c 2 R. Then,

cf, f 2, f + g, fg, |f | are measurable.

Proof. If c = 0, cf = 0 is a constant and consequently, measurable. If c > 0, then {x 2 X :

cf(x) > a} = {x 2 X : f(x) > a/c} 2 F . Similarly for c < 0. If a < 0, {x 2 X : (f(x))2 >

a} = X and X 2 F . If a � 0, {x 2 X : f 2(x) > a} = {x 2 X : f(x) > a1/2 or f(x) <

�a1/2} = {x 2 X : f(x) > a1/2}[ {x 2 X : f(x) < �a1/2}. The first set in the union is in F

by assumption (f is measurable) and the second is in F by the comments following Example

3.2.
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Now, g(x) + f(x) > a =) f(x) > a � g(x) which implies that there exists a rational

number r such that f(x) > r > a � g(x). Hence, {x 2 X : g(x) + f(x) > a} = [
r2Q

{x 2

X : f(x) > r} \ {x 2 X : g(x) > a � r}. Since the rational numbers are countable [
r2Q

is countable. Since f and g are measurable, and unions of countable measurable sets are

measurable {x 2 X : g(x) + f(x) > a} 2 F . Note that �f = (�1)f . Hence if f is

measurable, �f is also measurable and so is f + (�g) = f � g.

Now, fg = 1/2[(f + g)2 � (f 2 + g2)]. Since f 2, g2, f + g, f � g and cf are measurable, if

f, g are measurable, so is fg.

Lastly, {x 2 X : |f(x)| > a} = {x 2 X : f(x) > a or f(x) < �a} = {x 2 X : f(x) >

a} [ {x 2 X : f(x) < �a} = {x 2 X : f(x) > a} [ {x 2 X : �f(x) > a}. Since f and �f

are measurable, {x 2 X : |f(x)| > a} 2 F . ⌅

Recall that if {xn}n2N is a sequence of real numbers

lim inf
n!1

xn := sup
k2N

inf
j�k

{xj} and lim sup
n!1

xn := inf
k2N

sup
j�k

{xj}.

Theorem 3.6. Let fi(x) : X ! R for i = 1, 2, · · · be measurable. Then sup{f1, · · · , fn},

inf{f1, · · · , fn}, sup
n

fn, inf
n

fn, lim sup
n

fn and lim inf
n

fn are all measurable functions.

Proof. Let h(x) = sup{f1(x), · · · , fn(x)}. Then, Sa = {x 2 X : h(x) > a} = [n

i=1{x :

fi(x) > a}. Consequently, since fi is measurable, Sa 2 F . Similarly if g(x) = sup
n2N

fn(x),

Sa = {x 2 X : g(x) > a} =
S
n2N

{x : fn(x) > a} 2 F . The same argument can be made for

inf. Since lim sup
n!1

fn = inf
n�1

sup
k�n

fk, lim sup fn is measurable. The same for lim inf
n!1

fn. ⌅

Definition 3.2. Let i 2 I an arbitrary index set and fi : (X,F) ! (Xi,Fi) be F � Fi

measurable. If G ⇢ F is a �-algebra, we say that fi is measurable with respect to G if

�(fi) ⇢ G. The smallest �-algebra G that makes all fi measurable with respect to G is

�

✓S
i2I

f�1
i

(Fi)

◆
and is denoted by �(fi : i 2 I).
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Chapter 4

Integration

4.1 Simple functions

Often, it is necessary to use the symbols �1 or 1 in calculations. In these cases we work

with the extended real line, i.e., R̄ := R [ {�1} [ {1} = [�1,1]. Functions that take

values in R̄ are called numerical functions. The Borel sets associated with the extended

real line are denoted by B̄ := B(R̄) and are defined as the collection of sets B̄ such that

B̄ = B[S where B 2 B(R) and S 2 {;, {�1}, {1}, {�1,1}}. It can be verified that B̄ is

a �-algebra and that B(R) = R\B(R̄) := {R[B : B 2 B(R)}. In addition, B̄ is generated

by a collection of sets of the form [a,1] (or (a,1], [�1, a], [�1, a)) where a 2 R.

Theorem 4.1. B̄ = �(C), where C := {[a,1] : a 2 R} .

Proof. Let C := {[a,1] : a 2 R} and G := � (C). Note that since [a,1] = [a,1) [ {1},

[a,1] 2 B̄ and C ⇢ B̄. Then, since B̄ is a �-algebra �(C) := G ⇢ B̄. Now, let C1 =

{[a, b) : �1 < a  b < 1} and note that [a, b) = [a,1] � [b,1] 2 G. Hence, C1 ⇢ G and

�(C1) = B(R) ⇢ G since G is a �-algebra.

Note that {1} =
T
n2N

[n,1], {�1} =
T
n2N

[�1,�n) =
T
n2N

[�n,1]c and, consequently,

{1}, {�1} 2 G. Then, for all B 2 B(R) and S 2 {;, {�1}, {1}, {�1,1}} we have

B [ S 2 G, showing that B̄ ⇢ G. ⌅
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Let (X,F) and (R,B) be measurable spaces. Since the indicator function of a measurable

set is a measurable function, it follows from Theorem 3.5 that if {Aj}nj=1 with n 2 N is a

pairwise disjoint collection in F and aj 2 R for j = 1, · · · , n, the linear combination

f(x) =
nX

i=1

ajIAj(x) (4.1)

is a F � B-measurable function.

Definition 4.1. A real-valued function on a measurable space (X,F) is said to be simple if

it has the representation (4.1). A standard representation of a simple function is given by

f(x) =
nX

j=0

ajIAj(x) with a0 = 0 and A0 = ([n

j=1Aj)c. (4.2)

Remark 4.1. 1. If f : (X,F) ! (R,B) is measurable and takes on finitely many values,

say {aj}nj=1 then it is a simple function. To see this, note that Bj = {x : f(x) = aj} is

measurable, since Bj = {x : f(x)  aj} � {x : f(x) < aj} and f is measurable. Also,

note that the collection {Bj}nj=1 is pairwise disjoint. Hence,

f(x) =
nX

j=1

ajIBj(x) =
nX

j=1

ajI{x:f(x)=aj}(x). (4.3)

Conversely, if f is simple it takes on finitely many values.

2. Representation (4.2) is not unique, but a simple function has at least one representation

such as (4.2) .

The next theorem shows that certain functions of simple functions are simple functions.

Theorem 4.2. Let f : (X,F) ! (R,B) and g : (X,F) ! (R,B) be simple functions. Then,

f ± g, cf for c > 0, fg, f+ = max{f, 0}, f� = �min{f, 0} and |f | are simple functions.
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4.2 Integral of simple functions

Definition 4.2. Let f : (X,F , µ) ! (R,B) be a non-negative simple function with standard

representation (4.2). The integral of f with respect to µ, denoted by
R
X
fdµ, is given by

Z

X

fdµ :=
nX

j=0

ajµ(Aj) 2 [0,1]. (4.4)

By definition aj 2 R for j = 0, 1, · · · , n, but since µ takes values in [0,1] we can have
R
X
fdµ = 1. If µ is a finite measure, e.g., a probability measure P , then it must be that

R
X
fdµ 2 R. When X := ⌦ an outcome space, f := X is a random variable and µ := P

is a probability measure we write EP (X) :=
R
⌦ XdP and call it the expectation of X given

probability P .

It will be convenient, in the case of simple functions, to write Iµ(f) :=
R
X
fdµ.

Remark 4.2. Since the representation (4.2) is not unique, for uniqueness, the definition

of integral requires that it be invariant to the representation used. To see this, suppose that

f(x) =
P

n

j=0 ajIAj(x) =
P

m

k=0 bkIBk
(x). Then, X = [n

j=0Aj = [m

k=0Bk and

Aj = [m

k=0(Aj \Bk), Bk = [n

j=0(Aj \ Bk).

Since µ is finitely additive and the sets in the above unions are disjoint we have that

nX

j=0

ajµ(Aj) =
nX

j=0

aj

mX

k=0

µ(Aj \Bk) =
nX

j=0

mX

k=0

ajµ(Aj \ Bk).

Similarly,
mX

k=0

bkµ(Bk) =
mX

k=0

bk

nX

j=0

µ(Aj \ Bk) =
nX

j=0

mX

k=0

bkµ(Aj \ Bk).

But aj = bk whenever Aj \ Bk 6= ;, and when Aj \ Bk = ;, µ(Aj \ Bk) = 0. Thus,

ajµ(Aj \Bk) = bkµ(Aj \Bk) for all pairs (j, k), and Iµ(f) is invariant to the representation

of the simple function.
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Theorem 4.3. Let f : (X,F , µ) ! (R,B) and g : (X,F , µ) ! (R,B) be simple non-negative

functions. Then,

1.
R

X

cfdµ = c
R

X

fdµ for c � 0 and
R

X

IEdµ = µ(E) for E 2 F .

2.
R

X

(f + g)dµ =
R

X

fdµ+
R

X

gdµ,

3. If for E 2 F , we define m(E) =
R

X

fIEdµ, then m is a measure on F .

4. f  g =)
R

X

fdµ 
R

X

gdµ.

Proof. For 1., note that c � 0 =) cf � 0 with representation cf(x) =
P

n

j=0 cajIAj(x).

Therefore,
R
X
cfdµ =

P
n

j=0 cajµ(Aj) = c
P

n

j=0 ajµ(Aj) = c
R
X
fdµ. For the second part,

note that IE(x) = IE(x) + 0IEc(x). Hence,
R

X

IEdµ = µ(E).

For 2., let f(x) =
P

n

j=0 ajIAj(x) and g(x) =
P

m

k=0 bkIBk
(x). Then, f(x) + g(x) =

P
n

j=0

P
m

k=0(aj + bk)IAj\Bk
(x) with (Aj \ Bk) \ (Aj0 \ Bk0) = ; whenever (j, k) 6= (j0, k0).

Then,
Z

X

(f + g) dµ =
nX

j=0

mX

k=0

(aj + bk)µ(Aj \Bk)

=
nX

j=0

aj

mX

k=0

µ(Aj \Bk) +
mX

k=0

bk

nX

j=0

µ(Aj \ Bk)

=
nX

j=0

ajµ(Aj) +
mX

k=0

bkµ(Bk),

since X is the union of both {Aj} and {Bk}. Then, by definition
R
X
(f + g)dµ =

R
X
fdµ +

R
X
gdµ.

For 3., note that f(x)IE(x) =
P

n

j=0 ajIAj\E(x). From b) and a),

�(E) =

Z

X

fIEdµ =
nX

j=0

aj

Z

⌦

IAj\E(x)dµ =
nX

j=0

ajµ(Aj \ E).

But µ(Aj\E) is a measure, and we have expressed �(E) as a linear combination of measures

on F , hence � is a measure on F .
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For 4., write g = f + (g � f). Note that g � f is simple and non-negative since g � f .

Hence, Iµ(g) = Iµ(f) + Iµ(g � f) � Iµ(f). ⌅

4.3 Integral of non-negative functions

We start with the following fundamental theorem.

Theorem 4.4. Let f : (⌦,F) ! (R̄, B̄) be a non-negative measurable function. Then, there

exists a sequence 'n : (⌦,F) ! (R,B) of simple non-negative functions such that:

1. 'n(!)  'n+1(!), for all ! 2 ⌦ and n 2 N

2. lim
n!1

'n(!) = f(!), for all ! 2 ⌦.

Proof. 1. For each n = 1, 2, · · · define the sets

Ek,n =

(�
! 2 ⌦ : k

2n  f(!) < k

2n + 1
2n

 
= f�1([ k

2n ,
k

2n + 1
2n )) for k = 0, 1, · · · , n2n � 1

{! 2 ⌦ : f(!) � n} = f�1([n,1]) for k = n2n.

For each n, the sets {Ek,n : k = 0, 1, · · · , n2n} are disjoint by construction, belong to F since

f is measurable and [n2n
k=0Ek,n = ⌦. Now, let

'n(!) =
n2nX

k=0

k

2n
IEk,n

(!).

Fix ! 2 ⌦ and for any n 2 N we note that ! 2 Ek0,n for some k0. By definition

'n(!) =

(
k0
2n if k0 = 0, 1, · · · , n2n � 1

n if k0 = n2n.

First, let k0 2 {0, 1, · · · , n2n�1} and consider n+1. The lower bound on [ k02n ,
k0
2n+

1
2n ) must co-

incide with k

2n+1 , which gives k = 2k0. Thus, Ek,n+1 = E2k0,n+1 = f�1
�
[ 2k0
2n+1 ,

2k0
2n+1 +

1
2n+1 )

�
=

f�1
�
[ k02n ,

k0
2n + 1

2n+1 )
�

and

Ek+1,n+1 = E2k0+1,n+1 = f�1

✓
[
k0
2n

+
1

2n+1
,
k0
2n

+
2

2n+1
)

◆
= f�1

✓
[
k0
2n

+
1

2n+1
,
k0
2n

+
1

2n
)

◆
.
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Consequently, Ek0,n = Ek,n+1[Ek+1,n+1 = E2k0,n+1[E2k0+1,n+1. If ! 2 E2k0,n+1 ⇢ Ek0,n then

'n+1(!) =
2k0
2n+1 and 'n+1(!)� 'n(!) =

2k0
2n+1 � k0

2n = 0. Alternatively, if ! 2 E2k0+1,n+1 then

'n+1(!) =
2k0+1
2n+1 and 'n+1(!) � 'n(!) =

2k0+1
2n+1 � k0

2n = 1
2n+1 > 0. Consequently, if ! 2 Ek0,n

then 'n+1(!)� 'n(!) � 0.

Second, if k0 = n2n then Ek0,n = f�1([n,1]). Now, if ! 2 f�1([n+1,1]) then 'n+1(!) =

n + 1 and 'n(!) = n. Consequently, 'n+1(!) � 'n(!) = 1 > 0. If ! 2 f�1([n, n + 1]) then

'n(!) = n and 'n+1(!) = k

2n+1 if ! 2 f�1([ k

2n+1 ,
k

2n+1 + 1
2n+1 )). Setting the lower bound

of the interval equal to n gives k = n2n+1 and 'n+1(!) = n if ! 2 f�1([n, n + 1
2n+1 )),

giving 'n+1(!) � 'n(!) = 0. If ! 2 f�1([n + 1
2n+1 , n + 2

2n+1 )) then 'n+1(!) = n2n+1+1
2n+1

and consequently 'n+1(!) � 'n(!) = 1
2n+1 > 0. Continuing in this fashion for subsequent

sub-intervals of [n, n+ 1] gives 'n+1(!)� 'n(!) � 0.

2. From item 1, we have that '1(!)  '2(!)  · · ·  f(!) for all ! 2 ⌦. Hence, lim
n!1

'n(!) =

sup
n2N

'n(!). But 0  f(!) � 'n(!)  1
2n and taking limits as n ! 1 we have f(!) =

lim
n!1

'n(!) = sup
n2N

'n(!). ⌅

Definition 4.3. Let f : (X,F , µ) ! (R̄, B̄) be a non-negative measurable function. The

integral of f with respect to µ is given by
Z

X

fdµ := sup
'

Z

X

'(x)dµ := sup
'

Iµ(') 2 [0,1], (4.5)

where the sup is taken over all simple functions ' which are non-negative satisfying '(x) 

f(x) for all x 2 X.

Remark 4.3. If f is a non-negative simple function
R
X
fdµ = Iµ(f).

Theorem 4.5. (Beppo-Levi Theorem) Let (X,F , µ) be a measure space and {fj}j2N be

an increasing sequence of non-negative measurable functions fj : (X,F) ! (R̄, B̄). Then

f = sup
j2N

fj is a non-negative measurable function and

Z

X

fdµ :=

Z

X

sup
j2N

fjdµ = sup
j2N

Z

X

fjdµ.
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Proof. That f is a non-negative measurable function follows from Theorem 3.6. Note that

if g and h are non-negative measurable functions, we have by definition that

Z

X

gdµ := sup
'

Z

X

'dµ where '  g, ' a simple function.

But if g  h, Z

X

gdµ  sup
'

Z

X

'dµ =

Z

X

hdµ where '  h.

Now, fj  f := sup
j2N

fj. By the monotonicity of integrals, which we just established,

Z

X

fjdµ 
Z

X

fdµ.

Taking sup
j2N

on both sides gives sup
j2N

R
X
fjdµ 

R
X
fdµ.

Now, we establish the reverse inequality, i.e., sup
j2N

R
X
fjdµ �

R
X
fdµ. Let '(x) be a simple

non-negative function such that '  f . If we can show that

Iµ(') =

Z

X

'dµ  sup
j2N

Z

X

fjdµ (4.6)

we will have the desired inequality since we can take sup over all simple functions on both

sides of (4.6) to give

sup
'

Z

X

'dµ :=

Z

X

fdµ  sup
j2N

Z

X

fjdµ.

Let ' be a simple non-negative function such that '  f . Since f(x) := sup
j2N

fj(x), for every

x 2 X and ✏ 2 (0, 1), there exists N(x,✏) such that

fj(x) � ✏'(x) whenever j � N(x,✏).

Now, if Aj = {x : fj(x) � ✏'(x)} we note that the sets Aj increase as j ! 1 since

f1  f2 · · · . Furthermore, these sets are measurable by measurability of fj and '. By

definition of Aj

✏IAj(x)'(x)  IAj(x)fj(x)  fj(x). (4.7)
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Since ' is a simple function it has a standard representation '(x) =
P

m

i=0 yiIBi(x) and

✏IAj(x)
mX

i=0

yiIBi(x) = ✏
mX

i=0

yiIBi\Aj(x).

Thus, the integral of the simple function in this expression is given by ✏
P

m

i=0 yiµ(Bi \ Aj).

By monotonicity of integrals and using (4.7) we have

✏
mX

i=0

yiµ(Bi \ Aj) 
Z

X

fjdµ  sup
j2N

Z

X

fjdµ.

Since '  f , the collection {Aj} grows toX as j ! 1. Thus, by the fact that µ is continuous

from below

µ(Bi \ Aj) " µ(Bi \X) = µ(Bi) as j ! 1

and

✏
mX

i=0

yiµ(Bi) = ✏

Z

X

'dµ  sup
j2N

Z

X

fjdµ.

Now, just let ✏ be arbitrarily close to 1 to finish the proof. ⌅

Remark 4.4. 1. If we take fj = 'j where 'j are non-negative simple functions and

f = sup
j2N

'j, then
Z

X

fdµ = sup
j2N

Z

X

'jdµ.

Note that sup can be replaced with lim
j!1

.

2. If E 2 F , then IE(x)f(x) is a non-negative measurable function if f � 0. We define

Z

E

fdµ =

Z

X

IEfdµ. (4.8)

Theorem 4.6. Let (X,F , µ) be a measure space and f, g : (X,F , µ) ! (R̄, B̄) be numerical

non-negative measurable functions. Then

1.
R

X

afdµ = a
R

X

fdµ for a � 0,
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2.
R

X

(f + g)dµ =
R

X

fdµ+
R

X

gdµ,

3. If E,F 2 F and E ⇢ F , then
R
E
fdµ 

R
F
fdµ.

Proof. 1. If a > 0, let 'n be an increasing sequence of measurable non-negative simple

functions converging to f (such sequence exists by Theorem 4.4). Then, a'n is an increasing

sequence converging point wise to af . By Theorem 4.5 and the fact that Iµ(a'n) = aIµ('n)
Z

X

afdµ = lim
n!1

Z

X

a'ndµ = a lim
n!1

Z

X

'n(!)dµ = a

Z

X

fdµ

2. Let 'n, n be non-negative increasing simple functions converging to f and g. Then

'n +  n is an increasing sequence converging to f + g. Again, by Theorem 4.5
Z

X

(f + g)dµ = lim
n!1

Z

X

('n +  n)dµ by Beppo-Levi’s Theorem

= lim
n!1

Z

X

'ndµ+ lim
n!1

Z

X

 ndµ by Theorem 4.3

=

Z

X

fdµ+

Z

X

gdµ. by Beppo-Levi’s Theorem

3. Since f is non-negative fIE  fIF therefore
Z

E

fdµ =

Z

X

fIEdµ 
Z

X

fIFdµ =

Z

F

fdµ.

⌅

Corollary 4.1. Let {fj}j2N be a sequence of measurable non-negative numerical functions,

i.e., fj : (X,F , µ) ! (R̄, B̄). Then,
P

1

j=1 fj is measurable and
Z

X

 
1X

j=1

fj

!
dµ =

1X

j=1

Z

X

fjdµ.

Proof. Let Sm =
P

m

j=1 fj, S = lim
m!1

P
m

j=1 fj =
P

1

j=1 fj and note that 0  S1  S2  · · · .

Then, by Theorem 4.6.3 we have that
Z

X

Smdµ =
mX

j=1

Z

X

fjdµ.

63



Taking limits as m ! 1 and using Theorem 4.5, we have

lim
m!1

Z

X

Smdµ = lim
m!1

mX

j=1

Z

X

fjdµ =
1X

j=1

Z

X

fjdµ =

Z

X

Sdµ =

Z

X

 
1X

j=1

fj

!
dµ.

⌅

Theorem 4.7. (Fatou’s Lemma): Let {fj}j2N be a sequence of measurable non-negative

numerical functions fj : (X,F , µ) ! (R̄, B̄). Then, f := lim inf
j!1

fj is measurable and

Z

X

fdµ  lim inf
j!1

Z

X

fjdµ.

Proof. First, f is measurable by Theorem 3.6. Let gn = inf{fn, fn+1, · · · } for n = 1, 2, · · · ,

and note that g1  f1, g1  f2, · · · . Also, g2  f2, g2  f3 · · · . Thus, gn  fj for all n  j.

Furthermore, g1  g2  · · · . Now, recall that f := lim inf
j!1

fj := sup
n2N

inf
j�n

fj and

lim
n!1

gn = lim inf
j!1

fj := f.

Also,
R
X
gndµ 

R
X
fjdµ for all n  j and

Z

X

gndµ  lim inf
j!1

Z

X

fjdµ.

Since the sequence gn " lim inf
j!1

fj, by Theorem 4.5

lim
n!1

Z

X

gndµ =

Z

X

fdµ  lim inf
j!1

Z

X

fj(!)dµ.

⌅

4.4 Integral of functions

Let f : (X,F , µ) ! (R̄, B̄) be a measurable numerical function and f+ = max{f, 0} and

f� = �min{f, 0}.
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Definition 4.4. Let f : (X,F , µ) ! (R̄, B̄) be a measurable numerical function such that
R
X
f+dµ < 1 and

R
X
f�dµ < 1. In this case, we say that f is µ-integrable and we write

Z

X

fdµ :=

Z

X

f+dµ�
Z

X

f�dµ.

We note that
R
X
fdµ 2 R and denote by LR the set of integrable real functions and LR̄

the set of integrable numerical functions. A non-negative function f is said to be integrable

if, and only if,
R
X
fdµ < 1. If (X,F , µ) := (Rn,Bn,�n) we call

R
Rn fd�n the Lebesgue

integral.

Theorem 4.8. Let f : (X,F , µ) ! (R̄, B̄) be a measurable function. Then, the following

statements are equivalent:

1. f 2 LR̄,

2. |f | 2 LR̄,

3. there exists 0  g 2 LR̄ such that |f |  g.

Proof. (1 =) 2) Since, |f | = f+ + f� and since integrability of f implies
R
X
f+dµ < 1

and
R
X
f�dµ < 1 we have

R
X
|f |dµ =

R
X
f+dµ+

R
X
f�dµ < 1.

(2 =) 3) Just take g = |f |.

(3 =) 1) Since f+  |f |  g and f�  |f |  g, we have by the monotonicity of the integral

of non-negative functions and the integrability of g that f+, f� 2 LR̄. Hence, f 2 LR̄. ⌅

Theorem 4.9. Let f, g : (X,F , µ) ! (R̄, B̄) be measurable functions such that f, g 2 LR̄

and a 2 R. Then,

1. af 2 LR̄ and
R
X
afdµ = a

R
X
fdµ,

2. (f + g) 2 LR̄ and
R
X
(f + g)dµ =

R
X
fdµ+

R
X
gdµ,

3. max{f, g}, min{f, g} 2 LR̄,
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4. if f  g then
R
X
fdµ 

R
X
gdµ.

Proof. Homework. Use Theorems 4.8 and 4.6. ⌅

Remark 4.5. Note that
����
Z

X

fdµ

���� 
����
Z

X

f+dµ

����+
����
Z

X

f�dµ

���� =
Z

X

f+dµ+

Z

X

f�dµ =

Z

X

(f+ + f�)dµ =

Z

X

|f |dµ.

Theorem 4.10. Let f : (X,F , µ) ! (R̄, B̄) be a non-negative measurable function such that

f 2 LR̄ and

m(E) =

Z

E

fdµ for all E 2 F .

Then, m is a measure on F .

Proof. Since f � 0, m(E) � 0. If E = ;, then fIE = 0 and

m(;) =
Z

;

fdµ =

Z

X

fI;dµ =

Z

X

0dµ = 0.

Now, let {Ej}j2N be a disjoint collection of sets in F such that [1

j=1Ej = E and let

fn(x) =
P

n

j=1 f(x)IEj(x). By Theorem 4.6
R
X
fndµ =

P
n

j=1

R
X
fIEjdµ. Thus,

R
X
fndµ =

P
n

j=1 m(Ej). Note that f1  f2  · · · and converges to fIE. Hence, by Theorem 4.5

m(E) =

Z

X

fIEdµ = lim
n!1

Z

X

fndµ = lim
n!1

nX

j=1

m(Ej) =
1X

j=1

m(Ej).

⌅

Remark 4.6. 1. Suppose X : (⌦,F , P ) ! (R,B(R)) is a random variable and PX is the

probability measure induced by X on B(R) as in Example 3.2. Then, in Theorem 4.10

letting (X,F , µ) = (R,B(R), PX), we conclude that

mX(B) =

Z

B

fdPX for all B 2 B(R)

is a measure on B(R). In particular, if B = (�1, x] for x 2 R, mX((�1, x]) =
R
(�1,x] fdPX .
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2. m is called the measure with density function f with respect to µ and is denoted by

m = fµ. If m has a density with respect to µ it is traditional in mathematics to

write dm/dµ for the the density function. We note that with a little more work we can

recognize f as the Radon-Nikodým derivative of m with respect to the measure µ.

67



68



Chapter 5

Lebesgue’s convergence theorems and Lp

spaces

In this chapter we study two important convergence theorems and some of their uses and

applications.

5.1 Convergence theorems

Theorem 5.1. (Lebesgue’s Monotone Convergence Theorem) Let fn : (X,F , µ) ! (R̄, B̄)

for n 2 N be integrable functions such that f1  f2  · · · and f := lim
n!1

fn = sup
n2N

fn. Then,

f 2 LR̄(µ) () sup
n2N

Z

X

fndµ < 1.

In this case,

sup
n2N

Z

X

fndµ =

Z

X

sup
n2N

fndµ =

Z

X

fdµ.

Proof. Since fn 2 LR̄ and f1  f2  · · · we have that 0  fn � f1 2 LR̄ forms an increasing

sequence of nonnegative measurable functions. Hence, by Theorem 4.5

0  sup
n2N

Z

X

(fn � f1)dµ =

Z

X

sup
n2N

(fn � f1)dµ. (5.1)
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Now, suppose f 2 LR̄ and note that from the left side of equation (5.1)

sup
n2N

Z

X

fndµ�
Z

X

f1dµ =

Z

X

(f � f1)dµ, or

sup
n2N

Z

X

fndµ =

Z

X

f1dµ+

Z

X

(f � f1)dµ

=

Z

X

f1dµ+

Z

X

fdµ�
Z

X

f1dµ =

Z

X

fdµ < 1.

If sup
n2N

R
X
fndµ < 1, then from equation (5.1) we have

R
X
(f � f1)dµ < 1 and since f1 is

integrable f = (f � f1) + f1 is integrable. Therefore,

Z
fdµ =

Z
(f � f1)dµ+

Z
f1du = sup

n2N

Z

X

fndµ < 1.

⌅

We now prove a useful inequality.

Theorem 5.2. (Markov’s Inequality) Let (X,F , µ) be a measure space and f 2 LR̄. Then,

for all E 2 F and a > 0

µ ({|f | � a} \ E)  1

a

Z

E

|f |dµ.

Proof. Note that, aI{|f |�a}\E = aI{|f |�a}IE  |f |IE and consequently, integrating both sides,

aµ({|f | � a} \ E) 
R
E
|f |dµ. Therefore,

µ({|f | � a} \ E)  1

a

Z

E

|f |dµ.

⌅

Remark 5.1. Note that if E = X we have µ({|f | � a})  1
a

R
X
|f |dµ. When (X,F , µ) =

(⌦,F , P ) a probability space and f := X a random variable, the last result is commonly

stated as

P ({|X| � a})  1

a
EP (|X|).
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Also, note that if f := (X � EP (X))2 we have

P ({(X � EP (X))2 � a}) = P ({|X � EP (X)| � a1/2})  1

a
EP ((X � EP (X))2),

and letting b = a1/2 we have

P ({|X � EP (X)| � b})  1

b2
EP ((X � EP (X))2),

which is known as Chebyshev’s Inequality.

Recall that for a measure space (X,F , µ), N is a null set if N 2 F and µ(N) = 0. If a

certain property P(x) that depends on x 2 X holds for all x 2 X except x 2 NP ⇢ N , where

N is a null set, we say that the property is true almost everywhere (ae) or almost surely

(as). Note the set NP where the property does not hold need not be a measurable set.

Theorem 5.3. Let (X,F , µ) be a measure space and f 2 LR̄. Then,

1. if N is a null set
R
N
fdµ = 0,

2.
R
X
|f |dµ = 0 () |f | = 0 ae.

Proof. 1. For j 2 N, let fj = min{|f |, j} and note 0  f1  f2  · · · with limj!1 fj = |f |.

Hence, by Theorem 4.5

0 
����
Z

N

fdµ

���� =

����
Z

X

INfdµ

���� 
Z

X

IN |f |dµ

= lim
j!1

Z

X

INfjdµ = lim
j!1

Z

X

IN min{|f |, j}dµ  lim
j!1

Z

X

jINdµ

= lim
j!1

j

Z

X

INdµ = lim
j!1

jµ(N) = 0.

2. (()
R
X
|f |dµ =

R
{|f |=0} |f |dµ+

R
{|f | 6=0} |f |dµ =

R
{|f | 6=0} |f |dµ = 0 by item 1.

()) Note that by the fact that µ is a measure

µ({|f | > 0}) = µ

 
[

j2N

{|f | � 1/j}
!


X

j2N

µ({|f | � 1/i})


X

j2N

j

Z

X

|f |dµ = 0

71



by Markov’s Inequality and the assumption that
R
X
|f |dµ = 0. ⌅

Remark 5.2. 1. If f, g � 0 are measurable, integrable and f = g µ-ae then
R
X
fdµ =

R
{x:f(x) 6=g(x)} fdµ +

R
{x:f(x)=g(x)} fdµ. But by Theorem 5.3.1, the first integral in this

sum is equal to zero. Consequently,
R
X
fdµ =

R
{x:f(x)=g(x)} fdµ =

R
{x:f(x)=g(x)} gdµ =

R
{x:f(x) 6=g(x)} gdµ+

R
{x:f(x)=g(x)} gdµ =

R
X
gdµ.

2. If f 2 LR̄ and f = g µ-ae then g 2 LR̄. To see this, note that f = g µ-ae implies

f+ = g+ and f� = g� µ-ae. Using the previous remark on f+ and f� we have
R
X
f+dµ =

R
X
g+dµ and

R
X
f�dµ =

R
X
g�dµ. Hence, g 2 LR̄ and

R
X
fdµ =

R
X
gdµ.

3. If f is measurable and 0  g 2 LR̄ with |f |  g ae, then

f+  |f |  g ae and f�  |f |  g ae .

Hence,
R
X
f+dµ 

R
X
gdµ,

R
X
f�dµ 

R
X
gdµ and f is integrable.

Theorem 5.4. Let f : (X,F , µ) ! (R̄, B̄) be integrable. Then f is real valued almost

everywhere.

Proof. Let {x : |f(x)| = 1} = {x : f(x) = 1} [ {x : f(x) = �1} 2 B. Note that
T
n2N

{x : |f(x)| � n} :=
T
n2N

Bn with B1 � B2 � · · · . Hence, lim
n!1

Bn =
T
n2N

Bn = N . Also,

note that by Markov’s Inequality and integrability of f

µ(B1) = µ({x : |f(x)| � 1}) 
Z

X

|f |dµ < 1.

Hence, by continuity of measures from above, and Markov’s Inequality

µ(N) = lim
n!1

µ(Bn) = lim
n!1

µ({x : |f(x)| � n})  lim
n!1

1

n

Z

X

|f |dµ = 0.

⌅
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Theorem 5.5. (Lebesgue’s Dominated Convergence Theorem) Let (X,F , µ) be a measure

space and {fn}n2N be a sequence of integrable functions such that |fn|  g for all n, almost

everywhere, where g is some integrable nonnegative function. If limn!1 fn(x) = f(x) exists

almost everywhere in R̄, then f is integrable and

lim
n!1

Z

X

fndµ =

Z

X

lim
n!1

fndµ :=

Z

X

fdµ.

Proof. We start by observing that since the fn and g are measurable, the set

N = {x : lim
n!1

fn(x) does not exist} [
 
[

n2N

{x : |f(x)| > g(x)}
!

is measurable and µ(N) = 0. Thus, we proceed by taking N = ; as it does not contribute

to any of the integrals in the proof of the Theorem. By the point wise limit of the sequence

fn, for any ✏ > 0 there exists N(✏,x) such that for all n > N(✏,x)

|f | = |f � fn + fn|  |fn|+ |f � fn|

 g + |f � fn| by |fn| < g

 g + ✏.

Therefore,
R
X
fdµ < 1 provided g 2 LR̄(µ). Also, |fn|  g () �g  fn  g. Hence,

fn + g � 0. By Fatou’s Lemma,

Z
lim inf
n!1

(fn + g)dµ =

Z
(f + g)dµ  lim inf

n!1

Z
(fn + g)dµ

= lim inf
n!1

Z
fndµ+

Z
gdµ.

Therefore,
Z

fdµ  lim inf
n!1

Z
fndµ. (5.2)
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Also, g � fn � 0 and again by Fatou’s Lemma,

0 
Z

lim inf
n!1

(g � fn)dµ =

Z
gdµ�

Z
fdµ

 lim inf
n!1

Z
(g � fn)dµ

=

Z
gdµ+ lim inf

n!1

�
Z

fndµ

=

Z
gdµ� lim sup

n!1

Z
fndµ.

The second inequality together with the last equality imply that
Z

fdµ � lim sup
n!1

Z
fndµ. (5.3)

Combining (5.2) and (5.3) completes the proof. ⌅

We now consider a measurable function that is indexed by a parameter ✓ 2 (a, b) for

a < b. As such, we define f(x, ✓) : (X,F , µ)⇥ (a, b) ! (R,B) where f is measurable for all

✓ 2 (a, b).

Theorem 5.6. Let f(x, ✓) : (X,F , µ) ⇥ (a, b) ! (R,B) where f is measurable and f 2 LR

for all ✓ 2 (a, b). Also, assume that f(x, ✓) is continuous for every x 2 X and |f(x, ✓)|  g(x)

for all (x, ✓) 2 X ⇥ (a, b) and some nonnegative integrable function g. Then, the function

h : (a, b) ! R given by

h(✓) :=

Z

X

f(x, ✓)dµ

is continuous.

Proof. The function h is well defined because of integrability of f(x, ✓). It suffices to show

that for any sequence {✓n}n2N ⇢ (a, b) such that ✓n ! ✓ we have h(✓n) ! h(✓). By

continuity of f(x, ✓), for every x, we have f(x, ✓n) ! f(x, ✓) and |f(x, ✓n)|  g(x). By

Lebesgue’s Dominated Convergence Theorem,

lim
n!1

h(✓n) =

Z

X

lim
n!1

f(x, ✓n)dµ =

Z

X

f(x, ✓)dµ = h(✓).
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⌅

Theorem 5.7. Let f(x, ✓) : (X,F , µ) ⇥ (a, b) ! (R,B) where f is measurable and f 2 LR

for all ✓ 2 (a, b). Also, assume that f(x, ✓) is differentiable on (a, b) for every x 2 X and

| d

d✓
f(x, ✓)|  g(x) for all (✓, x) 2 (a, b) ⇥ X and some nonnegative integrable function g.

Then, the function h : (a, b) ! R given by

h(✓) :=

Z

X

f(x, ✓)dµ

is differentiable and its derivative is given by

d

d✓
h(✓) =

Z

X

d

d✓
f(x, ✓)dµ.

Proof. Recall that ✓, ✓n 2 (a, b) with ✓n ! ✓ and ✓n 6= ✓.

d

d✓
f(x, ✓) = lim

n!1

f(x, ✓n)� f(x, ✓)

✓n � ✓

for all x 2 X and consequently d

d✓
f(x, ✓) is measurable. By the Mean Value Theorem,

f(x, ✓n) � f(x, ✓) = d

d✓
f(x, ✓z,n)(✓n � ✓) with ✓z,n = �✓n + (1 � �)✓, � 2 (0, 1), ✓z,n 2 (a, b).

Consequently,
����
f(x, ✓n)� f(x, ✓)

✓n � ✓

���� =
����
d

d✓
f(x, ✓z,n)

����  g(x)

so that
���f(x,✓n)�f(x,✓)

✓n�✓

��� is integrable. Thus,

h(✓n)� h(✓)

✓n � ✓0
=

Z

X

f(x, ✓n)� f(x, ✓)

✓n � ✓
dµ.

Hence, by the Lebesgue’s Dominated Convergence Theorem

lim
n!1

h(✓n)� h(✓)

✓n � ✓
=

d

d✓
h(✓) =

Z

X

lim
n!1

f(x, ✓n)� f(x, ✓)

✓n � ✓
dµ =

Z

X

d

d✓
f(x, ✓)dµ.

⌅
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5.2 Lp spaces

Definition 5.1. The collection of measurable functions f : (X,F , µ) ! (R,B) such that
R
X
|f |pdµ < 1 for p 2 [1,1) is denoted by Lp

R(µ) or Lp

R(X,F , µ).

Let f, g 2 Lp

R(X,F , µ) and define s : (X,F , µ) ! (R,B) as s(x) = f(x) + g(x) for all

x 2 X. Then, |s(x)|  |f(x)|+ |g(x)|  2max{|f(x)|, |g(x)|} and

|s(x)|p  2p max{|f(x)|, |g(x)|}p = 2p max{|f(x)|p, |g(x)|p}  2p(|f(x)|p + |g(x)|p).

Consequently,
R
X
|s|pdµ  2p(

R
X
|f |pdµ+

R
X
|g|pdµ) < 1. Also, if a 2 R and m : (X,F , µ) !

(R,B) is defined as m(x) = af(x) for all x 2 X, m is measurable and we have |m(x)|p =

|a|p|f(x)|p and
R
X
|m|pdµ = |a|p

R
X
|f |pdµ < 1. Lastly, if we take ✓(x) = 0 for all x 2 X to

be the null vector in Lp

R(X,F , µ), then Lp

R(X,F , µ) is a vector space.

If f 2 Lp

R(X,F , µ) we define the function k · kp : Lp

R(X,F , µ) ! [0,1) as kfkp =
�R
X
|f |pdµ

�1/p and prove the following inequality.

Theorem 5.8. (Hölder’s Inequality) If 1 < p < 1, p�1 + q�1 = 1, f 2 Lp

R, g 2 Lq

R, then

fg 2 LR and
R
X
|fg|dµ  kfkpkgkq.

Proof. If kfkp = 0 then, by Theorem 5.3 |f | = 0 ae, so |fg| = 0 ae. Hence,
R
|fg|dµ = 0 and

the inequality holds. Likewise for kgkq = 0. So, assume kfkp, kgkq 6= 0. Let x = f/kfkp,

y = g/kgkq and note that kxkp = 1 and kykq = 1. It suffices to prove
R
|xy|dµ  1.

Now, note that for any a, b > 0 and 0 < ↵ < 1,

a↵b1�↵  ↵a+ (1� ↵)b.

To see this, divide by b to obtain (a
b
)↵  ↵a

b
+(1�↵). It suffices to show u↵  ↵u+(1�↵),

for u > 0.

The inequality holds for u = 1. Now, d

du
u↵ = ↵u↵�1 = ↵ 1

u1�↵ . Since ↵ 2 (0, 1) we have

that u1�↵ < 1 if u < 1. Consequently, in this case, u↵�1 > 1 and d

du
u↵ > ↵. Also, using
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the same arguments, if u > 1 we have that d

du
u↵ < ↵. By the Mean Value Theorem, for

� 2 (0, 1)

u↵ � 1 = ↵(�u+ (1� �))↵�1(u� 1) < ↵(u� 1) =) u↵ < 1� ↵ + ↵u if u > 1.

Also,

u↵ � 1 = ↵(�u+ (1� �))↵�1(u� 1) < ↵(u� 1) =) u↵ < 1 + ↵u� ↵, if u < 1.

Thus, u↵  ↵u+ (1� ↵) for u > 0.

Now, let ↵ = 1/p, a(!) = |x(!)|p, b(!) = |y(!)|q and 1� ↵ = 1/q. Then,

(|x(!)|p)1/p(|y(!)|q)1/q  ↵|x(!)|p + (1� ↵)|y(!)|q, or

|x(!)y(!)|  ↵|x(!)|p + (1� ↵)|y(!)|q.

Thus, integrating both sides of the inequality we obtain
R
|xy|dµ  ↵kxkp+(1�↵)kykq = 1.

⌅

Theorem 5.9. (Minkowski-Riez Inequality) For 1  p < 1, if f and g are in Lp we have

kf + gkp  kfkp + kgkp.

Proof. By the triangle inequality

kf + gkp
p
=

Z
|f + g||f + g|p�1dµ 

Z �
|f ||f + g|p�1 + |g||f + g|p�1

�
dµ

=

Z
|f ||f + g|p�1dµ+

Z
|g||f + g|p�1dµ, and if p = 1 the proof is complete.

If p > 1, by Hölder’s Inequality

 kfkpk|f + g|p�1kq + kgkpk|f + g|p�1kq,

where 1/p+ 1/q = 1 which implies 1/q = 1� 1/p =) q = p

p�1 . Thus,

kf + gkp
p
 kfkpk|f + g|p/qkq + kgkpk|f + g|p/qkq = (kfkp + kgkp)k|f + g|p/qkq. (5.4)
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Now,

k|f + g|p/qkq =
✓Z

(|f + g|p/q)qdµ
◆1/q

=

✓Z
|f + g|pdµ

◆1/q

=

✓Z
|f + g|pdµ

◆ p�1
p

= kf + gkp�1
p

Using this in inequality (5.4) we obtain kf + gkp�(p�1)
p = kf + gkp  kfkp + kgkp. ⌅

Remark 5.3. 1. The Minkowski-Riez Inequality and the fact that for a 2 R, kafkp =

|a|kfkp and kfkp � 0 shows that k · kp has almost all of the properties of a norm. The

exception is that kfkp = 0 does not imply that f(x) = 0 for all x 2 X. It only implies

that f(x) = 0 almost everywhere.

2. f, g 2 Lp

R(X,F , µ) are taken to be equivalent if they differ at most on a set of µ-

measure zero (null set), i.e., f ⇠ g if {x : f(x) 6= g(x)} is a null set. Then, for

every f 2 Lp

R(X,F , µ) we can define an equivalence class (reflexive, symmetric and

transitive) of Lp

R functions induced by f , which will be denoted by [f ]p. The space of

all equivalence classes [f ]p of functions f 2 Lp

R is denoted by Lp

R with norm k[f ]pkp :=

inf{kgkp : g 2 Lp

R and g ⇠ f}. (Lp, kf[p]kp) is a norm vector space and in what follows

we will dispense with these technicalities and identify [f ]p with f .

A commonly encountered case, treated in the next theorem, has p = 2 and X, Y :

(⌦,F , P ) ! (R,B) being random variables such that X, Y 2 L2
R(⌦,F , P ).

Theorem 5.10. Let X, Y : (⌦,F , P ) ! (R,B) be random variables such that X, Y 2

L2(⌦,F , P ).

1. XY 2 L(⌦,F , P ) and |
R
⌦ XY dP | 

�R
⌦ X2dP

�1/2 �R
⌦ Y 2dP

�1/2,

2. If X 2 L2(⌦,F , P ) then X 2 L(⌦,F , P ) and
�R

⌦ XdP
�2 

R
⌦ X2dP ,

3. L2(⌦,F , P ) is a vector space.
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Proof. 1. This is just a special case of Hölder’s Inequality with p = q = 2. 3. follows from the

comments after Definition 5.1. 2. Let X 2 L2 and note that I⌦ 2 L2 with
R
⌦ I⌦dP =

R
⌦ dP .

Then,
����
Z

⌦

XI⌦dP

���� 
✓Z

⌦

X2dP

◆1/2✓Z

⌦

dP

◆1/2

.

Since
R
⌦ dP = 1, we have

����
Z

⌦

XdP

���� 
✓Z

⌦

X2dP

◆1/2

or
✓Z

⌦

XdP

◆2


Z

⌦

X2dP.

⌅

Remark 5.4. If X 2 L2 we define VP (X) =
R
⌦(X � EP (X))2dP =

R
⌦ X2dP � (

R
⌦ XdP )2

and call it the variance of X (under P ).

Theorem 5.11. Let X be a random variable defined on the probability space (⌦,F , P ) taking

values in (R,B) and h : (R,B) ! (R,B) be measurable.

1. f := h �X is integrable in (⌦,F , P ) if, and only if, h is integrable in (R,B, PX).

2. EP (h(X)) :=
R
⌦ fdP =

R
R
hdPX .

Proof. First, let h be a non-negative simple function. Then we have that f(!) =
P

m

j=0 yjIAj(!)

where Aj 2 F . Consequently,

IP (f) =

Z

⌦

fdP =
mX

j=0

yjP (Aj) =
mX

j=0

yjP (X�1(Bj)) where Bj = {x 2 R : h(x) = yj}

=
mX

j=0

yj(P �X�1)(Bj) =
mX

j=0

yjPX(Bj) =

Z

R

hdPX = IPX (h).

Second, let h � 0. Then, by Theorem 4.4 there exists a sequence of increasing non-negative

simple function �n such that �n ! h as n ! 1. Hence, if we define fn(!) = �n(X(!)) =
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(�n �X)(!), it is a sequence of increasing simple function that converges to f .
Z

⌦

fdP =

Z

⌦

(h �X)dP =

Z

⌦

lim
n!1

(�n �X)dP

= lim
n!1

Z

⌦

(�n �X)dP by Beppo-Levi’s Theorem

= lim
n!1

Z

R

�ndPX by the first part of the argument for simple functions

=

Z

R

hdPX , by Beppo-Levi’s Theorem.

This proves 2. for simple and non-negative h. If h takes values in R, consider |h| and let

�n be a sequence of increasing non-negative simple function such that �n ! |h| as n ! 1.

Then, we have from above that
Z

⌦

|f |dP =

Z

R

|h|dPX .

But from Remark 4.5, if |h| is integrable in (R,B, PX) then h is integrable in (R,B, PX),

establishing 1. Now, for arbitrary h we can prove the rest of part 2 by applying the same

arguments to h+ and h� and using the fact that h = h+ � h�. ⌅

Clearly, taking h(x) = x in the previous theorem gives EP (X) :=
R
⌦ XdP =

R
R
xdPX(x)

where in the last integral we emphasize that the “variable” in integration is taking values in

R. In this proof, there is no requirement that P (⌦) = 1. Hence, we can take (⌦,F , P ) to

be an arbitrary measure space.

Definition 5.2. The density of a probability measure PX associated with a random variable

X defined on a probability space (⌦,F , P ) is a non-negative Borel measurable function fX

that satisfies

PX((�1, a]) =

Z

(�1,a]

fXd� =

Z

R

I(�1,a]fXd�

where � is Lebesgue measure on R.

Theorem 5.12. fX is a density ()
R
R
fXd� = 1, fX is unique almost everywhere.
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Proof. ( =) ) fX a density implies FX(a) = PX((�1, a]) =
R
(�1,a] fXd�. lima!1 PX((�1, a]) =

1 = lima!1

R
(�1,a] fXd�, where the first equality follows from Definition 2.4 and continuity

of probability measures.

( (= ) Suppose fX is a non-negative Borel measurable function such that
R
R
fXd� = 1. For

all A 2 B, we put

PX(A) =

Z

A

fXd� =

Z

R

IAfXd�.

By Theorem 4.10, PX is a measure on B with PX(R) = 1, by assumption. Taking A =

(�1, a],

PX((�1, a]) =

Z

(�1,a]

fXd�

and fX is a density for FX .

Now, suppose gX is another density for FX . Then, PX(A) =
R
A
gXd� =

R
R
gXIAd�.

Let An = {x : gX(x) � fX(x) + 1/n}. For all n 2 N,
R
An

gXd� �
R
An
(fX + 1

n
)d� =

R
An

fXd�+ 1
n
�(An). Since

R
An

fXd� =
R
An

gXd� it must be that �(An) = 0.

Note that A1 ⇢ A2 ⇢ · · · . limn!1 An = [1

n=1An = A = {x : gX(x) > fX(x)} and

�(A) = limn!1 �(An) = 0. Similarly, we have �(B) = 0 for B = {x : gX(x) < fX(x)}. So,

�({x : gX = fX}) = 1. ⌅

Theorem 5.13. Let X : (⌦,F , P ) ! (R,B) be a random variable with density fX and

h : (R,B) ! (R,B) be a measurable function such that
R
⌦ |h �X|dP < 1, i.e., f = h �X is

integrable. Then, Z

⌦

(h �X)dP =

Z

R

hdPX =

Z

R

h(x)fX(x)d�(x)

Proof. Homework. ⌅
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