Chapter 8

Laws of large numbers

We first discuss the notion of "tail equivalence" of a sequence of random variables. Here, the Borel-Cantelli Lemma is very useful. Recall that it says that if $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of events with $\sum_{n=1}^{\infty} P\left(E_{n}\right)<\infty$, then $P\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0$.
Definition 8.1. Two sequences of random variables $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ are tail equivalent if

$$
\sum_{n=1}^{\infty} P\left(\left\{\omega: X_{n}(\omega) \neq Y_{n}(\omega)\right\}\right)=\sum_{n=1}^{\infty} P\left(\left\{\omega: X_{n}(\omega)-Y_{n}(\omega) \neq 0\right\}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty
$$

where $A_{n}=\left\{\omega: X_{n}(\omega)-Y_{n}(\omega) \neq 0\right\}$.
Theorem 8.1. Suppose $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ are tail equivalent. Then,

1. $\sum_{n=1}^{\infty}\left(X_{n}-Y_{n}\right)$ converges almost surely,
2. $\sum_{n=1}^{\infty} X_{n}$ converges as $\Longleftrightarrow \sum_{n=1}^{\infty} Y_{n}$ converges as,
3. If there exists $a_{n} \rightarrow \infty$ and a random variable X such that $\frac{1}{a_{n}} \sum_{j=1}^{n} X_{j} \xrightarrow{a s} X$, then $\frac{1}{a_{n}} \sum_{j=1}^{n} Y_{j} \xrightarrow{a s} X$.
Proof. 1. By tail equivalence and the Borel-Cantelli Lemma $P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0$. Now, recall that $\limsup _{n \rightarrow \infty} A_{n}=\cap_{n=1}^{\infty} \cup_{m=n}^{\infty} A_{m}=\cap_{n=1}^{\infty} C_{n}$, where $C_{n}:=\cup_{m=n}^{\infty} A_{m}$. Consequently,

$$
\left(\limsup _{n \rightarrow \infty} A_{n}\right)^{c}=\left(\cap_{n=1}^{\infty} C_{n}\right)^{c}=\cup_{n=1}^{\infty} C_{n}^{c}=\cup_{n=1}^{\infty}\left(\cup_{m=n}^{\infty} A_{m}\right)^{c}=\cup_{n=1}^{\infty} \cap_{m=n}^{\infty} A_{m}^{c}=\liminf _{n \rightarrow \infty} A_{n}^{c}
$$

Thus,

$$
P\left(\liminf _{n \rightarrow \infty}\left\{\omega: X_{n}(\omega)=Y_{n}(\omega)\right\}\right)=P\left(\liminf _{n \rightarrow \infty} A_{n}^{c}\right)=1-P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=1
$$

Since $\liminf _{n \rightarrow \infty} A_{n}^{c}=\left\{\omega: \sum_{n=1}^{\infty} I_{A_{n}}(\omega)<\infty\right\}, P\left(\left\{\omega: \sum_{n=1}^{\infty} I_{A_{n}}(\omega)<\infty\right\}\right)=1$. Hence, there exists a set of ω 's which occurs with probability 1 , and in this set $X_{n}(\omega)=Y_{n}(\omega)$ for all but finitely many n. That is, for $\omega \in\left\{\omega: \sum_{n=1}^{\infty} I_{A_{n}}(\omega)<\infty\right\}$ there are only finitely many n for which $I_{\left\{X_{n}(\omega) \neq Y_{n}(\omega\}\right.}(\omega)=1$. That is, there exists $N(\omega)$ such that for all $n>N(\omega), I_{\left\{X_{n}(\omega) \neq Y_{n}(\omega)\right\}}(\omega)=0$. Hence, in this same set,

$$
\sum_{n=1}^{\infty} X_{n}(\omega)-\sum_{n=1}^{\infty} Y_{n}(\omega)=\sum_{n=1}^{N(\omega)}\left(X_{n}(\omega)-Y_{n}(\omega)\right)<\infty \text { almost surely }
$$

2. Note that

$$
\begin{aligned}
\sum_{n=1}^{\infty} Y_{n}(\omega) & =\sum_{n=1}^{\infty} X_{n}(\omega)+\sum_{n=1}^{\infty} Y_{n}(\omega)-\sum_{n=1}^{\infty} X_{n}(\omega) \\
& =\sum_{n=1}^{\infty} X_{n}(\omega)-\sum_{n=1}^{\infty}\left(X_{n}(\omega)-Y_{n}(\omega)\right)
\end{aligned}
$$

If $\sum_{n=1}^{\infty} X_{n}(\omega)$ converges as and X_{n} and Y_{n} are tail equivalent, then both terms on the right side of the equality converge as, hence $\sum_{n=1}^{\infty} Y_{n}(\omega)<\infty$ as. Similarly, writing

$$
\begin{aligned}
\sum_{n=1}^{\infty} X_{n}(\omega) & =\sum_{n=1}^{\infty} X_{n}(\omega)+\sum_{n=1}^{\infty} Y_{n}(\omega)-\sum_{n=1}^{\infty} Y_{n}(\omega) \\
& =\sum_{n=1}^{\infty} Y_{n}(\omega)-\sum_{n=1}^{\infty}\left(Y_{n}(\omega)-X_{n}(\omega)\right) .
\end{aligned}
$$

we conclude $\sum_{n=1}^{\infty} X_{n}(\omega)<\infty$ as.
3. Write

$$
\begin{aligned}
\frac{1}{a_{n}} \sum_{j=1}^{n} Y_{j}(\omega) & =\frac{1}{a_{n}} \sum_{j=1}^{n}\left(Y_{j}(\omega)-X_{j}(\omega)+X_{j}(\omega)\right) \\
& =\frac{1}{a_{n}} \sum_{j=1}^{n}\left(Y_{j}(\omega)-X_{j}(\omega)\right)+\frac{1}{a_{n}} \sum_{j=1}^{n} X_{j}(\omega) \\
& =\frac{1}{a_{n}} \sum_{j=1}^{N-1}\left(Y_{j}(\omega)-X_{j}(\omega)\right)+\frac{1}{a_{n}} \sum_{j=N}^{n}\left(Y_{j}(\omega)-X_{j}(\omega)\right)+\frac{1}{a_{n}} \sum_{j=1}^{n} X_{j}(\omega) .
\end{aligned}
$$

As $n \rightarrow \infty$ the last term converges as to $X(\omega)$ by assumption. The second term converges to zero since $Y_{j}(\omega)$ and $X_{j}(\omega)$ are tail equivalent (and by 1), and the first term goes to 0 as $a_{n} \rightarrow \infty$. Hence, $\frac{1}{a_{n}} \sum_{j=1}^{n} Y_{j}(\omega) \xrightarrow{a s} X(\omega)$.

The following definition and associated notation will be useful.

Definition 8.2. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of random variables defined on (Ω, \mathcal{F}, P) and $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in $(0, \infty)$. We write,

1. $X_{n}=O_{p}\left(s_{n}\right)$ if for all $\epsilon>0$ and $n \in \mathbb{N}$, there exists $B_{\epsilon}>0$ such that

$$
P\left(\left\{\omega: \frac{\left|X_{n}(\omega)\right|}{s_{n}}>B_{\epsilon}\right\}\right)<\epsilon
$$

2. $X_{n}=o_{p}\left(s_{n}\right)$ if $\frac{X_{n}}{s_{n}} \xrightarrow{p} 0$.

Theorem 8.2. (General Law of Large Numbers) Suppose $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of independent random variables defined on (Ω, \mathcal{F}, P) and $S_{n}=\sum_{j=1}^{n} X_{j}$. If

1. $\sum_{j=1}^{n} P\left(\left\{\omega:\left|X_{j}(\omega)\right|>n\right\}\right) \rightarrow 0$ as $n \rightarrow \infty$ and
2. $\frac{1}{n^{2}} \sum_{j=1}^{n} E\left(X_{j}^{2} I_{\left\{\omega:\left|X_{j}\right| \leq n\right\}}\right) \rightarrow 0$ as $n \rightarrow \infty$,
then $\frac{S_{n}}{n}-\frac{1}{n} \sum_{j=1}^{n} E\left(X_{j} I_{\left\{\omega:\left|X_{j}\right| \leq n\right\}}\right) \xrightarrow{p} 0$.

Proof. Let $T_{n, j}(\omega)=X_{j}(\omega) I_{\left\{\omega:\left|X_{j}\right| \leq n\right\}}$ and $S_{n}^{\prime}(\omega)=\sum_{j=1}^{n} T_{n, j}(\omega)$. Note that $\left\{\omega: X_{j}(\omega) \neq\right.$ $\left.T_{n, j}(\omega)\right\}=\left\{\omega:\left|X_{j}(\omega)\right|>n\right\}$ and by assumption $\sum_{j=1}^{n} P\left(\left\{\omega: T_{n, j}(\omega) \neq X_{j}(\omega)\right\}\right) \rightarrow 0$ as $n \rightarrow \infty$. Note also that

$$
\left|S_{n}(\omega)-S_{n}^{\prime}(\omega)\right|=\left|\sum_{j=1}^{n} X_{j}(\omega)-\sum_{j=1}^{n} T_{n, j}(\omega)\right| \leq \sum_{j=1}^{n}\left|X_{j}(\omega)-T_{n, j}(\omega)\right|
$$

Thus, for all $\epsilon>0$,

$$
\begin{aligned}
\left\{\omega:\left|S_{n}(\omega)-S_{n}^{\prime}(\omega)\right|>\epsilon\right\} & \subset\left\{\omega: \sum_{j=1}^{n}\left|X_{j}(\omega)-T_{n, j}(\omega)\right|>\epsilon\right\} \\
& \subset \bigcup_{j=1}^{n}\left\{\omega:\left|X_{j}(\omega)-T_{n, j}(\omega)\right|>\epsilon / n\right\} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
P\left(\left\{\omega:\left|S_{n}(\omega)-S_{n}^{\prime}(\omega)\right|>\epsilon\right\}\right) & \leq \sum_{j=1}^{n} P\left(\left\{\omega:\left|X_{j}(\omega)-T_{n, j}(\omega)\right|>\epsilon / n\right\}\right) \\
& \leq \sum_{j=1}^{n} P\left(\left\{\omega:\left|X_{j}\right|>n\right\}\right)
\end{aligned}
$$

Taking limits on both sides as $n \rightarrow \infty$, we have that $S_{n}-S_{n}^{\prime} \xrightarrow{p} 0$ since by assumption 1 $\sum_{j=1}^{n} P\left(\left\{\omega:\left|X_{j}\right|>n\right\}\right) \rightarrow 0$.

Now, since $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is an independent sequence $E\left(\left(T_{n, k}-E\left(T_{n, k}\right)\right)\left(T_{n, l}-E\left(T_{n, l}\right)\right)\right)=0$ and consequently $V\left(S_{n}^{\prime}\right)=\sum_{j=1}^{n} V\left(T_{n, j}\right) \leq \sum_{j=1}^{n} E\left(T_{n, j}^{2}\right)$. Note also that for given n

$$
E\left(T_{n, j}^{2}\right)=\int_{\Omega} X_{j}^{2} I_{\left\{\omega:\left|X_{j}\right| \leq n\right\}} d P \leq n^{2} \int_{\Omega} d P=n^{2}
$$

Consequently, since $V\left(S_{n}^{\prime}\right)$ exists for every n, by Chebyshev's Inequality (Remark 5.1),

$$
P\left(\left\{\omega:\left|\frac{S_{n}^{\prime}-E\left(S_{n}^{\prime}\right)}{n}\right|>\epsilon\right\}\right) \leq \frac{V\left(S_{n}^{\prime}\right)}{n^{2} \epsilon^{2}} \leq \frac{1}{n^{2} \epsilon^{2}} \sum_{j=1}^{n} E\left(X_{j}^{2} I_{\left\{\omega:\left|X_{j}\right| \leq n\right\}}\right)
$$

Taking limits on both sides as $n \rightarrow \infty$ and by the assumption that $\frac{1}{n^{2}} \sum_{j=1}^{n} E\left(X_{j}^{2} I_{\left\{\omega:\left|X_{j}\right| \leq n\right\}}\right) \rightarrow$ 0 , we have $\frac{S_{n}^{\prime}}{n}-\frac{E\left(S_{n}^{\prime}\right)}{n} \xrightarrow{p} 0$. Now, since

$$
\frac{S_{n}}{n}-E\left(\frac{S_{n}^{\prime}}{n}\right)=\frac{S_{n}}{n}-\frac{S_{n}^{\prime}}{n}+\frac{S_{n}^{\prime}}{n}-E\left(\frac{S_{n}^{\prime}}{n}\right)
$$

we can immediately conclude that $\frac{S_{n}}{n}-E\left(\frac{S_{n}^{\prime}}{n}\right)=o_{p}(1)$. Finally, from the definition of S_{n}^{\prime} we have that $\frac{S_{n}}{n}-\frac{1}{n} \sum_{j=1}^{n} E\left(X_{j} I_{\left\{\omega:\left|X_{j}\right| \leq n\right\}}\right)=o_{p}(1)$.

We note $E\left(X_{j}\right)<\infty$ or $E\left(X_{j}^{2}\right)<\infty$ are not required for Theorem 8.2. The following are examples of how Theorem 8.2 can be used.

Example 8.1. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be an independent and identically distributed sequence of random variables with $E\left(X_{n}\right)=\mu, E\left(X_{n}^{2}\right) \leq C<\infty$. Then, we verify condition 1 by noting that the identical distribution assumption and Markov's Inequality give

$$
\sum_{j=1}^{n} P\left(\left|X_{j}\right|>n\right)=n P\left(\left|X_{1}\right|>n\right) \leq n \frac{E\left(X_{1}^{2}\right)}{n^{2}}=\frac{1}{n} E\left(X_{1}^{2}\right) \leq \frac{C}{n}
$$

Taking limits on both sides as $n \rightarrow \infty$ gives $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} P\left(\left|X_{j}\right|>n\right)=0$. For condition 2, note that by the identical distribution assumption

$$
\frac{1}{n^{2}} \sum_{j=1}^{n} E\left(X_{j}^{2} I_{\left\{\left|X_{j}\right| \leq n\right\}}\right)=\frac{1}{n} E\left(X_{1}^{2} I_{\left\{\left|X_{1}\right| \leq n\right\}}\right) \leq \frac{1}{n} E\left(X_{1}^{2}\right) \leq \frac{C}{n}
$$

Again, taking limits on both sides as $n \rightarrow \infty$ gives $\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{j=1}^{n} E\left(X_{j}^{2} I_{\left\{\left|X_{j}\right| \leq n\right\}}\right)=0$. Finally, observe that

$$
\frac{\sum_{j=1}^{n} E\left(X_{j} I_{\left\{\left|X_{j}\right| \leq n\right\}}\right)}{n}=E\left(X_{1} I_{\left\{\left|X_{1}\right| \leq n\right\}}\right) \rightarrow E\left(X_{1}\right)=\mu
$$

as $n \rightarrow \infty$ by Lebesgue's dominated convergence theorem. Thus, $\frac{1}{n} S_{n} \xrightarrow{p} \mu$.
Example 8.2. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be an independent and identically distributed sequence with $E\left(\left|X_{1}\right|\right) \leq C<\infty$ and let $E\left(X_{1}\right)=\mu$. For condition 1, note that

$$
\sum_{j=1}^{n} P\left(\left|X_{j}\right|>n\right)=n P\left(\left|X_{1}\right|>n\right)=E\left(n I_{\left\{\omega:\left|X_{1}\right|>n\right\}}\right)
$$

But since $n I_{\left\{\omega:\left|X_{1}\right|>n\right\}} \leq\left|X_{1}\right| I_{\left\{\omega:\left|X_{1}\right|>n\right\}}$, we have that

$$
\sum_{j=1}^{n} P\left(\left|X_{j}\right|>n\right) \leq E\left(\left|X_{1}\right| I_{\left\{\omega:\left|X_{1}\right|>n\right\}}\right)
$$

Consequently, $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} P\left(\left|X_{j}\right|>n\right) \leq \lim _{n \rightarrow \infty} E\left(\left|X_{1}\right| I_{\left\{\omega:\left|X_{1}\right|>n\right\}}\right)$. And since $E\left(\left|X_{1}\right|\right)<C$, $\lim _{n \rightarrow \infty} E\left(\left|X_{1}\right| I_{\left\{\omega:\left|X_{1}\right|>n\right\}}\right)=0$.

For condition 2, note that by the identical distribution assumption

$$
\begin{aligned}
\frac{1}{n^{2}} \sum_{j=1}^{n} E\left(X_{j}^{2} I_{\left\{\omega:\left|X_{j}\right| \leq n\right\}}\right) & =\frac{1}{n} E\left(X_{1}^{2} I_{\left\{\omega:\left|X_{1}\right| \leq n\right\}}\right) \\
& =\frac{1}{n}\left(E\left(X_{1}^{2} I_{\left\{\omega:\left|X_{1}\right| \leq \epsilon \sqrt{n}\right\}}\right)+E\left(X_{1}^{2} I_{\left\{\omega: \epsilon \sqrt{n} \leq\left|X_{1}\right| \leq n\right\}}\right)\right) \text { for any } \epsilon \in(0,1)
\end{aligned}
$$

Since $E\left(X_{1}^{2} I_{\left\{\omega:\left|X_{1}\right| \leq \epsilon \sqrt{n}\right\}}\right)=\int_{\Omega} X_{1}^{2} I_{\left\{\omega:\left|X_{1}\right| \leq \epsilon \sqrt{n}\right\}} d P \leq n \epsilon^{2} \int_{\Omega} d P=n \epsilon^{2}$, we have

$$
\begin{aligned}
\frac{1}{n^{2}} \sum_{j=1}^{n} E\left(X_{j}^{2} I_{\left\{\omega:\left|X_{j}\right| \leq n\right\}}\right) & \left.\leq \epsilon^{2}+\frac{1}{n} E\left(\left|X_{1}\right|\left|X_{1}\right| I_{\left\{\omega: \epsilon \sqrt{n} \leq\left|X_{1}\right| \leq n\right\}}\right) \leq \epsilon^{2}+\frac{1}{n} E\left(n\left|X_{1}\right| I_{\left\{\omega: \epsilon \sqrt{n} \leq\left|X_{1}\right| \leq n\right\}}\right)\right) \\
& \leq \epsilon^{2}+E\left(\left|X_{1}\right| I_{\left\{\omega: \epsilon \sqrt{n} \leq\left|X_{1}\right|\right\}}\right)
\end{aligned}
$$

Taking limits on both sides as $n \rightarrow \infty$, and noting that $E\left(\left|X_{1}\right|\right)<C$, we have that

$$
\lim _{n \rightarrow \infty} E\left(\left|X_{j}\right| I_{\left\{\omega: \epsilon \sqrt{n} \leq\left|X_{j}\right|\right\}}\right)=0
$$

And, since ϵ can be made arbitrarily small, $\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{j=1}^{n} E\left(X_{j}^{2} I_{\left\{\omega:\left|X_{j}\right| \leq n\right\}}\right)=0$. Consequently, $\frac{S_{n}}{n}-E\left(X_{1} I_{\left\{\omega:\left|X_{1}\right| \leq n\right\}}\right) \xrightarrow{p} 0$. Lastly, note that

$$
\lim _{n \rightarrow \infty}\left(\int_{\Omega} X_{1} d P-\int_{\Omega} X_{1} I_{\left\{\left|X_{1}\right| \leq n\right\}} d P\right)=\int_{\Omega} X_{1} d P-\lim _{n \rightarrow \infty} \int_{\Omega} X_{1} I_{\left\{\left|X_{1}\right| \leq n\right\}} d P=E\left(X_{1}\right)-E\left(X_{1}\right)=0
$$

by the previous example. Hence,

$$
\frac{S_{n}}{n}-E\left(X_{1}\right)=\frac{S_{n}}{n}+E\left(X_{1} I_{\left\{\left|X_{1}\right| \leq n\right\}}\right)-E\left(X_{1} I_{\left\{\left|X_{1}\right| \leq n\right\}}\right)-E\left(X_{1}\right)=o_{p}(1)+o(1)=o_{p}(1)
$$

Example 8.3. Suppose $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is an independent and identically distributed sequence with $\lim _{x \rightarrow \infty} x P\left(\left|X_{1}\right|>x\right)=0$. For condition 1, given the identically distributed assumption, we have
$\sum_{j=1}^{n} P\left(\left|X_{j}\right|>n\right)=n P\left(\left|X_{j}\right|>n\right) \rightarrow 0$ by assumption. For condition 2, note that

$$
\begin{aligned}
\frac{1}{n^{2}} \sum_{j=1}^{n} E\left(X_{j}^{2} I_{\left\{\omega:\left|X_{j}\right| \leq n\right\}}\right) & =\frac{1}{n} E\left(X_{1}^{2} I_{\left\{\omega:\left|X_{j}\right| \leq n\right\}}\right)=\frac{1}{n} \int_{|x| \leq n} x^{2} d F_{X_{1}}(x) \\
& =\frac{2}{n} \int_{|x| \leq n}\left(\int_{0}^{|x|} s d s\right) d F_{X_{1}}(x)=\frac{2}{n} \int_{0}^{n} s\left(\int_{s<|x| \leq n} d F_{X_{1}}(x)\right) d s \\
& =\frac{2}{n} \int_{0}^{n} s\left(P\left(\left|X_{1}\right| \leq n\right)-P\left(\left|X_{1}\right|<s\right)\right) d s \\
& =\frac{2}{n} \int_{0}^{n} s\left(1-P\left(\left|X_{1}\right|>n\right)-1+P\left(\left|X_{1}\right| \geq s\right)\right) d s \\
& =\frac{2}{n} \int_{0}^{n} s\left(P\left(\left|X_{1}\right| \geq s\right)-P\left(\left|X_{1}\right|>n\right)\right) d s \\
& =\frac{2}{n} \int_{0}^{n} \tau(s) d s-2 P\left(\left|X_{1}\right|>n\right) \frac{1}{n} \int_{0}^{n} s d s, \text { where } \tau(s)=s P\left(\left|X_{1}\right|>s\right) \\
& =\frac{2}{n} \int_{0}^{n} \tau(s) d s-2 P\left(\left|X_{1}\right|>n\right) \frac{1}{n} \frac{n^{2}}{2} \\
& =\frac{2}{n} \int_{0}^{n} \tau(s) d s-n P\left(\left|X_{1}\right|>n\right)=\frac{2}{n} \int_{0}^{n} \tau(s) d s-\tau(n) .
\end{aligned}
$$

Since, $\tau(n) \rightarrow 0$ as $n \rightarrow \infty$, we have that for all $\epsilon>0$ there exists N_{ϵ} such that if $n>N_{\epsilon}$, $\tau(n) \leq \epsilon$. Consequently,

$$
\frac{1}{n} \int_{0}^{n} \tau(s) d s=\frac{1}{n} \int_{0}^{N_{\epsilon}} \tau(s) d s+\frac{1}{n} \int_{N_{\epsilon}}^{n} \tau(s) d s \leq \frac{1}{n} \int_{0}^{N_{\epsilon}} \tau(s) d s+\epsilon
$$

Taking limits on both sides as $n \rightarrow \infty$ gives $\frac{1}{n} \int_{0}^{n} \tau(s) d s \rightarrow 0$. Then, $\frac{S_{n}}{n}-E\left(X_{1} I_{\left|X_{1}\right| \leq n}\right) \xrightarrow{p} 0$.
If $\left\{X_{j}\right\}_{j \in \mathbb{N}}$ with $E\left(X_{j}\right)<\infty, E\left(X_{j}^{2}\right)<M<\infty$ for all j, we have that

$$
\frac{1}{n} S_{n}-\frac{1}{n} E\left(S_{n}\right)=\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}-E\left(X_{j}\right)\right):=\frac{1}{n} \sum_{j=1}^{n} Z_{j}
$$

where $E\left(Z_{j}\right)=0$. If $E\left(Z_{i} Z_{j}\right)=0$ for all $i \neq j$, then

$$
E\left(\left(\frac{1}{n} \sum_{j=1}^{n} Z_{j}\right)^{2}\right)=\frac{1}{n^{2}} \sum_{j=1}^{n} E\left(Z_{j}^{2}\right)<\frac{M}{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence, $\frac{1}{n} \sum_{j=1}^{n} Z_{j} \xrightarrow{\mathcal{L}^{2}} 0$, and by Theorem $7.7 \frac{1}{n} \sum_{j=1}^{n} Z_{j} \xrightarrow{p} 0$. In fact, $\frac{1}{n} \sum_{j=1}^{n} Z_{j} \xrightarrow{a s} 0$ as shown in the next theorem.

Theorem 8.3. Let $\left\{X_{j}\right\}_{j \in \mathbb{N}}$ with $E\left(X_{j}\right)<\infty, E\left(X_{j}^{2}\right)<M<\infty$ for all j, and assume that $E\left(\left(X_{j}-E\left(X_{j}\right)\right)\left(X_{i}-E\left(X_{i}\right)\right)\right)=0$ for all $i \neq j$. Then, letting $Z_{j}=X_{j}-E\left(X_{j}\right)$ and $S_{n}=\sum_{j=1}^{n} Z_{j}$, we have

$$
\frac{1}{n} S_{n} \xrightarrow{a s} 0 .
$$

Proof. For all $\epsilon>0$ and by Chebyshev's Inequality

$$
P\left(\left|S_{n}\right|>n \epsilon\right) \leq \frac{M}{n \epsilon^{2}}
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges we can't use the Borel-Cantelli Lemma directly. However, if we consider the subsequence $S_{n^{2}}$, we have

$$
\sum_{n=1}^{\infty} P\left(\left\{\omega:\left|S_{n^{2}}\right|>n^{2} \epsilon\right\}\right) \leq \sum_{n=1}^{\infty} \frac{M}{n^{2} \epsilon^{2}}<\infty
$$

Hence, $P\left(\limsup _{n \rightarrow \infty}\left\{\omega:\left|S_{n^{2}}(\omega)\right|>n^{2} \epsilon\right\}\right)=0$ and we have $\frac{S_{n^{2}}}{n^{2}} \xrightarrow{a s} 0$. Now, let

$$
D_{n}:=\max _{n^{2} \leq k<(n+1)^{2}}\left|S_{k}-S_{n^{2}}\right|
$$

and note that

$$
\frac{\left|S_{k}\right|}{k} \leq \frac{\left|S_{k}\right|}{n^{2}}=\frac{\left|S_{k}-S_{n^{2}}+S_{n^{2}}\right|}{n^{2}} \leq \frac{\left|S_{k}-S_{n^{2}}\right|}{n^{2}}+\frac{\left|S_{n^{2}}\right|}{n^{2}} \leq \frac{D_{n}}{n^{2}}+\frac{\left|S_{n^{2}}\right|}{n^{2}} .
$$

Now, since $P\left(\max _{1 \leq k \leq m}\left|W_{k}\right| \geq \epsilon\right) \leq \sum_{k=1}^{m} P\left(\left|W_{k}\right| \geq \epsilon\right)$ and using Markov's Inequality

$$
\begin{aligned}
P\left(D_{n} \geq n^{2} \epsilon\right) & \leq \sum_{l=1}^{2 n} P\left(\left|\sum_{j=1}^{l} Z_{n^{2}+j}\right| \geq n^{2} \epsilon\right) \leq \sum_{l=1}^{2 n} \frac{1}{n^{4} \epsilon^{2}} E\left(\left(\sum_{j=1}^{l} Z_{n^{2}+j}\right)^{2}\right) \\
& =\sum_{l=1}^{2 n} \frac{1}{n^{4} \epsilon^{2}} \sum_{j=1}^{l} E\left(Z_{n^{2}+j}^{2}\right) \leq \frac{4 n^{2} M}{n^{4} \epsilon^{2}}=\frac{4 M}{n^{2} \epsilon^{2}} .
\end{aligned}
$$

Then, we have $\sum_{n=1}^{\infty} P\left(D_{n} \geq n^{2} \epsilon \leq \frac{4 M}{\epsilon^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty\right.$, and by the Borel-Cantelli Lemma $\frac{D_{n}}{n^{2}} \xrightarrow{a s} 0$. Since, as $n \rightarrow \infty$ we have that $k \rightarrow \infty, \frac{\left|S_{k}\right|}{k} \xrightarrow{a s} 0$.

The following is called Markov's Law of Large Numbers.

Theorem 8.4. (Markov's LLN) Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of independent random variables with $E\left(X_{n}\right)=\mu_{n}$. If for some $\delta>0$ we have $\frac{1}{n} \sum_{n=1}^{\infty} \frac{E\left|X_{n}-\mu_{n}\right|^{1+\delta}}{n^{1+\delta}}<\infty$,

$$
S_{n}-\frac{1}{n} \sum_{i=1}^{n} \mu_{i} \xrightarrow{p} 0 .
$$

Proof. Chung (1974, A Course in Probability Theory, pp. 125-126).

