Chapter 9

Conditional expectation

9.1 Inner product spaces

There are several ways to introduce the notion of conditional expectation. We begin by introducing inner-product spaces and motivate a definition of conditional expectation by using the Projection Theorem.

Definition 9.1. A real vector space \mathbb{X} is called an inner-product space if for all $x, y \in \mathbb{X}$, there exists a function $\langle x, y\rangle$, called an inner-product, such that for all $x, y, z \in \mathbb{X}$ and $a \in \mathbb{R}^{\cap}$

1. $\langle x, y\rangle=\langle y, x\rangle$
2. $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
3. $\langle a x, y\rangle=a\langle x, y\rangle, a \in \mathbb{R}$
4. $\langle x, x\rangle \geq 0$, for all x
5. $\langle x, x\rangle=0 \Longleftrightarrow x=\theta$, where θ is the null vector in \mathbb{X}.

The following theorem shows that a general version of the Cauchy-Schwarz Inequality holds for inner-product spaces.

[^0]Theorem 9.1. Let \mathbb{X} be an inner-product space and $x, y \in \mathbb{X}$. Then,

$$
|\langle x, y\rangle| \leq\langle x, x\rangle^{1 / 2}\langle y, y\rangle^{1 / 2}
$$

Proof. Let $y \neq \theta$ and note that for all $a \in \mathbb{R}$,

$$
\begin{aligned}
0 & \leq\langle x-a y, x-a y\rangle=\langle x, x\rangle-2 a\langle x, y\rangle+a^{2}\langle y, y\rangle \\
& \leq\langle x, x\rangle-\frac{\langle x, y\rangle^{2}}{\langle y, y\rangle} \text { by letting } a=\langle x, y\rangle /\langle y, y\rangle .
\end{aligned}
$$

The last inequality is equivalent to $\langle x, y\rangle^{2} \leq\langle x, x\rangle\langle y, y\rangle$ or $|\langle x, y\rangle|=\langle x, x\rangle^{1 / 2}\langle y, y\rangle^{1 / 2}$. Lastly, if $y=\theta$ then the inequality holds with equality and $\langle x, \theta\rangle=0$.

It can be easily shown that the function $\|\cdot\|: \mathbb{X} \rightarrow[0, \infty)$ defined as $\|x\|=\langle x, x\rangle^{1 / 2}$ is a norm on \mathbb{X}. Thus, every inner-product space can be taken to be a normed space with this induced norm. Another important property in inner-product spaces is the Parallelogram Law, which is given in the next theorem.

Theorem 9.2. In an inner-product space $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$.

Proof. $\|x+y\|^{2}=\langle x+y, x+y\rangle=\langle x, x\rangle+\langle y, y\rangle+2\langle x, y\rangle$ and $\|x-y\|^{2}=\langle x-y, x-y\rangle=$ $\langle x, x\rangle+\langle y, y\rangle-2\langle x, y\rangle$. Hence, we obtain

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

Example 9.1. Let $x, y \in \mathbb{R}^{n}$ and define $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$. It can be easily shown that $\langle x, y\rangle$ is an inner-product for \mathbb{R}^{n} and $\langle x, x\rangle^{1 / 2}=\|x\|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$ is a norm.

Example 9.2. Consider the space $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ of random variables $X:(\Omega, \mathcal{F}, P) \rightarrow(\mathbb{R}, \mathcal{B})$ such that $\int_{\Omega} X^{2} d P<\infty$. By Theorem 5.10. $1 X Y \in \mathcal{L}(\Omega, \mathcal{F}, P)$ and by Theorem 5.10. 3
$\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ is a vector space. Now, define $\langle X, Y\rangle=E(X Y)=\int_{\Omega} X Y d P$. Using the properties of integrals, conditions $1-4$ in Definition 9.1 are easily verified. However, condition 5 does not hold. Whereas it is true that $X(\omega)=0$ for all ω, the null vector in $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$, gives $\langle X, X\rangle=\int_{\Omega} X^{2}(\omega) d P=0, \int_{\Omega} X^{2}(\omega) d P=0$ does not imply $X(\omega)=0$ for all ω. This is true since a random variable Z that takes non-zero values in sets of measure zero and is equal to 0 elsewhere will be such that $\int_{\Omega} Z^{2}(\omega) d P=0$. If we treat any two variables X and Z in $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ as being identical if they differ only in a set of measure zero, that is if $P(\{\omega: X(\omega) \neq Z(\omega)\})=0$, then condition 5 is met and $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ is an inner product space with $\|X\|_{2}=\left(\int_{\Omega} X^{2} d P\right)^{1 / 2}$. We know from the Riez-Fisher Theorem that $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ is a Banach space, viz., a complete vector space. Hence, $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ is a Hilbert space.

Theorem 9.3. Let $\left\{X_{n}\right\}_{n=1,2, \ldots}$ and $\left\{Y_{n}\right\}_{n=1,2, \ldots}$ be sequences in a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|=\langle\cdot, \cdot\rangle^{1 / 2}$. Let $X_{n} \rightarrow X$ in that $\left\|X_{n}-X\right\| \rightarrow 0$ as $n \rightarrow \infty$ and $Y_{n} \rightarrow Y$. Then, $\left\langle X_{n}, Y_{n}\right\rangle \rightarrow\langle X, Y\rangle$.

Proof. By the Cauchy-Schwarz inequality (Theorem 9.1), $|\langle X, Y\rangle| \leq\|X\|\|Y\|$. Therefore,

$$
\begin{aligned}
\left|\langle X, Y\rangle-\left\langle X_{n}, Y_{n}\right\rangle\right| & =\mid\left\langle X, Y_{n}\right\rangle-\left\langle X_{n}, Y_{n}\right\rangle+\langle X, Y\rangle-\left\langle X, Y_{n}\right\rangle-\left\langle X_{n}, Y\right\rangle+\left\langle X_{n}, Y_{n}\right\rangle \\
& +\left\langle X_{n}, Y\right\rangle-\left\langle X_{n}, Y_{n}\right\rangle \mid \\
& =\left|\left\langle X-X_{n}, Y_{n}\right\rangle+\left\langle X-X_{n}, Y-Y_{n}\right\rangle+\left\langle X_{n}, Y-Y_{n}\right\rangle\right| \\
& \leq\left|\left\langle X-X_{n}, Y_{n}\right\rangle\right|+\left|\left\langle X-X_{n}, Y-Y_{n}\right\rangle\right|+\left|\left\langle X_{n}, Y-Y_{n}\right\rangle\right| \\
& \leq\left\|X-X_{n}\right\|\left\|Y_{n}\right\|+\left\|X-X_{n}\right\|\left\|Y-Y_{n}\right\|+\left\|X_{n}\right\|\left\|Y-Y_{n}\right\| .
\end{aligned}
$$

By convergence, $\left\|X-X_{n}\right\|,\left\|Y-Y_{n}\right\| \rightarrow 0$ and since $\left\|X_{n}\right\|,\left\|Y_{n}\right\|<\infty$ for all $n, \mid\langle X, Y\rangle-$ $\left\langle X_{n}, Y_{n}\right\rangle \mid \rightarrow 0$, as $n \rightarrow \infty$.

Definition 9.2. Let S be a closed subset of a Hilbert space \mathcal{H}. The distance from $Y \in \mathcal{H}$ to S is denoted by

$$
d(Y, S)=\inf \{\|Y-X\|: X \in S\}
$$

If $Y \in S, d(Y, S)=0$.

Theorem 9.4. (Projection Theorem): Let S be a closed subspace of a Hilbert space \mathcal{H} and $Y \in \mathcal{H}$. There exists a unique $X \in S$ such that $\|Y-X\|:=\inf \left\{\left\|Y-X^{\prime}\right\|: X^{\prime} \in S\right\}$. Furthermore, $\langle Y-X, s\rangle=0$, for all $s \in S$.

Proof. First, consider existence of X. If $Y \in S$, put $X=Y$. If $Y \notin S$, we would like to obtain $X \in S$ such that $\|Y-X\|=\inf _{X^{\prime} \in S}\left\{\left\|Y-X^{\prime}\right\|\right\}=\delta>0$.

Let $\left\{X_{i}\right\}_{i \in \mathbb{N}} \in S$ such that $\left\|X_{i}-Y\right\| \rightarrow \delta$. Now, if X_{i} and Y are in a Hilbert space, we have by the Parallelogram Law

$$
\left\|\left(X_{j}-Y\right)+\left(Y-X_{i}\right)\right\|^{2}+\left\|\left(X_{j}-Y\right)-\left(Y-X_{i}\right)\right\|^{2}=2\left\|X_{j}-Y\right\|^{2}+2\left\|Y-X_{i}\right\|^{2}
$$

and

$$
\left\|X_{j}-X_{i}\right\|^{2}=2\left\|X_{j}-Y\right\|^{2}+2\left\|Y-X_{i}\right\|^{2}-4\left\|Y-\frac{X_{i}+X_{j}}{2}\right\|^{2}
$$

For all i, j the vector $\frac{X_{i}+X_{j}}{2} \in S$ (since S is a subspace). Therefore, by definition of δ, $\left\|Y-\frac{X_{i}+X_{j}}{2}\right\| \geq \delta$ and we obtain $\left\|X_{j}-X_{i}\right\|^{2} \leq 2\left\|X_{j}-Y\right\|^{2}+2\left\|Y-X_{i}\right\|^{2}-4 \delta^{2}$. Since $\left\|X_{i}-Y\right\|^{2} \rightarrow \delta^{2}$ by continuity of inner product (Theorem 9.3), $\left\|X_{j}-X_{i}\right\|^{2} \rightarrow 0$ as $i, j \rightarrow \infty$. Hence, $\left\{X_{i}\right\}$ is a Cauchy sequence. Since S is closed, $\left\{X_{i}\right\}$ converges to $\tilde{X} \in S$. Furthermore, $\delta \leq\|Y-\tilde{X}\| \leq\left\|Y-X_{i}\right\|+\left\|X_{i}-\tilde{X}\right\| \leq \delta$. Hence, $\tilde{X}=X$ which we wanted to show existed.

Now, consider the proof of $\langle Y-X, s\rangle=0$ for all $s \in S$. Suppose there exists $s \in S$ such that $\langle Y-X, s\rangle \neq 0$. Without loss of generality assume that $\|s\|=1$ and that $\langle Y-X, s\rangle=$ $\delta \neq 0$ and define $s_{1} \in S$ such that $s_{1}=X+\delta s$. Then,

$$
\begin{aligned}
\left\|Y-s_{1}\right\|^{2} & =\|Y-X-\delta s\|^{2} \text { by definition of } s_{1} \\
& =\|Y-X\|^{2}-\langle Y-X, \delta s\rangle-\langle\delta s, Y-X\rangle+\delta^{2}\|s\|^{2} \\
& =\|Y-X\|^{2}-\delta^{2}-\delta^{2}+\delta^{2} \\
& =\|Y-X\|^{2}-\delta^{2}<\|Y-X\|^{2}
\end{aligned}
$$

Hence, if $\langle Y-X, s\rangle \neq 0$, then X is not the minimizing element of S and it must be that for all $s \in S,\langle Y-X, s\rangle=0$.

Lastly, let's prove uniqueness. For all $s \in S$, the theorem of Pythagoras says that $\|Y-s\|^{2}=\|Y-X+X-s\|^{2}=\|Y-X\|^{2}+\|X-s\|^{2}$. (Note that $\langle Y-X, X-s\rangle=0$ due to the fact that $\langle Y-X, s\rangle=0, \forall s \in S)$. Hence, $\|Y-s\|>\|Y-X\|$ for $s \neq X$.

As a matter of terminology, we call any two elements X and Y of a Hilbert space orthogonal if $\langle X, Y\rangle=0$.

9.2 Conditional expectation for random variables in $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$

Now consider the Hilbert space \mathcal{L}^{2} composed of all random variables defined on (Ω, \mathcal{F}, P) and for precision denote this space by $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$. Let X be a random vector taking values in \mathbb{R}^{n} defined in the same probability space with $\sigma(X) \subset \mathcal{F}$. Then, $\mathcal{L}^{2}(\Omega, \sigma(X), P) \subset \mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ is a Hilbert space with the same inner product. Furthermore, $\mathcal{L}^{2}(\Omega, \sigma(X), P)$ is a closed subspace of $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$. We now define conditional expectation.

Definition 9.3. Let $Y \in \mathcal{L}^{2}(\Omega, \mathcal{F}, P)$. The conditional expectation of Y given X is the unique element $\hat{Y} \in \mathcal{L}^{2}(\Omega, \sigma(X), P)$ such that

$$
E((Y-\hat{Y}) s)=0, \text { for all } s \in \mathcal{L}^{2}(\Omega, \sigma(X), P)
$$

We write $\hat{Y}=E(Y \mid X)$ or $\hat{Y}=E(Y \mid \sigma(X))$.
Recall that if $X:(\Omega, \mathcal{F}, P) \rightarrow\left(\mathbb{R}^{n}, \mathcal{B}^{n}\right)$ is a random vector, then $X^{-1}\left(\mathcal{B}^{n}\right) \subset \mathcal{F}$ is a σ algebra and we wrote $X^{-1}\left(\mathcal{B}^{n}\right)=\sigma(X)$, the σ-algebra generated by X. Consider a random variable $Y:(\Omega, \mathcal{F}, P) \rightarrow(\mathbb{R}, \mathcal{B})$. It is legitimate to ask when Y is measurable (a random variable) with respect to $\sigma(X){ }^{2}$ The following theorem provides a useful characterization.

[^1]Theorem 9.5. Let $X:(\Omega, \mathcal{F}, P) \rightarrow\left(\mathbb{R}^{n}, \mathcal{B}^{n}\right)$ be a random vector and $Y:(\Omega, \mathcal{F}, P) \rightarrow(\mathbb{R}, \mathcal{B})$ be a random variable. Y is $\sigma(X)$-measurable if, and only if, there exists $f:\left(\mathbb{R}^{n}, \mathcal{B}^{n}\right) \rightarrow(\mathbb{R}, \mathcal{B})$ such that $Y=f(X)$ and f is \mathcal{B}^{n}-measurable.

Proof. ($\Longleftarrow)$ We want to show that for every $B \in \mathcal{B}$ we have $Y^{-1}(B) \in \sigma(X)$. But $Y^{-1}(B)=X^{-1}\left(f^{-1}(B)\right)$ and by measurability of $f, f^{-1}(B) \in \mathcal{B}^{n}$ and since X is a random vector $X^{-1}\left(f^{-1}(B)\right) \in \sigma(X)$. Thus, Y is $\sigma(X)$-measurable.
(\Longrightarrow) Suppose $Y^{-1}(B) \in \sigma(X)$ for all $B \in \mathcal{B}$. First, assume that Y is simple. Then, for $k \in \mathbb{N}$ we have $Y=\sum_{i=1}^{k} a_{i} I_{A_{i}}$ for a_{i} distinct and A_{i} pairwise-disjoint. In this case, $Y^{-1}\left(\left\{a_{i}\right\}\right)=A_{i}$ and by assumption $A_{i} \in \sigma(X)$. Hence there exists $B_{i} \in \mathcal{B}^{n}$ such that $X^{-1}\left(B_{i}\right)=A_{i}$ (definition of $\left.\sigma(X)\right)$. Let $f(x)=\sum_{i=1}^{k} a_{i} I_{B_{i}}(x)$, then $Y=f(X), f \mathcal{B}^{n}-$ measurable. Thus, the implication is proved for every Y simple that is $\sigma(X)$-measurable.

If $Y:(\Omega, \mathcal{F}, P) \rightarrow[0, \infty)$ then, by Theorem 4.4 there exist $Y_{n}(\omega)$ simple such that

$$
Y(\omega)=\lim _{n \rightarrow \infty} Y_{n}(\omega), 0 \leq Y_{n}(\omega) \leq Y_{n+1}(\omega)
$$

Each Y_{n} is $\sigma(X)$-measurable and $Y_{n}=f_{n}(X)$ from the first part of the proof. Now, set $f(x)=\lim \sup _{n \rightarrow \infty} f_{n}(x)$ and note $Y=\lim _{n \rightarrow \infty} Y_{n}=\lim _{n \rightarrow \infty} f_{n}(X)$.

Given that $\left(\limsup _{n \rightarrow \infty} f_{n}\right)(X)=\lim \sup _{n \rightarrow \infty} f_{n}(X)$, by Theorem 3.6, $f(x)$ is \mathcal{B}^{n}-measurable. For general Y, write $Y=Y^{+}-Y^{-}$which reduces to the preceding case.

Remark 9.1. 1. An equivalent way to think of Definition 9.3 using the previous theorem is to write

$$
E(Y \mid X)=\underset{s \in \mathcal{L}^{2}(\Omega, \sigma(X), P)}{\arg \inf }\|Y-s\|=\arg \inf _{f \in F}\|Y-f(X)\| .
$$

where F is the set of Borel measurable functions from \mathbb{R}^{n} to \mathbb{R}.
2. Since $\hat{Y}=E(Y \mid X)$ is $\sigma(X)$-measurable, by Theorem 9.5, there exists $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is Borel measurable such that $E(Y \mid X)=f(X)$ and f is unique. Hence, we
can write $E[(Y-f(X)) g(X)]=0$, for all $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ Borel measurable such that $\int g^{2} d P<\infty$.

We can free the concept of conditional expectation from a particular set of random variables (or element) that produces $\sigma(X)$ and speak more generally of conditioning on a σ-algebra $\mathcal{G} \subset \mathcal{F}$, that is a sub- σ-algebra of \mathcal{F}.

Definition 9.4. $Y:(\Omega, \mathcal{F}, P) \rightarrow(\mathbb{R}, \mathcal{B})$ be a random variable with $\int Y^{2} d P<\infty$. Let \mathcal{G} be a sub- σ-algebra of \mathcal{F}. Then $E(Y \mid \mathcal{G})$ is the unique $\hat{Y} \in \mathcal{L}^{2}(\Omega, \mathcal{G}, P)$ such that

$$
E((Y-\hat{Y}) s)=E([Y-E(Y \mid \mathcal{G})] s)=0
$$

for all measurable $s \in \mathcal{L}^{2}(\Omega, \mathcal{G}, P)$.

Remark 9.2. 1. The definition gives $E(Y s)=E(s E(Y \mid \mathcal{G}))$.
2. Since $s=1 \in \mathcal{L}^{2}(\Omega, \mathcal{G}, P), E(Y)=E(E(Y \mid \mathcal{G}))$.
3. If $U, V \in \mathcal{L}^{2}(\Omega, \mathcal{F}, P)$, then $E(U+\alpha V \mid \mathcal{G})$ satisfies $E((U+\alpha V) s)=E(E(U+\alpha V \mid \mathcal{G}) s)$. But,

$$
\begin{aligned}
E((U+\alpha V) s) & =E(U s)+\alpha E(V s) \\
& =E(E(U \mid \mathcal{G}) s)+\alpha E(E(V \mid \mathcal{G}) s) \\
& =E([E(U \mid \mathcal{G})+\alpha E(V \mid \mathcal{G})] s)
\end{aligned}
$$

Hence, $E(U+\alpha V \mid \mathcal{G})=E(U \mid \mathcal{G})+\alpha E(V \mid \mathcal{G})$. That is $E(\cdot \mid \mathcal{G})$ is a linear function.
Theorem 9.6. Assume that $Z:=\binom{Y}{X}$ is a random vector defined on (Ω, \mathcal{F}, P) taking values in \mathbb{R}^{2} and having density f.

1. Y and X have densities on $(\mathbb{R}, \mathcal{B})$ given by $f_{Y}(y)=\int_{\mathbb{R}} f(y, x) d \lambda(x)$ and $f_{X}(x)=$ $\int_{\mathbb{R}} f(y, x) d \lambda(y)$.
2. For every $x \in \mathbb{R}$ such that $f_{X}(x) \neq 0$ we have that $f_{Y \mid X=x}(y)=\frac{f(y, x)}{f_{X}(x)}$ is a density on R.
3. $E(Y \mid X)=h(X)$ where $h(x)=\int_{\mathbb{R}} y f_{Y \mid X=x}(y) d \lambda(y)$.

Proof. 1. Let $E \in \mathcal{B}$. Then,

$$
\begin{aligned}
P(Y \in E) & =P(Z \in E \times \mathbb{R})=\int_{E \times \mathbb{R}} f(y, x) d \lambda^{2}(y, x) \\
& =\int_{E} \int_{\mathbb{R}} f(y, x) d \lambda(y) d \lambda(x)=\int_{E} f_{Y}(y) d \lambda(y)
\end{aligned}
$$

with $f_{Y}(y)=\int_{\mathbb{R}} f(y, x) d \lambda(x)$. Therefore, $P(Y \in E)=\int_{\mathbb{R}} I_{E} f_{Y}(y) d \lambda(y)$ and f_{Y} is a density for Y.
2. $\int_{\mathbb{R}} f_{Y \mid X=x}(y) d \lambda(y)=\int_{\mathbb{R}} \frac{f(y, x)}{f_{X}(x)} d \lambda(y)=1$.
3. Let $h(x)=\int_{\mathbb{R}} y f_{Y \mid X=x}(y) d \lambda(y)$ and consider any bounded Borel measurable function $g:(\mathbb{R}, \mathcal{B}) \rightarrow(\mathbb{R}, \mathcal{B})$. Then,

$$
\begin{aligned}
E(h(X) g(X)) & =\int_{\mathbb{R}} h(x) g(x) f_{X}(x) d \lambda(x)=\int_{\mathbb{R}} \int_{\mathbb{R}} y f_{Y \mid X=x}(y) d \lambda(y) g(x) f_{X}(x) d \lambda(x) \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} y \frac{f(y, x)}{f_{X}(x)} d \lambda(y) g(x) f_{X}(x) d \lambda(x)=\int_{\mathbb{R}} \int_{\mathbb{R}} y f(y, x) d \lambda(y) g(x) d \lambda(x) \\
& =E(Y g(X))
\end{aligned}
$$

Consequently,

$$
E(h(X) g(X))-E(Y g(X))=E((Y-h(X)) g(X))=0
$$

which gives $E(Y \mid X)=h(X)$.
Theorem 9.7. Let Y be a random variable in $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ and S be a closed subspace of $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$. Then,

1. there exists a unique function $P_{S}: \mathcal{L}^{2}(\Omega, \mathcal{F}, P) \rightarrow S$ such that $\left(\mathcal{I}-P_{S}\right): \mathcal{L}^{2}(\Omega, \mathcal{F}, P) \rightarrow$ S^{\perp} where S^{\perp} is the orthogonal complement of $S,,^{3}$

[^2]2. $\|Y\|^{2}=\left\|P_{S}(Y)\right\|^{2}+\left\|\left(I-P_{S}\right)(Y)\right\|^{2}$,
3. $P_{S}\left(Y_{n}\right) \rightarrow P_{S}(Y)$ if $\left\|Y_{n}-Y\right\| \rightarrow 0$ as $n \rightarrow \infty$,
4. if S_{1}, S_{2} are closed subspaces of $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ such that $S_{1} \subset S_{2} \Longrightarrow P_{S_{1}}\left(P_{S_{2}}(Y)\right)=$ $P_{S_{1}}(Y)$.

Proof. 1. By the Projection Theorem, for each $Y \in \mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ there exists a unique $\hat{Y} \in S$. Thus, we write the function $P_{S}(Y)=\hat{Y}$. In addition $E\left\{\left(Y-P_{S}(Y)\right) s\right\}=0$ for all $s \in S$. That is, $Y-P_{S}(Y)$ is orthogonal to the subspace S. Any $Y \in \mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ can be written as $Y-P_{S}(Y)+P_{S}(Y)=Y$ or $Y=\left(\mathcal{I}-P_{S}\right)(Y)+P_{S}(Y)$ where \mathcal{I} is the identity operator in $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ and $\mathcal{I}-P_{S}$ projects Y onto the orthogonal complement of S.
2. Note that

$$
\begin{aligned}
\|Y\|^{2} & =\left\|Y-P_{S} Y+P_{S} Y\right\|^{2} \\
& =\left\|Y-P_{S}(Y)\right\|^{2}+\left\|P_{S}(Y)\right\|^{2} \text { by Pythagoras' theorem } \\
& =\left\|\left(\mathcal{I}-P_{S}\right)(Y)\right\|^{2}+\left\|P_{S}(Y)\right\|^{2}
\end{aligned}
$$

3. Note that $\left\|P_{S}\left(Y_{n}\right)-P_{S}(Y)\right\|^{2}=\left\|P_{S}\left(Y_{n}-Y\right)\right\|^{2}$. By the last equality in part 2.,

$$
\begin{aligned}
\left\|Y_{n}-Y\right\|^{2} & =\left\|\left(\mathcal{I}-P_{S}\right)\left(Y_{n}-Y\right)\right\|^{2}+\left\|P_{S}\left(Y_{n}-Y\right)\right\|^{2} \\
& =\left\|\left(\mathcal{I}-P_{S}\right)\left(Y_{n}-Y\right)\right\|^{2}+\left\|P_{S}\left(Y_{n}\right)-P_{S}(Y)\right\|^{2} .
\end{aligned}
$$

Consequently,

$$
\left\|P_{S}\left(Y_{n}\right)-P_{S}(Y)\right\|^{2}=\left\|Y_{n}-Y\right\|^{2}-\left\|\left(\mathcal{I}-P_{S}\right)\left(Y_{n}-Y\right)\right\|^{2} \leq\left\|Y_{n}-Y\right\|^{2}
$$

Hence, if $\left\|Y_{n}-Y\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $\left\|P_{S}\left(Y_{n}\right)-P_{S}(Y)\right\|^{2} \rightarrow 0$ as $n \rightarrow \infty$.
4. $Y=P_{S_{2}}(Y)+\left(\mathcal{I}-P_{S_{2}}\right)(Y)$ and $P_{S_{1}}(Y)=P_{S_{1}}\left(P_{S_{2}}(Y)\right)+P_{S_{1}}\left(\left(\mathcal{I}-P_{S_{2}}\right)(Y)\right)$. In the last term, the argument of $P_{S_{1}}$ is an element of the orthogonal complement of S_{2}. That is $<(\mathcal{I}-$ $\left.P_{S_{2}}\right)(Y), s>=0$ for every $s \in S_{2}$. But since $S_{1} \subset S_{2}$, it must be that $<\left(\mathcal{I}-P_{S_{2}}\right)(Y), s_{1}>=0$ for all $s_{1} \in S_{1}$. Thus, $\left(\mathcal{I}-P_{S_{2}}\right)(Y) \in S_{1}^{\perp}$ and consequently $P_{S_{1}}\left(\left(\mathcal{I}-P_{S_{2}}\right)(Y)\right)=0$.

In Theorem 9.7, if we take the closed subspace of $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ to be $\mathcal{L}^{2}(\Omega, \mathcal{G}, P)$ for \mathcal{G} a sub σ-algebra of \mathcal{F}, we write $E(Y \mid \mathcal{G})$ for $P_{S}(Y)$. In particular, we have:

1. $\|Y\|^{2}=\|E(Y \mid \mathcal{G})\|^{2}+\|Y-E(Y \mid \mathcal{G})\|^{2}$,
2. $E\left(Y_{n} \mid \mathcal{G}\right) \rightarrow E(Y \mid \mathcal{G})$ if $Y_{n} \xrightarrow{\mathcal{L}^{2}} Y$,
3. if $\mathcal{H} \subset \mathcal{G}$ then $E(E(Y \mid \mathcal{G}) \mid \mathcal{H})=E(Y \mid \mathcal{H})$.

9.3 Conditional expectation for random variables in $\mathcal{L}(\Omega, \mathcal{F}, P)$

It is desirable to extend the concept of conditional expectation to random variables Y : $(\Omega, \mathcal{F}, P) \rightarrow(\mathbb{R}, \mathcal{B})$ such that $Y \in \mathcal{L}$. The word extend is justified, since by the CauchySchwarz Inequality (or Rogers-Hölder Inequality with $p=q=2$)

$$
E(|X Y|) \leq\|X\|_{2}\|Y\|_{2}
$$

Taking $Y=1$ almost everywhere, we have $E(|X|)^{2} \leq E\left(X^{2}\right)$. Hence, if $E\left(X^{2}\right)<C$ then $E|X|<C$. Consequently, $\mathcal{L}^{2} \subset \mathcal{L}$.

For this purpose, recall that $Y \in \mathcal{L}(\Omega, \mathcal{F}, P)$ if $Y^{+}=\max \{Y(\omega), 0\}$ and $Y^{-}=-\min \{Y(\omega), 0\}$ are such that $E\left(Y^{+}\right), E\left(Y^{-}\right)<\infty$ and, in this case, we define $E(Y)=E\left(Y^{+}\right)-E\left(Y^{-}\right)$. If $Y \geq 0$, then $Y^{-}=0$ and $Y=Y^{+}$. We first consider $Y \in \mathcal{L}_{+}(\Omega, \mathcal{F}, P)$. As in Definition 4.4 we allow $Y(\omega)=\infty$. The next theorem provides the basis for extending our definition of conditional expectation to random variables in \mathcal{L}.

Theorem 9.8. i) Let $Y \in \mathcal{L}_{+}(\Omega, \mathcal{F}, P)$ and let \mathcal{G} be a sub- σ-algebra of \mathcal{F}. There exists a unique element $E(Y \mid \mathcal{G})$ of $\mathcal{L}_{+}(\Omega, \mathcal{G}, P)$ such that $E([Y-E(Y \mid \mathcal{G})] X)=0$ for all $X \in \mathcal{L}_{+}(\Omega, \mathcal{G}, P)$.
ii) If $Y \in \mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ then the conditional expectation $E(Y \mid \mathcal{G})$ in i) is the same as $E(Y \mid \mathcal{G})$ in Definition 9.3 with $\sigma(X)=\mathcal{G}$.
iii) If $Y \leq Y^{\prime}$ then $E(Y \mid \mathcal{G}) \leq E\left(Y^{\prime} \mid \mathcal{G}\right)$.

Proof. i) We first consider the existence $E(Y \mid \mathcal{G})$. Let $Y \in \mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ and $Y \geq 0$. In this case, define $E(Y \mid \mathcal{G})$ as in Definition 9.3. Now, for $X \in \mathcal{L}_{+}(\Omega, \mathcal{G}, P)$ let

$$
X_{n}(\omega)=\min \{X(\omega), n\}= \begin{cases}X(\omega), & \text { if } X(\omega) \leq n \\ n, & \text { if } X(\omega)>n\end{cases}
$$

and note that

$$
X_{n}^{2}(\omega)= \begin{cases}X^{2}(\omega), & \text { if } X(\omega) \leq n \\ n^{2}, & \text { if } X(\omega)>n\end{cases}
$$

Hence,

$$
\int_{\Omega} X_{n}^{2} d P= \begin{cases}\int_{\Omega} X^{2} d P \leq n^{2} \int_{\Omega} d P=n^{2}<\infty, & \text { if } X(\omega) \leq n \\ n^{2} \int_{\Omega} d P=n^{2}<\infty, & \text { if } X(\omega)>n\end{cases}
$$

so that $X_{n} \in \mathcal{L}^{2}$.
Now, $0 \leq X_{1}(\omega) \leq X_{2}(\omega) \leq \cdots \leq X(\omega)$ and $X_{n}(\omega) \rightarrow X(\omega)$ almost everywhere as $n \rightarrow \infty$. Then, by Beppo-Levi's Theorem, we have that

$$
E\left(\lim _{n \rightarrow \infty} Y X_{n}\right)=E(Y X)=\lim _{n \rightarrow \infty} E\left(Y X_{n}\right)=\lim _{n \rightarrow \infty} E\left(E(Y \mid \mathcal{G}) X_{n}\right)
$$

The last equality follows from the fact that $E Y^{2}<\infty, E X_{n}^{2}<\infty$ and Definition 9.3 . Now, again by Beppo-Levi's Theorem, we have

$$
E(Y X)=\lim _{n \rightarrow \infty} E\left(E(Y \mid \mathcal{G}) X_{n}\right)=E(E(Y \mid \mathcal{G}) X), \text { for all } X \in \mathcal{L}_{+}(\Omega, \mathcal{G}, P)
$$

If $Y \in \mathcal{L}_{+}(\Omega, \mathcal{F}, P)$ then let $Y_{m}(\omega)=\min \{Y(\omega), m\}$ and from the argument above $Y_{m} \in \mathcal{L}^{2}$. Hence,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} E\left(Y_{m} X_{n}\right) & =\lim _{n \rightarrow \infty} E\left(E\left(Y_{m} \mid \mathcal{G}\right) X_{n}\right)=E\left(E\left(Y_{m} \mid \mathcal{G}\right) \lim _{n \rightarrow \infty} X_{n}\right) \\
& =E\left(E\left(Y_{m} \mid \mathcal{G}\right) X\right)
\end{aligned}
$$

Now, since $Y_{m} \geq 0$, then $E\left(Y_{m} \mid \mathcal{G}\right)$ as defined in Definition 9.3 is such that $E\left(Y_{m} \mid \mathcal{G}\right) \geq 0$. To see this, consider $Z=I_{\left\{E\left(Y_{m} \mid \mathcal{G}\right)<0\right\}}$ and note that $E\left(Z^{2}\right)=P\left(E\left(Y_{m} \mid \mathcal{G}\right)<0\right), E\left(Y_{m} Z\right)=$
$E\left(E\left(Y_{m} \mid \mathcal{G}\right) Z\right)=E\left(E\left(Y_{m} \mid \mathcal{G}\right) I_{\left\{E\left(Y_{m} \mid \mathcal{G}\right)<0\right\}}\right)$. Now, since $Y_{m} \geq 0$ and $Z=1$ or $Z=0$ we have that $E\left(Y_{m} Z\right) \geq 0$. But the right-hand side of the last equality is less than 0 if $E\left(Y_{m} \mid \mathcal{G}\right)<0$, so it must be that $E\left(Y_{m} \mid \mathcal{G}\right) \geq 0$ if $Y_{m} \geq 0$. Hence, $E\left(Y_{m} \mid \mathcal{G}\right)$ is increasing with m, and by Beppo-Levi's Theorem we have

$$
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} E\left(Y_{m} X_{n}\right)=E(Y X)=\lim _{m \rightarrow \infty} E\left(E\left(Y_{m} \mid \mathcal{G}\right) X\right)=E\left(\lim _{m \rightarrow \infty} E\left(Y_{m} \mid \mathcal{G}\right) X\right)
$$

Now, since $E(Y X)=E\left(\left(\lim _{m \rightarrow \infty} E\left(Y_{m} \mid \mathcal{G}\right)\right) X\right)$ or $E\left(\left(Y-\lim _{m \rightarrow \infty} E\left(Y_{m} \mid \mathcal{G}\right)\right) X\right)=0$ for all $X \in \mathcal{L}_{+}(\Omega, \mathcal{G}, P)$, we define

$$
\begin{equation*}
E(Y \mid \mathcal{G})=\lim _{m \rightarrow \infty} E\left(Y_{m} \mid \mathcal{G}\right) \tag{9.1}
\end{equation*}
$$

for $Y \in \mathcal{L}^{+}(\Omega, \mathcal{F}, P)$.
We now consider uniqueness of $E(Y \mid \mathcal{G})$. Let U and V be two versions of $E(Y \mid \mathcal{G})$ and let $\wedge_{n}=\{\omega: U<V \leq n\}$. Since U and V are versions of $E(Y \mid \mathcal{G})$ we know that U and V are \mathcal{G}-measurable. Consequently, $\{\omega: U \leq n\} \in \mathcal{G},\{\omega: V \leq n\} \in \mathcal{G}$ and $\wedge_{n}=\{\omega: U<V \leq$ $n\} \in \mathcal{G}$.

Note that $E\left(Y I_{\wedge_{n}}\right)=E\left(U I_{\wedge_{n}}\right)=E\left(V I_{\wedge_{n}}\right)$ since $U=V=E(Y \mid \mathcal{G})$. Furthermore, $0 \leq U I_{\wedge_{n}} \leq V I_{\wedge_{n}} \leq n$ and if $P\left(\wedge_{n}\right)>0\left(\wedge_{n} \neq \emptyset\right), U I_{\wedge_{n}}<V I_{\wedge_{n}}$ which implies that $E\left(U I_{\wedge_{n}}\right)<E\left(V I_{\wedge_{n}}\right)$, which contradicts $E\left(U I_{\wedge_{n}}\right)=E\left(V I_{\wedge_{n}}\right)$. Therefore, $P\left(\wedge_{n}\right)=0$ for all n. Now, note that $\wedge_{1} \subset \wedge_{2} \subset \wedge_{3} \subset \cdots \subset\{U<V\}$. Now $\lim _{n \rightarrow \infty} \cup_{i=1}^{n} \wedge_{i}=\{U<V\}$ and $P\left(\lim _{n \rightarrow \infty} \cup_{i=1}^{n} \wedge_{i}\right)=\lim _{n \rightarrow \infty} P\left(\cup_{i=1}^{n} \wedge_{i}\right) \leq \lim _{n \rightarrow \infty} \sum_{i=1}^{n} P\left(\wedge_{i}\right)$. Thus, $P(\{U<V\})=0$. Repeating the argument for $\Gamma_{n}=\{\omega: V<U \leq n\}$ we conclude that $P(\{V<U\})=0$. Hence, it must be that U and V coincide with probability 1 .
ii) The proof follows from the first part of the argument in item i).
iii) If $Y \leq Y^{\prime}$ then $Y_{m} \leq Y_{m}^{\prime}$ for all m and $E\left(Y_{m} \mid \mathcal{G}\right) \leq E\left(Y_{m}^{\prime} \mid \mathcal{G}\right)$ and consequently

$$
\lim _{m \rightarrow \infty} E\left(Y_{m} \mid \mathcal{G}\right) \leq \lim _{m \rightarrow \infty} E\left(Y_{m}^{\prime} \mid \mathcal{G}\right) \Longleftrightarrow E(Y \mid \mathcal{G}) \leq E\left(Y^{\prime} \mid \mathcal{G}\right)
$$

We now consider conditional expectations for random variables in $\mathcal{L}(\Omega, \mathcal{F}, P)$.

Theorem 9.9. Let $Y \in \mathcal{L}(\Omega, \mathcal{F}, P)$ and let \mathcal{G} be a sub- σ-algebra of \mathcal{F}. There exists a unique element $E(Y \mid \mathcal{G})$ in $\mathcal{L}(\Omega, \mathcal{G}, P)$ such that

$$
E((Y-E(Y \mid \mathcal{G})) X)=0, \text { for all bounded } \mathcal{G} \text {-measurable } X \text {. }
$$

$E(Y \mid \mathcal{G})$ coincides with those in Definition 9.3 and Theorem 9.8 when $Y \in \mathcal{L}^{2}$ and $Y \in \mathcal{L}_{+}$. In addition, (i) if $Y \geq 0$, then $E(Y \mid \mathcal{G}) \geq 0$ and (ii) $E(Y \mid \mathcal{G})$ is a linear in Y.

Proof. We first consider existence of the conditional expectation. Since $Y \in \mathcal{L}$, we can write $Y=Y^{+}-Y^{-}$and $Y^{+}, Y^{-} \in \mathcal{L}$. Now, Y^{+}and Y^{-}are such that

$$
\begin{aligned}
& E\left(\left(Y^{+}-E\left(Y^{+} \mid \mathcal{G}\right)\right) X\right)=0, \text { for all } X \in \mathcal{L}_{+}(\Omega, \mathcal{G}, P) \text { and } \\
& E\left(\left(Y^{-}-E\left(Y^{-} \mid \mathcal{G}\right)\right) X\right)=0, \text { for all } X \in \mathcal{L}_{+}(\Omega, \mathcal{G}, P) .
\end{aligned}
$$

Define $E(Y \mid \mathcal{G})=E\left(Y^{+} \mid \mathcal{G}\right)-E\left(Y^{-} \mid \mathcal{G}\right)$ and note that for $X \in \mathcal{L}_{+}(\Omega, \mathcal{G}, P)$

$$
\begin{aligned}
E(Y X) & =E\left(\left(Y^{+}-Y^{-}\right) X\right)=E\left(Y^{+} X\right)-E\left(Y^{-} X\right) \\
& =E\left(E\left(Y^{+} \mid \mathcal{G}\right) X\right)-E\left(E\left(Y^{-} \mid \mathcal{G}\right) X\right) \text { by Theorem } 9.8 \\
& \left.=E\left(\left(E\left(Y^{+} \mid \mathcal{G}\right)-E\left(Y^{-} \mid \mathcal{G}\right)\right)\right) X\right)=E(E(Y \mid \mathcal{G}) X) .
\end{aligned}
$$

We now establish uniqueness of $E(Y \mid \mathcal{G})$. Suppose U and V are two versions of $E(Y \mid \mathcal{G})$ and let $\wedge=\{U<V\}$. Then, since U and V are \mathcal{G}-measurable, then $\wedge \in \mathcal{G}$. Therefore I_{\wedge} is \mathcal{G}-measurable.

$$
E\left(Y I_{\wedge}\right)=E\left(E(Y \mid \mathcal{G}) I_{\wedge}\right)=E\left(U I_{\wedge}\right)=E\left(V I_{\wedge}\right)
$$

But, if $P(\wedge)>0$, then $E\left(U I_{\wedge}\right)<E\left(V I_{\wedge}\right)$, a contradiction. Thus, $P(\wedge)=0$. A similar reverse argument gives $P(V<U)=0$.

Now, for any X that is bounded and \mathcal{G}-measurable consider

$$
\begin{aligned}
E(Y X) & =E\left(Y\left(X^{+}-X^{-}\right)\right)=E\left(Y X^{+}\right)-E\left(Y X^{-}\right) \\
& =E\left(X^{+} E(Y \mid \mathcal{G})\right)-E\left(X^{-} E(Y \mid \mathcal{G})\right)
\end{aligned}
$$

using the definition of conditional expectation in this proof.
$=E\left(\left(X^{+}-X^{-}\right) E(Y \mid \mathcal{G})\right)=E(X E(Y \mid \mathcal{G}))$.

The proofs of items (i) and (ii) are left as exercises.

Remark 9.3. Note that if X and Y are independent random variables defined on the same probability space, then by Theorem 6.5, if f is a bounded measurable function $E(Y f(X))=$ $E(Y) E(f(X))$. Now, $E(Y f(X))=E(E(Y \mid \sigma(X)) f(X))$ and consequently

$$
E(Y) E(f(X))=E(E(Y \mid \sigma(X)) f(X))
$$

taking $f(X)=1$ gives $E(Y)=E(Y \mid \sigma(X))$.

Lebesgue's monotone and dominated convergence theorems hold for conditional expectations.

Theorem 9.10. $Y_{n}(\omega):(\Omega, \mathcal{F}, P) \rightarrow(\mathbb{R}, \mathcal{B})$ and let \mathcal{G} be a sub- σ-algebra of \mathcal{F}.
a) If $Y_{n} \geq 0, Y_{1} \leq Y_{2} \leq Y_{3} \leq \cdots$ with $Y_{n} \xrightarrow{\text { as }} Y$ as $n \rightarrow \infty$, then $\lim _{n \rightarrow \infty} E\left(Y_{n} \mid \mathcal{G}\right)=$ $E(Y \mid \mathcal{G})$ a.s.
b) If $Y_{n} \xrightarrow{\text { as }} Y$ and $\left|Y_{n}\right| \leq Z$ for some $Z \in \mathcal{L}(\Omega, \mathcal{F}, P)$, then $\lim _{n \rightarrow \infty} E\left(Y_{n} \mid \mathcal{G}\right)=E(Y \mid \mathcal{G})$ a.s.

Proof. Left as an exercise.
We now give an example where conditional expectation is taken to belong to a specific class of measurable functions.

Example 9.3. Let $Y \in \mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ and let X be a random vector defined on the same probability space. Assume that for every component of X_{k}, for $k=1, \cdots, K$ of X we have $X_{k} \in \mathcal{L}^{2}(\Omega, \mathcal{F}, P)$. Now, consider the following class of functions

$$
F=\left\{f: f(x)=\sum_{k=1}^{K} a_{k} x_{k} \text { where } f \text { is } \sigma(X) \text {-measurable and } a_{k} \in \mathbb{R}\right\}
$$

Using Definition 9.3 or item 1 in Remark 30

$$
E(Y \mid X)=\underset{a_{1}, \cdots, a_{K}}{\operatorname{argmin}} \int\left(Y-\sum_{k=1}^{k} a_{k} X_{k}\right)^{2} d P=\underset{a_{1}, \cdots, a_{K}}{\operatorname{argmin}} O\left(a_{1}, \cdots, a_{K}\right) .
$$

Now,

$$
\begin{aligned}
O\left(a_{1}, \cdots, a_{K}\right) & =\int\left(Y^{2}-2 Y \sum_{k=1}^{K} a_{k} X_{k}+\left(\sum_{i=1}^{K} a_{k} X_{k}\right)^{2}\right) d P \\
& =\int Y^{2} d P-2 \sum_{k=1}^{K} a_{k} \int X_{k} Y d P+\sum_{k=1}^{K} a_{k}^{2} \int X_{k}^{2} d P \\
& +\sum_{k=1}^{K} \sum_{k \neq l} a_{k} a_{l} \int X_{k} X_{l} d P \\
& =\sigma^{2}-2 \sum_{k=1}^{K} a_{k} E\left(X_{k} Y\right)+\sum_{k=1}^{K} a_{k}^{2} \int X_{k}^{2} d P+\sum_{k=1}^{K} \sum_{j k \neq l} a_{k} a_{l} E\left(X_{k} X_{l}\right) .
\end{aligned}
$$

Now, taking derivatives with respect to a_{k} we have $\frac{\partial}{\partial a_{k}} O\left(a_{1}, \cdots, a_{K}\right)=-2 E\left(X_{k} Y\right)+2 a_{k} E\left(X_{k}^{2}\right)+$ $2 \sum_{k \neq l} a_{l} E\left(X_{k} X_{l}\right)$ for $k=1, \cdots, K$. Alternatively, using matrices

$$
\frac{\partial}{\partial a} O\left(a_{1}, \cdots, a_{K}\right)=-2\left[\begin{array}{c}
E\left(X_{1} Y\right) \\
\vdots \\
E\left(X_{K} Y\right)
\end{array}\right]+2\left[\begin{array}{cccc}
E\left(X_{1}^{2}\right) & E\left(X_{1} X_{2}\right) & \cdots & E\left(X_{1} X_{K}\right) \\
E\left(X_{2} X_{1}\right) & E\left(X_{2}^{2}\right) & \cdots & E\left(X_{2} X_{K}\right) \\
\vdots & & \vdots & \\
E\left(X_{K} X_{1}\right) & E\left(X_{K} X_{2}\right) & \cdots & E\left(X_{K}^{2}\right)
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{K}
\end{array}\right]
$$

$$
=-2 b+2 A a
$$

Choosing $a:=\hat{a}$ such that $\frac{\partial}{\partial a} O\left(\hat{a}_{1}, \cdots, \hat{a}_{K}\right)=0$ we have $\hat{a}=A^{-1} b$ if A is invertible. Invertibility of A follows positive definiteness of A, which also assures that $\hat{f}(x)=\sum_{k=1}^{K} \hat{a}_{k} x_{k}$ corresponds to a minimum.

[^0]: ${ }^{1}$ If the vector space \mathbb{X} is associated with a complex field, property 1 becomes $\langle x, y\rangle=\overline{\langle y, x\rangle}$, where for $x \in \mathbb{C}, \bar{x}$ is the complex conjugate of x, and in property $3 a \in \mathbb{C}$.

[^1]: ${ }^{2}$ More generally, for $\mathcal{G} \subset \mathcal{F}$ a σ-algebra, we say that X is \mathcal{G}-measurable if for all $B \in \mathcal{B}, X^{-1}(B) \in \mathcal{G}$. There may be many of these \mathcal{G} 's. The intersection of all of them, i.e. $\sigma(X):=\cap_{i \in I} \mathcal{G}_{i}$ is called the σ-algebra generated by X.

[^2]: ${ }^{3}$ The orthogonal complement of a subset S of an inner-product space is the set of all vectors in the space that are orthogonal to S.

