
Chapter 6

Independence of random variables

We want to speak of independence of random variables, but all we have is the notion of

independence of events. A function X : (⌦,F , P ) ! (R,B) is a random variable (measurable

function) if 8B 2 B, X�1(B) 2 F , or equivalently, from a notational perspective X�1(B) ⇢

F . In addition, recall from Example 1.1.4 that X�1(B) is a �-algebra associated with ⌦.

Hence, we will say that X�1(B) is a sub-�-algebra of F , as X�1(B) ⇢ F . In particular, we will

say that X�1(B) is the �-algebra generated by X and it is common to write �(X) := X�1(B).

Before we proceed with the notion of independence of random variables we establish the

following theorem.

Theorem 6.1. Let X : (⌦,F , P ) ! (T, T ) and C a class of subsets of T . Then,

X�1(�(C)) = �(X�1(C)).

Proof. From Example 1.1.4 X�1(�(C)) is a �-algebra associated with ⌦. Since C ⇢ �(C),

X�1(C) ⇢ X�1(�(C)) and consequently �(X�1(C)) ⇢ X�1(�(C)).

Now, as in Theorem 3.1, U = {U 2 2T : X�1(U) 2 �(X�1(C))} is a �-algebra. By

definition of U

X�1(U) ⇢ �(X�1(C)).

Also, C ⇢ U since X�1(C) ⇢ X�1(U) ⇢ �(X�1(C)). Since U is a �-algebra we have that
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�(C) ⇢ U . So,

X�1(�(C)) ⇢ X�1(U) ⇢ �(X�1(C)).

The last set containment combined with the reverse obtained on the last paragraph completes

the proof. ⌅

Earlier, we defined a finite collection of events {Ei}ni=1 and n � 2 as being independent if

P

✓
\
j2J

Ej

◆
=

Y

j2J

P (Ej) for any J ⇢ I = {1, · · · , n}. (6.1)

We will use this definition to speak of independence of sub-�-algebras and associated random

variables.

Definition 6.1. Let n 2 N, n � 2 and {Ci}ni=1 be a collection of classes of events. That is,

each Ci contains events associated with the probability space (⌦,F , P ). The collection {Ci}ni=1

is said to be independent if for any Ei 2 Ci we have that {Ei}ni=1 is an independent collection

of events.

This definition motivates the following:

Definition 6.2. (Independence of �-algebras). Let I = {1, · · · , n}, n 2 N with n � 2 and

(⌦,F , P ) be a probability space. Then,

(a) Sub-�-algebras Fi of F with i 2 I are independent if for every J ⇢ I and all Ei 2 Fi

P

✓
\
j2J

Ej

◆
=

Y

j2J

P (Ej),

(b) Random variables Xi : (⌦,F , P ) ! (R,B) for i 2 I are independent if the sub �-

algebras X�1
i

(B) are independent.

Remark 6.1. Recall that by definition X�1(B) = {! : X(!) 2 B}. Hence, when we write

P (X 2 B) we mean P (X�1(B)), for B 2 B.
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The following theorem provides a criterion for establishing the independence of �-algebras.

Theorem 6.2. Let (⌦,F , P ) be a probability space. For each i 2 I = {1, · · · , n} let Ci be a

non-empty collection of events satisfying

1. Ci is a ⇡-system,

2. {Ci}i2I is an independent collection.

Then, {�(Ci)}i2I is an independent collection.

Proof. First, let n = 2. In this case we need to consider C1 and C2. Choose an arbitrary

A2 2 C2 and let L = {A 2 F : P (A\A2) = P (A)P (A2)}. L is the collection of P -measurable

sets (events) that are independent of A2. Now, note that:

1. P (⌦ \ A2) = P (A2) = P (⌦)P (A2) since P (⌦) = 1. Thus, ⌦ 2 L.

2. Suppose A 2 L. Note that

P (Ac \ A2) = P ((⌦� A) \ A2)) = P (A2 � (A \ A2)) = P (A2)� P (A \ A2)

= P (A2)� P (A)P (A2) since A 2 L

= P (A2)(1� P (A)) = P (A2)P (Ac).

Thus, if A 2 L we have that Ac 2 L.

3. If {An}n=1,··· 2 L is a pairwise disjoint collection

P ([1

n=1An \ A2) = P ([1

n=1(An \ A2))

=
1X

n=1

P (An \ A2) since the sets in the union are disjoint

=
1X

n=1

P (An)P (A2) = P (A2)P ([1

n=1An) since the sets An are in L.

Thus, if {An}n=1,··· 2 L is a pairwise disjoint collection, we have that [1

n=1An 2 L.
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Since 1-3 are the defining properties of a Dynkin system, we conclude that L is a Dynkin

system. Note also that, by assumption, C1 is independent of C2, every A1 2 C1 is in L. Thus,

C1 ⇢ L. By Theorem 2.3, since C1 is a ⇡-system L ◆ �(C1) = �(C1).1 Thus, all the events in

�(C1) are in L and we can conclude that �(C1) is independent of C2. We can also conclude,

by the symmetry of the argument, that �(C2) is independent of C1.

Now, repeat the argument above by choosing an arbitrary A2 2 �(C2). Then, L is a

Dynkin system, and by the fact that �(C2) is independent of C1 we have that C1 ⇢ L and,

as above, �(C1) ⇢ L. Consequently, �(C1) is independent of �(C2). Finally, use induction to

establish that this is true for all n finite. ⌅

Definition 6.3. Let I be an arbitrary index set (not necessarily finite or even countable).

The collection {Ci}i2I is independent if for each finite I ⇢ I, the collection {Ci}i2I is inde-

pendent.

The following is a corollary to Theorem 6.2.

Corollary 6.1. Let {Ci}i2I be a collection of non-empty independent ⇡-systems. Then,

{�(Ci)}i2I is an independent collection.

Definition 6.2 can be naturally expanded in accordance to Definition 6.3 to accommodate

an arbitrarily indexed collection of random variables. We now provide some characterizations

for independence of random variables.

Definition 6.4. Let {Xi}i2I be a collection of random variables defined on the probability

space (⌦,F , P ). The finite dimensional distribution functions (fddf) are the collection

FI(xi, i 2 I) = P ({! : Xi(!)  xi, i 2 I}) for all xi 2 R. (6.2)

for all finite subsets I ⇢ I.
1�(C1) is the smallest Dynkin system generated by C1.
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Theorem 6.3. The collection {Xi}i2I of random variables defined on the probability space

(⌦,F , P ) is independent if, and only if, for all finite subsets I ⇢ I we have

FI(xi, i 2 I) =
Y

i2I

P ({! : Xi(!)  xi}) for all xi 2 R. (6.3)

Proof. From definition 6.3 it suffices to show that for an arbitrary finite I ⇢ I the collection

{Xi}i2I is independent if, and only if, equation (6.3) holds.

((=) Let Ci = {{! : Xi(!)  x}, x 2 R} := {X�1
i

((�1, x]), x 2 R} and note that these

are subsets of ⌦. Furthermore,

1. Ci is a ⇡-system since

{! : Xi(!)  x} \ {! : Xi(!)  y} = {! : Xi(!)  min{x, y}}.

2. Recall that �({(�1, x], x 2 R}) = B. By Theorem 3.1 Xi is a random variable

(X�1
i

(B) ⇢ F) if, and only if,

{X�1
i

((�1, x]), x 2 R} = Ci ⇢ F .

Hence,

�(Ci) = �({X�1
i

((�1, x]), x 2 R})

= X�1
i

(�({(�1, x], x 2 R})) by Theorem 6.1

= X�1
i

(B) = �(Xi).

Now, equation (6.3) implies that {Ci}i2I is independent collection and, therefore, by

Theorem 6.2, the collection {�(Ci) = �(Xi)}i2I is independent. Consequently, by

definition, {Xi}i2I are forms an independent collection of random variables.

(=)) This follows directly from the definition of independence. ⌅
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Remark 6.2. 1. It follows directly from Theorem 6.3 that a finite collection of random

variables {Xi}mi=1 is independent if, and only if,

P (\i2J{! : Xi(!)  xi}) =
Y

i2J

P ({! : Xi(!)  xi}), for all J ⇢ {1, · · · ,m}.

2. If Xi has a density {Xi}mi=1 are independent if, and only if,

P (\i2J{! : Xi(!)  xi}) =
Y

i2J

Z

(�1,xi]

fXid�.

6.1 Random elements

The most common cases where we deal with random elements occur when the co-domain of

the element is endowed with a metric, so that the co-domain is a metric space.

Definition 6.5. Let X : (⌦,F , P ) ! (T, T = �(O)), where O are the open sets in T . Then,

X is a random element if

X�1(B) 2 F for all B 2 T .

In this definition, T is the collection of Borel sets of T and we write B(T ). The following

examples include definitions.

Example 6.1. Let X : (⌦,F , P ) ! (Rk,B(Rk)) where k 2 N. Then X is a random vector

if X�1(B) 2 F for all B 2 B(Rk). Now, define dE : Rk ⇥ Rk ! [0,1) as dE(x, y) =
⇣P

k

i=1(xi � yi)2
⌘1/2

. It can be easily verified that dE is a metric on Rk.

Example 6.2. Let m : R2 ! R be given by m(x1, x2) = |x1�x2|

1+|x1�x2|
. Clearly, from the

definition of m, m � 0, m = 0 if, and only if, x1 = x2 and m(x1, x2) = m(x2, x1). To verify

that m(x1, x2)  m(x1, z) +m(z, x2) we note that |x1 � x2| = m(x1,x2)
1�m(x1,x2)

. Since |x1 � x2| =

|x1 � z + z � x2|  |x1 � z|+ |z � x2|, we have

m(x1, x2)

1�m(x1, x2)
 m(x1, z)

1�m(x1, z)
+

m(z, x2)

1�m(z, x2)
.
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Let c = m(x1, x2), a = m(x1, z) and b = m(z, x2). Then, c

1�c
 a

1�a
+ b

1�b
= a+b�2ab

(1�a)(1�b) and

a+ b � c

1� c
(1� a)(1� b) + 2ab = � c

1� c
(a+ b) +

c

1� c
+

1

1� c
(2ab� abc) .

Then,
a+ b

1� c
� c

1� c
+

1

1� c
(2ab� abc) () a+ b � c+ ab(2� c).

Since 0  m  1, ab(2� c) � 0 and c  a+ b. Hence, m(x1, x2)  m(x1, z)+m(z, x2). This

shows that m is a metric on R.

Now, consider a space of sequences {xi}i2N where xi 2 R for all i and define m1 :

R1⇥R1 ! R as m1 ({xi}i2N, {yi}i2N) = lim
n!1

P
n

j=1
1
2jm(xj, yj) = lim

n!1

Sn. Since 0  S1 

S2  · · · is a monotonic sequence, it converges if, and only if, it is bounded. Boundedness

follows from the fact that |Sn| 
P

n

j=1
1
2jm(xj, yj) 

P
n

j=1
1
2j 

P
1

j=1
1
2j = 1. Hence, the

limit in the definition of m1 exists and 0  m1  1. If m1 ({xi}i2N, {yi}i2N) = 0 then it

must be that m(xj, yj) = 0 for all j, which implies xj = yj for all j. Clearly, if xj = yj for

all j we have m1 ({xi}i2N, {yi}i2N) = 0.

Since m(xj, yj)  m(xj, zj) +m(zj, yj) we have

nX

j=1

2�jm(xj, yj) 
nX

j=1

2�jm(xj, zj) +
nX

j=1

2�jm(zj, yj).

Taking limits on both sides as n ! 1 gives m1 ({xi}i2N, {yi}i2N)  m1 ({xi}i2N, {zi}i2N)+

m1 ({zi}i2N, {yi}i2N). Hence, m1 is a metric in the space of infinite sequences.

Alternatively, we can define µ1 : R1 ⇥R1 ! R as

µ1 ({xi}i2N, {yi}i2N) = lim
n!1

nX

j=1

1

2j

P
j

i=1 |xi � yi|
1 +

P
j

i=1 |xi � yi|
= lim

n!1

nX

j=1

1

2j
uj({xi}ji=1, {yi}

j

i=1)

= lim
n!1

Sn.

As in the case of m1, 0  S1  S2  · · · and |Sn|  1. Hence, 0  µ1  1 and

µ1 = 0 if, and only if, xi = yi for all i. Now, write S1(x1, y1) = 1
2m(x1, y1) and since
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m(x1, y1)  m(x1, z1) + m(z1, y1) we have that S1(x1, y1)  S1(x1, z1) + S1(z1, y1). Now,

suppose

Sn ({xi}ni=1 , {yi}
n

i=1)  Sn({xi}ni=1 , {zi}
n

i=1) + Sn({zi}ni=1 , {yi}
n

i=1).

Then,

Sn+1

�
{xi}n+1

i=1 , {yi}n+1
i=1

�
=

n+1X

j=1

1

2j
uj({xi}ji=1, {yi}

j

i=1) = Sn ({xi}ni=1 , {yi}
n

i=1)

+
1

2n+1
un+1({xi}n+1

i=1 , {yi}n+1
i=1 )

 Sn ({xi}ni=1 , {zi}
n

i=1) + Sn ({zi}ni=1 , {yi}
n

i=1)

+
1

2n+1
un+1({xi}n+1

i=1 , {yi}n+1
i=1 )

Following the same arguments used for m, we have

1

2n+1
un+1({xi}n+1

i=1 , {yi}n+1
i=1 ) 

1

2n+1
un+1({xi}n+1

i=1 , {zi}n+1
i=1 ) +

1

2n+1
un+1({zi}n+1

i=1 , {yi}n+1
i=1 )

=
1

2n+1

P
n+1
i=1 |xi � zi|

1 +
P

n+1
i=1 |xi � zi|

+
1

2n+1

P
n+1
i=1 |zi � yi|

1 +
P

n+1
i=1 |zi � yi|

.

Hence,

Sn+1

�
{xi}n+1

i=1 , {yi}n+1
i=1

�
 Sn ({xi}ni=1 , {zi}

n

i=1) + Sn ({zi}ni=1 , {yi}
n

i=1)

+
1

2n+1

P
n+1
i=1 |xi � zi|

1 +
P

n+1
i=1 |xi � zi|

+
1

2n+1

P
n+1
i=1 |zi � yi|

1 +
P

n+1
i=1 |zi � yi|

= Sn+1({xi}n+1
i=1 , {zi}n+1

i=1 ) + Sn+1({zi}n+1
i=1 , {yi}n+1

i=1 ).

Hence, by induction, and taking limits we have µ1 ({xi}i2N, {yi}i2N)  µ1 ({xi}i2N, {zi}i2N)+

µ1 ({zi}i2N, {yi}i2N).

Example 6.3. Let X : (⌦,F , P ) ! (R1,B(R1)) where R1 = ⇥1

n=1R and B(R1) = �(C)

with C = {C : C = ✓�1
i
(B), B 2 Bi, ✓i(x) = (X1, · · · , Xi) : R1 ! Ri, i 2 N}. Then X

is a random sequence if X�1(B) 2 F for all B 2 B(R1) and d : R1 ⇥ R1 ! [0,1) is

d(x, y) =
P

1

i=1
1
2i

⇣ Pi
j=1 |xj�yj |

1+
Pi

j=1 |xj�yj |

⌘1/2

is the metric on R1.
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Remark 6.3. 1. Let X 2 Rk be a random vector and f : Rk ! R be measurable. Then,

h : (⌦,F , P ) ! (R,B) with h(!) = f(X(!)) = (f �X)(!) is a random variable since

compositions of measurable functions are measurable by Theorem 3.3. In particular the

result follows if f is continuous. That is, real valued continuous functions of random

vectors are random variables.

2. In 1, if f(X) = ⇡i(X) = Xi and X is random vector then Xi is a random variable for

i = 1, · · · , k.

Theorem 6.4. X 2 Rk is a random vector () Xi is a random variable, where Xi is the

ith component of X.

Proof. ( (= ) Suppose Xi is a random variable for i = 1, · · · , k. Let Rk = I1 ⇥ · · · ⇥ Ik,

where Ii = [ai, bi) are intervals in R. Then,

X�1(Rk) = {! : Xi(!) 2 [ai, bi) 8 i}

= {! : X�1
i

([ai, bi)) 8 i} = \k

i=1X
�1
i

(Ii).

Since Xi is a random variable, X�1
i

(Ii) 2 F . Furthermore, since F is a �-algebra, it is closed

under intersections, and X�1(Rk) 2 F . The other direction of the equivalence follows from

the previous remark. ⌅

Remark 6.4. 1. Theorem 6.4 extends to X = {X1, X2, · · · }. That is, X is a random

sequence if, and only if, each Xi is a random variable. Furthermore, X is a random sequence

if, and only if, (X1 · · ·Xk) is random vector for any k.

2. X�1((�1, a1]⇥ · · ·⇥ (�1, ak]) 2 F and we write P (X�1((�1, a1]⇥ · · ·⇥ (�1, ak])) =

P �X�1(⇥k

i=1(�1, ai]) = PX(⇥k

i=1(�1, ai]).

Also, if there exists a non-negative Borel measurable function fX : Rk ! R that satisfies

PX(⇥k

i=1(�1, ai]) =

Z

C(a)

fXd�
k,
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where C(a) = ⇥k

i=1(�1, ai] and a = (a1 · · · ak)T , we call fX the “joint density” of X. Natu-

rally, the joint distribution function associated with X is

FX(a) : R
k ! [0, 1],

where FX(a) = P (C(a)) for a 2 Rk. We can write C(a) = \k

i=1{! : Xi(!)  ai}. That

{! : Xi(!)  ai} is an element of F follows from Theorem 6.4.

Theorem 6.5. Consider two random variables X1, X2 : (⌦,F , P ) ! (R,B). X1 and X2 are

independent if, and only if, one of the following holds:

a) P ({X1 2 A1} \ {X2 2 A2}) := P (X 2 A1, X 2 A2) = P (X1 2 A1)P (X2 2 A2), for all

A1, A2 2 B,

b) P (X1 2 A1, X2 2 A2) = P (X1 2 A1)P (X2 2 A2), for all A1 2 A1, A2 2 A2, where

A1,A2 are ⇡ systems which generate B,

c) f(X1) and g(X2) are independent for each pair (f, g) of measurable functions,

d) E(f(X1), g(X2)) = E(f(X1))E(g(X2)) for each pair of (f, g) of bounded measurable

(or non-negative measurable) functions.

Proof. First, note that X1 and X2 independent means that �(X1) = X�1
1 (B) and �(X2) =

X�1
2 (B) are independent. That is, for all A1, A2 2 B,

P (X�1
1 (A1) \X�1

2 (A2)) = P (X�1
1 (A1))P (X�1

2 (A2))

() P (X1 2 A1, X2 2 A2) = P (X1 2 A1)P (X2 2 A2).

[a) =) b)] Since A1 generates B and A2 generates B, A1 ⇢ B and A2 ⇢ B, and if a) is true

for all A1 2 B, A2 2 B, then b) is true.

[b) =) a)] Let C1 = {A 2 B : P (X1 2 A,X2 2 A2) = P (X1 2 A)P (X2 2 A2) for a

given A2 2 A2}. From the proof of Theorem 6.2, C1 is a Dynkin system. A1 ⇢ C1 and
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�(A1) = �(A1) = B ⇢ C1. Analogously, C2 = {A 2 B2 : P (X1 2 A1, X2 2 A) = P (X1 2

A1)P (X2 2 A) for a given A1 2 A1} is such that �(A2) = �(A2) = B ⇢ C2. Consequently,

b) =) a).

[c) =) a)] The identity function is measurable, therefore take f(x) = g(x) = x

[a) =) c)] For concreteness, let f : (R,B) ! (Mf ,Mf ) and g : (R,B) ! (Mg,Mg).

f measurable implies that for all M 2 Mf , f�1(M) 2 B. But X1 a random variable

implies that X�1
1 (f�1(M)) 2 F which we can write as (X�1

1 � f�1)(M) 2 F . In addition,

X�1
1 (f�1(M)) := (X�1

1 �f�1)(M) 2 X�1
1 (B). Analogously, X�1

2 (g�1(M 0)) = X�1
2 �g�1(M 0) 2

X�1
2 (B), for all M 0 2 Mg. But by a) X�1

1 (B) and X�1
2 (B) are independent. Therefore f(X1)

and g(X2) are independent.

[d) =) a)] Let f = IA1 and g = IA2 . Then,

f(X1) =

(
1 if X1 2 A1

0 if X1 62 A1

and g(X2) =

(
1 if X2 2 A2

0 if X2 62 A2.

with E(f(X1)) = P (X1 2 A1) and E(g(X2)) = P (X2 2 A2). By d)

E(f(X1)g(X2)) = P ({X1 2 A1} \ {X2 2 A2}) = P (X1 2 A1)P (X2 2 A2).

Hence, d) =) a).

[a) =) d)] From the implication [d) =) a)] we see that if f, g are indicator functions

in d) E(f(X1)g(X2)) = P ({X1 2 A1} \ {X2 2 A2}), which by independence a) is P (X1 2

A1)P (X2 2 A2) = E(f(X1))E(g(X2)).

Now, suppose f and g are simple functions of X1 and X2. Then,

f(X1) =

kfX

i=0

af
i
I
{X12A

f
i )}

and E(f(X1)) =

kfX

i=0

af
i
P (X1 2 Af

i
),

g(X2) =

kgX

i=0

ag
i
I{X22A

g
i )}

and E(g(X2)) =

kgX

i=0

ag
i
P (X2 2 Ag

i
)
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Consequently,

E(f(X1)g(X2)) = E

0

@
kfX

i=0

kgX

j=0

af
i
ag
j
I
{X12A

f
i }\{X22A

g
j }

1

A

=

kfX

i=0

kgX

j=0

af
i
ag
j
P (X1 2 Af

i
)P (X2 2 Ag

j
) by independence

= E(f(X1))E(g(X2)) (6.4)

Now, let f be a measurable non-negative function such that {fn}n2N are simple functions

increasing to f and g is non-negative and simple. Then,

E(f(X1)g(X2)) = E
⇣
lim
n!1

fn(X1)g(X2)
⌘

= lim
n!1

E(fn(X1)g(X2)) by Lebesgue’s Monotone Convergence Theorem

= lim
n!1

E(fn(X1))E(g(X2)) by equation (6.4)

= E(f(X1))E(g(X2)) by Lebesgue’s Monotone Convergence Theorem
(6.5)

Now, let f be non-negative and let {gn}n2N be non-negative simple functions increasing to

g measurable and non-negative. Then,

E(f(X1)g(X2)) = E
⇣
f(X1) lim

n!1

gn(X2)
⌘

= lim
n!1

E(f(X1)gn(X2))

= lim
n!1

E(f(X1))E(gn(X2)) by equation (6.5)

= E(f(X1))E(g(X2))

Finally, let f = f+ � f� be bounded and measurable and g bounded and non-negative.

E(f(X1)g(X2)) = E([f+(X1)� f�(X1)]g(X2))

= E(f+(X1)g(X2))� E(f�(X1)g(X2))

= E(f+(X1))E(g(X2))� E(f�(X1))E(g(X2))

= E(f(X1))E(g(X2)).
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To complete the proof, repeat the last argument for g = g+ � g�. ⌅
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