Homework 6
ECON 4818
Professor Martins

1. From your textbook answer questions 5, 8 from Appendix D in your textbook.
2. Let

$$
A=\left(\begin{array}{ccc}
1 & 5 & 6 \\
3 & 7 & 9 \\
4 & 3 & 9 \\
10 & 4 & 6
\end{array}\right) \text { and } B=\left(\begin{array}{rr}
-1 & 2 \\
4 & -2 \\
-9 & 4
\end{array}\right)
$$

Calculate the product $A B$. Is it possible to calculate BA? Why or why not?
3. Consider the matrix

$$
X=\left(\begin{array}{ccccc}
1 & X_{12} & X_{13} & \cdots & X_{1 K} \\
1 & X_{22} & X_{23} & \cdots & X_{2 K} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & X_{n 2} & X_{n 3} & \cdots & X_{n K}
\end{array}\right)
$$

What are the dimensions of the matrix X. Obtain the transpose of X, i.e., X^{T}. Write down the elements of the matrix $X^{T} X$.
4. Consider the following regression model:

$$
Y_{i}=\beta_{0}+X_{i 1} \beta_{1}+X_{i 2} \beta_{2}+X_{i 3} \beta_{3}+U_{i} \text { where } i=1, \cdots, n .
$$

(a) Write this regression model in matrix format, i.e., $Y=X \beta+U$. What are Y, X, β and U and give their dimensions.
(b) Let $S_{n}(\beta)=(Y-X \beta)^{T}(Y-X \beta)$. What is $\frac{\partial}{\partial \beta} S_{n}(\beta)$?
(c) If $\hat{\beta}$ satisfies $\frac{\partial}{\partial \beta} S_{n}(\hat{\beta})=0$, what is $\hat{\beta}$ as a function of X and Y ? What assumption is needed on $X^{T} X$ to obtain $\hat{\beta}$?
(d) If $\left\{U_{i}\right\}_{i=1}^{n}$ is a sequence of independent and identically distributed random variables with $E\left(U_{i}\right)=0, E\left(U_{i}^{2}\right)=\sigma^{2}$ and $U^{T}=\left(\begin{array}{llll}U_{1} & U_{2} & \cdots & U_{n}\end{array}\right)$, what are $E(U)$ and $E\left(U U^{T}\right)$?

