Financial Econometrics

Professor Martins
University of Colorado at Boulder

Fall 2023
Lecture 1

Returns from a financial asset

Let P_{t} be the price of a financial asset at time period t with $t \in T$. If the asset was bought at time period $s \in T$ with $s<t$ we define:

- The net return from holding a financial asset from time period s to t

$$
\begin{equation*}
R_{t, s}=\frac{P_{t}-P_{s}}{P_{s}} \text { for } P_{s} \neq 0 \text { with } R_{t, s} \in(-1, \infty) \tag{1}
\end{equation*}
$$

- The gross return from holding a financial asset from time period s to t

$$
\begin{equation*}
\rho_{t, s}=\frac{P_{t}}{P_{s}} \text { for } P_{s} \neq 0 \text { with } \rho_{s} \in(0, \infty) \tag{2}
\end{equation*}
$$

- The log return from holding a financial asset from time period s to t

$$
\begin{equation*}
r_{t, s}=\log \left(\frac{P_{t}}{P_{s}}\right) \text { for } P_{s} \neq 0 \text { with } r_{t, s} \in(-\infty, \infty) \tag{3}
\end{equation*}
$$

Returns from a financial asset

Often $T:=\mathbb{Z}=\{\cdots,-1,0,1, \cdots\}$ and we define

- The net return from holding a financial asset from time period $t-h$ to t

$$
\begin{equation*}
R_{t, t-h}:=R_{t, h}=\frac{P_{t}-P_{t-h}}{P_{t-h}} \text { for } P_{t-h} \neq 0 \text { with } R_{t, h} \in(-1, \infty) \tag{4}
\end{equation*}
$$

- The gross return from holding a financial asset from time period $t-h$ to t

$$
\begin{equation*}
\rho_{t, t-h}:=\rho_{t, h}=\frac{P_{t}}{P_{t-h}} \text { for } P_{t-h} \neq 0 \text { with } \rho_{t, h} \in(0, \infty) \tag{5}
\end{equation*}
$$

- The log return from holding a financial asset from time period s to t

$$
\begin{equation*}
r_{t, t-h}:=r_{t, h}=\log \left(\frac{P_{t}}{P_{t-h}}\right) \text { for } P_{t-h} \neq 0 \text { with } r_{t, h} \in(-\infty, \infty) \tag{6}
\end{equation*}
$$

Returns from a financial asset

There are a number of other factors that impact returns:

- Dividends
- Inflation
- Exchange rates
- Taxes

We will mostly abstract from these and focus on "capital gains." When the holding period $h=1$ we write

$$
R_{t}, \rho_{t}, r_{t}
$$

Relations between $R_{t, h}$ and $r_{t, h}$

- If net returns are sufficiently "small" they can be well approximated by log-returns.

Let $0<x<1$, then $(0, x)$ be an (open) interval and $g(y)=\log (1+y) . g$ has a derivative at each point $y \in(0, x)$, given by $g^{\prime}(y)=\frac{1}{1+y}$, and is continuous at 0 and x. By the Mean
Value Theorem, there exists $\bar{x} \in(0, x)$ such that $g(x)-g(0)=\frac{1}{1+\bar{x}} x$. Since $x \neq 0$ and $g(0)=0$ we write

$$
\begin{equation*}
\frac{g(x)}{x}=\frac{1}{1+\bar{x}} \text { and } \lim _{x \rightarrow 0} \frac{g(x)}{x}=1 \tag{7}
\end{equation*}
$$

as $\bar{x} \rightarrow 0$ as $x \rightarrow 0$. Hence, for $R_{t, h}$ sufficiently close to 0,

$$
\log \left(1+R_{t, h}\right) / R_{t, h}=r_{t, h} / R_{t, h} \text { will be close to } 1
$$

Relations between $R_{t, h}$ and $r_{t, h}$

log returns can be viewed as the continuous "compounding" of net returns. Let $s=0$ and consider $R_{t_{F}, 0}$ where $t_{F}>0$. Then

$$
\begin{equation*}
R:=R_{t_{\digamma}, 0}=\frac{P_{t_{\digamma}}-P_{0}}{P_{0}} \Longrightarrow P_{t_{F}}=P_{0}(1+R) \tag{8}
\end{equation*}
$$

Now, consider dividing the time interval $\left[0, t_{F}\right]$ into K subintervals of size t_{F} / K. Then, K times compounding gives.

$$
\begin{equation*}
P_{t_{F}}=P_{0}\left(1+\frac{R}{K}\right)^{K} \tag{9}
\end{equation*}
$$

Using (7) and (8) we get $(1+R)=\left(1+\frac{R}{K}\right)^{K}$ and taking limits as $K \rightarrow \infty$ gives

$$
\frac{P_{t_{F}}}{P_{0}}=1+R=\lim _{K \rightarrow \infty}\left(1+\frac{R}{K}\right)^{K}=\exp (R)
$$

Thus, $\log \frac{P_{t_{F}}}{P_{0}}=r_{t_{F}, 0}=R$.

Figure: Graph of log returns and net returns

The Figure shows the graphs of log-returns (blue line) and net returns (green line) against net returns. See the MATLAB code returns.m to produce this Figure.

Additivity of log - returns

log-returns from holding an asset for h periods can be written as the sum of h one period log-returns.

$$
\begin{aligned}
r_{t, h}=\log P_{t}-\log P_{t-h} & =\log \left(\frac{P_{t}}{P_{t-1}} \frac{P_{t-1}}{P_{t-2}} \cdots \frac{P_{t-(h-1)}}{P_{t-h}}\right) \\
& =r_{t, 1}+r_{t-1,1}+\cdots+r_{t-(h-1), 1} \\
& =r_{t}+r_{t-1}+\cdots+r_{t-(h-1)} \\
& =\sum_{j=1}^{h} r_{t-(j-1)}
\end{aligned}
$$

Returns on a portfolio

Suppose there are $N \in \mathbb{N}$ assets that compose a portfolio P. Assume that n_{i} shares of asset i are purchased and the price of asset i in time period t is denoted $P_{i t}$. The value of the portfolio is

$$
V_{t}=\sum_{i=1}^{n} P_{i t} n_{i}
$$

Let $w_{i t}=\frac{P_{i t} n_{i}}{V_{t}}$ be the share of the investment on asset i in period t. Then,

$$
\begin{aligned}
R_{t+1}^{P} & =\frac{V_{t+1}-V_{t}}{V_{t}}=\left(V_{t}\right)^{-1}\left(\sum_{i=1}^{n} P_{i, t+1} n_{i}-\sum_{i=1}^{n} P_{i t} n_{i}\right) \\
& =\left(V_{t}\right)^{-1}\left(\sum_{i=1}^{n} \frac{P_{i, t+1}}{P_{i t}} P_{i t} n_{i}-\sum_{i=1}^{n} P_{i t} n_{i}\right) \\
& =\left(\sum_{i=1}^{n} P_{i t} n_{i}\right)^{-1}\left(\sum_{i=1}^{n}\left(\frac{P_{i, t+1}}{P_{i, t}}-1\right) P_{i t} n_{i}\right)
\end{aligned}
$$

Returns on a portfolio

$$
\begin{aligned}
R_{t+1}^{P} & =\left(\sum_{i=1}^{n} P_{i t} n_{i}\right)^{-1}\left(\sum_{i=1}^{n} R_{i, t+1} P_{i t} n_{i}\right) \\
& =\sum_{i=1}^{n} R_{i, t+1} W_{i t}
\end{aligned}
$$

- The same argument gives

$$
\rho_{t+1}^{P}=\sum_{i=1}^{n} \rho_{i, t+1} w_{i t} .
$$

- But

$$
r_{t+1}^{P} \neq \sum_{i=1}^{n} r_{i, t+1} w_{i t}
$$

