Financial Econometrics

Professor Martins
University of Colorado at Boulder

Fall 2023
Lecture 12

$\mathrm{AR}(\mathrm{p})$ process

For $p \in \mathbb{N}$ let

$$
X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}+\varepsilon_{t}
$$

As in the case of $\operatorname{AR}(1), E\left(\varepsilon_{t}\right)=0, V\left(\varepsilon_{t}\right)=\sigma^{2}$, and

$$
E\left(X_{t} \mid X_{t-1}, X_{t-2}, \cdots, X_{t-p}\right)=\phi_{0}+\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}
$$

and

$$
\begin{aligned}
V\left(X_{t} \mid X_{t-1}, X_{t-2}, \cdots, X_{t-p}\right) & =E\left(\left(X_{t}-\phi_{0}+\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}\right)^{2}\right. \\
& \left.\mid X_{t-1}, X_{t-2}, \cdots, X_{t-p}\right) \\
& =E\left(\varepsilon_{t}^{2} \mid X_{t-1}, X_{t-2}, X_{t-p}\right)=\sigma^{2}
\end{aligned}
$$

Estimating $A R(p)$ parameters by least squares

$\left\{\tilde{\phi}_{0}, \tilde{\phi}_{1}, \cdots, \tilde{\phi}_{p}\right\}=\underset{\phi_{0}, \phi_{1}, \cdots, \phi_{p}}{\operatorname{argmin}} \sum_{t=p+1}^{n}\left(X_{t}-\phi_{0}-\phi_{1} X_{t-1}-\cdots-\phi_{p} X_{t-p}\right)^{2}$.
Note that if $\mathbf{1}_{n}=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right), \mathbf{x}=\left(\begin{array}{c}X_{p+1} \\ X_{p+2} \\ \vdots \\ X_{n}\end{array}\right), \mathbf{x}_{-1}=\left(\begin{array}{c}X_{p} \\ X_{p+1} \\ \vdots \\ X_{n-1}\end{array}\right)$,
$\cdots, \mathbf{X}_{-p}=\left(\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{n-p}\end{array}\right)$ and $\mathbf{R}=\left(\begin{array}{llll}\mathbf{1} & \mathbf{X}_{-1} & \cdots & \mathbf{X}_{-p}\end{array}\right)$ then we
can show that the minimization in (1) is equivalent to

$$
\begin{equation*}
\left\{\tilde{\phi}_{0}, \tilde{\phi}_{1}, \cdots, \tilde{\phi}_{p}\right\}=\underset{\phi_{0}, \phi_{1}, \cdots, \phi_{p}}{\operatorname{argmin}}(\mathbf{X}-\mathbf{R} \phi)^{T}(\mathbf{X}-\mathbf{R} \phi) . \tag{2}
\end{equation*}
$$

Estimating $A R(p)$ parameters

Taking a first derivative with respect to each $\phi_{i}(i=1, \cdots, p)$, setting to zero and solving for $\tilde{\phi}_{i}$ we obtain,

$$
\tilde{\phi}=\left(\begin{array}{c}
\tilde{\phi}_{0} \tag{3}\\
\tilde{\phi}_{1} \\
\vdots \\
\tilde{\phi}_{p}
\end{array}\right)=\left(\mathbf{R}^{T} \mathbf{R}\right)^{-1} \mathbf{R}^{T} \mathbf{X}
$$

The estimator for σ^{2} is given by $\tilde{\sigma}^{2}=\frac{1}{n}(\mathbf{X}-\mathbf{R} \tilde{\phi})^{T}(\mathbf{X}-\mathbf{R} \tilde{\phi})$.

Example

Let $r_{t}=\log P_{t}-\log P_{t-1}$ evolve in accordance to the following stationary $\operatorname{AR}(3)$ process

$$
r_{t}=\phi_{0}+\phi_{1} r_{t-1}+\phi_{2} r_{t-2}+\phi_{3} r_{t-3}+\varepsilon_{t}
$$

where $\varepsilon_{t} \sim I I D\left(0, \sigma^{2}\right)$. We use the data in sandp.mat to estimate the parameters of this process and obtain,

$$
\tilde{\phi}=\left(\begin{array}{c}
-0.0000 \\
-0.0874 \\
-0.0814 \\
0.0320
\end{array}\right) \text { and } \tilde{\sigma}^{2}=1.8103 \times 10^{-4}
$$

The estimation (see ar_3_sandp.m) indicates that $\frac{\partial E\left(r_{t} \mid r_{t-1}, r_{t-2}, r_{t-3}\right)}{\partial r_{t-1}}<0$. An AR(1) model

$$
r_{t}=\phi_{0}+\phi_{1} r_{t-1}+\varepsilon_{t}
$$

is also estimated (see ar_1_sandp.m).

Testing

- We would like to test hypotheses of the type $H_{0}: \phi_{i}=0$ for $i=1, \cdots, p$ or more generally, for a known matrix P and vector ρ, we would like to test $H_{0}: P \phi=\rho$ against $H_{A}: P \phi \neq \rho$.
- The basic result needed to conduct this test is the asymptotic normality of $\hat{\phi}$, given by

$$
\begin{equation*}
\sqrt{n}(\tilde{\phi}-\phi) \xrightarrow{d} Z \sim N\left(0, \sigma^{2} \text { plim }_{n \rightarrow \infty}\left(\frac{\mathbf{R}^{\prime} \mathbf{R}}{n}\right)^{-1}\right) . \tag{4}
\end{equation*}
$$

Testing

Equation (4) implies that
$\sqrt{n}(P \tilde{\phi}-P \phi) \xrightarrow{d} P Z \sim N\left(0, \sigma^{2} P\left(\operatorname{plim}_{n \rightarrow \infty}\left(\frac{\mathbf{R}^{\prime} \mathbf{R}}{n}\right)^{-1}\right) P^{\prime}\right)$,
and under the null hypothesis we have

$$
\begin{equation*}
\sqrt{n}(P \tilde{\phi}-\rho) \xrightarrow{d} P Z \sim N\left(0, \sigma^{2} P\left(\operatorname{plim}_{n \rightarrow \infty}\left(\frac{\mathbf{R}^{\prime} \mathbf{R}}{n}\right)^{-1}\right) P^{\prime}\right) \tag{5}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
\left(\sigma^{2} P\left(p l i m_{n \rightarrow \infty}\left(\frac{\mathbf{R}^{\prime} \mathbf{R}}{n}\right)^{-1}\right) P^{\prime}\right)^{-1 / 2} \sqrt{n}(P \tilde{\phi}-\rho) \xrightarrow{d} N\left(0, I_{v}\right) \tag{6}
\end{equation*}
$$

where v is the number of rows in P and I is an identity matrix.

Testing

The vector on the left hand side of (6) is asymptotically distributed as an independent joint normal. By the definition of a χ^{2} distribution, and the fact that for a continuous function g and a sequence of random variables X_{n} such that $X_{n} \xrightarrow{d} X$ we have $g\left(X_{n}\right) \xrightarrow{d} g(X)$, we conclude that

$$
\begin{equation*}
n(P \tilde{\phi}-\rho)^{\prime}\left(\sigma^{2} P\left(p \lim _{n \rightarrow \infty}\left(\frac{\mathbf{R}^{\prime} \mathbf{R}}{n}\right)^{-1}\right) P^{\prime}\right)^{-1}(P \tilde{\phi}-\rho) \xrightarrow{d} \chi_{v}^{2} \tag{7}
\end{equation*}
$$

The use of (7) to test H_{0} depends on obtaining a consistent estimator for σ^{2}. It can be shown that $\tilde{\sigma}^{2} \xrightarrow{p} \sigma^{2}$, hence

$$
\begin{equation*}
n(P \tilde{\phi}-\rho)^{\prime}\left(\tilde{\sigma}^{2} P\left(p \lim _{n \rightarrow \infty}\left(\frac{\mathbf{R}^{\prime} \mathbf{R}}{n}\right)^{-1}\right) P^{\prime}\right)^{-1}(P \tilde{\phi}-\rho) \xrightarrow{d} \chi_{v}^{2} \tag{8}
\end{equation*}
$$

