Financial Econometrics

Professor Martins
University of Colorado at Boulder

Fall 2023
Lecture 13

ARCH Models

- The assumption of constant variance implied by stationarity may be inadequate.
- Consider a vector $\left(\begin{array}{llll}Y_{t} & X_{t 1} & \cdots & X_{t p}\end{array}\right)^{T} \in \mathbb{R}^{p+1}, p \in \mathbb{N}$ and suppose,

$$
Y_{t}=m\left(X_{t 1}, \cdots, X_{t p}\right)+\varepsilon_{t} \text { for } t=1,2, \cdots,
$$

and note that
$E\left(Y_{t} \mid X_{t 1}, \cdots, X_{t p}\right)=m\left(X_{t 1}, \cdots, X_{t p}\right)+E\left(\varepsilon_{t} \mid X_{t 1}, \cdots, X_{t p}\right)$.
If $E\left(\varepsilon_{t} \mid X_{t 1}, \cdots, X_{t p}\right)=0$, then

$$
E\left(Y_{t} \mid X_{t 1}, \cdots, X_{t p}\right)=m\left(X_{t 1}, \cdots, X_{t p}\right)
$$

is a regression. Also, if $\sigma^{2}=V\left(\varepsilon_{t} \mid X_{t 1}, \cdots, X_{t p}\right)$, we have

$$
V\left(Y_{t} \mid X_{t 1}, \cdots, X_{t p}\right)=V\left(\varepsilon_{t} \mid X_{t 1}, \cdots, X_{t p}\right)=\sigma^{2}
$$

ARCH Models

- The last equation is called a "skedastic function."
- A more general formulation is to write,

$$
Y_{t}=m\left(X_{t 1}, \cdots, X_{t p}\right)+h^{1 / 2}\left(X_{t 1}, \cdots, X_{t p}\right) \varepsilon_{t} \text { for } t=1,2, \cdots,
$$

for $h: \mathbb{R}^{p} \rightarrow \mathbb{R}$ and $h>0$. Then,

$$
E\left(Y_{t} \mid X_{t 1}, \cdots, X_{t p}\right)=m\left(X_{t 1}, \cdots, X_{t p}\right)
$$

and

$$
V\left(Y_{t} \mid X_{t 1}, \cdots, X_{t p}\right)=h\left(X_{t 1}, \cdots, X_{t p}\right)
$$

if $V\left(\varepsilon_{t} \mid X_{t 1}, \cdots, X_{t p}\right)=1$.
This is called a conditional location-scale model.

ARCH Models

A special case of this model is the Autoregressive Conditional Heteroskedastic (ARCH) model

- Suppose $\left\{\varepsilon_{t}\right\}_{t \in \mathbb{N}}$ is an IID sequence such that $\varepsilon_{t} \sim N(0,1)$, and note that $E\left(\varepsilon_{t} \mid \varepsilon_{t-1}, \varepsilon_{t-2}, \cdots\right)=0$ and $V\left(\varepsilon_{t} \mid \varepsilon_{t-1}, \varepsilon_{t-2}, \cdots\right)=1$.
- A process $\left\{X_{t}\right\}_{t \in \mathbb{N}}$ is said to follow an $\operatorname{ARCH}(1)$ model if,

$$
X_{t}=\left(\alpha_{0}+\alpha_{1} X_{t-1}^{2}\right)^{1 / 2} \varepsilon_{t} \text { for } t=1,2, \cdots
$$

In the notation of the previous slide, $h(x)=\alpha_{0}+\alpha_{1} x^{2}>0$.

- It must be that $\alpha_{0}+\alpha_{1} x^{2}>0$. Since, $h^{(1)}(x)=2 \alpha_{1} x$ and $h^{(2)}(x)=2 \alpha_{1}$, it must be that $\alpha_{1}>0$. Also, h reaches a minimum at $x=0$ and $h(0)=\alpha_{0}>0$.

ARCH Models

- Then

$$
X_{t}^{2}=\left(\alpha_{0}+\alpha_{1} X_{t-1}^{2}\right) \varepsilon_{t}^{2} \text { for } t=1,2, \cdots,
$$

and $E\left(X_{t}^{2} \mid X_{t-1}\right)=\alpha_{0}+\alpha_{1} X_{t-1}^{2}$.

- Since $E\left(X_{t} \mid X_{t-1}\right)=\left(\alpha_{0}+\alpha_{1} X_{t-1}^{2}\right)^{1 / 2} E\left(\varepsilon_{t} \mid X_{t-1}\right)=0$

$$
E\left(X_{t}^{2} \mid X_{t-1}\right)=V\left(X_{t} \mid X_{t-1}\right)=\alpha_{0}+\alpha_{1} X_{t-1}^{2}:=h_{t}
$$

- If X_{t-1} is close to its expectation (0) then $h_{t} \sim \alpha_{0}$. If not, then $h_{t}=\alpha_{0}+\alpha_{1} X_{t-1}^{2}$.
- If the process is covariance stationary

$$
E\left(E\left(X_{t}^{2} \mid X_{t-1}\right)\right)=E\left(X_{t}^{2}\right)=\alpha_{0}+\alpha_{1} E\left(X_{t-1}^{2}\right)
$$

and $E\left(X_{t}^{2}\right)=\alpha_{0} /\left(1-\alpha_{1}\right)$. This exists if $0<\alpha_{1}<1$.

ARCH Models

- Note that for any process $\left\{X_{t}\right\}$ such that $E\left(X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right)=\mu$ we have

$$
\begin{aligned}
\gamma(1) & =\operatorname{Cov}\left(X_{t}, X_{t-1}\right)=E\left(X_{t} X_{t-1}\right)-\mu^{2} \\
& =E\left(E\left(X_{t} X_{t-1} \mid X_{t-1}, \cdots\right)\right)-\mu^{2} \\
& =E\left(X_{t-1} E\left(X_{t} \mid X_{t-1}, \cdots\right)\right)-\mu^{2}=\mu E\left(X_{t-1}\right)-\mu^{2}=0
\end{aligned}
$$

- In fact, $\gamma(h)=0$ for all $h \neq 0$. Hence, ARCH processes are uncorrelated.
- $\mathrm{ARCH}(1)$ process is uncorrelated but not independent.
- Contrary to the $\operatorname{AR}(1)$ process, that has constant (conditional) variance and changing conditional expectation, $\mathrm{ARCH}(1)$ has constant conditional expectation and changing (conditional) variance.

ARCH Models

There is no difficulty in introducing a constant in the ARCH model.

- Let $\mu \in \mathbb{R}$, then

$$
X_{t}=\mu+\left(\alpha_{0}+\alpha_{1}\left(X_{t-1}-\mu\right)^{2}\right)^{1 / 2} \varepsilon_{t} \text { for } t=1,2, \cdots, .
$$

Then, by the LIE, $E\left(X_{t}\right)=\mu$.

- Also,

$$
E\left(\left(X_{t}-\mu\right)^{2} \mid X_{t-1}\right)=V\left(X_{t} \mid X_{t-1}\right)=\alpha_{0}+\alpha_{1}\left(X_{t-1}-\mu\right)^{2}
$$

and

$$
V\left(X_{t}\right)=\alpha_{0}+\alpha_{1} V\left(X_{t-1}\right)
$$

where $V\left(X_{t}\right)=\alpha_{0} /\left(1-\alpha_{1}\right)$.

Example: Combining $\mathrm{AR}(1)$ and $\mathrm{ARCH}(1)$ Models

- Let $\left\{X_{t}\right\}$ be an $\operatorname{ARCH}(1)$ with $\mu=0$ process and write

$$
Y_{t}-\mu_{Y}=\phi\left(Y_{t-1}-\mu_{Y}\right)+X_{t} \text { for } t=1,2, \cdots,
$$

or
$Y_{t}-\mu_{Y}=\phi\left(Y_{t-1}-\mu_{Y}\right)+\left(\alpha_{0}+\alpha_{1} X_{t-1}^{2}\right)^{1 / 2} \varepsilon_{t}$ for $t=1,2, \cdots$,

- Since the ARCH process is uncorrelated Y_{t} has the autocovariance function of an $\operatorname{AR}(1)$ process.
- $E\left(Y_{t} \mid Y_{t-1}\right)=\mu+\phi Y_{t-1}$ if X_{t} is independent of Y_{t}
- $V\left(Y_{t} \mid Y_{t-1}\right)=\alpha_{0}+\alpha_{1} X_{t-1}^{2}$ if X_{t} is independent of Y_{t}

ARCH(q) Models

- We say that $\left\{X_{t}\right\}$ follows an $\operatorname{ARCH}(\mathrm{q})$ with $\mu=0$ process if

$$
X_{t}=\left(\alpha_{0}+\alpha_{1} X_{t-1}^{2}+\alpha_{2} X_{t-2}^{2}+\cdots+\alpha_{q} X_{t-q}^{2}\right)^{1 / 2} \varepsilon_{t} \text { for } t=1,2, \cdots,
$$

- For estimation see MATLAB code garch_11_gau.m

