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Stochasticity of returns

I Since at time t − h it is not possible to know the price at time
t, there is uncertainty about Rt,h, rt,h and ρt,h.

I Particularly problematic is the event Pt < Pt−h, implying

Rt,h, rt,h < 0 or ρt,h < 1.

I The risk of losing money from buying an asset in period t − h
for Pt−h and selling it in period t for Pt < Pt−h is the
fundamental problem of investing.

I We will think of Rt,h, rt,h and ρt,h as random variables.



Stochasticity of returns

I The insight that returns can be viewed as random variables is
the foundation of our approach to the study of empirical
finance (see Bachelier (1900)).

I It allows for the construction of statistical models that
represent the evolution of returns through time and for the
testing and evaluation of various models developed in
theoretical Finance.



Example

At any time period t a collection (sample) of n observed
log-returns on a financial asset can be represented by

{rt−(n−1), · · · , rt−1, rt}

Without loss of generality, set t = n and write

{r1, · · · , rn−1, rn} = {rt}nt=1.

The following figure shows a graph of one such sample associated
with log-returns on the S&P 500 (see MATLAB code
S&P log returns.m that produces this figure).
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Figure: Graph of log returns on S&P 500



Stochasticity of returns

Suppose

I {rt}nt=1 is a collection of independently and identically
distributed random variables

I If rt has a distribution function F , denoted by rt ∼ F , then
using a sample of past returns, the distribution F can be
estimated.

Important practical questions, such as:

I What is E (rt)?

I What is the volatility, i.e., V (rt)?

I What is the probability that rt < −a, i.e., P(rt < −a) for
a > 0?

can be answered.



Stochasticity of returns

Satisfactorily answering these questions depends, in turn, on
constructing statistical models that reasonably represent the
stochastic process that generates prices or returns.

This representation leads to other questions such as:

I Is it reasonable to assume that {rt}nt=1 is a collection of
independently and identically distributed random variables?

I If V (rt) exists, can it be suitably expressed as a parametric
function of past returns?

I If rt and rt−h are statistically correlated, is there a parametric
model that suitably captures this correlation?

It is apparent that the study of empirical finance depends on a
solid understanding of probability and statistics.



Parametrically indexed distributions

I Often we assume that distribution functions belong to a class
of functions that are parametrically indexed. In this case, we
write

FX (x ; θ0) where θ0 ∈ Θ ⊆ Rp.

The set Θ is called the parameter space, θ0 is called the “true
value” of the parameter.

I When X is a continuous random variable we write

FX (x ; θ0) =

∫ x

−∞
f (u; θ0)du

and f (u; θ0) is the parametrically indexed density function
associated with FX (x ; θ0).



Parametrically indexed distributions

I Similarly, when X is a discrete random variable taking values
{x1, x2, . . . } we write the probability function of X as

p(xi ; θ0) where θ0 ∈ Θ ⊆ Rp.

such that∑
i∈N

p(xi ; θ0) = 1 and FX (x ; θ0) =
∑
xi≤x

p(xi ; θ0).



Example 1

Let n be the number of trials associated with a stochastic
experiment that allows for two outcomes: success with probability
θ and failure with probability 1− θ. Let X be the total number of
success in n trials, then

P(X = k) =

(
n
k

)
θk(1− θ)n−k

for k = 1, 2, · · · , n. P(X = k) is called the binomial distribution
with parameters n and θ and is denoted B(n, θ). We write
X ∼ B(n, p).

Using the Binomial Theorem, (x + y)n =
∑n

j=0

(
n
j

)
xnyn−j

we can easily obtain

E (X ) = nθ and V (X ) = nθ(1− θ)



Example 2

Let X be a continuous random variable taking values in [a, b] ⊂ R
with a < b and density

f (x ; a, b) =
1

b − a

for x ∈ [a, b] and 0 otherwise. We say that f has support on [a, b].
Then,

F (x ; a, b) =

∫ x

a

1

b − a
du =

x − a

b − a

and

E (X ) =
a + b

2
and V (X ) =

(b − a)2

12

In this case we say that X is uniformly distributed over [a, b] and
write X ∼ U[a, b]



Example 3

I Let X be a continuous random variable that takes values in
the interval (−∞,∞) with density

f (x) =
1√

2πσ2
e−

1
2
(x−µ)2

σ2 , with µ ∈ R and σ > 0.

We say that X ∼ N(µ, σ2) with parameters µ and σ2.

I It can be shown that E (X ) = µ and V (X ) = σ2. When µ = 0
and σ2 = 1 we write X ∼ N(0, 1) and say that X has a
standard gaussian (normal) density.



Example 4

I If Z ∼ N(0, 1), then Y = µ+ σZ where µ ∈ R and σ > 0 is
such that E (Y ) = µ, V (Y ) = σ2.

I fY (y) = 1
σ fZ

( y−µ
σ

)
= 1√

2πσ2
e−

1
2
(y−µ)2

σ2 .

I FY (y) =
∫ y
−∞ fY (α)dα =

∫ y
−∞

1
σ fZ

(α−µ
σ

)
dα. Changing

variables by letting z = α−µ
σ we have that

FY (y) =

∫ y−µ/σ

−∞

1

σ
fZ (z)σdz =

∫ y−µ/σ

−∞
fZ (z)dz .


