# Financial Econometrics 

Professor Martins<br>University of Colorado at Boulder

Fall 2023
Lecture 3

## Expectation and variance

- If $X$ is continuous

$$
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x \text { and } V(X)=\int_{-\infty}^{\infty}(x-E(X))^{2} f_{X}(x) d x
$$

- If $X$ is discrete

$$
E(X)=\sum_{i \in \mathbb{N}} x_{i} p\left(x_{i}\right) \text { and } V(X)=\sum_{i \in \mathbb{N}}\left(x_{i}-E(X)\right)^{2} p\left(x_{i}\right)
$$

- In both cases $V(X)=E\left((X-E(X))^{2}\right)=E\left(X^{2}\right)-(E(X))^{2}$
- $E(X)$ or $V(X)$ may not exist as a real number.


## Some functions of random variables

Let $X$ be a random variable, if $g$ is a continuous function defined on the set in which $X$ takes values, then $Y=g(X)$ is a random variable. If $g$ is strictly increasing

$$
\begin{align*}
p & =P(Y \leq y)=F_{Y}(y)=P(g(X) \leq y) \\
& =P\left(X \leq g^{-1}(y)\right)=F_{X}\left(g^{-1}(y)\right) \tag{1}
\end{align*}
$$

and differentiating we have

$$
\begin{align*}
\frac{d}{d y} F_{Y}(y) & =\frac{d}{d y} \int_{-\infty}^{y} f_{Y}(z) d z=f_{Y}(y) \\
& =\frac{d}{d y} F_{X}\left(g^{-1}(y)\right)=f_{X}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y) . \tag{2}
\end{align*}
$$

If $g$ is strictly decreasing, we have

$$
\begin{align*}
p & =P(Y \leq y)=F_{Y}(y)=P(g(X) \leq y) \\
& =P\left(X \geq g^{-1}(y)\right)=1-F_{X}\left(g^{-1}(y)\right) . \tag{3}
\end{align*}
$$

## Some functions of random variables

Differentiating we have

$$
\begin{aligned}
\frac{d}{d y} F_{Y}(y) & =\frac{d}{d y} \int_{-\infty}^{y} f_{Y}(z) d z=f_{Y}(y) \\
& =\frac{d}{d y}\left(1-F_{X}\left(g^{-1}(y)\right)\right)=-f_{X}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y)
\end{aligned}
$$

Hence, for strictly monotone functions we have

$$
\begin{equation*}
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right| . \tag{4}
\end{equation*}
$$

Note that if $p=F_{Y}(y)$, from equation (1) we have that

$$
\begin{equation*}
F_{X}^{-1}(p)=g^{-1}(y) \Longrightarrow g\left(F_{X}^{-1}(p)\right)=y=F_{Y}^{-1}(p) \tag{5}
\end{equation*}
$$

That is, the p-quantile of $Y$ is just the mapping under $g$ of the p-quantile of $X$.

## Example

Let $g(x)=a+b x$ for $b \neq 0$. Then

$$
g^{-1}(y)=\frac{y-a}{b}
$$

and $\frac{d}{d y} g^{-1}(y)=1 / b$ and $f_{Y}(y)=f_{X}\left(\frac{y-a}{b}\right) \frac{1}{b}$.
Also,

$$
F_{Y}^{-1}(p)=a+b F_{X}^{-1}(p) \text { if } b>0
$$

and

$$
F_{Y}^{-1}(p)=a+b F_{X}^{-1}(1-p) \text { if } b<0
$$

## Independence of random variables

Let $X_{1}, X_{2}, \ldots$ be a collection/sequence of random variables. The collection is said to be independent if, and only if, for any finite subset $I$ of $\{1,2, \ldots\}$ we have

$$
P\left(\bigcap_{i \in I}\left\{X_{i} \leq x_{i}\right\}\right)=\prod_{i \in I} P\left(X_{i} \leq x_{i}\right)
$$

Alternatively, we can write

$$
F_{I}\left(x_{i}, i \in I\right):=P\left(\cap_{i \in I}\left\{X_{i} \leq x_{i}\right\}\right)=\prod_{i \in I} F_{X_{i}}\left(x_{i}\right)
$$

The function $F_{I}\left(x_{i}, i \in I\right): \mathbb{R}^{\# I} \rightarrow[0,1]$ is called the joint distribution of $\left\{X_{i}: i \in I\right\}$ and $\# I$ is the number of elements in $I$ (called the cardinality of $I$ ).

## Independence of random variables

Example 1: Suppose the collection has two random variables, $X_{1}$ and $X_{2}$. Then, there is only one finite subset of $\{1,2\}$ to consider, that is, the set itself. Then,

$$
P\left(\left\{X_{1} \leq x_{1}\right\} \cap\left\{X_{2} \leq x_{2}\right\}\right)=P\left(X_{1} \leq x_{1}\right) P\left(X_{2} \leq x_{2}\right)
$$

Alternatively, we can write

$$
F_{l}\left(x_{1}, x_{2}\right)=F_{X_{1}}\left(x_{1}\right) F_{X_{2}}\left(x_{2}\right)
$$

## Independence of random variables

If all $X_{1}, X_{2}, \ldots$ are continuous random variables, we can write

$$
F_{I}\left(x_{i}, i \in I\right):=\int_{-\infty}^{x_{i}} \ldots \int_{-\infty}^{x_{i}} f_{i \in I}\left(u_{i \in I}\right) d u_{i \in I}=\prod_{i \in I} \int_{-\infty}^{x_{i}} f_{X_{i}}(u) d u .
$$

For example if the collection has only two random variables, we can write

$$
\begin{aligned}
F_{(1,2)}\left(x_{1}, x_{2}\right):=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} f_{(1,2)}\left(u_{1}, u_{2}\right) d u_{1} d u_{2} & =\int_{-\infty}^{x_{i}} f_{X_{1}}(u) d u \\
& \times \int_{-\infty}^{x_{2}} f_{X_{2}}(u) d u
\end{aligned}
$$

the function $f_{(1,2)}\left(u_{1}, u_{2}\right)$ is called the joint density of $X_{1}$ and $X_{2}$.

## Marginal and conditional distributions

When dealing with multiple random variables, it is convenient to introduce two new concepts:

- Marginal density functions and marginal distributions
- Conditional density functions and conditional distributions If $X=\binom{X_{1}}{X_{2}}$ is a random vector of continuous random variables, the marginal density of $X_{1}$ is given by

$$
f_{1}(x)=\int_{-\infty}^{\infty} f_{X}(x, u) d u \text { where } f_{X} \text { is the joint density of } X
$$

Similarly

$$
f_{2}(x)=\int_{-\infty}^{\infty} f_{X}(u, x) d u
$$

## Marginal and conditional distributions

The conditional density of $X_{1}$ given $X_{2}=x_{2}$

$$
f_{1 \mid x_{2}=x_{2}}(x)=\frac{f_{X}\left(x_{1}, x_{2}\right)}{f_{2}\left(x_{2}\right)}
$$

Similarly

$$
f_{2 \mid x_{1}=x_{1}}(x)=\frac{f_{X}\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)}
$$

The marginal, conditional expectations and variances of $X_{1}$ are given by

- $E\left(X_{1}\right)=\int u f_{1}(u) d u, V\left(X_{1}\right)=\int\left(u-E\left(X_{1}\right)\right)^{2} f_{1}(u) d u$
- $E\left(X_{1} \mid X_{2}=x_{2}\right)=\int u f_{1 \mid X_{2}=x_{2}}(u) d u$,

$$
V\left(X_{1} \mid X_{2}=x_{2}\right)=\int\left(u-E\left(X_{1} \mid X_{2}=x_{2}\right)\right)^{2} f_{1 \mid X_{2}=x_{2}}(u) d u
$$

## Random sample

- A random sample of size $n$ is a set of observations (values) on a collection $\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ of independent and identically distributed random variables.
- Here, we need to distinguish the values of the random variables from the random variables themselves. But we represent these two objects by the same notation $X_{i}$

The sample average is given by

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

and the sample variance is is given by

$$
s_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

