Financial Econometrics

Professor Martins
University of Colorado at Boulder

Fall 2023
Lecture 4

Covariance

- If X_{1}, X_{2} are random variables, the covariance between X_{1} and X_{2} is given by

$$
\sigma_{X_{1}, X_{2}}=E\left(\left(X_{1}-E\left(X_{1}\right)\right)\left(X_{2}-E\left(X_{2}\right)\right)\right)
$$

If X_{1}, X_{2} are continuous

$$
\sigma_{X_{1}, x_{2}}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x_{1}-E\left(X_{1}\right)\right)\left(x_{2}-E\left(X_{2}\right)\right) f_{(1,2)}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

- It is easy to show that

$$
\sigma_{X_{1}, X_{2}}=E\left(X_{1} X_{2}\right)-E\left(X_{1}\right) E\left(X_{2}\right)
$$

Covariance and indepedence

Suppose X_{1} and X_{2} are two random variables and g and h are functions. Then,

$$
\sigma_{g\left(X_{1}\right) h\left(X_{2}\right)}=E\left(g\left(X_{1}\right) h\left(X_{2}\right)\right)-E\left(g\left(X_{1}\right)\right) E\left(h\left(X_{2}\right)\right)
$$

If X_{1} and X_{2} are independent

$$
E\left(g\left(X_{1}\right) h\left(X_{2}\right)\right)=E\left(g\left(X_{1}\right)\right) E\left(h\left(X_{2}\right)\right)
$$

and $\sigma_{g\left(X_{1}\right) h\left(X_{2}\right)}=0$. Thus, independence implies zero covariance, but the reverse is not true.

Correlation

- The correlation between X_{1} and X_{2} is given by

$$
\rho_{X_{1}, X_{2}}=\frac{\sigma_{X_{1}, X_{2}}}{\sqrt{V\left(X_{1}\right)} \sqrt{V\left(X_{2}\right)}}
$$

- It is easy to show that $\left|\rho_{X_{1}, X_{2}}\right| \leq 1$

Example

An important transformation of a normally distributed random variable.
Let $X \sim N\left(\mu, \sigma^{2}\right)$, then $Y=\exp (X)$ is said to have a Log-Normal density and we write $Y \sim L N\left(\mu, \sigma^{2}\right)$. Clearly,

$$
\begin{align*}
f_{Y}(y) & =f_{X}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y)=\frac{1}{y} f_{X}(\log y) \tag{1}\\
& =\frac{1}{y} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{(\log (y)-\mu)^{2}}{\sigma^{2}}} \tag{2}
\end{align*}
$$

for $0<y<\infty$. It can be shown that $E(Y)=e^{\left(\mu+\frac{\sigma^{2}}{2}\right)}$ and $V(Y)=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$.

Example 4

This Figure contains the graphs of 3 log-normal densities (see MATLAB code lognormgen.m).

Figure: log-normal densities

Random walk model of returns

Recall that

$$
r_{t, h}=\log \left(\frac{P_{t}}{P_{t-h}}\right) \text { for } t \in\{\ldots,-1,0,1, \ldots\} \text { and } h=1,2, \ldots
$$

and

$$
r_{t, h}=\sum_{j=0}^{h-1} r_{t-j, 1}=\sum_{j=0}^{h-1} r_{t-j}
$$

Then, if $E\left(r_{t-j}\right)=\mu, \sigma^{2}:=V\left(r_{t-j}\right)=E\left(r_{t-j}-\mu\right)^{2}$ and $\operatorname{Cov}\left(r_{t-j}, r_{t-i}\right)=0$ for all t and $j=1,2, \cdots, h$ and $i \neq j$

$$
E\left(r_{t, h}\right)=h \mu, V\left(r_{t, h}\right)=h \sigma^{2} \text { and } r_{t, h} \sim N\left(h \mu, h \sigma^{2}\right)
$$

Random walk model of returns

We can write

$$
r_{t, h}=h \mu+\left(h \sigma^{2}\right)^{1 / 2} Z \text { for all } t \text { where } Z \sim N(0,1)
$$

If $F_{h}(r)=P\left(r_{t, h} \leq r\right)$ we have

$$
F_{h}(r)=F_{Z}\left(\frac{r-h \mu}{\left(h \sigma^{2}\right)^{1 / 2}}\right)
$$

What does this mean about prices?

$$
\log P_{t}=\log P_{t-h}+h \mu+\left(h \sigma^{2}\right)^{1 / 2} Z \text { for all } t \text { where } Z \sim N(0,1)
$$

Taking $h=t$ and noting that $r_{j} \sim N\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
\log P_{t} & =\log P_{0}+t \mu+\left(t \sigma^{2}\right)^{1 / 2} Z \text { for all } t \text { where } Z \sim N(0,1) \\
& =\log P_{0}+r_{t, t}=\log P_{0}+\sum_{j=0}^{t-1} r_{t-j}=\log P_{0}+\sum_{j=1}^{t} r_{j}
\end{aligned}
$$

Random walk model of returns

The last equation gives how $\log P_{t}$ evolves through time. In this case, we say that $\log P_{t}$ evolves as a "random walk" and P_{t} is said to evolve as a geometric random walk. If we fix the starting value $\log P_{0}$

$$
E\left(\log P_{t}\right)=\log P_{0}+t \mu \text { and } V\left(\log P_{t}\right)=t \sigma^{2}
$$

Now, $\exp \left(\log P_{t}\right)=\exp \left(\log P_{0}+t \mu+\left(t \sigma^{2}\right)^{1 / 2} Z\right)$

$$
P_{t}=\exp \left(\log P_{0}+r_{t, t}\right)=\exp \left(X_{t}\right) \text { where } X_{t}=\log P_{0}+r_{t, t}
$$

Since $X_{t} \sim N\left(\log P_{0}+t \mu, t \sigma^{2}\right), P_{t} \sim L N\left(\log P_{0}+t \mu, t \sigma^{2}\right)$ with

$$
E\left(P_{t}\right)=\exp \left(\log P_{0}+t \mu+\frac{t \sigma^{2}}{2}\right)
$$

$$
V\left(P_{t}\right)=\exp \left(2\left(\log P_{0}+t \mu\right)+t \sigma^{2}\right)\left(\exp \left(t \sigma^{2}\right)-1\right)
$$

