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Estimation of 1 and o2

We have already estimated  and o2 from a random sample
{r,...,rn} using the method of moments. Now, we study a
method called

» Maximum Likelihood Estimation

Definition. Let X ~ f(x;0) where 6 € © C RP, p € IN and the
true value of 6 is denoted 6y. Given a random sample {X;}"_,, the
maximum likelihood estimator of 6y, whenever it exists, is given by

A

0n = I Ln(0; X1,---, Xn)) = Cn(0; X1, -+, Xn
maxlog(Ln(6; X1 )) = max (n(0; X1 )

where L,(0; X1,...,Xp) =1, f(Xi; 0).

L, is called the likelihood function and ¢, is called the
log-likelihood function.



Estimation of 1 and o2

> If ry ~ N(u,0?) then,
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» Note that ¢,(u, 0?) is differentiable with respect to u,o?. If a
maximum exists, it must satisfy
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» Solving these equations gives
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What are the properties of these estimators?

> E(fin) = p (unbiased) and V(2,) = © and fip ~ N(p, Z)
> Since E(62) = (Z1) 62, we define an alternative unbiased

estimator
n
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» More advanced statistics allows us to show that
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and since if a random variable X ~ x2_; we have E(X) = v
and V(X) = 2v, it follows immediately that
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Confidence interval for p
> Since fi, = p+ =27 where Z ~ N(0,1) it follows

immediately that
n—H 7~ N0,1)

i
a?
and for any « € (0,1)
fin —
Plza—ap2 < \/»2 < Zata)2 | =@

where z(1_,) /2 is the quantile of order (1 — a)/2 of N(0,1).
The difficulty with this probability is that ¢? must be estimated,

since it is unknown.



Confidence interval for p

» Consider ~
T:Mn_N: HBn— [ .
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11X where X ~ x2_;.
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But ﬂ";;* =Z~N(0,1) and &, = L
Hence, ’
fip — Z
T:Nn K ~ t(n—1).
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Confidence interval for p

» We can, equivalently, write



Confidence interval for o2

» Since @ ~x2_4, for a € (0,1)
52(n—1
P (q(l—a)/Z < gﬂ) < q(1+a)/2> =

where q(1_q)2 is the quantile of order (1 — «)/2 associated
with a x2_;. Rearranging, we have
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