Financial Econometrics

Professor Martins
University of Colorado at Boulder

Fall 2023
Lecture 5

Estimation of μ and σ^{2}

We have already estimated μ and σ^{2} from a random sample $\left\{r_{1}, \ldots, r_{n}\right\}$ using the method of moments. Now, we study a method called

- Maximum Likelihood Estimation

Definition. Let $X \sim f(x ; \theta)$ where $\theta \in \Theta \subset \mathbb{R}^{p}, p \in \mathbb{N}$ and the true value of θ is denoted θ_{0}. Given a random sample $\left\{X_{i}\right\}_{i=1}^{n}$, the maximum likelihood estimator of θ_{0}, whenever it exists, is given by

$$
\hat{\theta}_{n}:=\max _{\theta \in \Theta} \log \left(L_{n}\left(\theta ; X_{1}, \cdots, X_{n}\right)\right)=\max _{\theta \in \Theta} \ell_{n}\left(\theta ; X_{1}, \cdots, X_{n}\right)
$$

where $L_{n}\left(\theta ; X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} f\left(X_{i} ; \theta\right)$.
L_{n} is called the likelihood function and ℓ_{n} is called the log-likelihood function.

Estimation of μ and σ^{2}

- If $r_{t} \sim N\left(\mu, \sigma^{2}\right)$ then,

$$
\binom{\hat{\mu}_{n}}{\hat{\sigma}_{n}^{2}}=\max _{\left(\mu, \sigma^{2}\right)} \sum_{t=1}^{n} \log \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2} \frac{\left(r_{t}-\mu\right)^{2}}{\sigma^{2}}\right)
$$

- Note that $\ell_{n}\left(\mu, \sigma^{2}\right)$ is differentiable with respect to μ, σ^{2}. If a maximum exists, it must satisfy

$$
\frac{\partial}{\partial \mu} \ell_{n}\left(\hat{\mu}_{n}, \hat{\sigma}_{n}^{2}\right)=0 \text { and } \frac{\partial}{\partial \sigma^{2}} \ell_{n}\left(\hat{\mu}_{n}, \hat{\sigma}_{n}^{2}\right)=0
$$

- Solving these equations gives

$$
\hat{\mu}_{n}=\frac{1}{n} \sum_{t=1}^{n} r_{t} \text { and } \hat{\sigma}_{n}^{2}=\frac{1}{n} \sum_{t=1}^{n}\left(r_{t}-\hat{\mu}_{n}\right)^{2}
$$

What are the properties of these estimators?

- $E\left(\hat{\mu}_{n}\right)=\mu$ (unbiased) and $V\left(\hat{\mu}_{n}\right)=\frac{\sigma^{2}}{n}$ and $\hat{\mu}_{n} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$
- Since $E\left(\hat{\sigma}_{n}^{2}\right)=\left(\frac{n-1}{n}\right) \sigma^{2}$, we define an alternative unbiased estimator

$$
\tilde{\sigma}_{n}^{2}=\frac{1}{n-1} \sum_{t=1}^{n}\left(r_{t}-\hat{\mu}_{n}\right)^{2}
$$

- More advanced statistics allows us to show that

$$
\frac{n-1}{\sigma^{2}} \tilde{\sigma}_{n}^{2} \sim \chi_{n-1}^{2}
$$

and since if a random variable $X \sim \chi_{n-1}^{2}$ we have $E(X)=v$ and $V(X)=2 v$, it follows immediately that

$$
V\left(\tilde{\sigma}_{n}^{2}\right)=\frac{2 \sigma^{4}}{n-1}
$$

Confidence interval for μ

- Since $\hat{\mu}_{n}=\mu+\frac{\sigma}{\sqrt{n}} Z$ where $Z \sim N(0,1)$ it follows immediately that

$$
\frac{\hat{\mu}_{n}-\mu}{\sqrt{\frac{\sigma^{2}}{n}}}=Z \sim N(0,1)
$$

and for any $\alpha \in(0,1)$

$$
P\left(z_{(1-\alpha) / 2} \leq \frac{\hat{\mu}_{n}-\mu}{\sqrt{\frac{\sigma^{2}}{n}}} \leq z_{(1+\alpha) / 2}\right)=\alpha
$$

where $z_{(1-\alpha) / 2}$ is the quantile of order $(1-\alpha) / 2$ of $N(0,1)$.
The difficulty with this probability is that σ^{2} must be estimated, since it is unknown.

Confidence interval for μ

- Consider

$$
T=\frac{\hat{\mu}_{n}-\mu}{\sqrt{\frac{\tilde{\sigma}^{2}}{n}}}=\frac{\hat{\mu}_{n}-\mu}{\sqrt{\frac{\tilde{\sigma}^{2}}{\sigma^{2}}} \sqrt{\frac{\sigma^{2}}{n}}}
$$

But $\frac{\hat{\mu}_{n}-\mu}{\sqrt{\frac{\sigma^{2}}{n}}}=Z \sim N(0,1)$ and $\frac{\tilde{\sigma}^{2}}{\sigma^{2}}=\frac{1}{n-1} X$ where $X \sim \chi_{n-1}^{2}$.
Hence,

$$
T=\frac{\hat{\mu}_{n}-\mu}{\sqrt{\frac{\tilde{\sigma}^{2}}{n}}}=\frac{Z}{\sqrt{\frac{\chi_{n-1}^{2}}{n-1}}} \sim t(n-1) .
$$

Hence,

$$
P\left(T(n-1)_{(1-\alpha) / 2} \leq \frac{\hat{\mu}_{n}-\mu}{\sqrt{\frac{\tilde{\sigma}^{2}}{n}}} \leq T(n-1)_{(1+\alpha) / 2}\right)=\alpha
$$

Confidence interval for μ

- We can, equivalently, write

$$
\begin{aligned}
& P\left(\hat{\mu}_{n}+T(n-1)_{(1-\alpha) / 2} \sqrt{\frac{\tilde{\sigma}^{2}}{n}} \leq \mu \leq \hat{\mu}_{n}\right. \\
& \left.+T(n-1)_{(1+\alpha) / 2} \sqrt{\frac{\tilde{\sigma}^{2}}{n}}\right)=\alpha
\end{aligned}
$$

Confidence interval for σ^{2}

- Since $\frac{\tilde{\sigma}^{2}(n-1)}{\sigma^{2}} \sim \chi_{n-1}^{2}$, for $\alpha \in(0,1)$

$$
P\left(q_{(1-\alpha) / 2} \leq \frac{\tilde{\sigma}^{2}(n-1)}{\sigma^{2}} \leq q_{(1+\alpha) / 2}\right)=\alpha
$$

where $q_{(1-\alpha) / 2}$ is the quantile of order $(1-\alpha) / 2$ associated with a χ_{n-1}^{2}. Rearranging, we have

$$
P\left(\frac{\tilde{\sigma}^{2}(n-1)}{q_{(1+\alpha) / 2}} \leq \sigma^{2} \leq \frac{\tilde{\sigma}^{2}(n-1)}{q_{(1-\alpha) / 2}}\right)=\alpha .
$$

