Financial Econometrics

Professor Martins

University of Colorado at Boulder

Fall 2023

Lecture 7

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Testing for Normality

• If
$$r = \mu + \sigma Z$$
 with $\sigma > 0$ and $Z \sim N(0,1)$ then $\alpha \in (0,1)$

 $F_r^{-1}(\alpha) = \mu + \sigma F_Z^{-1}(\alpha)$, see slides for lecture 3

Consider a random sample {r_t}ⁿ_{t=1} and order these observations from the smallest to the largest. We denote the smallest to be r₍₁₎, the second smallest to be r₍₂₎ until the largest r_(n). Clearly,

$$r_{(1)} \leq r_{(2)} \leq \cdots \leq r_{(n)}.$$

The set $\{r_{(t)}\}_{t=1}^{n}$ is called the "order statistics" associated with $\{r_t\}_{t=1}^{n}$.

Testing for Normality

• If
$$F_n(r) = \frac{1}{n} \sum_{t=1}^n I_{\{r_t \le r\}}$$
, we know that $F_n(r) \xrightarrow{p} F_r(r)$.

• It is easy to show that the quantile $q_{F_n}(\alpha)$ of F_n is

$$q_{F_n}(\alpha) = \begin{cases} r_{(n)} & \text{if } \frac{n-1}{n} < \alpha < 1\\ r_{(n-1)} & \text{if } \frac{n-2}{n} < \alpha \le \frac{n-1}{n}\\ \vdots & \vdots\\ r_{(2)} & \text{if } \frac{1}{n} < \alpha \le \frac{2}{n}\\ r_{(1)} & \text{if } 0 < \alpha \le \frac{1}{n} \end{cases}$$

Hence,

$$F_r^{-1}(\alpha) \approx q_{F_n}(\alpha)$$
 and $q_{F_n}(\alpha) \approx \mu + \sigma F_Z^{-1}(\alpha)$

• If r is normally distributed, any difference between $q_{F_n}(\alpha)$ and $\mu + \sigma F_Z^{-1}(\alpha)$ is due to the fact that $F_r^{-1}(\alpha) \neq q_{F_n}(\alpha)$

QQ-plots

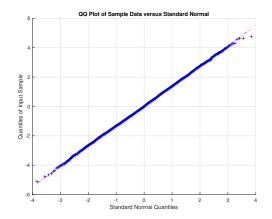


Figure: QQ plot normal

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

QQ-plots

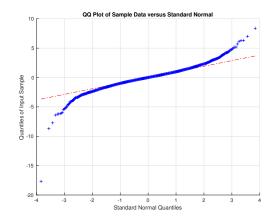


Figure: QQ plot Student-t, E(T)=0, scale= $\sqrt{5/8}$

QQ-plots

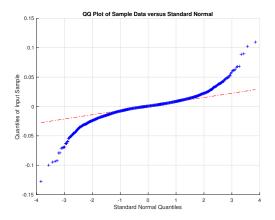


Figure: QQ plot S&P 500 log-returns

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Kolmogorov-Smirnoff Test

We know that for fixed r,

$$F_n(r) - F_r(r) \stackrel{p}{
ightarrow} 0.$$

In fact, a fundamental result in Statistics (Glivenko-Cantelli Theorem), says that

$$\sup_{r\in\mathbb{R}}|F_n(r)-F_r(r)|\stackrel{p}{\to} 0.$$

Kolmogorov showed that for $0 < z < \infty$ and any F continuous

$$P\left(\sqrt{n}\sup_{r\in\mathbb{R}}|F_n(r)-F_r(r)|\leq z\right)=P\left(\sqrt{n}\sup_{y\in[0,1]}\left|\frac{1}{n}\sum_{t=1}^n I_{\{U_t\leq y\}}-y\right|\leq z\right)$$

and that

$$P\left(\sqrt{n}\sup_{r\in\mathbb{R}}|F_n(r)-F_r(r)|\leq z\right)\to H(z)=1-2\sum_{i=1}^{\infty}(-1)^{i-1}\exp(-2i^2z^2)$$

Kolmogorov-Smirnoff Test

Let

$$H_0: F_r = F_0$$
 and $H_1: F_r \neq F_0$

where F_0 is the normal cumulative distribution with parameters μ_0, σ_0^2 and

$$D_n = \sqrt{n} \sup_{r \in \mathbb{R}} |F_n(r) - F_r(r)|$$

is the test statistic. If the null hypothesis is true, then the distribution of D_n is approximately H(z). Hence, if $D_n \leq c$ we accept H_0 and if $D_n > c$ we reject H_0 . c depends on the test level of significance, and can be found by

$$P(D_n \ge c_lpha | H_0) = lpha$$
 for $lpha \in (0, 1)$

Implementation using MATLAB

▶ Data: S&P500 index value from January, 1988 to June, 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Code: MLESP500_KS.m
- Key functions in MATLAB: makedist, kstest