Financial Econometrics

Professor Martins
University of Colorado at Boulder

Fall 2023
Lecture 8

General properties of MLE

- In many instances the (log) likelihood function is highly nonlinear in the parameters.
- Closed form solutions for the maxima of the likelihood function may not be available.
- Even they are, they may be complex functions of the data and it might not be possible to obtain their distribution and statistical properties.

A more general structure/framework must be developed to obtain the statistical properties of Maximum Likelihood Estimators

Ancillary results

General properties of MLE are based on a collection of approximating results collectively called
"Asymptotic Theory"
There are two fundamental results that we will rely on:

- The Law of Large Numbers (LLN)
- The Central Limit Theorem (CLT)
- Given a random sample $\left\{X_{t}\right\}_{t=1}^{n}$, the LLN gives conditions under which

$$
\frac{1}{n} \sum_{t=1}^{n} X_{t} \text { converges in probability. }
$$

- The CLT gives conditions under which

$$
\frac{1}{n} \sum_{t=1}^{n} X_{t} \text { converges in distribution. }
$$

Convergence in Distribution

Definition: Let $\left\{X_{t}\right\}_{t=1,2, \ldots}$ be a sequence of random variables with distributions $\left\{F_{t}\right\}_{t=1,2, \ldots}$ and X be another random variable with distribution F_{X}. We say that the sequence $\left\{X_{t}\right\}_{t=1,2, \ldots}$ converges in distribution to X as $n \rightarrow \infty$, denoted by

$$
X_{t} \xrightarrow{d} X \text { as } t \rightarrow \infty
$$

if, and only if,

$$
F_{t}(x) \rightarrow F_{X}(x)
$$

for every x that is a point of continuity of F_{X} as $t \rightarrow \infty$.

Kolmogorov's LLN

Theorem: Let $\left\{X_{t}\right\}_{t=1,2, \ldots, n}$ be a sequence of independent and identically distributed random variables with $E\left(\left|X_{t}\right|\right)<\infty$ and set $E\left(X_{t}\right):=\mu \in \mathbb{R}$ for all t. Then,

$$
\frac{1}{n} \sum_{t=1}^{n} X_{t} \xrightarrow{p} \mu \text { as } t \rightarrow \infty
$$

- Because the sequence is identically distributed, μ is not indexed by t
- X_{t} must have an expectation, but need not have a variance or other higher order moments

Lindeberg - Lévy CLT

Theorem: Let $\left\{X_{t}\right\}_{t=1,2, \ldots, n}$ be a sequence of independent and identically distributed random variables with $E\left(X_{t}\right)=\mu \in \mathbb{R}$ and $V\left(X_{t}\right)=\sigma^{2} \in(0, \infty)$ for all t. Then,

$$
\frac{\frac{1}{n} \sum_{t=1}^{n} X_{t}-\mu}{\sqrt{V\left(\frac{1}{n} \sum_{t=1}^{n} X_{t}\right)}} \xrightarrow{d} Z \text { as } n \rightarrow \infty .
$$

where $Z \sim N(0,1)$.
Note that

- $\frac{1}{n} \sum_{t=1}^{n} X_{t}-\mu=\frac{1}{n} \sum_{t=1}^{n}\left(X_{t}-\mu\right)$ and $V\left(\frac{1}{n} \sum_{t=1}^{n} X_{t}\right)=\frac{\sigma^{2}}{n}$.

Hence,
$-\frac{1}{\sqrt{n}} \sum_{t=1}^{n}\left(\frac{X_{t}-\mu}{\sigma}\right) \xrightarrow{d} Z$.

