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Using the LLN and CLT - An important example

Let {X¢}¢=12,.n be a sequence of IID random variables and

1 n
== s
t=1

Note that E(Ix,<x) = Fx(x), V(Ix,<x) = (1 — Fx(x))Fx(x) and
{Ix,<x}t=12,...n is IID. Hence, by the LLN and the CLT, we have
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Z Ixe<x 2 E(Ix,<x) = Fx()

and
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n Zt:l IXtSX E(IXtSX) = \/E(Fn(X) FX(X)) i Z~ N(07 1)
(=Fx())Fx(x) V(L= Fx(x))Fx(x)
or

d

Vn(Fa(x) = Fi(x)) = Z ~ N(0, (1 = Fx(x))Fx(x))



Using the LLN and CLT - MLE Estimation

Let {X;}7_; be a random sample on a random variable
X ~ fx(x; 0) where § € © C R. The ML estimator is defined as

Op = argmax £,(0) = argmax — Z log fx(Xi; 6). (1)
0eo e N

If £,(0) has a derivative, i.e., if log fx(X;; 0) has a derivative, and
Op1 is in the interior of ©, then it must be that 6y, satisfies the
following equation

" d
; %/og fx(X,'; OML) = 0. (2)



MLE Estimation

If d plog fx(Xi; 0) is itself differentiable with respect to ¢, by the
Mean Value Theorem, there exists 6* = Ay + (1 — A)6p for
A € (0,1) where 0 is the true value of the parameter, such that

d
—log fx(X;;
7008 X (Xi; 6o)
2
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d
—log fx(X;; =
4508 X (Xi; Ome) =

log fx(Xi; 0°)(OmL — 6o) = 0.

Consequently, we can write

2
Z g2 108 fx (X1 0°) (B — o) = Z @Iog fix (Xi; 6o)-

(3)



MLE Estimation

Since {Xi}i=12.. is lID, any sequence {g(Xi)}i=12,... where g is
continuous is also |ID. Hence, {%/og fx(Xi;60)}i=12,.. is 11D and
if E (|25 log fx(Xii 60)|) < oo then

1~ d up d .
- z; @/og fx(Xi: 00) > E <delog fx (Xi; 90)) .
E(Liog (X5:00) ) = [ Felur: )12 e (ur: 00 i (u: 60)
dHOgX"O = x\U; Ug dexuoxuo

If there exists g(x) such that ‘%fx(x; 0)| < g(x) and
[ lg(x)|dx < oo, then we can interchange integrals and derivatives

d
/d@f u90 dg/fxueo



MLE Estimation
We conclude that

fZ—bg fx (Xi; 60) 2 .

One of g in the previous slide is g(x) = sup |%fx(x; 9)! Similarly,
0O

if £ (’j’—;log fe(Xi: 0%)

) < 00, then

d? d?
log fx(Xi; 0*) = E log fx (X;; 0* 4
Ildazogx( )5 (Glox(xio)) @
and provided that E (dd—(;/og fx (Xi; 9*)) # 0 for 6%, we have (from

(7?)) that Oy — 6o 2 0.



MLE Estimation
Now, multiply equation (??) by v/n, such that we have

-1
1 <~ d? .
ﬁ(‘gML —to) = (n Z W’Og fx(Xi; 0 ))

fzde

Since v, = v/n: 7 Ljog fx(Xi; o) and
E (4 log i (Xi:05)) = 0, by the CLT

Y <0,E ((:elog fX(thO))?))

and by the arguments developed above

d2
p
A, — —E (d92 /Og fx(X 90))

log fx(Xi; 00) = A= v,



General properties of MLE Estimation
Theorem. (Slutsky Theorem) If f is a continuous function and
{X;}t=102... is a sequence of 1ID random variables, f(X;) 2 f(X)
provided that X; 5 X.

We conclude that

1P d? -
An = —E W/ngx(x,';go) .

Since E (%/og fx(Xi; 60)) = 0 we have that
4 E (& log fx(Xi;00)) = 0. Exchanging the expectation and

derivatives
d d d d
%E <d0/0g fX(X,,90)> = % / %/Og fX(U,QO)fX(U,HO)dU

d2
:/(dgglogfx(u;@o)fx(u;%)

d d
+5l08 fx (u; 90)@&(“7 90)) du



General properties of MLE Estimation

This implies that

—E (:; log fx (X 90)) - E ((:elog i (Xi: eo)>2) .

Theorem. If {X,}, {Z,} are sequence of random variables such
that X, 5 X and Z, % Z, then X,Z, % XZ.

Hence, we finally conclude

(O — 00) S N (o, < £ <;’; log F(X;: 00))>_1> ]



General properties of MLE Estimation
If 6 € © c R? we write

V(0w — 00) S N <o, < E <8§;6, log fx (X;; 90)>>_1> .

where —E (%/og x(Xi; 00)> is a d x d matrix.
» This matrix is called the Fisher's Information.
» For arbitrary estimator #, such that

Va(d — 60) S N(O, V)

-1
we have V; > (—E (859—829//0;; fX(X,-;HO)))
» The MLE is efficient (minimum variance) among all

estimators that are consistent and asymptotically normally
distributed. The expression

ik -
< E <8989’/Og fX(X,,90)>>

is called the Cramér-Rao lower bound.



