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ABSTRACT

This paper considers the general problem of Feasible Generalized Least

Squares Instrumental Variables (FGLS IV) estimation using optimal instru-

ments. First we summarize the sufficient conditions for the FGLS IV estimator

to be asymptotically equivalent to an optimal GLS IV estimator. Then we

specialize to stationary dynamic systems with stationary VAR errors, and use

the sufficient conditions to derive new moment conditions for these models.

These moment conditions produce useful IVs from the lagged endogenous

variables, despite the correlation between errors and endogenous variables.

This use of the information contained in the lagged endogenous variables

expands the class of IV estimators under consideration and thereby potentially

improves both asymptotic and small-sample efficiency of the optimal IV

estimator in the class. Some Monte Carlo experiments compare the new

methods with those of Hatanaka (1976). For the DGP used in the Monte Carlo

experiments, asymptotic efficiency is strictly improved by the new IVs, and

experimental small-sample efficiency is improved as well.
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1. INTRODUCTION

Mandy and Martins-Filho (1994 and 1997) provide sufficient conditions for

asymptotic equivalence of feasible generalized least squares (FGLS) instrumental

variables (IV) and generalized least squares (GLS) IV estimators. There the focus

was on the structure of the error covariance matrix, and due to the generality of the

model little attention was given to instrument design.

Here we note that a minor restatement of our earlier conditions is sufficient

for asymptotic equivalence of FGLS IV and GLS IV when the instruments are

optimal. This observation is new in that the conditions are general, applying to

many familiar covariance structures, and the estimators are optimal in the class of

IV estimators under consideration.

We then apply the conditions to stationary dynamic systems with stationary

VAR errors. The sufficient conditions allow us to expand the class of IV estimators

under consideration by identifying new moment conditions that enable use of

(transformed) lagged endogenous variables as IVs, despite the presence of VAR

errors in the dynamic system. This raises the prospect of both asymptotic and small

sample efficiency gains relative to the IV estimators that have been considered to

date. For a particular data generation process (DGP), we show that a strict

improvement in asymptotic efficiency is obtained by using our new IVs, and

experimental results for the DGP suggest that small-sample efficiency is improved

as well. The results differ from earlier literature, notably Dhrymes and Taylor (1976)

and Hatanaka (1976), in that the efficiency properties do not depend on specific

distributional assumptions but instead are attained in a class of IV estimators.

Section 2 discusses sufficient conditions for FGLS IV estimators to be

optimal IV estimators for some given set of IVs. Section 3 reviews estimation

of error VAR(1) nuisance parameters that accommodates general stochastic

regressors. Section 4 examines dynamic models and proposes IVs that satisfy

the sufficient conditions from Section 2, thereby proposing new optimal IV

estimators for dynamic models with VAR errors. Section 5 presents some

Monte Carlo comparisons of the new efficient IV estimators with each other and

with Hatanaka’s (1976) methods.

2. SUFFICIENT CONDITIONS FOR ASYMPTOTIC EQUIVALENCE

OF GLS IV AND FGLS IV USING OPTIMAL INSTRUMENTS

Consider the linear regression model

y ¼ xbþ u; EðuÞ ¼ 0; Eðuu0Þ � OðyÞ: ð1Þ
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Here y is a T� 1 stochastic observable vector, x is a T�K stochastic observable

matrix, b is a K� 1 nonstochastic unknown parameter vector to be estimated, u is

a T� 1 stochastic unobservable error vector, and y is a n� 1 nonstochastic vector

of unknown nuisance parameters. When the conditional mean E(u|x) is nonzero IV

estimation is required. White (1984, Chapter VII) established the asymptotic

equivalence of GLS IV and FGLS IV for some standard forms of O(y). Mandy and

Martins-Filho (1994 and 1997) proposed general conditions on O(y) that are

sufficient for this asymptotic equivalence, given by:

(A1.1) O(y)ÿ1 has at most W< 1 distinct nonzero elements for every T,

denoted gwT (y) for w ¼ 1; . . . ;W :
That is, there are T 2–W elements that are either zero or duplicates of

other nonzero elements in O(y)ÿ1. For each w, gwT (y) converges

uniformly as T !1 to a real-valued function gw(y) on an open set

S containing the true value of y, at which gw is continuous.

(A1.2) The number of nonzero elements in each column (and row) of

O(y)ÿ1 is uniformly bounded by N< 1 as T !1:

Corresponding to a T � �KKð �KK � KÞ matrix D of IVs are the optimal

instruments

zðyÞ � OðyÞÿ1
DðD0OðyÞÿ1

DÞ
ÿ1

D0OðyÞÿ1
x;

which are used to form the GLS IV estimator b̂bðyÞ � ðzðyÞ0xÞÿ1
zðyÞ0y: Standard

asymptotic behavior of b̂bðyÞ and asymptotic equivalence of the FGLS IV estimator

b̂bðŷyÞ (for some consistent estimator ŷy) with b̂bðyÞ require that the IVs D possess

some basic properties. From (A1), let IiwT be the index set of elements in row i of

O(y)ÿ1 that are equal to gw , for w ¼ 1; . . . ;W : In this notation, the IVs D are

assumed to satisfy:

(A2.1) ð1=
ffiffiffiffi
T
p
ÞD0OðyÞÿ1

u ÿ!
d

Nð0;QDuÞ for some symmetric ð �KK � �KKÞ
matrix QDu.

(A2.2) plim
T!1

ð1=T ÞD0OðyÞÿ1
D ¼ QDD; a finite nonsingular matrix.

(A2.3) plim
T!1

ð1=T ÞD0OðyÞÿ1
x ¼ QDx; a finite matrix of full column rank.

(A2.4) Each IV Dih can be expressed as Dih ¼ l0hZih; where lh is a vector of

fixed finite dimension that is Op(1) and constant across i, and Zih has

uniformly bounded fourth moments and fourth cross moments with

xjq for i; j ¼ 1; 2; . . . ; h ¼ 1; . . . ; �KK; and q ¼ 1; . . . ;K:
(A2.5)

PT
i¼1

P
j2IiwT

Dihuj ¼ OpðT
1=2Þ for h ¼ 1; . . . ; �KK and w ¼ 1; . . . ;W :

Under (A1) and (A2) there is a FGLS IV estimator that is optimal within the

class of IV estimators that are based on D, provided we have available a consistent

estimator of the nuisance parameters.

Lemma 1

Assume (A1) and (A2). If ŷy ÿ!
p

y then
ffiffiffiffi
T
p
ðb̂bðŷyÞ ÿ b̂bðyÞÞ ÿ!

p
0:
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The proof is an extension of Mandy and Martins-Filho (1994 and 1997) and

is available on request from the authors. Condition (A1) applies to VAR errors and

certain forms of heterocedastic (including random coefficients) and panel errors,

but does not apply to moving average errors.

3. VAR ERRORS

Now we specialize the model to a system of T observations on G equations

with VAR(1) errors,1 Y¼XB þ U, where Y is a T�G matrix of endogenous

variables, X is a T�K matrix of (possibly stochastic) regressors, B is a K�G

matrix of unknown parameters that incorporates any exclusion restrictions, and U

is a T�G matrix of VAR(1) errors. Letting the ith row and column of an arbitrary

matrix M be Mi� and M�i, respectively, we assume that:

(A3) Ut� ¼ Utÿ1�Rþ Vt� for t ¼ 0;�1;�2; . . . ; where

(A3.1) R is a G�G matrix of nuisance parameters with absolute eigen-

values less than one,

(A3.2) V 0t� � IIDð0;SÞ for some symmetric finite positive definite G�G

nuisance matrix S,

(A3.3) Vt� has finite absolute fourth moments, and

(A3.4) there exists a bound �BB such that EðXtÿh;iXtjXtÿh;iXtjÞ �
�BB

and EðXtÿh;iXtÿh;iUt‘Ut‘Þ �
�BB; for every t; t ¼ 1; 2; . . . ;

h ¼ 0; 1; 2; . . . ; i; j ¼ 1; . . . ;K; and ‘ ¼ 1; . . . ;G:

The autocovariance function of Ut� is denoted GðhÞ ¼ EðU 0tÿh�Ut�Þ for

h ¼ 0;�1;�2; . . . : Assumption (A3) implies Ut� is both strictly stationary and

covariance stationary (Anderson (1971), pp. 372–378). Henceforth we express the

error VAR as U ¼ DURþ DD0V þ ðIT ÿ DD0ÞU for

D ¼

0

1 0

1 . .
.

. .
. . .

.

1 0

2666664

3777775:
In this model, the nuisance vector y of the previous section consists of vec R and

the unique elements ofS. Given that E(U|X) 6¼ 0, consistent estimation of y requires a

T�K instrument matrix C (possibly different from D) which we assume satisfies

(A4.1) the eigenvalues of ð1=TÞC0X possess a uniform lower bound in

probability, and

(A4.2) C0U ¼ OpðT
1=2Þ:

1It is unnecessary to consider higher order error VARs since a VAR( p) process can always be written

as a VAR(1) process Anderson (1971), p. 177.

488 MANDY AND MARTINS-FILHO



Estimation of the nuisance parameters is straightforward from (A3)

and (A4).

Lemma 2

Assume (A3) and (A4), and let ~GGðhÞ ¼ ð1=TÞ
PT

t¼hþ1
~UU 0tÿh�

~UUt�; where ~UU ¼

ðIT ÿ X ðC0X Þ
ÿ1

C0ÞY : Then ~GGðhÞ ÿ!
p

GðhÞ: In particular, ~RRÿ R ¼ OpðT
ÿ1=2Þ

and ~SS ÿ!
p

S; where ~RR ¼ ~GGð0Þÿ1 ~GGð1Þ and ~SS ¼ ~GGð0Þ ÿ ~RR0 ~GGð1Þ:
The standard proof from, for example, Fuller (1976) must be modified only

slightly to accommodate the nonzero conditional mean. Details are available on

request from the authors. Note that ~RR converges faster than op(1). This fact is used

in the design of new IVs in Section 4.

For checking assumptions (A1) and (A2) it is convenient to stack the system

by observation, thereby expressing the model in the notation of Section 2 with

dependent vector y¼ vecY 0, regressor matrix x ¼ X 
 IG; parameter vector b ¼
vecB0, and error vector u¼ vecU 0. In this notation the VAR(1) inverse error

covariance is OðyÞÿ1
¼ P0ðIT 
 Sÿ1

ÞP; where P is the VAR(1) transformation

matrix given by

P¼

A 0 . . . . . . 0

ÿR0 IG 0 . . . ..
.

0 ÿR0 IG
. .

. ..
.

..

. . .
. . .

. . .
.

0

0 . . . 0 ÿR0 IG

26666664

37777775¼ ððIT ÿDD0Þ 
AÞÿ ðD
R0Þ þ ðDD0 
 IGÞ:

Here A is a lower triangular matrix such that AEðU 01�U1�ÞA
0 ¼ S: From P and the

definition of D we can derive an explicit expression for O(y)ÿ1 that is useful for

verifying (A1) and (A2):

OðyÞÿ1
¼P0ðIT 
S

ÿ1ÞP

¼½ðIT ÿDD
0
Þ
A0Sÿ1A�þ½DD0 
Sÿ1�ÿ½D
Sÿ1R0�ÿ½D0 
RSÿ1�þ½D0D
RSÿ1R0�

¼

A0Sÿ1AþRSÿ1R0 ÿRSÿ1 0 . . . 0

ÿSÿ1R0 Sÿ1þRSÿ1R0 ÿRSÿ1 . .
. ..

.

0 . .
. . .

. . .
.

0

..

. . .
.

ÿSÿ1R0 Sÿ1
þRSÿ1R0 ÿRSÿ1

0 . . . 0 ÿSÿ1R0 Sÿ1

266666664

377777775:

ð2Þ

4. IVS FOR ESTIMATION OF DYNAMIC SIMULTANEOUS

EQUATION MODELS WITH VAR ERRORS

The availability of IVs is context-dependent and can only be investigated

under some assumption on the source of the nonzero conditional mean. Perhaps
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the most obvious context is a simultaneous equation model. The usual 2SLS and

3SLS IVs can be expected to satisfy (A2) under traditional assumptions when

there is only contemporaneous error correlation, an observation that only adds to

traditional results for simultaneous equation models by including them as special

cases of well-behaved stochastic regressors. When errors satisfy (A3) three

problems emerge. First, (A1) must be checked. As noted in Mandy and

Martins-Filho (1994), inspection of (2) verifies that (A1) is indeed satisfied by

VAR errors. Second, we must derive IVs that satisfy (A2). The usual 2SLS and

3SLS IVs suffice if there are no lagged endogenous variables,2 but if Y¼XB þ U

is a dynamic simultaneous equation model then, as is well-known from Wallis

(1967 and 1972), the lagged endogenous variables as IVs interact with the VAR

errors to make traditional 2SLS and 3SLS inconsistent. We demonstrate here the

utility of stating the sufficient conditions generally, in the form of (A1) and (A2),

by using these conditions to develop new IVs that overcome this problem. The new

IVs are derived from lagged endogenous variables and thereby provide a here-

tofore unnoticed way of using some information from the lagged endogenous

variables for optimal IV estimation of B. Third, we must derive IVs that satisfy

(A4). Following Wallis (1967 and 1972), this is usually straightforward provided

the structural model contains exogenous variables.

Letting X ¼ ½S Y0 Yÿ1 � � � Yÿq� and B0 ¼ ½Y0 B00 B01 � � �B
0
q�; we have a

dynamic simultaneous equation model written in normalized structural form

Y ¼ SYþ
Pq

L¼0 YÿLBL þ U ; where subscripts on the endogenous matrix Y

indicate lags, S is a T�K0 matrix of variables not determined endogenously by

the system under consideration (but perhaps stochastic), and Y and BL are K0 �G

and G�G unknown parameter matrices, respectively, that incorporate normal-

ization and exclusion restrictions (so K ¼ K 0 þ ðqþ 1ÞG). We assume throughout

that all G equations are identified by these exclusion restrictions, the stochastic

process St� is covariance stationary with St� independent of Vt� for t� t, the

autoregressive process in Yt� is covariance stationary, and that (A3) holds. Since

(A1) is satisfied by VAR errors and S (and lags thereof) can be used for (A4), the

central issue is deriving IVs that satisfy (A2).

4.1. Assumption (A2)

Usually the IVs in a simultaneous equation model take the form H 
 IG for

some ðT � K̂KÞ matrix H, where �KK � K̂KG: For example, H ¼ ½S Yÿ1 � � � Yÿq� yields

the usual 3SLS IVs. This along with (2) allows us to state (A2) more simply for the

2This statement may appear at odds with the finding by Turkington (1998) that when R is unknown a

different IV set must be used to perform 3SLS than when R is known. Turkington encounters this

difficulty because his IV set is derived from the structural form after it has been transformed to

possess white noise errors. What we are calling the 3SLS IVs herein are derived from the original

structural form.
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present model in terms of H rather than D. To obtain the simplification note first

from (2) that there are five distinct nonzero G�G blocks in O(y)
ÿ1, and that the

upper left block appears only once and therefore is of no consequence in (A2).

Ignoring this block, we can substitute D ¼ H 
 IG; x ¼ X 
 IG; (2) for O(y)ÿ1,

and Pu ¼ PvecU 0 ¼ vecV 0 in (A2) to rewrite the assumption as

(A2.10) A Central Limit Theorem (CLT) applies to ð1=
ffiffiffiffi
T
p
ÞðH 0


Sÿ1
ÿ H 0ÿ1 
 RSÿ1

ÞvecV 0:
(A2.20) plim

T!1

ð1=T ÞH 0HL is a finite nonsingular matrix for lags L¼ÿ1, 0, 1.

(A2.30) plim
T!1

ð1=T ÞH 0XL is a finite matrix of full column rank3 for lags

L¼ÿ1, 0, 1.

(A2.40) Each element of H can be expressed in the specified form.

(A2.50) H 0UL ¼ OpðT
1=2Þ for lags L¼ÿ1, 0, 1.

Assumptions (A2.10)–(A2.40) hold for the usual 3SLS IVs in dynamic

models satisfying the assumptions of the present section. The problem with

including lags of Y in the IV set is that they violate (A2.50). So the central

problem in designing new IVs based on lags of Y is finding a transformation for

the lags that destroys the asymptotic correlation between them and UL, thereby

introducing additional orthogonality conditions that can be exploited in IV

estimation.

4.2. Transforming Lagged Endogenous Variables

Consider the set F of all T� T matrices that can be written as a finite sumP
i riD

ti; where ri are real numbers, ti are nonnegative integers, and D0
� IT : This

set is a commutative ring whose addition and multiplication operations are

standard matrix addition and multiplication and whose multiplicative identity is

IT. Stacking the error VAR (by equation) yields

½ðIG 
 IT Þ ÿ ðR
0 
 DÞ�vecU ¼ ðIG 
 DD0ÞvecV þ ðIG 
 ðIT ÿ DD0ÞÞvecU ;

ð3Þ

and A � ðIG 
 IT Þ ÿ ðR
0 
 DÞ is a G�G matrix over F. Although A converts

vecU into white noise, (A2.50) requires that each column of U be asymptotically

uncorrelated with the IVs. So the problem of constructing IVs from lags of Y can

be stated as a problem of finding a transformation P over F such that PU is

asymptotically uncorrelated with YÿL. This is accomplished by solving (3) over F
for U�i, which involves the determinant of A over F and therefore includes D‘

3When the model is a simultaneous equation model (A2.30) must be restated to reflect the identifying

exclusion restrictions. Using a regressor matrix obtained from the generic form X 
 IG by dropping

the known zeros in b and the corresponding columns of X 
 IG: Then the product in (A2.30) is of full

column rank since we have assumed the model is identified by exclusion restrictions.
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for ‘ ¼ 0; . . . ;G: To obtain zero correlation, we must ensure that the time index

on the lags of Y are prior to the time index on Vt�. Thus for IVs P0YÿL we

require L>G.

To see this formally let IG ¼ IG 
 IT denote the G�G identity matrix over

F and, in order to avoid confusing matrix multiplication between matrices over F
with ordinary matrix multiplication, use � to denote matrix multiplication between

matrices over F and � to denote multiplication between a scalar in F (i.e., a T� T

matrix) and a matrix over F. We continue to denote ordinary matrix multiplication

by the absence of an operator. Since F is commutative, the ordinary rules for

matrix inversion apply to matrices over F (see Bourbaki (1989) II §8.7). In

particular, ðdet AÞ � IG ¼ A� � A; where (det A) and A* are the determinant and

adjoint of A over F, respectively. It is straightforward to verify that B� C ¼ BC

for any conformable matrices B and C over F, and also that

ðdet AÞ � IG ¼ IG 
 ðdet AÞ; so IG 
 ðdet AÞ ¼ A�A: Ordinary matrix premultipli-

cation of (3) by A* and then substitution of the last equality yields

ðIG 
 ðdet AÞÞvecU ¼ A�½ðIG 
 DD0ÞvecV þ ðIG 
 ðIT ÿ DD0ÞÞvecU �: In terms of

the individual columns of U that appear in (A2.50), this is

ðdet AÞU�i ¼ ½K1i � � �KGi�½ðIG 
 DD0ÞvecV þ ðIG 
 ðIT ÿ DD0ÞÞvecU �

¼
XG

j¼1

Kji½DD
0
V�j þ ðIT ÿ DD0ÞU�j� for i ¼ 1; . . . ;G; ð4Þ

where Kji is the ( j, i) cofactor of A over F. Equation (4) expresses U�i in terms of

only the white noise V (except for the presence of ðIT ÿ DD0ÞU�j; which only

involves the first observation U1�). Since the coefficient (det A) transforms U�i into

white noise, an estimate of this matrix using ~RR provides a transformation to be

used on lags of Y that results in no asymptotic correlation between the IVs and U�i.

This is exactly what is required by (A2.50).

Thus the proposal is to include ~PP0YÿL in H for lags L>G, where ~PP is (det A)

with ~RR replacing R. These IVs can be calculated by noting that each T� T element

of ðIG 
 IT Þ ÿ ð
~RR0 
 DÞ in F is either of the form IT ÿ

~RR‘‘D or of the form ÿ ~RR‘kD;
so from the definition of the determinant we may express the transformation matrix

as ~PP ¼ detððIG 
 IT Þ ÿ ð
~RR0 
 DÞÞ ¼

PG
‘¼0 ðÿ1Þ‘~rr‘D

‘; where ~rr‘ is the sum of all

‘th order principal minors of ~RR0 (and ~rr0 � 1 for notational convenience). Hence the

new IVs are

~PP0YÿL ¼
XG

‘¼0

ðÿ1Þ‘~rr‘ðD
0
Þ
‘
YÿL ¼

XG

‘¼0

ðÿ1Þ‘~rr‘Y‘ÿL: ð5Þ

These IVs satisfy (A20) for L>G.

Theorem

Assume (A3) and (A4). Then H ¼ ~PP0YÿL satisfies (A20) for L>G.

Proof

In the Appendix.
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The theorem shows that it is possible to incur no asymptotic cost to not

knowing the VAR error parameters while still using some information from the

lagged endogenous variables, thereby expanding the class of IVs used in estima-

tion and potentially improving both asymptotic and small-sample efficiency. Note

that the FGLS IV estimators considered in this section are possibly asymptotically

efficient relative to the estimators in Dhrymes and Taylor (1976) or Hatanaka

(1976), since the efficiency properties of their estimators rely on more stringent

distributional assumptions than those made herein.

Note finally that, while P0yÿL or P0ðYÿL 
 IGÞ have intuitive appeal as IVs

since Puh is white noise, these IVs do not in fact satisfy (A2.50). For (A2.50), D

must embody a transformation of lagged endogenous variables that results in zero

asymptotic correlation with each individual column of Uh. The P transformation

does not meet this requirement since P only transforms the entire vector

uh ¼ vecU 0h into white noise.

5. MONTE CARLO COMPARISONS

This section presents a set of Monte Carlo experiments that compare optimal

FGLS IV estimators based on various sets of IVs with each other and with

Hatanaka’s (1976) estimators in a dynamic simultaneous equation model with

VAR(1) errors. The DGP is Ericsson’s (1991) two-equation model with the error

structure modified to be VAR(1), as in Hendry and Harrison (1974). Hence

Yt1 ¼ Y11St1 þ Yt2B021
þ Ytÿ1;1B111

þ Ut1

Yt2 ¼ Y22St2 þY32St3 þY42St4 þ Yt1B012
þ Ut2

Ut� ¼ Utÿ1�Rþ Vt�;

where Vt� is generated as the bivariate mixed normal V 0t� ¼ ltat þ ð1ÿ ltÞbt:
4

Here, lt is binomial with EðltÞ ¼
1
2
; bt � N ð0;XÞ; at � Nð0; 31XÞ; lt, at, and bt

independent; and X ¼
S11

16
X12

X12
1
16

� �
:

Following Ericsson and Hendry and Harrison St� is generated by

st� ¼ stÿ1�L
0
þ Et�; where E0t� � NIDð0;CÞ; and the following parameter values

are fixed for all experiments: L¼ diag{0.8, 0.7, 0.4, 0.2}, Y22¼Y32¼Y42¼

Y11¼ 1, B012
¼ 0:3; and

C ¼

0:25 0:237 0 0

0:237 0:25 0 0

0 0 0:49 0

0 0 0 0:49

2664
3775:

4Normality of Vt� is avoided so that the data generating process is not favorable by design to

Hatanaka’s MLE estimators.

OPTIMAL IV ESTIMATION 493



We also use Ericsson’s values for B021
2 fÿ0:5; 0:3g;B111

2 fÿ0:4; 0:2; 0:7g;
and T 2 f20; 40; 80g: The values chosen for the error VAR parameters are

R 2
0:6 0:6
0:2 0:2

� �
;

0:6 0:2
0:2 0:6

� �
;

0:2 0:6
0:6 0:2

� �� �
; taken from Guilkey and Schmidt

(1973), and S11 2 f0:25; 1; 4g; taken from Hendry and Harrison (1974). For each

value of S11, X12 is set so that the correlation between Vt1 and Vt2 is 0.5, as in

Ericsson, and Vt� is designed so that S22¼ 1 for all experiments, also as in Ericsson.5

Thus, there are 54 experiments for each sample size T, and for each

experiment we use Ericsson’s specification of N¼ 80,000=T replications. Note

that Et� is independent of lt, at, and bt; all of the ‘‘primitives’’ of the model have

moments of all orders; and St�, Yt�, and Ut� are stationary VAR processes for all

parameter sets; so (A3) is clearly satisfied.

5.1. Pseudorandom Number Generation

Generating multivariate normal pseudorandom vectors with a general

covariance matrix involves several algorithms. All univariate normal random

number generators utilize a uniform generator and a transformation of the

simulated uniform random numbers to produce simulated standard normal

random numbers. Multivariate normal generators add an additional step by

transforming the simulated univariate normal random numbers into simulated

multivariate normal random vectors that possess the specified covariance matrix.

Hence, three algorithms are involved, and problems can arise at any step in the

process.

Noticeable improvements in methodology for all three of these steps have

appeared in the statistical computing literature. Unfortunately, these advances have

not all made their way into the econometric literature. We incorporated these

advances by using Fushimi’s (1990) generalized feedback shift register recurrence

formula to produce uniform pseudorandom numbers that perform well in a series of

tests for randomness, including a test suggested by Marsaglia (1985). Fushimi’s

algorithm was implemented with a seed value of 1589 by the IMSL V2.0 routine

DRNUN. This seed value was used successfully by Fushimi in testing the algorithm.

Univariate standard normals were obtained using the algorithm proposed by

Kinderman and Ramage (1976) as implemented by the IMSL V2.0 routine

DRNNOA. This algorithm has been shown to perform better than the traditional

one based on Box and Muller (1958), at least when used with traditional mixed

congruential uniform generators.

The method we used to transform the univariate standard normal pseudo-

random numbers into multivariate normal pseudorandom vectors with a particular

covariance structure was the triangular factorization method (Cholesky’s) as

implemented by the IMSL V2.0 routine DRNMVN. To obtain the Cholesky

5Interpretations of these parameter values are given by Ericsson and Guilkey and Schmidt.
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factorization of the covariances matrices, the IMSLV2.0 routine DCHFAC is used.

We suggest that future Monte Carlo experimenters consider using some of these

improvements in methodology where appropriate.

Following Ericsson, separate Et� vectors were generated for each observa-

tion of each replication in each experiment (i.e., the St. vectors are truly

exogenous). However, to reduce interexperiment variability (Hendry, 1984;

Davidson and Mackinnon, 1993, pp. 738–743) only enough at, bt, and lt were

generated for one experiment and then these were reused across experiments (for

variations in S11, the same underlying uniform deviates were reused to produce

at and bt with the specified covariances). The lt were produced from pseudo-

random uniform numbers by setting lt¼ 1 if the uniform variate is less than 1
2

and lt¼ 0 otherwise.

5.2. Data Generation and Estimators

With the simulated Vt� and Et� vectors in place, GAUSS v3.2.13 was used to

generate observations and calculate estimators. Following Ericsson, the above

VAR’s in Ut� and St�, and the structural model, were used to generate T þ 30

observations from initial values U0�, S0�, and Y0� set at the unconditional means of

zero. Then the first 30 observations were discarded in an effort to obtain

stationarity. This process uses four times as many initial values of Vt� when

T¼ 20 than when T¼ 80, since N varies from 4,000 to 1,000. For the T¼ 40 and

T¼ 80 experiments we skipped through the databank to maintain alignment of the

Vt� values, again reducing interexperiment variability.

For estimation purposes it is more convenient to stack the system by equation

rather than by observation, and we do so henceforth. The first step in estimation is

to specify instruments C for generating ~RR and ~SS: We follow Wallis (1967 and

1972) in using S and lags thereof as IVs in the first step. These IVs satisfy (A4) as

long as S is truly exogenous because (A2.30) implies (A4.1), (A2.50) implies

(A4.2), and (A20) is standard for exogenous S and lags thereof.6 This leads to

optimal first-step instruments C ¼ M ðM 0M Þ
ÿ1

M 0ðIG 
 X Þ that ignore the

nonspherical errors, from the IVs M ¼ IG 
 ½S Sÿ1 . . . SÿL�; where L is large

enough to identify the model. Since S alone identifies our Monte Carlo DGP, the

first nine estimators we consider use M ¼ I2 
 S as first-step IVs to obtain

instruments C for the structural matrix (including exclusion restrictions)

Y�2 Y�ÿ1;1

Y�1

� �
: These IVs satisfy (A4) because St. is independent of Ut� in

the DGP described above. The residuals from this IV estimation were used to

6As with (A2.30), (A4.1) must be restated to reflect the exclusion restrictions in a simultaneous

equation model.
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calculate ~RR; ~PP; ~SS; and ~PP: Since adding more IVs can only improve asymptotic

efficiency,7 the second nine estimators we consider are the same as the first nine

estimators in the second step but use M ¼ I2 
 ½S Sÿ1� in the first step. This

permits us to study the small-sample effects of estimating the error VAR

parameters from an asymptotically more precise estimate of B.

The nineteen estimators calculated for each replication are summarized in the

table below. In the second step, estimators 1–6 and 10–15 are FGLS IV estimators

with all exclusion restrictions imposed. Their IVs are listed in the table and all

satisfy (A20) by the Theorem because, as discussed above, the underlying St� and

Vt� processes satisfy (A3) and the first-step IVs satisfy (A4). Estimators 7–9 and

16–18 are the three estimators proposed by Hatanaka. Finally, to get a sense of the

small-sample loss associated with estimating R and S we calculated the GLS IV

estimator that uses the true values of R and S, and the same IVs as estimators 6 and

15 (except that the true value of P is used) since this is asymptotically the most

efficient set of IVs we consider.

Estimator Step 1 IVs (M ) Step 2 IVs (H)

1 I2 
 S S

2 I2 
 S S ~PP0Y�ÿ3;1

h i
3 I2 
 S S S�ÿ1;1

� �
4 I2 
 S S S�ÿ1;1

~PP0Y�ÿ3;1

h i
5 I2 
 S S Sÿ1

� �
6 I2 
 S S Sÿ1

~PP0Y�ÿ3;1

h i
7 I2 
 S Hatanaka method 1
8 I2 
 S Hatanaka method 2
9 I2 
 S Hatanaka method 3

10 I2 
 S Sÿ1

� �
S

11 I2 
 S Sÿ1

� �
S ~PP0Y�ÿ3;1

h i
12 I2 
 S Sÿ1

� �
S S�ÿ1;1

� �
13 I2 
 S Sÿ1

� �
S S�ÿ1;1

~PP0Y�ÿ3;1

h i
14 I2 
 S Sÿ1

� �
S Sÿ1

� �
15 I2 
 S Sÿ1

� �
S Sÿ1

~PP0Y�ÿ3:1

h i
16 I2 
 S Sÿ1

� �
Hatanaka method 1

17 I2 
 S Sÿ1

� �
Hatanaka method 2

18 I2 
 S Sÿ1

� �
Hatanaka method 3

19 True R and S S Sÿ1 P0Y�ÿ3;1

� �

7Asymptotic efficiency may be enhanced by including more IVs than are needed for identification,

although the small-sample consequences of this practice are not well-understood (Bowden and

Turkington, 1984, p. 38; Davidson and MacKinnon, 1993, p. 222; West and Wilcox, 1996).
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5.3. Results

Since these are IV estimators with non-normal errors, small sample moments

may not exist. Hence we compare them only by examining their asymptotic

covariances and their empirical distribution functions.

Turning first to the asymptotic covariances, larger sets of IVs can be expected

to yield a true variance reduction in our DGP since all lags are theoretically

relevant. To date, no optimal set of IVs has been derived for a model with both

lagged endogenous variables and VAR errors, and as noted in Section 4 under

these conditions the 3SLS IVs do not even yield a feasible estimator that is

asymptotically equivalent to its infeasible counterpart. Hence for the model

considered here we must directly calculate the asymptotic covariances and then

compare them.

There are 54 different parameter sets considered in our experiments and six

different sets of second-step IVs. The asymptotic covariance for IVs D is

E
1

T
F 0Oÿ1D

� �
E

1

T
D0Oÿ1D

� �� �ÿ1

E
1

T
D0Oÿ1F

� �" #ÿ1

for any T, where

F ¼
S�1 Y�2 Y�ÿ1;1

S�2 S�3 S�4 Y�1

� �
is the regressor matrix IG 
 X with columns dropped to reflect exclusion restric-

tions. The asymptotic covariance is calculated from the autocovariance function of

the ½Y S� process viewed as one 6-dimensional VAR(1), and differs for each

parameter and IV set, so there are far too many comparisons to present in detail. We

calculated and studied all 54� 6 versions, but indicate here only some broad trends.

There are large gains in asymptotic efficiency when the IV set is extended

beyond S, irrespective of whether the additional IVs are S�ÿ1;1; Sÿ1; or ~PP0Y�ÿ3;1:
These gains can reduce the variances by as much as several thousand percent

for some elements of B and some parameter sets. For example, when

R ¼
0:6 0:2
0:2 0:6

� �
; S11 ¼ 4;B021

¼ 0:3; and B111
¼ ÿ0:4 the asymptotic variance

of B̂B111
improves from 165.4 to 7.5 when the IV set expands from S to S Sÿ1

� �
:

The gains are generally largest on the coefficients of the endogenous and lagged

endogenous variables, and when the true value of B111
is ÿ0.4, but they vary

widely across parameters. Neither S�ÿ1;1 nor Sÿ1 dominates ~PP0Y�ÿ3;1 for all

parameter sets and all elements of B, nor vice-versa. Adding lagged values of S,

even just S.ÿ1,1, is better than adding ~PP0Y�ÿ3;1 alone for many parameter sets but

there are parameter sets for which adding ~PP0Y�ÿ3;1 yields smaller variances for all

elements of B than adding Sÿ1. Moreover, when S Sÿ1

� �
is extended further to

include ~PP0Y�ÿ3;1 there sometimes remain large additional efficiency gains, with

variances decreasing by several hundred percent in a few cases but usually
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improving by less than 5 percent. For the experiment mentioned above, adding
~PP0Y�ÿ3;1 to the IV set further reduces the asymptotic variance of B̂B111

from 7.5 to

1.8. This verifies that the optimality of the S Sÿ1

� �
IV set shown by Turkington

(1998) does not carry-over to dynamic structural models, and demonstrates that

our new moment conditions indeed contribute to asymptotic efficiency. Again, the

gains are usually largest on the coefficients of the endogenous and lagged

endogenous variables and when B111
¼ ÿ0:4: We also studied adding further

lags of S, up to Sÿ3, and found further but less dramatic efficiency gains. Finally,

we verified that the usual 3SLS IVs are definitely not asymptotically optimal

for this model (our expression for the asymptotic covariance in this case is only

valid when R and S are known), but do yield smaller variances than

½S Sÿ1
~PP0Y�ÿ3;1� for some parameter sets.

Turning now to the Monte Carlo results, due to the size of the study we focus

attention on the performance of the estimators for the endogenous and lagged

endogenous coefficients B021
and B111

: We begin by identifying some general

tendencies. First, confirming the asymptotic properties of the estimators under

study, as T increases from 20 to 40 and to 80 we observe less disperse and better

centered estimates for all parametric specifications. The effects of increased

sample size are strong enough to make the estimators increasingly similar in

performance and thus the distinctions that can be made are much more pronounced

when T¼ 20. Second, the larger first-step IV set, I2 
 S Sÿ1

� �
; improves both

dispersion and centrality of all estimators across all parametric specifications, but

the improvement is modest and is most noticeable for small sample sizes. This

improved performance is less acute and at times barely perceptible for the

estimation methods proposed by Hatanaka. Third, increases in S11 produce

much more disperse and worse centered estimates for all parametric specifications

and all estimators, and the noncentrality becomes severe for S11¼ 4. Fourth, the

specification of R does not materially affect estimator performance.

Among the estimators proposed by Hatanaka, methods 1 and 3 are superior

to method 2 overall in these experiments. Method 2 shows a marked tendency to

produce very disperse estimates. In estimating B021
; method 1 overestimates

slightly more often than method 3 when the true value is B021
¼ ÿ0:5: When

B021
¼ 0:3 method 3 is much better centered than method 1 while their dispersions

are comparable. Hence, these experiments suggest that Hatanaka’s method 3 is

preferable to his other two methods.

Among the FGLS IV estimators 1–6, estimator 6 displays the tightest

dispersion in estimating both B021
and B111

; suggesting that increasing the

number of IVs, including the new IVs derived here, brings benefits even in

small samples. Interestingly, estimators 2 and 3, which use the same number of IVs

and differ only in the use of a transformed lagged endogenous IV rather than a

lagged exogenous IV, have almost identical dispersions across experiments. This is

mildly different from the asymptotics, which showed modestly smaller variances

for estimator 2 for most, but not all, parameter sets. The marginal gains from

adding more IVs decrease with the number of IVs used. Thus, estimators 2 and 3
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are significantly less disperse than estimator 1 but estimator 6 is only slightly less

disperse than estimator 5.

The effect on central tendency of using more IVs is much less definitive.

Since all the FGLS IV estimators are asymptotically
ffiffiffiffi
T
p

-normal centered at the

true value, this is consistent with theory. All feasible estimators tend to over-

estimate both B021
and B111

; and there is neither clear improvement nor deteriora-

tion within any parameter set as the number of IVs increases.

For a fixed value of B021
; dispersion and central tendency of the FGLS IV

estimators of B021
are not sensitive to the value of B111

; but dispersion is usually

slightly smaller when B021
¼ 0:3: In contrast, recall that the asymptotic variances

are improved more substantially by adding IVs when B111
¼ ÿ0:4; so asympto-

tically the dispersion of at least some of the estimators is indeed sensitive to the

value of B111
:

Interestingly, there is considerable improvement in both the dispersion and

central tendency of all FGLS IV estimators of B111
when B021

increases to 0.3.

However, their relative performance is unaffected.

Given these general observations, it seems most useful to focus on Hatana-

ka’s method 3 (estimator 18), the FGLS IV estimator using a large IV set (estimator

15), and the infeasible estimator 19 for a closer comparison. Figures 1 and 2 show

cumulative frequencies for these three estimators of B021
and B111

; respectively, for

the following six representative experiments:

All Experiments:

T ¼ 20; R ¼
0:6 0:6

0:2 0:2

� �
;S11 ¼ 0:25;

Experiment B021
B111

1 ÿ0:5 ÿ0:4

2 ÿ0:5 0:2

3 ÿ0:5 0:7

4 0:3 ÿ0:4

5 0:3 0:2

6 0:3 0:7:

8>>>>>>>>>>><>>>>>>>>>>>:
Figure 1 shows that all three estimators usually overestimate B021

; but this

tendency is mild for the infeasible estimator 19, followed by Hatanaka’s estimator

18 and then the FGLS IV estimator 15. Likewise, the infeasible estimator is most

tightly distributed, followed by Hatanaka’s estimator and then the FGLS IV

estimator. Hence ignorance of R and S is indeed costly is small samples, and

Hatanaka’s method 3 performed best among the feasible estimators of B021
in these

experiments.

Figure 2 shows that these conclusions do not apply to estimation of B111
: The

infeasible estimator tends to underestimate when B111
¼ ÿ0:5; and this tendency

becomes more pronounced as B021
increases, so that the feasible estimators are

actually better centered than the infeasible estimator in experiments 2 and 3. The

infeasible estimator continues to display smaller dispersion in most experiments,

but surprisingly does not dominate as it does in estimating B021
because in
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experiment 6 of Figure 2 both feasible estimators are more tightly distributed than

the infeasible estimator. Also unlike Figure 1, Hatanaka’s estimator does not

emerge as the clear choice between the feasible estimators, as the FGLS IV

estimator has less dispersion and comparable or better centering in experiments 2,

3, 5, and 6.

The qualitative and comparison conclusions derived from the analysis of

Figures 1 and 2 are essentially unaltered for T¼ 40 and T¼ 80. However, two

observations are in order. First, as T grows the estimators become better centered

and less disperse to the point that drawing distinctions at T¼ 80 becomes rather

difficult for some parameters. Second, the positive effects of increased sample size

are much more pronounced on the feasible estimators than on the infeasible

Figure 1. Cumulative Frequency for B021:
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estimator 19. A result to be expected, as the increased sample size benefits the

estimation of the nuisance, as well as the parameters of interest.8

In summary, for the sample sizes and parameter configurations considered in

our Monte Carlo study, neither the best FGLS IV nor the best Hatanaka method

emerges as a clear best choice. In fact, these estimators perform rather similarly

and become more similar as the sample size increases. The experiments show that

introducing additional IVs when constructing FGLS IV estimators, such as those

proposed in Section 4 above, is beneficial both asymptotically and in small

samples. More IVs in the first step is beneficial as well. The benefits of additional

Figure 2. Cumulative Frequency for B111
:

8Figures comparable to 1 and 2 for T¼ 40 and T¼ 80 are available from the authors on request.
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IVs diminish, however, as the number of IVs expands. Finally, it is somewhat

disturbing that there is a marked tendency of all estimators to overestimate B021
:

Centering is better in the estimation of B111
; but there is still a tendency for the

feasible estimators to overestimate.

APPENDIX

Proof of Theorem

(A2.10) Let P ¼ (det A) (i.e., with the true R rather than ~RR). The counterpart

to (5) based on P is

P0YÿL ¼
XG

‘¼0

ðÿ1Þ‘r‘Y‘ÿL: ðP1Þ

Suppose momentarily that H is given by (P1) rather than the feasible version of

(P1) based on ~PP: Note that

ðH 0 
 Sÿ1
ÿ H 0ÿ1 
 RSÿ1

ÞvecV 0 ¼

PT
t¼1 ðHt1S

ÿ1
ÿ Htÿ1;1RSÿ1

ÞðVt�Þ
0

..

.PT
t¼1 ðHtK̂K

Sÿ1
ÿ H

tÿ1;K̂KRSÿ1
ÞðVt�Þ

0

264
375:
ðP2Þ

Hence, using the Cramér-Wold Device, we need only apply a CLT to

1ffiffiffiffi
T
p l0ðH 0 
 Sÿ1

ÿ H 0ÿ1 
 RSÿ1
ÞvecV 0¼

1ffiffiffiffi
T
p

XT

t¼1

�
XK̂K

i¼1

l0iðHtiS
ÿ1
ÿ Htÿ1;iRS

ÿ1
ÞðVt�Þ

0

" #
; ðP3Þ

where l0 ¼ ðl01 . . . l0
K̂K
Þ is an arbitrary nonstochastic vector composed of (G� 1)

subvectors li. Sufficient conditions for the m-dependent CLT to apply to (P3) for

the special case of m¼ 0 are (Schmidt, 1976; p. 258):

ðCLT1Þ E
PT

t¼1 l
0
iðHtiS

ÿ1
ÿ Htÿ1;iRS

ÿ1
ÞðVt�Þ

h i
¼ 0:

ðCLT2Þ E
PT

t¼1 l
0
iðHtiS

ÿ1
ÿ Htÿ1;iRS

ÿ1
ÞðVt�Þ

��� ���3� �
is bounded across t.

ðCLT3Þ s2 � limN!1
1
N

PN
n¼1 Atþn exists and is independent of t, where

At ¼ E
XK̂K

i¼1

l0iðHtiS
ÿ1
ÿ Htÿ1;iRS

ÿ1
ÞðVt�Þ

0

 !2
24 35:

(CLT1) is immediate since the time index on row t of each lag of Y in (P1) is less

than t (since L>G), making the lag of Y independent of Vt�: (CLT2) follows from

(A3) and (A2.40). (CLT3) holds because
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At ¼
XK̂K

i¼1

XK̂K

j¼1

l0i Uijð0ÞðS
ÿ1
þ RSÿ1R0Þ ÿ Uijð1ÞðRS

ÿ1
þ Sÿ1R0Þ

� �
lj

for every t, where UijðhÞ ¼ E½HtiHtÿh;j� is independent of t by covariance

stationarity of Yt�; and we have again made use of independence between Ht� or

Htÿ1;� and Vt� for the lags that are present in At: Thus (A2.10) holds when the IVs

are based on P rather than ~PP:
Now we show that (P3) converges in probability to the analogous expression

based on ~PP; so that using ~PP does not affect the asymptotic distribution. From

(P3), the difference between using ~PP and P in (A2.10) is

1ffiffiffiffi
T
p

XT

t¼1

XG

i¼1

l0i½ð ~PP�t ÿP�tÞ
0
Y�ÿL;iS

ÿ1
ÿ ð ~PP�;tÿ1 ÿP�;tÿ1Þ

0
Y�ÿL;iRS

ÿ1
�ðVt�Þ

0:

ðP4Þ

From (5),

½ ~PP�;tÿh ÿP�;tÿh�
0Y�ÿL;i ¼

XG

‘¼1

ðÿ1Þ‘ð~rr‘ ÿ r‘ÞððD
‘
Þ�;tÿhÞ

0
Y�ÿL;i

¼
XG

‘¼1

ðÿ1Þ‘ð~rr‘ ÿ r‘ÞYtÿLÿhþ‘;i: ðP5Þ

Since t ÿ Lÿ hþ ‘ < t when L > G; ‘ � G; and h � 0; by (A3) we can apply

Chebyshev’s Inequality to show

1ffiffiffiffi
T
p

XT

t¼1

YtÿLþ‘;iðl
0
iS
ÿ1
ðVt�Þ

0
Þ ¼ Opð1Þ;

and
1ffiffiffiffi
T
p

XT

t¼1

YtÿLÿ1þ‘;iðl
0
iRS
ÿ1
ðVt�Þ

0
Þ ¼ Opð1Þ: ðP6Þ

Substituting (P5) and (P6) into (P4) yieldsXG

i¼1

XG

‘¼1

ðÿ1Þ‘ð~rr‘ ÿ r‘Þ½Opð1Þ ÿ Opð1Þ�: ðP40Þ

Since ~rr‘ ÿ!
p

r‘ by Lemma 2, we have ðP4Þ ÿ!
p

0:
(A2.20) From (5), Hh ¼

PG
‘¼0 ðÿ1Þ‘~rr‘Y‘ÿLþh: So

1

T
H 0Hh ¼

1

T

XG

‘¼0

XG

i¼0

ðÿ1Þ‘þ1~rr‘~rriY
0
‘ÿLYiÿLþh: ðP7Þ

Since ~rr‘ ÿ!
p

r‘ by Lemma 2 and the fourth moments of the Yt� process exist by

(A3.4), (P7) converges toXG

‘¼0

XG

i¼0

ðÿ1Þ‘þ1
r‘riE Y 0‘ÿLYiÿLþh

ÿ �
for h ¼ ÿ1; 0; 1:

(A2.30) The convergence argument is identical to (A2.20).
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(A2.40) From (5),

Hth ¼
XG

‘¼0

ðÿ1Þ‘~rr‘Ytþ‘ÿL;h:

Since ðÿ1Þ‘~rr‘ is independent of t and is Op(1) by Lemma 2, and the fourth

moments of Ytþ‘ÿL;h have the specified property by (A3.4), Hth takes the form

required by (A2.40).

(A2.50) From (5),

H 0Uh ¼
XG

‘¼1

ðÿ1Þ‘ð~rr‘ ÿ r‘ÞY
0
‘ÿLUh þ Y 0ÿLPUh: ðP8Þ

By Lemma 2, the sum is Op(1) if Y 0‘ÿLUh ¼ OpðT Þ (note the importance of ~RR
converging faster than op(1)). A routine application of Chebyshev’s Inequality

establishes this because the moments involved are bounded by (A3.4). From (4),

Kji ¼ ðÿ1Þ jþi
XGÿ1

‘¼0

ðÿ1Þ‘r‘jiD
‘; ðP9Þ

where r‘ji is the sum of all ‘th order principal minors of the submatrix of R0

obtained by deleting row j and column i (and r0ji � 1 for notational convenience).

Substituting (P9) into (4) yields

Y 0ÿLPU�þh;i ¼ Y 0ÿLðdet AÞU�þh;i ¼
XG

j¼1

ðÿ1Þ jþ1
XGÿ1

‘¼0

ðÿ1Þ‘r‘jiY
0
ÿLD

‘
½DD0V�þh;j

þ ðIT ÿ DD0ÞU�þh;j�: ðP10Þ

Since the only nonzero element of ðIT ÿ DD0ÞU�þh;j is U1þh;j; this term is clearly

Op(T1/2). For the remaining term, note that

1ffiffiffiffi
T
p Y 0ÿLD

‘DD0V�þh;j ¼
1ffiffiffiffi
T
p Y 0‘ÿLV�þh;j

except for the first row of V. As shown above, this satisfies the conditions for the m-

dependent CLT (and thus is Op(1)) since the index on row t of each lag of Y is less

than t þ h when ‘ � G ÿ 1; L > G; and h � 1: u
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Ceará, Brazil is greatfully acknowledged.

REFERENCES

Anderson, T.W. The Statistical Analysis of Time Series; Wiley: New York, 1971.

Bourbaki, N. Elements of Mathematics, Algebra I, Chapters 1–3; Vol. 1, Springer-Verlag:

Berlin, 1989.

504 MANDY AND MARTINS-FILHO



Bowden, R.J.; Turkington, D.A. Instrumental Variables; Cambridge University Press:

Cambridge, 1984.

Box, G.E.P.; Muller, M.E. A Note on Generation of Normal Deviates. Annals of

Mathematical Statistics 1958, 28, 610–611.

Davidson, R.; Mackinnon, J.G. Estimation and Inference in Econometrics; Oxford

University Press: Oxford, 1993.

Dhrymes, P.J.; Taylor, J.B. On an Efficient Two-Step Estimator for Dynamic Simultaneous

Equations Models with Autoregressive Errors. International Economic Review 1976,

17, 362–376.

Ericsson, N.R. Monte Carlo Methodology and the Finite Sample Properties of Instru-

mental Variables Statistics for Testing Nested and Non-Nested Hypotheses. Econ-

ometrica 1991, 59, 1249–1277.

Fuller, W.A. Introduction to Statistical Time Series; Wiley: New York, 1976.

Fushimi, M. Random Number Generation with the Recursion Xt ¼ Xtÿ3p 
 Xtÿ3q: Journal

of Computational and Applied Mathematics 1990, 31, 105–118.

Guilkey, D.K.; Schmidt, P. Estimation of Seemingly Unrelated Regressions with Vector

Autoregressive Errors. Journal of the American Statistical Association 1973, 68,

642–647.

Hatanaka, M. Several Efficient Two-Step Estimators for the Dynamic Simultaneous

Equations Model with Autoregressive Disturbances. Journal of Econometrics

1976, 4, 189–204.

Hendry, D.F. Monte Carlo Experimentation in Econometrics. In Handbook of Econo-

metrics, Chapter 16; Grilliches, Z., Intrilligator, M.D., Ed.; Vol. 2, North-Holland,

Amsterdam, 1984.

Hendry, D.F. and R. W. Harrison, Monte Carlo Methodology and the Small Sample

Behavior of Ordinary and Two-Stage Least Squares, Journal of Econometrics 2

(1974), 151–174.

Kinderman, A.; Ramage, J. Computer Generation of Normal Random Variables. Journal

of the American Statistical Association 1976, 71, 893–896.

Mandy, D.M.; Martins-Filho, C. A Unified Approach to Asymptotic Equivalence of Aitken

and Feasible Aitken Instrumental Variables Estimators. International Economic

Review 1994, 35, 957–979.

Mandy, D.M., Martins-Filho, C. A Note on A Unified Approach to Asymptotic Equiva-

lence of Aitken and Feasible Aitken Instrumental Variables Estimators. International

Economic Review 1997, 38, 479.

Marsaglia, G. A Current View of Random Number Generators. In Computer Science and

Statistics, Proceedings of the 16th Symposium on the Interface; Billard, L. Ed.;

North-Holland, Amsterdam, 1985.

Schmidt, P. Econometrics; Marcel Dekker: New York, 1976.

Turkington, D.A. Efficient Estimation in the Linear Simultaneous Equations Model with

Vector Autoregressive Disturbances. Journal of Econometrics 1998, 85, 51–74.

Wallis, K.F. The Efficiency of the Two-Step Estimator. Econometrica 1972, 40, 769–770.

Wallis, K.F. Lagged Dependent Variables and Serially Correlated Errors: A Reappraisal of

Three-Pass Least Squares. Review of Economics and Statistics 1967, 49, 555–567.

West, K.; Wilcox, D.W. A Comparison of Alternative Instrumental Variables Estimators of

a Dynamic Linear Model. Journal of the American Statistical Association 1996, 14,

281–293.

White, H. Asymptotic Theory for Econometrician; Academic Press: Orlando, Fl, 1984.

OPTIMAL IV ESTIMATION 505




