
Journal of Econometrics 58 (1993) 315-346. North-Holland 

Seemingly unrelated regressions under 
additive heteroscedasticity 

Theory and share equation applications 

Carlos Martins-Filho 

Received January 1991. final version received April 1992 

We derive consistent. asymptotically efficient, and asymptotically normal estimators for SUR 
systems that have additive heteroscedastic contemporaneous correlation. Both our estimator for the 
location vector and the parameters of the covariance matrix possess these properties. The procedure 
is superior to other methods because be use GLS to estimate the parameters of the covariance 
matrix. Our method also permits the use of cross-equation parameter restrictions, We discuss how 
this type of heteroscedasticity arises naturally in share equation systems and random coefficient 
models. and how these models can be uniquely estimated with our two-step estimation technique. 

1. Introduction 

Zellner’s (1962) Seemingly Unrelated Regressions (SUR) model assumes that 
the contemporaneous correlation across equations is homoscedastic. Just as in 
single-equation models, homoscedasticity in an SUR model is sometimes an 
untenable assumption. For example. Chavas and Segerson (1987) show that 
consistent stochastic specifications of share equation systems often result in 
a heteroscedastic contemporaneous correlation matrix lJsing their results, we 
argue below that heteroscedasticity is unavoidable in an efficient share equation 
estimation. Thus, a specification error is committed whenever share equation 
systems are estimated with traditional SUR, resulting in inefficient estimates and 
invalid inference procedures. Random coefficients models also suffer from 
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heteroscedasticity. This is the main obstacle to be overcome in estimating the 
Hildreth-Houck (1968) model and its successors, one of which is the 
Singh-Ullah (1974) SUR model with random coefficients. Random effects panel 
data models are essentially random coefficients models with a particular 
structure, and we show below how some of these models have covariance 
structures that fit the heteroscedastic SUR framework. 

Our primary purpose is to derive an efficient SUR estimator that accommo- 
dates the ‘additive’ heteroscedastic structure. This structure arises naturally in 
share equation systems and random coefficients models. We show that our 
estimator for this prevalent heteroscedastic structure is asymptotically efficient, 
consistent, and asymptotically normal, so the usual inference procedures apply. 
Moreover, we propose a SUR generalization of Amemiya’s (1977) efficient 
estimator for the parameters of the covariance matrix in a single-equation 
additive heteroscedastic model. We show that Amemiya’s consistency and 
asymptotic normality persist in our SUR version of this estimator, thereby 
providing a basis for hypothesis tests to detect heteroscedasticity in SUR models. 

Aside from Singh and Ullah, several other authors discuss heteroscedasticity 
in SUR models. Kmenta and Gilbert (1968) do not propose an estimator that 
adjusts for heteroscedasticity, but they find via Monte Carlo experiment that 
Zellner’s SUR estimator in the presence of contemporaneous correlation re- 
mains more efficient in small samples than Ordinary Least Squares (OLS) and 
maximum likelihood estimators even when there is heteroscedasticity. Duncan 
(1983) considers estimation of a heteroscedastic SUR model when the hetero- 
scedasticity is nonparametric. He finds that substantial efficiency gains may 
occur in share equation estimation if heteroscedasticity is present and accom- 
modated by the estimation technique. Low (1983) derives the mean square error 
matrix of Zellner’s SUR estimator under some specialized assumptions, includ- 
ing heteroscedasticity of two regimes. Numerical evaluation of this matrix in 
some simple SUR models verifies the conclusion of Kmenta and Gilbert that 
Zellner’s estimator outperforms OLS when there is contemporaneous correla- 
tion despite the presence of heteroscedasticity. However, Low also finds that 
single-equation Estimated Generalized Least Squares (EGLS) that accommod- 
ates the heteroscedasticity may be superior to Zellner’s estimator even though 
single-equation EGLS ignores the contemporaneous correlation. Whether 
single-equation EGLS is superior to Zellner’s estimator depends on the severity 
of the contemporaneous correlation vis-a-vis the heteroscedasticity. Finally, 
Srivastava and Giles (1987) summarize the earlier work of Low (1982) in 
a heteroscedastic SUR model with a fixed number of regimes. Results are similar 
to those of Low (1983). 

These results suggest the need for SUR estimators that explicitly adjust for 
heteroscedasticity, but only Duncan (1983) and Singh and Ullah (1974) propose 
such estimators. Duncan’s approach is nonparametric. Thus, if theory provides 
insight into the correct functional form better estimates should be obtained by 
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using the appropriate parametric model [see Judge et al. (1985, p. 455)]. 
Hence, we begin with a motivational example that shows how Chavas and 
Segerson’s (1987) results can lead to share equation systems that fit the additive 
heteroscedastic form. General application of Chavas and Segerson’s results 
is further discussed after our estimators are derived, and we also discuss 
how our two-step procedure may be used to obtain estimates that are 
invariant to the equation deleted in a share equation system. This suggests 
that our estimator is preferable to Duncan’s when working with a share 
equation system or random coefficients model. 

There are also advantages of our estimator over the Singh-Ullah estimation 
procedure. First, the Singh-Ullah random coefficients model is a special 
case of our more general additive heteroscedastic model, so our model applies 
to a wider variety of situations. Second, our covariance matrix estimators 
are more efficient asymptotically because we follow Amemiya in using General- 
ized Least Squares (GLS) to estimate the parameters of the covariance matrix. 
This means that we estimate the entire set of covariance matrix parameters 
as one system in the SUR model, thereby accommodating the heteroscedasticity 
discussed by Amemiya as well as the contemporaneous correlation present 
in the covariance equations. This approach also permits the use of cross-equation 
restrictions when estimating the covariance equations, a situation which arises in 
share equation systems. Of course, efficient estimation of the covariance matrix 
parameters cannot improve the asymptotic efficiency of an already efficient EGLS 
estimator of the location vectors. However, efficient covariance matrix estimators 
may yield better small sample properties for the EGLS location vectors estimators 
[see Judge et al. (1985, pp. 435437) and Amemiya (1977)]. Moreover, efficient 
covariance matrix estimators are of independent interest since, if their asymptotic 
distributions are known, they can be used to conduct hypothesis tests designed to 
detect heteroscedasticity. 

In contrast, Singh and Ullah follow Hildreth and Houck in using OLS to 
estimate each covariance equation separately. Since the covariance equations do 
not satisfy the OLS assumptions and there is contemporaneous correlation, this 
method is inefficient relative to our approach and does not accommodate cross- 
equation parameter restrictions. Moreover, Crockett (1985) argues that 
Singh and Ullah’s proof of asymptotic normality is flawed. Since the Singh- 
Ullah model is a special case of the model considered here, our results verify 
their conclusions even if their arguments are in error. Our results are obtained 
using the general method suggested by Crockett to prove asymptotic equiva- 
lence of GLS and EGLS estimators in heteroscedastic models. This method 
relies on a theorem originally due to Carroll and Ruppert (1982) and is useful in 
the present context for proving asymptotic normality of both our EGLS es- 
timator of the location vectors and our EGLS estimator for the parameters of 
the covariance matrix. 
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2. A motivational example 

Contemporaneous additive heteroscedasticity in SUR models may be a 
reasonable assumption in a number of situations, but it arises naturally in the 
econometric modeling of producer behavior. Accordingly, this section presents 
a simple cost function estimation to motivate the need for an SLJR estimator 
that adjusts for additive heteroscedasticity. The example is designed to demon- 
strate that even with simple stochastic assumptions the equations to be esti- 
mated form an SUR system with heteroscedasticity of the additive form when 
a consistent stochastic specification is explicitly incorporated. 

Assume for simplicity that firm t produces a single output using two inputs. 
Further, follow Chavas and Segerson (1987) in assuming that, at least from the 
viewpoint of the econometrician, each firm’s cost function consists of additively 
separable deterministic and stochastic components and that the stochastic 
component is linear in the random variables. Hence, if the deterministic part of 
the production technology for firm t is represented by a translog cost function, 
we have 

YIO = Bo + PIP*1 + P2Pr2 + Prz, + tCPl,P1: + PZlPf2 + 281*P,1Przl  

+ BIzhZ, + P2zPrZZ1 + 4ozzz: + fw(P , ,v Pr23 z,h 

where y,, is logarithmic cost, prl and p12 are the logarithmic input prices, z, is 
logarithmic output, and B;H(p,, , p12, z,) is Chavas and Segerson’s stochastic 
component. Here, 5, is a random vector containing all of the random variables 
in the model, while H is a vector-valued function of conformable dimension. 

The share equations follow from the cost function in the usual manner by 
applying Shephard’s Lemma, but since the shares are related to the cost function 
in this manner the ‘error’ terms in the share equations must derive from the only 
stochastic term present in the cost function, O;H(ptl, pr2, z,), through logarith- 
mic differentiation with respect to the input prices. Hence, H must depend on p1 

and p2 as denoted. Chavas and Segerson prove this formally, and call the 
resulting error structure for the whole system a consistent stochastic specifica- 
tion. Thus, the share equations are given by 

Yt2(P,,, Prz,?) = P2 + Bl2P,l f /322Pr2 + P2rZr + 0; 
~H(P,,, ~r23 z,) 

ap 1 
12 1 

where J’li is the share of input i in total cost and aH/ap,i is the vector of 
derivatives of components of H with respect to pli. Each observation (firm) of 
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the system can be written y, = X,fi + a,, where 

Yl = (Y,l Yt2 Yto)‘, 

i 
0 1 0 0 Pr1 0 Pr2 z, 0 0 

x, = 0 0 1 0 0 pt2 Pri 0 z, 0 

1 

, 

1 Pt1 P12 zt +P:l &Pi22 Pt1Pr2 Pt1Zr Pt2Zt 3z: 

P = (PO Bl B2 Pz PI1 lj22 812 ljlz 822 PZJ’, 

u, = O;g 
fl 

To examine whether the covariance matrix of this system takes the SUR form 
with additive heteroscedasticity, assumptions are required on the stochastic 
component OiH. It is customary in these models to assume that there is one 
random variable for each equation and that these random variables are contem- 
poraneously correlated but independent across observations. Thus, assume 8, is 
three-dimensional with 0, - IID(0, { aij}i:j= l). If the share equations are to be 
stochastic (i.e., aH/apti # 0), then the simplest available assumptions on H are 
linearity in the prices and independence from output. An H function with these 
properties that also satisfies the cost exhaustion condition discussed in section 6 
below is H = (yo, yl(ptI - pt2), y2(prl - pt2))‘, and this yields an error vector 
for the three equations of firm t given by 

4 = (62Yl + 63Y2, -42Y1 -63Y2, 

8tl~o + (et21f1 + k2)(prl - pt2))f, 

where Bti is the ith component of 8,. With this specification E(u,u:) = 0 for t # z 
and the contemporaneous correlation matrix for observation t is 

Ml - El 

E(u,u;) = Q, = - a1 a1 

x2 + %(P,l - Pa) - r2 - cQ(P,l - Pt2) 

a2 + Ul(P,l - Pr2) 

- =2 - Ul(P,l - Pr2) 

a3 + 2Uz(P*1 - PO) + al(Ptl - P12)2 

where ~1 = ~22~: + 2023~1~2 + 033~:~ ~2 = 012~0~~ + ~13~0~2, and ~13 = 
ally;. Thus, even with this simple consistent stochastic specification the 
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contemporaneous correlation matrix is heteroscedastic because it depends on 
the input prices, which vary across observations. This occurs whenever the cost 
function is included in a consistent stochastic specification, because H must 
depend on the prices if the shares are to be stochastic. Hence, an input share 
system including the cost function is unavoidably heteroscedastic. While these 
systems are sometimes estimated excluding the cost function, this practice is 
inefficient because of the heteroscedasticity and the contemporaneous correla- 
tion between the share equations and the cost function. Therefore, efficient 
estimation requires a heteroscedastic SUR estimation even in the simplest case. 
Moreover, for simple specifications of H the heteroscedasticity assumes the 
‘additive’ form since each element of the covariance matrix can be expressed as 
a linear function of an unknown parameter vector like the vector 
c1 = (IX~, CI~, ~1~)’ for the present example. 

The restrictions needed to ensure a well-behaved cost function may imply 
relationships between elements of CI as well as the usual restrictions among the 
elements of B, in addition to the restrictions arising due to the occurrence of 
a particular parameter in more than one element of 0,. These relationships 
generally include cross-equation parameter restrictions, so joint estimation of 
/? and joint estimation of c1 are required both because of parameter restrictions 
and because of the heteroscedasticity, even if there are no efficiency gains to 
traditional SUR (for example, if the matrix of independent variables is the same 
in each equation). These restrictions also imply that Q, is singular, a familiar 
problem that is discussed in section 6 below. 

3. The SUR model under additive heteroscedasticity 

Arrange T observations on m equations as 

y, = X,/3 + u,, t = 1, . . . , T, 

where yt is an observable m-dimensional dependent vector, 

- Xi1 0’ . . . 0’ 

0’ ... 0 x,=. x;z . . ., . . . . 
& .:. 0; x], 

(1) 

xii is a K,dimensional vector of nonstochastic explanatory variables for equa- 
tion i in observation t and the zero vectors are of conformable dimensions, fi is 
a K = Cy= 1 Ki-dimensional vector of unknown nonstochastic parameters con- 
taining m subvectors of dimensions Ki, and the u,‘s are independent m-dimen- 
sional unobservable random vectors. Zellner’s stochastic specification is 
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E(u,) = 0, E(u,u:) = 0 for t # ‘5, and E(u,u;) a fixed but unknown matrix for 
t= 1,2, . . . . We adopt the first two assumptions but depart from Zellner by 
assuming 

E(u,uj) = Sz, = (3) 

so that the contemporaneous correlation matrix is permitted to vary across 
observations. We also assume that the vectors ur possess a multivariate normal 
distribution. As Jobson and Fuller (1980) discuss, our estimators can be con- 
structed and possess the same asymptotic properties even if the error vectors u, 
are not normal, but some known relationship between the first, second, third, 
and fourth moments is needed for estimation purposes. 

Letting y’ = [y; . . . y;], X’ = [Xi . . . Xk], u’ = [u’, . . . ~$1, and 52 = block 
diag{SZ, . . . a,}, we may write the entire system as 

y=xp+u, E(u) = 0, E(uu’) = 52. (4) 

The BLUE estimator for /3 is the usual GLS estimator 

Am = (X’Klx)-‘X’K’y, 

b_ut in most cases R is unknown, and so we must replace it with an estimator 
52 to obtain the EGLS estimator 

LXS = (X’blx)-‘X’&‘y. 

It is well-known that no efficiency gain results from joint estimation in the 
traditional SUR context if x,~ = x,~ = . . . = xc,,, for all t. However, the joint 
estimator BGLs for model (4) is superior to individual equation estimation even if 
the independent variables are the same in each equation, since GLS corrects for 
the heteroscedastic covariance matrix. 

The heteroscedasticity assumes the ‘additive’ functional form C:j = aijzij for 
t = 1,2, . . . and&j= 1, . . . . m, where ~ij is a Gij-dimensional vector of unknown 
nonstochastic parameters and zfj is a conformable vector of nonstochastic 
explanatory variables. Since Q, is symmetric, there are only m(m + I)/2 distinct 
a:j elements, implying that uij = C(ji unless different explanatory variables are 
involved in oij than in 051. However, if z:j # Zfi, then restrictions that involve the 
explanatory variables would generally be required on the estimation of clij and 
C(ji to assure symmetry of fir, In all applications that we are aware of this 
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situation does not arise, SO henceforth we assume that zij = z~i and Clij = Ccji, 
implying that there are only m(m + 1)/2 distinct @ii vectors. Hence, we may 
define the G = Cr= 1 Cjm=iGij-dimensional vector of covariance matrix param- 
eters by 

Denoting an arbitrary estimator for a-by &, we can estimate a:j by ~:j = ~:jz:j 
and use these estimators to construct 52, and 52. Under well-known regularity 
conditions [see Schmidt (1976, chs. 1,2)], satisfied by our assumption A.2 
below, the GLS estimator has asymptotic distribution 

0, lim (T-‘X’K’X)-’ . 

T-CC 

Since the GLS estimator is efficient, the asymptotic efficiency, consistency, and 
asymptotic normality of the EGLS estimator based on any oi can be_established 
simultaneously by showing that bEGLS converges in pcobability to &s. Given 
the regularity conditions for asymptotjc normality of j&s, sufficient conditions 
for the convergence in probability of PEGLs and PGLs are [see Judge et al. (1985, 
p. 176), Schmidt (1976, p. 71), or Theil (1971, p. 399)]: 

plim T-‘X’ti-‘X = lim T-‘X’s)-‘X ? (5) 
T-30 T-r, 

plim T-“*X’(&’ - Q-‘)u = 0. 
T-02 

(6) 

Thus, our main problem is to find an estimator B such that eqs. (5) and (6) hold, 
in which case there is no cost, asymptotically, to using EGLS instead of GLS. 
Among the class of estimators oi that satisfy (5) and (6), a secondary problem is to 
find an efficient estimator since, as Amemiya and Judge observe, this should lead 
to more efficient small sample estimates for j3. Moreover, as mentioned at the 
outset, efficient estimators for t( are of independent interest since, if their 
asymptotic distributions are known, they can be used to conduct hypothesis 
tests designed to detect heteroscedasticity. 

4. The estimation procedure 

Estimate c( by first obtaining the OLS residuals ti = u - X(X’X)- ’ X’u. This 
can be accomplished by performing OLS on eq. (4) or by rearranging the model 
by equations and performing OLS on each equation separately. However, 
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estimation of eq. (4) permits the use of cross-equation parameter restrictions if 
appropriate, as is the case with share equation systems. The residual subvector 
for each observation is 

ii, = U, - X,(X’X)_ * X’u, t = 1, . . . , T. (7) 

Next, denote the ith component of U, by U,i and analogously for ti,, and form 
the m(m + 1)/2_dimensional vectors of cross-products 

(8) 

Denoting 

z, = 

4’1 0’ 0’ . . . 0’ 0’ 1 

0 &I 0’ . . . 0’ 0’ 

0’ 0’ &2 0’ . . . 0 

. . . . . > 
. . . 

(j, (j, .:. 0’ . 
z;,_1 

0 .I 

0’ 0’ . . . 0’ 0’ z;, _ 

(9) 

we have or = Z,cr so that 

i?, = .&Cc + V, + E,. (10) 

Letting E’ = L-6; . . . a>], e’ = [e; . . . e;], 0’ = [o; . c;], v = e - g, 
E = b - e, and Z’ = [Z; . . Z;], we have cr = Zcc and may therefore write the 
entire system as 

P=Za+v+E. (11) 

Note that E(v) = 0 and E( vu’) = S = block diag( Sr , . . , S,}, where 

S, = E((e, - o,)(e, - a,)‘) = E(e,e:) - ~~0;. 
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The multivariate normal distribution yields 

SO 

Eq. (11) provides a basis for estimating c(. Unfortunately, the ‘error’ term u + E 
has neither zero mean nor scalar identity covariance, so OLS is biased and 
inefficient. Amemiya overcomes these problems in the single-equation context, 
at least asymptotically, by applying EGLS to eq. (1 l), ignoring the effects of E. 
This method corrects for the heteroscedasticity of v. He shows that E does not 
affect the asymptotic distribution of the estimator, so it can be ignored if 
asymptotic properties are the only concern. 

Singh and Ullah organize a variant of (11) by equation in the random 
coefficients SUR context, rather than by observation, and then apply OLS to 
each equation individually. This method disregards the heteroscedasticity of v. 
Moreover, in the SUR context eq. (11) constitutes a second heteroscedastic SUR 
system and should therefore be estimated jointly rather than by individual 
equations since joint EGLS corrects for both heteroscedasticity and contempo- 
raneous correlation, provided that the effects of E remain negligible as T + co. 
Joint estimation also permits the introduction of cross-equation restrictions of 
the type mentioned in section 2. 

The GLS estimator for eq. (11) obtained by ignoring E is 

i& = (Z’S_‘Z)_‘Z’S_‘C, 

while an EGLS estimator is obtained 

6&s = (Z’S-‘Z)-‘Z’~-‘R 

by substituting an estimator s^ for S: 
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To obtain ,Y?, we follow Amemiya in using the OLS estimator applied to eq. (1 l), 

L&s = (Z’Z)_ l Z’2, 

which leads to preliminary estimates of the O:j’s and hence ,?. Both oiEGLs and 
oi,,, can incorporate cross-equation restrictions, if appropriate. We show in the 
next section that the effects of E remain negligible in the SUR context, so oiGLs is 
consistent and asymptotically normal. Then we show that 8,,,, converges in 
probability to oicLs, so EGLS in the SUR context retains the desirable properties 
discussed by Amemiya for the single-equation case. Finally, we show that 
eqs. (5) and (6) hold when /?roLs is based on &oLS. 

One potential problem warrants mention before proceeding to the asymptotic 
properties. Monte Carlo studies using single-equation models of additive het- 
eroscedasticity show that these models may produce estimated covariance 
matrices that are not positive definite [see, for example, Raj (1975)], in which 
case a substantial degradation of the EGLS estimates for /I occurs. Unfortu- 
nately, there is no analytic solution to this problem within a linear estimation 
framework. Applied researchers should check s^ and d to assure that they are 
positive definite. If a problem is encountered, the first solution should be to 
obtain additional data since the asymptotic results assure that the estimates 
approach the true positive definite matrices as the sample size tends to infinity. 
The Monte Carlo results verify that the problem rarely occurs with large 
samples. If additional data is unobtainable, it may be possible to solve the 
problem analytically with nonlinear constraints or a nonlinear reparameteri- 
zation of the model. However, in this case, an approach that accommodates 
nonlinear covariance equations would be needed. Magnus (1978) discusses 
a maximum likelihood approach and Judge et al. (1985, pp. 435-437, 808) 
provide a summary of the methods available to assure positive definiteness. 

5. Properties of the estimators 

Denote the kth element of X,i by xfik and the kth element of zfj by Z~j~ for 
i,j = 1, . . . ,m and f = 1,2, . . Our results rely on the following standard regu- 
larity assumptions: 

A.l. There exist upper bounds B, < cc and B, < CE such that (X,ik) < B, and 
lZ:jkl < B, for t = 1,2, . . . , i,j= 1 , . . . , m, and k = 1, . . . ) Ki (or Gij, as 
appropriate). 

A.2. T-‘X’X, T-‘X’QX, T-‘X’R-‘X, T-‘Z’Z, T-‘Z’SZ, and 
T- ‘Z’S_‘Z all converge to finite positive definite matrices as T + 00. 
These limits are denoted by Qx, Qax, Qsz- I x, etc. 
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A.3. There a lower a0 > such that Sz, 2 and Det 2 so 
1,2, . . . 

normality of and oioLs at once these conditions 
the following of Amemiya’s (all proofs con- 

tained the appendix). 

Theorem I. Let oi = (A’Z)-‘A’6 be an estimator for tl, where A is 
a (Tm(m + 1)/2 x G) matrix with elements bounded by B, as T+ MI. Assume 
further that T- ’ A’Z converges to a jinite positive dejnite matrix CD as T -+ co. 
Then 

T”2(oi - a)d.N , 

provided this covariance limit exists. 

Letting A = Z in Theorem 1 shows that 

while letting A = S- ‘Z shows that 

T”2(0iGLS - rl)dN(O, Q,--‘I,). (13) 

Eq. (13) also provides the limiting distribution of &o‘s if oiEGLs converges in 
probability to oioLs. Given assumption A.2, sufficient conditions for this conver- 
gence, analogous to eqs. (5) and (6), are 

plim T-‘Z’S^-‘Z = QSmIZ, 
T-CC 

(14) 

plim T- 1/2z~(s^-l 
- s- ‘)(v + E) = 0. (15) 

T-02 

These conditions, as well as eqs. (5) and (6), involve the limits of the inverses of 
covarjance matrices. The elements of these matrices can be expressed as the ratio 
of a cofactor to the determinant, but we need to consider these elements 
evaluated at various possible values for CC. Thus, let H,(y) be the matrix that 
results from substituting y in place of tl in either Sz, or S,, depending upon 
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whether we are examining &rs or OiEoLs. Furthermore, let A,(y) = DetH,(y) 
and Crj(y) be the cofactor of the (i,j) element of H,(y). The following funda- 
mental properties of these functions are used to establish eqs. (5), (6), (14), and 
(15). 

Lemma I. A, and Ci, are ungormly (in t) continuous in y. 

Corollary. For every CE [0, co) there exists Tc (independent oft) such that 

T> Tc and IIy(I 5 C*lA,(T-“2y + !z)I > c0/2. 

Lemma 2. For every CE [0, co) there exists a bound B,,, > 0 such that 

I/Y// I c * 
1 A,( T- 1:2 Y + a)l 2 B,,, 

ICf,j(T-“2y + a)1 I I& 

for every t,T= 1,2, . . and i,j = 1, . . . ,m [or m(m + 1)/2, as appropriate]. 

Eqs. (5) and (14) are an immediate consequence of the following theorem. 

Theorem 2. Let A be a (Tr x q) matrix with elements bounded by B, as T + 00, 
and H,(y) be (r x r) matrices satisfying Lemmas 1 and 2 and the Corollary. 
Moreover. assume 

lim T-‘A’[block diag{H,(x), . . , Hr(x)}]-1 A = @, 
T-30 

a jnite positive definite matrix. If & is a consistent estimator for u, then 

plim T-‘A’[block diag{H,(i), . , H,(c?)}]-‘A = @. 
T+X 

Verify eq. (5) when 6 is based on j, EGLs by assuming for the moment that &rGLs 
is consistent. Set r = m, A = X, B, = B,, @ = &-IX, and let H,(y) be the 
matrix that results from substituting y in place of c( in Q,, so that H,(U) = Q, and 
H,(&,,,) = b,. Then the conclusion of Theorem 2 yields eq. (5) once we show 
that dEoLs is consistent (below). Eq. (14) is verified by noting that doLs is 
consistent by (12). Hence, set r = m(m + 1)/2, A = Z, B, = B,, @ = QSmIZ, and 
let H,(y) be the matrix that r_esults from substituting ;’ in place of x in S,, so that 
H,(r) = S, and H,( GoLs) = S,. Then Theorem 2 confirms eq. (14). 

Eqs. (6) and (15) present more formidable problems. Schmidt (1976, 
pp. 68--70) shows that consistent estimators for the error covariance matrix in 
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heteroscedastic models need not produce EGLS estimators that have the same 
asymptotic distribution as the GLS estimator. This difficulty is sometimes 
overlooked, as Crockett (1985) notes that several proposed ‘proofs’ of the 
asymptotic equivalence of EGLS and GLS estimators in random coefficients 
models are flawed. However, Crockett states a special case of a theorem 
originally due to Carroll and Ruppert (1982), and then uses it to establish 
asymptotic equivalence of EGLS and GLS in the Hildreth-Houck model. We 
show below that this approach can be used in the present context to establish 
eqs. (6) and (15). As Schmidt’s example suggests, consistency of 4 is not sufficient 
for an application of the CarrolllRuppert Theorem, but if oi satisfies the stronger 
condition 4 - CI = O,( T-‘12), then the Carroll-Ruppert Theorem can be ap- 
plied to establish eqs. (6) and (15). It is still possible that consistency of oi is 
sufficient to establish (6) and (15) using some other approach, because Schmidt’s 
example does not fit the assumption that the heteroscedasticity takes the 
additive form. Hence, in the present context Schmidt’s example is only sugges- 
tive that a condition stronger than consistency is needed, but we know of no 
correct proof that establishes (6) or (15) using only consistency of oi. Currently, 
the Carroll-Ruppert Theorem and its stronger requirement appear to be the 
only correct approach. Alternatively, we know of no counter-example that 
demonstrates insufficiency of consistency in an additive heteroscedastic model. 
We first restate Crockett’s version of the Carroll-Ruppert Theorem [for a proof, 
see Crockett (1983)], and then apply it to the current problem. 

Theorem 3. (Carroll-Ruppert, Crockett). For T = 1,2, . . . and t = 1, . . , T, 

and for every y E.%‘, let &(y) be a (q x r) matrix. Suppose: 

1. &(O) = Ofor every t, T. 

2. For every CE(O, a) there exists T,, Bc < co such that 

ll~~ll, II1;1ll 5 C and T2 T,* 

III&(ro) - &41/1)11/ I T-“211~o - YI II&, 

where lllAtTlll = maxi,jIaijl. 

Let yT~WG be random vectors for T = 1,2, . . . such that 

3. YT = O,(l). 

Finally, let w, E.!Z” be independent random vectors for t = 1,2, . . . such that 

4. E(w,) = 0 for every t. 
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5. sup,E( II wll*) < a. 
Then, plim,,, TP “* CT= I A,T(*YI~)w, = 0. 

Theorem 4. Let A be a (Tr x q) matrix with elements bounded by B, as T-t co, 
and let H,(y) be (r x r) matrices satisfying Lemmas I and 2 and the Corollary. 
Let wt be independent r-dimensional random vectors with E(w,) = 0 and 
E(~~w,~~*)~B,<coforeveryt.Zfoi-cc=0,(T-”*),then 

plim T- I/* A’ ([block diag{H,(&), . . . , HT(&)}]-’ 
T-m 

- [block diag{H,(a), . . . , HT(u)}]-‘)[~;, . . . , w;]’ = 0. 

Verify eq. (6) when 6 is based on &oLS by assuming for the moment that 
oi sGLs - c( = O,( T- ‘I*). Let w, = U, and all other definitions be as in the verifica- 
tion of eq. (5). Since E( II u, 112) I m jl x II G”* B,, the conclusion of Theorem 4 
yields eq. (6) once we show that &,s - CI = O,( T- I/‘) (below). By eqs. (12) and 
(13) eqs. (5) and (6) also hold when 6 is based on &oLs or &oLs. Eq. (15) is verified 
by noting that go,, - 2 = O,( T- ‘I*) by (12). Hence, let w, = v, and all other 
definitions be as in the verification of eq. (14). Since E( II III/) I m(m + 1) 
x 11 c( I12GBt, Theorem 4 yields 

plimZ’(S-’ - S-‘)v = 0. 
T-z 

However, the E term does not satisfy the assumptions of the Carroll-Ruppert 
Theorem (and hence Theorem 4). Following Amemiya, we show that the effect of 
E vanishes as T -+ a with the following theorem. 

Theorem 5. plim,,, T-1’2Z’(S^-1 - S-l)& = 0. 

Since oiECLs satisfies eqs. (14) and (15), we have 

T1’*(GECLs - c&N(O, Qs_‘lZ), 

which verifies that GEGLS - x = O,( T- l/*), 

6. Applications 

The model and estimation techniques described above may be applied in 
several settings. First, it should be noted that whenever heteroscedasticity is 
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suspected one option for the researcher is to assume a parametric structure and 
then estimate the assumed structure. Our model provides one candidate struc- 
ture. Of course, if this structure is assumed incorrectly, then efficiency loss may 
occur, and it is frequently the case that a researcher has little theoretical 
guidance on whether a particular parametric structure is appropriate. However, 
Monte Carlo evidence for single-equation heteroscedastic models suggests that 
assuming the wrong parametric structure may not entail large efficiency losses 
[see Surekha and Griffiths (1984)]. Hence, our method provides at least one 
parametric solution, that may be useful in a variety of settings, to the problem of 
heteroscedasticity in an SUR model. 

General Share Equation Estimation. Another application for our model and 
estimation techniques is share equation systems, particularly models of pro- 
ducer behavior such as those discussed by Christensen and Greene (1976) and 
Christensen et al. (1975). Often, classical SUR is used to estimate these models, 
and parameter restrictions are used to assure that the dictates of economic 
theory are satisfied. However, the stochastic error terms may be incorrectly 
assumed to satisfy Zellner’s specification, as discussed in section 2. 

Chavas and Segerson’s (1987) general approach begins with an objective 
function F(X,, fl, r, f3,), where X, is a matrix of observable parameters to both 
the researcher and the economic agent, p and tl are vectors of parameters that 
are unobservable by the researcher, and 0, is a J-dimensional vector of unob- 
servable zero-mean shift parameters that capture the behavior not explained by 
X,, fi, and 2. The matrix X, usually consists of a price vector pr and output or 
income. 

Optimization of F leads to WI - 1 share equations, which form a system with 
F that can be used to estimate /II and x. These models are usually assumed to be 
linear in the errors H,, so Chavas and Segerson assume that the share equations 
take the separable form 

where yl! is the share of the ith demand in total outlay for the tth observation. 
When the economic agent is a cost-minimizing firm, Chavas and Segerson show 
that ( 16) and homogeneity of F (the cost function) in pr require the logarithmic 
~‘021 function to take the form 

where (li( pr, /L 2) = aQ(p,, /1, %)/a lnp,i, H is a vector-valued function with com- 
ponents Hj for j = 1, . . . , J, hij(p,, jl, z) = aHj(p,, j?, ~)/a lnp,, is the .jth com- 
ponent of hi, and @, depends on t because it may depend on X, exclusive of p,. 
Hcncc, Q and yi are the deterministic parts of the logarithmic objective function 
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and share equations, respectively, tl;H and e;hi are the stochastic parts, and Qr is 
a constant of integration that was ignored in section 2 for simplicity. 

There are two traditional simplifying assumptions in this cost minimization 
model. First, the deterministic part of the system is usually written as a conven- 
tional linear function of p, denoted X,/?. This is essentially an assumption that 
c41 ... qm_lQ + @,I’ can be written as X,p, and holds for the translog form 
considered in section 2 as well as most other familiar function forms. Second, the 
stochastic part of the logarithmic objective function, 0; H, is normally assumed 
to be independent of 0, although Jobson and Fuller (1980) consider models 
in which the location vector is not separable from the covariance matrix 
parameters. With these assumptions we have an SUR system with separable 
location and covariance matrix parameters. The error vector for observation t 
including all share equations and the cost function is u, = Cut1 . +,I’ 
= [e;h, e:h,_,e;H]: and is heteroscedastic in general even if 

8, - lID(0, cr21J), because in this case E(u,u;) is given by 

n, = 02 

h’lh, ... h;h,_, h;H 

h:,:, h, ..: h;_ ,‘h,_ 1 h;:,H 

H’hl ... H’h,ml H’H 

where hi and H depend on p,. To obtain flEGLS, o2 can be ignored and we need 
only obtain estimates of the elements of this matrix. These elements take the 
additive form discussed above whenever the (i,j) element can be written in the 
form CkGzl Zi ,k . / i jk(  Pt), wherei:jk are arbitrary functions of the price vector pt. 

The usual cost exhaustion, homogeneity, symmetry, nonnegativity, and con- 
cavity restrictions may apply to the estimation of p. Chavas and Segerson 
discuss these restrictions and note that the cost exhaustion constraint on the 
stochastic parts of the share equations (CyZml’ hi = 0) results in the familiar 
singularity problem of applying GLS or EGLS to share equation systems. 
Barnett (1976) and others have argued that dropping a share equation in 
a finite-step Aitken estimation is an unacceptable solution to the singularity 
problem because the resulting estimates depend on which equation is omitted. 
Hence, most researchers have adopted iterative techniques that converge to 
maximum likelihood estimates under certain conditions (see Barnett). 

Since our methods for estimating r~ and fi are both two-step methods, 
Barnett’s criticism warrants some comment in the present context. It is MN 
necessary for finite-step estimates like ours to vary with the equation deleted, 
and since unique two-step estimates are obtainable. two-step procedures may be 
preferable to iterative procedures both because two-step methods are easier 
to apply (no convergence problems) and because Kmenta and Gilbert (I 968, 
p. I 196) find evidence that iterating may be inefficient in small samples. Chavas 
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and Segerson present one method for obtaining unique two-step estimates. This 
method entails deleting a share equation and then performing a first-stage GLS 
estimation with an assumed covariance matrix that is constructed to yield 
estimates invariant to the equation deleted. The resulting unique residuals are 
used to obtain a unique estimate of the covariance matrix, which is singular like 
the true covariance matrix if the constraints are imposed on the first-stage 
estimation. Then, Theil’s (197 1, p. 28 1) result on invariance of GLS estimates to 
omission of linearly dependent observations shows that a second-stage EGLS 
estimation without the omitted equation, but including any appropriate con- 
straints, yields unique two-step estimates. Schmidt’s example (see section 5 
above) shows that the properties of this estimator depend on the exact method 
used to estimate the covariance matrix from the residuals, which in turn depends 
on the form assumed by the covariance matrix. 

The key observation of Chavas and Segerson in defense of finite-step proce- 
dures is that any dependence on which equation is omitted arises because the 
estimated covariance matrix may depend on the deleted equation, not because 
the second-stage estimation depends on the deleted equation. If the constraints 
are imposed on the first-stage estimation so that any estimated covariance 
matrix is singular, as it should be, then Theil’s result shows that dropping any 
share equation in a second-stage EGLS estimation yields unique estimates for 
the location vector, for the given estimate of the covariance matrix. Hence, we 
need only obtain a unique estimate of the covariance matrix in order to obtain 
unique two-step estimates in share equation systems. But there is no difficulty in 
obtaining a unique singular estimate of the covariance matrix without the 
constructed first-stage covariance matrix of Chavas and Segerson, and we can 
also utilize all of the data in the process. Simply perform joint OLS on the 
complete set of equations with the cost exhaustion and any other appropriate 
constraints imposed. This yields unique linearly dependent residuals. Then, an 
assumption concerning the form of the covariance matrix, like the additive 
structure considered above, yields a unique singular estimate of the true singular 
covariance matrix. Our results show that if the additive structure is appropriate 
the estimator obtained from this algorithm has desirable asymptotic properties. 
Note, however, that our estimator for CI in a share equation system involves all of 
the share equations, so the singularity problem arises again in the estimation of 
a(. Thus, the algorithm for obtaining unique two-step estimates must be applied 
twice, once in the estimation of c( and once in the estimation of /3. Other 
covariance structures may only require the algorithm in the estimation of 8. In 
fact, this algorithm was used by Caves et al. (1980) with a traditional SUR 
covariance matrix. 

Existing computer programs may not implement this technique in a straight- 
forward manner. For example, the SAP’ SYSLIN procedure with the SUR 

1 SAS is a registered trademark of the SAS Institute Inc., Cary, NC. 
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option does not impose cross-equation restrictions in the first-stage OLS es- 
timation. Hence, the resulting estimated covariance matrix is nonsingular and 
gives constrained EGLS estimates of the location vector even if all share 
equations are included, but these are not the estimates of interest since the 
estimated covariance matrix does not satisfy the dictates of theory. SYSLIN also 
does not provide the flexibility to estimate more equations in the first stage than 
in the second stage, as required by the two-step algorithm for solving the 
singularity problem. However, the equations can be stacked as in (4) and (1 l), 
and single-equation procedures along with a matrix language can then be used 
to implement the procedure. 

Random Coefficients and Panel Data Models. Some models that assume a par- 
ticular covariance structure across regimes or economic units are special cases of 
the model presented above, although our estimation technique usually differs 
from the methods suggested by the original authors. Letting t denote one 
dimension of the data for t = 1, . . . , T and i denote the other dimension for 
i=l , ... 3 m, a general structure for such models is 

Yti = 1 PfikX*ik + k&i, 
k=l 

(17) 

where blik = ~ik + E,~~. The stochastic terms satisfy 

(i) E(~,i) = E(srik) = 0 for all t, i, k, 

(ii) 

(iii) 

E(PLtiP,j) = 
Oij (independent of t) if t = T, 
o otherwise, 

E(srikarj,) = 
SijkK (independent of t) if t = r, 
0 otherwise, 

(iv) E(ptis,jk) = 0 for all t, Z, i, j, k. 

This can be written in the form of eqs. (l)-(4) of section 3 through the 
fOllOWing definitions. First, let U,i = ,Uri + 22’ 1 Xfik&fik SO that 

aij + f 2 XrikXtjKdijkK if t = 5, 

E(uliazj) = 
k=l K=l 

otherwise. 

Then, let$g Y, = (~~1, . . , ytm)', -G = (xril, . . . , XriK,)‘, B = (El 1, . , DIK,, . . , 
Bml, . . ,PmK,)‘, and u, = (utl, , ut,,,) shows that this model is a special 
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case of the additive heteroscedastic SUR model since in the present case 
E(u,u:) = 0 for t # 7 and R, is given by 

The elements of Q, take the additive form with 

6. tj(K,+l)K,, ... 3 6ijK,1, ... 1 dijK,K,)‘, 

since fiijk~ = 8ijKk by symmetry, where we have assumed Ki 2 Kj for simplicity. 
This model reduces to the SUR random coefficients model of Singh and Ullah 

(1974) when 6ijkL = 0 for k # k’ and the data is interpreted as comprising 
T observation on 111 equations. Note that if x,;, = 1 as in Singh and Ullah, then 
Oij +  ii,jl 1 must be estimated as one intercept parameter. As mentioned in the 
introduction, our method for estimating a is more efficient asymptotically than 
the method suggested by Singh and Ullah. 

Eqs. (17) and (18) reduce to the random effects panel data model of Swamy 
and Metha (1975, 1977) under the following conditions: 

(4 

(b) 

(cl 

t and i are interpreted as the two dimensions of the panel, with T -+ cc and 
rn fixed for all asymptotic results. 

Ki = K for all i. so that the number of independent variables is the same for 
every observation in the panel. 

/Jik = flk for all i and li, so that the mean parameter vector is the same for 
every observation in the panel. 

(d) gij = 0 for all i.,i, so that {r,, does not enter the model. 

(e) d;jkh = 2.kh. for all i #j, so that the covariances of i:,ik and cIjK do not vary 
across i and j when i fj. 
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Note that (b) and (c) imply that the p vector contains only K distinct elements, so 
fl must be constrained appropriately when estimating. This constraint can be 
implemented by simply writing X, as X, = (xtI, . . . , xrm)’ rather than the speci- 
fication given in (2). Also, parameter restrictions are required in the estimation of 
CI in this model since aij is the same vector for all i, j provided i #j. Since our 
method for estimating c1 is asymptotically efficient, it is at least as efficient in 
large samples as the method suggested by Swamy and Metha. 

7. Summary 

We derived consistent, asymptotically efficient, and asymptotically normal 
estimators for SUR systems that have additive heteroscedastic contem- 
poraneous correlation. Both our estimator for the location vector and the 
parameters of the covariance matrix possess these properties. The procedure 
presented above is superior to the method proposed by Singh and Ullah (1974), 
since we followed Amemiya (1977) in using GLS to estimate the parameters of 
the covariance matrix. Our method also permits the use of cross-equation 
parameter restrictions. We discuss how this type of heteroscedasticity arises 
naturally in share equation systems and random coefficient models, and how 
these models can be uniquely estimated with our two-step estimation technique. 

Appendix 

Proof of Theorem 1: Substituting eq. (11) into oi yields 

T”2($ - c() = (T-‘/t/Z)-‘T- l’Z/t’( u + E). 

Since lim T_m(T-‘A’Z)-l = F’, we need only show that 

T-‘12A’(u + e)--f+N(O, lim T_m T- ’ A’SA). Partition A into T submatrices of 
dimension (m(m + 1)/2x G), A’ = [A; . . . A;], and note that A’(u + E) = 
If’= 1 A:(u, + E,). M oreover E(A;o,) = 0 and V(A;u,) = A:S,A, for t = 1,2, . . . , 
and a, is independent of u, for t # t. Normality assures that the higher moments 
of u, exist, so [see Judge et al. (1985, p. 189)] 

0, lim T-’ i ,4:&A, 0, lim T-‘A’S,4 . 

T-C72 t=1 T-r, 

Thus, it only remains to show that plim,,, T- ‘12A’& = 0. Let ain denote the 
G-dimensional nth row of A, and E,, the nth element of E,. Then 

T m(m+ 1)/Z 

T- li2‘4’& = T- 1’2 ,Tl ,,z, l&Et,. 
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Since the inner sum is of finite length, we need only show that 

plim T-l” i a,, 5. = 0 for arbitrary n. 
T-03 1=1 

To each n there corresponds an i and j indexing the E, vector, so from eqs. (7) and 
(8) we may write 

A A 

E tn = Uti &j - hi  Utj 

= (U,i - Xii(X’X)-‘X’U)(U,j - Z;j(X’X)-‘X’U) - U,iU,j 

= -(UtiX,j + U*j.?,i)‘(X’X)-‘X’U 

+ U’X(X’X)-‘~,iX;j(X’X)-‘X’U, 

for some i  and j, where .~~i is the ith row of X, including the zeros. Thus, it is 
sufficient to show 

7 

plim T-‘I2 1 ,,( ti rj a U 2 + U,i~,i)‘(X’X)-lX’U = 0, 64.1) 
T-r%2 t=1 

plim Tell2 i U,,U’X(X’X)-‘.?,iZ;j(X’X)-‘X’U = 0. 
T-m r=1 

64.2) 

For (A.l) we have 

i 
T-3’4 t$I 4 ri tj u .i  +  U ,j X ,i)’ (T-‘X’X)-‘(T-3’4X’~), 1 

where the hth column of the (G x K) term in brackets is 

T-3’4 ,iI atn(Utic,jh + U,j Ttih). 

This random vector has zero mean and covariance 

t=1 

where the absolute value of one element of this covariance matrix is bounded by 

~z~2T-3’2~~, (la:il + 12ofjl + I~~jI) I T-“2B~B~4)l~IIB,G-1’2, (I x 
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which approaches zero as T+ co. Hence, the hth column has zero probability 
limit and the entire (G x K) matrix vanishes in probability. Moreover, 
(T- ‘X’X)-’ converges by assumption and (T- 3’4Xr~) has zero mean and 
covariance T- I”( T- ’ X’SZX), which approaches zero since T- ‘X’QX con- 
verges. Thus, 

plim(T-‘X’X)-‘(T-3’4X’u) = 0, 
T-Cl2 

which establishes (A.l). For (A.2), we have 

(A.3) 

[ 

T 

T-l c a,,( T-3’4 U’X(T-‘X’X)-‘~,i~;j (T-‘X’X)-‘(T-3’4X’~), 
1=1 1 

where by (A.3) we need only show that the (G x K) matrix in brackets is 
bounded in probability. The hth column is 

T 

T-l c a,,( T-3’4 U’X)(T-‘X’X)-‘~riX,jh 
t=1 

[ 

T 

= T-’ C U,,Xtjh~li (T-‘X’X)-‘(T-3’4X’~). 
f=l 1 

Once again applying (A.3), we need only show that the (G x K) matrix in 
brackets is bounded. Each element is clearly bounded by B,Bz, which estab- 
lishes (A.2). n 

Proof of Lemma I: We shall prove the result for d, when H,(y) is the matrix 
that results from substituting y in place of c( in Sz,. Since C:j is a determinant that 
takes the same form as d,, the proofs are identical. When H,(y) results from 
substituting y in place of a in S,, the arguments are the same except that there are 
more terms involved. Fix y E WC and suppose that I( F - y II < 6. We may write 

Id,(Y) - dt(Y)l = Ix AI CYij*zij, “’ Y6jmz6j, - Y;jtzlj, .” Yinj,ztnj,ll~ 

where the sum ranges over all permutations (j,, . . . , j,). Let d”= -’ YZj2zij* ... 
~~j,z~j, and define d analogously. Then 

Id,(?) - At( s CI(?lj, - yljl)‘Z:jld + ?;jlZij,(d”- d)l 

IC[IlY;j, -Y~~,I/B,G~~~IIY(/~-~G(~-~)'*B~-~ 

+ IIY;j, IIBzG:$fIJ- dl] 

I n,SB~G”‘~* IIYII~-~ + Cllyll + 6]B,G”Z~l~- dl, 
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where n,,, is the number of terms in the sum. Clearly the first term is arbitrarily 
small through an appropriate choice of 6. The second term is a constant 
(independent oft) multiplied by a sum that is analogous to what we began with, 
but with one fewer term in each product. Hence, repeating the argument m times 
gives the result. n 

Proof of Corollary: By Lemma 1, there exists 6 > 0 (independent oft) such 
that 

))2--“21/)) < 6*1d,(T-“2y + CX) - d,(U)/ <&o/2. 

But this implies A,(M) - ~,,/2 < d,( T-“2y + LX) I ld,( T-‘12y + ~)l. Since 
Id,(&)/ 2 ,so for every t, 

/I T-“*yll < 6=-~~/2 < (A,(T-“*y f cc)\. 

Now, let y * E 9’ be any vector satisfying 1) y * 11 = C. Clearly there exists Tc such 
that T > T, = 11 T- ‘I2 y* (1 < 6. But for any vector satisfying \I y II I C we have 
/I T- 1’2y I( I Ij T- “‘y* (1, so 

T> Tcand IIyII <C*(IT-1’2ylj <~~E~/~<JA~(T-“~~+cI)I. n 

ProofofLemma 2: As in Lemma 1, we shall prove the result for d,(y) when 
H,(y) is obtained by substituting y for c1 in Q,. From Lemma 1, 

lA,( T- 1’2y + cc)1 

< Cl( T-“*yljl + Cllj,)‘Z\j,l ... I(T-“2Ymj, + %j,,,)‘Z&mI 

(C(T-“211ylj,/I + I(Nlj,I\)B,G::-f ‘.’ (T-“211~mj,II + II~mj,,,II)~zG~S’_ 

< C(C + /IaII)“B:G”‘2 

= n,(C -t (l,l()mB:G”‘2. W 

Proof of Theorem 2: First we use the uniform continuity of A, and Ct to 
show that for every 6, E > 0 there exists T* such that 

P(lA,(k)l I co/41 3t) < 6, 64.4) 

T> T*+ P(Jd,(&) - A,(a)1 r 6, 3t) < E, (A.3 

P(JC:j(oi) - Ct(a)l 2 6,3t) <E for all i,j. (A4 
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By Lemma 1 there exists &, > 0 such that lloi - clll < a0 aId, - d,(cr)l 
< so/4 for every t. Since Idt(a)l - ao/4 I Id,(&)\ + Id,(a) - d,(a)\ - &e/4, we 

have I( oi - c1 )I < &, +. Id,(cc)l - .5,/4 < I d,(i)l. Set C = 0 in the Corollary and 
note that the conclusion is then independent of T. Thus, Id,(a)1 > so/2 and we 
have II & - a 11 < & a so/4 < Idr(O;)l for every t. By consistency of oi there exists 
T* such that T > T* * P( I/ oi - a 11 2 6,) < E. Thus, 

T> T*aP(Jd,(&)l <~,,/4,3t) 

= P(ld,(&)l s ~,,/4, 3, and IIoi - ~111 L 6,) 

+ P(ld,(oi)l I +,/4,X and /Ii - ~11 2 60) 

< P( II t? - ‘2 II 2 60) 

+ P( IdJO;) I ~,/4, 3, and II oi - ~(1 < 6,) 

-=L E. 

which establishes (A.4). Now choose 6, such that )Ioi - CI I) < do * 
Id,(&) - d,(cr)J < 6 for every t. Then (AS) follows since 

T > T* *P(ld,(&) - A,(U)! 2 6,3r) 

+ p(ld,(&) - d,(ct)l 2 6, 3, and II& - Cal < 80) 

< E. 

Finally, since (AS) relies only upon uniform continuity and consistency, (A.6) 
holds by the same arguments. Now, as in Theorem 1 partition A into T matrices 
of dimension (r x q), A’ = [A; ... A;], and note that 

T-‘A’[block diag{H,(y), . . . ,H,(y)}]-‘A = T-’ i A;H,(y)-‘A,. 
t=1 

The (1, k) element of H,(y)-’ is CQy)/d,(y). Hence, the (i, j) element of the 
above matrix is 

f=l I=1 k=l 
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and we need only show that the probability limit of this expression when y = oi is 
the (i, j) element of @, denoted by 4ij. Fix 6, E > 0, let c1 = &&$/16B,2r2, and use 
(A.4), (AS), (A.6), and the definition of @ to select T* such that 

P( [At( I E0/4,3L) < d/3, 
T> T*== 

P((d,(oi) - d,(u)1 2 max{&X E114B~,0}, 3t) < a/3, 

P(JC:,(oi) - C:,(cc)l 2 max{&X &1/4B~,0}, It) < d/3. 

Then, 

T> T**P T-’ 2 i i a,ilC:,(&)&kj/d,(k) - $ij 
t=l 1=1 k=l 

+ T-’ i i i %ilC;l(a)atkj/dt(u) - 4ij > 6 

f=l 1=1 k=l I > 

T- ‘B,2 i i i Ici,(~)/~t(~) 
t=l I=1 k=l 

T-‘B;128/e; i i i IC;d&t(a) 
t=l I=1 k=l 

- Gt(aM(~)l > 42 
> 

IP max Idt(a)C:l(&) - d,(&)Cfda)( > .sl + 6/3. 
lSf9T > 

lSf,kSr 
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For arbitrary I, k, and t, we have 

T > T* =s P(jd,(a)C:,(s) - d,(&)C:,(a)l > Em) 

I P( IC:l(i) II d,(a) - UG)l 

* 
+ IU8ll C;,(a) - %(@)I > 81) 

I P( IC:,(k) - WE) II d,(x) - 4(&N 

+ IGd~) II 4(a) - 4~)l 

+ 144 - 4(a)ll G,(~) - Gd(~)l 

+ I4(@)llGI(3 - Gd~)l > &I) 

5 WlG(4) - G,(~)II 4(3 - 4(~)l 

+ B,,ol4(8 - 4(a)l + hf.Ol w3 - Gcda)l ’ 61) 

Proof of Theorem 4: As in Theorem 2, partition A into T submatrices of 
dimension (r x q), A’ = [A; . . . A;]. Then 

T-“*A’([block diag{H,(oi), . . . , If,(&))]-’ 

- block diag(H,(a), . . . ,HT(r))]-‘)[w’, . . . w;] 

= T-‘I2 i Ai(H,(3i)-’ - H,(a)-‘)w,. 
1=1 

Make the following definitions in Theorem 3: 

(1) A,,(y) = A;(H,(T-“2y + a)-’ - H,(a)-‘). 

(2) For every C < co, Tc satisfies the Corollary and Bc = 4rB,GB,,c 
x(2BH,= + 1)/&i, where BP.C is to be defined below. 

(3) yT = T- 1’2(& - a). 
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Clearly A,,(O) = 0, yT = O,(l), and w, satisfies hypothesis 4 and 5 of 
Theorem 3. Hence, we need only verify the Lipschitz Condition, hypothesis 2. 
Fix C and (1 y. (I, [I y1 11 < C, and note that 

IIIMYO) - &(YI)lll 5 ~&IIIKr’% + a) - Ht(T-1’2YI + cf)lll 

= rB,(C:j(T-li2y0 + Cr)/d~(T-1’2y0 + c() 

- C:j(T-“2Y1 + CX)/A,(T-“‘~, + ~r)l, 

for some i, j between 1 and r. Thus, for T > Tc we have 

III&(ro) - &(YI)lll 

< (~~B,/E$)IA,(T-“‘JJ, + a)C:j(T-“*y, + a) 

- d,( T-“2y, + a)C~j( T-“‘y, + a)1 

~(4rB,/~~)(Id,(T-“~y, + a)C:j(T-“‘yo + a) 

- d,( T-“2yl + a)C:j( T-“2y, + a)1 

+ ld,(T-1’2yo + a)C:j(T-“‘y, + a) 

- d,(T-“2yo + a)C:j(T-“2y, + a)1 

+ Id,(T-“2y, + a)Cij(T-“‘y1 + a) 

- d,(T-“2yo + a)C:j(T-“2y, + a)\} 

s (4rBo/Ei){ 2BH,cJ C;( T-“2yo + c() - C:j( T-li2y, + a)\ 

+ ld,( T-““y, + ~)C:j( T-“‘y, + a) 

- d,(T-“2yo + a)C:j(T-1’2yo + a)l) 

by Lemma 2. 

Suppose C:j ( T- ‘I2 y + a) and A,( T- ‘j2 y + a) are differentiable functions of y on 
BG, and that there exists a bound Ba,c such that II y /I I C implies every partial 

. . . derlvatlve IS less than Baec in absolute value, for every t, T, i, andj. Then, by the 
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Mean Value Theorem there exists Yrr* on the line segment between Y. and Y1 
(and hence satisfying /IY,~* II I C) such that 

)C:j(T-“2Y0 + !X) - Cij(T-“*Yl + a)1 = T-“2l VC:j(ytT*).(yo - y,)l 

< G”2Ba,cT-“2 )Iy,, - y1 11. - 

Similarly, 

lA,( T-1’2Yl + Cr)C:j( T-1’2yl + Ct) 

- A,( T-“2Yo + LX)C:j(T-"2Yo + CC)1 

< G”‘L& cT-1’2 - II Yo - Yl II9 

since the bound on A, and Cij (Lemma 2) assures that the partials of 
A,( T- “*y + N)Cij( T- “‘y + LX) are bounded. Thus, 

III&(Yo) - &(Yl)lll I (4r&G4,&)(2&.~ + 1)T-1’2i~Y~ - ylll 

= &T- 1’2 IIYO - ~1 Il. 

For differentiability, note that Cij( T-“2y + a) and A,( T-“‘y + IX) are poly- 
nomials in terms like T- ‘I2 ykf + c~,)‘z:~, where ykl and cckI are G,,-dimensional 
subvectors of y and c(. The boundedness of the partial derivatives follows from 
the same arguments contained in Lemmas 1 and 2. n 

Proof of Theorem 5: Note that 

T-1/9’@ 1 _ S- 1)E = T-1/2 i Z-(it- 1 _ S; l)E,. 
r=1 

Since each row of Z; has only one nonzero element, one element of this (G x 1) 
vector can be written as 

where zfsk is the kth element of zh. Since the inner sum is of finite length it 
suffices to show 
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for arbitrary 1, s, k, and n. Substituting for srn as in Theorem 1 yields the sufficient 
conditions 

;“T 
[ 

T- 1’2 i Zl,&(C:“(~OLS)l~r(~OLS) - Gl(@-)l4(a)) 
1=1 

x (Ufi)?tj + U,ji:r<)' 1 (X’X)_‘X’u = 0, 

;;; T- l’* f: zf,k(C~n(Oio~s)ldt(Oio~s) - C:n(a)l4(a)) 
t=1 

X U'X(X'X)-'X,i~;j(X'X)-'X'U = 0. 

For (A.7) the hth element of the K-dimensional vector in brackets is 

(A.7) 

(A.8) 

T- 1’2 ,5 &(W&,LS)/~(~ OLS) - CI”(a)ld,(a))(u,i~-,jh + %j2i th)  

= T-“‘A’([biock diag{d,(&,,,)/C~~(~,,,), . . . , 

~T(~oL,)lC,T,(~oL,)}l-l 

- [block diag{d,(a)/Ci”(Co, . . . , 

~Tta)lC,T,(~))l-')Cw', ... wkl', 

where A’ = [z:,, . . . z&] and W, = U,i)7tjh + UtjX,ih for t = 1, . . . , T. Setting 
q = Y = 1 and B, = B, in Theorem 4 shows that the hth element vanishes in 
probability since E(w,) = 0 and 

Thus, the entire vector in brackets vanishes in probability. Combining with (A.3) 
demonstrates (A.7). For (A.8), recall from Theorem 2 that consistency of oioLs 
implies 

plim(Cfn(tioL~)/dl(~Ots) - Gda)l4(~)) = 0% 
T-t= 

uniformly in t. Following the methodology of Theorem 1, we need only show 
that the K-dimensional vector 

(A.9) 
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is bounded in probability. Fix E > 0 and select T* such that 

T > T* =- WI G,(~~I_,)/~(~,L,) - C:“(LY)/d*(a)l 2 1, 3t) < E. 

Then, for the pth element of (A.9) we have 

345 

5 P(&BZ > f&B:) + P(IC~,(~o,,)/d,(~,,,) 

- c:,(ol)/Ll,(or)~ 2 1,3t) < E. n 
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