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We derive consistent, asymptotically efficient, and asymptotically normal estimators for SUR
systems that have additive heteroscedastic contemporaneous correlation. Both our estimator for the
location vector and the parameters of the covariance matrix possess these properties. The procedure
is superior to other methods because we use GLS to estimate the parameters of the covariance
matrix. Our method also permits the use of cross-equation parameter restrictions. We discuss how
this type of heteroscedasticity arises naturally in share equation systems and random coefficient
models, and how these models can be uniquely estimated with our two-step estimation technique.

1. Introduction

Zellner’s (1962) Seemingly Unrelated Regressions (SUR) model assumes that
the contemporaneous correlation across equations is homoscedastic. Just as in
single-equation models, homoscedasticity in an SUR model is sometimes an
untenable assumption. For example. Chavas and Segerson (1987) show that
consistent stochastic specifications of share equation systems often result in
a heteroscedastic contemporaneous correlation matrix. Using their results, we
argue below that heteroscedasticity is unavoidable in an efficient share equation
estimation. Thus, a specification error is committed whenever share equation
systems are estimated with traditional SUR, resulting in inefficient estimates and
invalid inference procedures. Random coeflicients models also suffer from
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heteroscedasticity. This is the main obstacle to be overcome in estimating the
Hildreth-Houck (1968) model and its successors, one of which is the
Singh-Ullah (1974) SUR model with random coefficients. Random effects panel
data models are essentially random coeffictents models with a particular
structure, and we show below how some of these models have covariance
structures that fit the heteroscedastic SUR framework.

Our primary purpose is to derive an efficient SUR estimator that accommo-
dates the ‘additive’ heteroscedastic structure. This structure arises naturally in
share equation systems and random coefficients models. We show that our
estimator for this prevalent heteroscedastic structure is asymptotically efficient,
consistent, and asymptotically normal, so the usual inference procedures apply.
Moreover, we propose a SUR generalization of Amemiya’s (1977) efficient
estimator for the parameters of the covariance matrix in a single-equation
additive heteroscedastic model. We show that Amemiya’s consistency and
asymptotic normality persist in our SUR version of this estimator, thereby
providing a basis for hypothesis tests to detect heteroscedasticity in SUR models.

Aside from Singh and Ullah, several other authors discuss heteroscedasticity
in SUR models. Kmenta and Gilbert (1968) do not propose an estimator that
adjusts for heteroscedasticity, but they find via Monte Carlo experiment that
Zellner’s SUR estimator in the presence of contemporaneous correlation re-
mains more efficient in small samples than Ordinary Least Squares (OLS) and
maximum likelihood estimators even when there is heteroscedasticity. Duncan
(1983) considers estimation of a heteroscedastic SUR model when the hetero-
scedasticity is nonparametric. He finds that substantial efficiency gains may
occur in share equation estimation if heteroscedasticity is present and accom-
modated by the estimation technique. Low (1983) derives the mean square error
matrix of Zellner’s SUR estimator under some specialized assumptions, includ-
ing heteroscedasticity of two regimes. Numerical evaluation of this matrix in
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Zellner’s estimator outperforms OLS when there is contemporaneous correla-
tion despite the presence of heteroscedasticity. However, Low also finds that
single-equation Estimated Generalized Least Squares (EGLS) that accommod-
ates the heteroscedasticity may be superior to Zellner’s estimator even though
single-equation EGLS ignores the contemporancous correlation. Whether
single-equation EGLS is superior to Zellner’s estimator depends on the severity
of the contemporaneous correlation vis-a-vis the heteroscedasticity. Finally,
Srivastava and Giles (1987) summarize the earlier work of Low (1982) in
a heteroscedastic SUR model with a fixed number of regimes. Results are similar
to those of Low (1983).

These results suggest the need for SUR estimators that explicitly adjust for
heteroscedasticity, but only Duncan (1983) and Singh and Ullah (1974) propose
such estimators. Duncan’s approach is nonparametric. Thus, if theory provides
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using the appropriate parametric model [see Judge et al. (1985, p. 455)].
Hence, we begin with a motivational example that shows how Chavas and
Segerson’s (1987) results can lead to share equation systems that fit the additive
heteroscedastic form. General application of Chavas and Segerson’s results
is further discussed after our estimators are derived, and we also discuss
how our two-step procedure may be used to obtain estimates that are
invariant to the equation deleted in a share equation system. This suggests
that our estimator is preferable to Duncan’s when working with a share
equation system or random coefficients model.

There are also advantages of our estimator over the Singh—Ullah estimation
procedure. First, the Singh-Ullah random coefficients model is a special
case of our more general additive heteroscedastic model, so our model applies
to a wider variety of situations. Second, our covariance matrix estimators
are more efficient asymptotically because we follow Amemiya in using General-
ized Least Squares (GLS) to estimate the parameters of the covariance matrix.
This means that we estimate the entire set of covariance matrix parameters
as one system in the SUR model, thereby accommodating the heteroscedasticity
discussed by Amemiya as well as the contemporaneous correlation present
in the covariance equations. This approach also permits the use of cross-equation
restrictions when estimating the covariance equations, a situation which arises in
share equation systems. Of course, efficient estimation of the covariance matrix
parameters cannot improve the asymptotic efficiency of an already efficient EGLS
estimator of the location vectors. However, efficient covariance matrix estimators
may yield better small sample properties for the EGLS location vectors estimators
[see Judge et al. (1985, pp. 435-437) and Amemiya (1977)]. Moreover, efficient
covariance matrix estimators are of independent interest since, if their asymptotic
distributions are known, they can be used to conduct hypothesis tests designed to
detect heteroscedasticity.

In contrast, Singh and Ullah follow Hildreth and Houck in using OLS to
estimate each covariance equation separately. Since the covariance equations do
not satisfy the OLS assumptions and there is contemporaneous correlation, this
method is inefficient relative to our approach and does not accommodate cross-
equation parameter restrictions. Moreover, Crockett (1985) argues that
Singh and Ullah’s proof of asymptotic normality is flawed. Since the Singh-
Ullah model is a special case of the model considered here, our results verify
their conclusions even if their arguments are in error. Our results are obtained
using the general method suggested by Crockett to prove asymptotic equiva-
lence of GLS and EGLS estimators in heteroscedastic models. This method
relies on a theorem originally due to Carroll and Ruppert (1982) and is useful in
the present context for proving asymptotic normality of both our EGLS es-
timator of the location vectors and our EGLS estimator for the parameters of
the covariance matrix.
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2. A motivational example

Contemporaneous additive heteroscedasticity in SUR models may be a
reasonable assumption in a number of situations, but it arises naturally in the
econometric modeling of producer behavior. Accordingly, this section presents
a simple cost function estimation to motivate the need for an SUR estimator
that adjusts for additive heteroscedasticity. The example is designed to demon-
strate that even with simple stochastic assumptions the equations to be esti-
mated form an SUR system with heteroscedasticity of the additive form when
a consistent stochastic specification is explicitly incorporated.

Assume for simplicity that firm ¢t produces a single output using two inputs.
Further, follow Chavas and Segerson (1987) in assuming that, at least from the
viewpoint of the econometrician, each firm’s cost function consists of additively
separable deterministic and stochastic components and that the stochastic
component is linear in the random variables. Hence, if the deterministic part of
the production technology for firm ¢ is represented by a translog cost function,
we have

Yo = Bo + Bipa + Bapea + Boze + [ B11ph + B22pi + 212D Pr2]
n(ptlaprZs Zl’)a

where y,o 1s logarithmic cost, p,; and p,, are the logarithmic input prices, z, is
logarithmic output, and 6,H(p,,, pia, 2,) is Chavas and Segerson’s stochastic
component. Here, 6, is a random vector containing all of the random variables
in the model, while H is a vector-valued function of conformable dimension.
The share equations follow from the cost function in the usual manner by
applying Shephard’s Lemma but since the shares are related to the cost function
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stochastic term present in the cost function, 8; H(p,,, p.z, z,), through logarith-
mic differentiation with respect to the input prices. Hence, H must depend on p,
and p, as denoted. Chavas and Segerson prove this formally, and call the
resulting error structure for the whole system a consistent stochastic specifica-
tion. Thus, the share equations are given by

| @H(p,1,p ,z)—l
Ya(pirs Pz 2) = B1 + Buapn + Brabe + Bizzi + Orl‘_Ll—z—‘

s

An
L VP 1
N CH(pi. Pras 21)
YIZ(prbp:Z,:r):ﬁZ +ﬁ12p!1 +ﬁ22p12 +,82:Z,+ 61|: gp : ' »
12

where y,; is the share of input i in total cost and 0H/Op,; is the vector of
derivatives of components of H with respect to p,;. Each observation { firm) of
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the system can be written y, = X, + u,, where

Ve=a Ye Vo)

0O 1 o 0 p, 0 Pea z, 0 0
X,={0 0 1 0 O P2 2 0 z, 0 |1,
1 py p2 z %‘D{’] %szz Dubiz PuzZi P2z, %zzz
,B = (ﬁo ﬁl Bz ﬂz ﬁu ﬂzz ,312 ﬂxz ﬁzz Bzz)',

u, = (9; oH O;a—H GQH).
opn Opi2

To examine whether the covariance matrix of this system takes the SUR form
with additive heteroscedasticity, assumptions are required on the stochastic
component §;H. It is customary in these models to assume that there is one
random variable for each equation and that these random variables are contem-
poraneously correlated but independent across observations. Thus, assume 6, is
three-dimensional with 6, ~ IID(0, {oij}ﬁjzl). If the share equations are to be
stochastic (i.e., O0H/0p,; # 0), then the simpiest available assumptions on H are
linearity in the prices and independence from output. An H function with these
properties that also satisfies the cost exhaustion condition discussed in section 6
below is H = (v, 71(Pi1 — Pi2) ¥2(Pi1 — Pi2))’, and this yields an error vector
for the three equations of firm ¢ given by

= (0271 + Oi3v2, — 0271 — 0372,
Bi170 + (0271 + 6372)(pr1 — Pr2))s

where 6,; is the ith component of 8,. With this specification E(u,u;) = Ofort # 1
and the contemporaneous correlation matrix for observation ¢ is

oy — o
E(u,u}):Q,: — 0y oy
%y + 2 (P — Pr2) — oy — &y (P — Pr2)

oy + oy (P — Pe2)
=y — a1 (P — Pra) s
oy + 2005 (pa — Pez) + %1 (Pey — Pia)?

where o, = 0'22'}’% + 20237172 + 0337’%, Oy = 612Y071 + O13Y0Y2, and a3 =
61175. Thus, even with this simple consistent stochastic specification the
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contemporaneous correlation matrix is heteroscedastic because it depends on
the input prices, which vary across observations. This occurs whenever the cost
function is included in a consistent stochastic specification, because H must
depend on the prices if the shares are to be stochastic. Hence, an input share
system including the cost function is unavoidably heteroscedastic. While these
systems are sometimes estimated excluding the cost function, this practice is
inefficient because of the heteroscedasticity and the contemporaneous correla-
tion between the share equations and the cost function. Therefore, efficient
estimation requires a heteroscedastic SUR estimation even in the simplest case.
Moreover, for simple specifications of H the heteroscedasticity assumes the
‘additive’ form since each element of the covariance matrix can be expressed as
a linear function of an unknown parameter vector like the vector
o = (ay,a,, 23) for the present example.

The restrictions needed to ensure a well-behaved cost function may imply
relationships between elements of o as well as the usual restrictions among the
elements of 8, in addition to the restrictions arising due to the occurrence of
a particular parameter in more than one element of @,. These relationships
generally include cross-equation parameter restrictions, so joint estimation of
f and joint estimation of « are required both because of parameter restrictions
and because of the heteroscedasticity, even if there are no efficiency gains to
traditional SUR (for example, if the matrix of independent variables is the same
in each equation). These restrictions also imply that €, is singular, a familiar
problem that is discussed in section 6 below.

3. The SUR mode! under additive heteroscedasticity

Arrange T observations on m equations as
=Xf+u, t=1,...,T, (1)

where y, is an observable m-dimensional dependent vector,

Xy 0 e O
x| 9 ¥ o O @)
Lo 0 xin]

x,; is a K;-dimensional vector of nonstochastic explanatory variables for equa-
tion i in observation t and the zero vectors are of conformable dimensions, f is
a K =Y " K;-dimensional vector of unknown nonstochastic parameters con-
taining m subvectors of dimensions K;, and the u,’s are independent m-dimen-
sional unobservable random vectors. Zellner'’s stochastic specification is
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E(u,) =0, E(u,u;) =0 for t # 7, and E(u,u;) a fixed but unknown matrix for
t=1,2,.... We adopt the first two assumptions but depart from Zellner by
assuming

=
—
"

so that the contemporancous correlation matrix is permitted to vary across
observations. We also assume that the vectors u, possess a multivariate normal
distribution. As Jobson and Fuller (1980) discuss, our estimators can be con-
structed and possess the same asymptotic properties even if the error vectors u,
are not normal, but some known relationship between the first, second, third,
and fourth moments is needed for estimation purposes.

Lettingy’ = [y} ... yr, X' =[X} ... X7],u" = [u} ... uT], and Q = block
diag{Q, ... 21}, we may write the entire system as

y=XB+u, E(u) =20, E(uu’) = Q. 4)
The BLUE estimator for f8 1s the usual GLS estimator
Bos = (X' Q7' X)T'X'Q 7y,

but in most cases 2 is unknown, and so we must replace it with an estimator
Q to obtain the EGLS estimator

Brois = (X'Q71X) ' X'Q 1y,

It is well-known that no efficiency gain results from joint estimation in the
traditional SUR context if x,; = Xz = ... = X, for all £. However, the joint
estimator fg;s for model (4) is superior to individual equation estimation even if
the independent variables are the same in each equation, since GLS corrects for
the heteroscedastic covariance matrix.

The heteroscedasticity assumes the ‘additive’ functional form ¢}; = a;; z}; for
t=1,2,...andij=1,...,m whereq;isa G;-dimensional vector of unknown
nonstochastic parameters and z}; is a conformable vector of nonstochastic
explanatory variables. Since Q, is symmetric, there are only m(m + 1)/2 distinct
oi; elements, implying that «;; = a; unless different explanatory variables are
involved in o{; than in ¢);. However, if z; # z;, then restrictions that involve the
explanatory variables would generally be required on the estimation of «;; and
o;; to assure symmetry of €,. In all applications that we are aware of this
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situation does not arise, so henceforth we assume that z}; = z% and a;; = aj,
implying that there are only m(m + 1)/2 distinct «;; vectors. Hence, we may
define the G =} ;Y ™ ;G;-dimensional vector of covariance matrix param-

atare hy
Wwiwl g UJ

r__ v ’ ' ’ !
o = [ayy %1 %52 L1 Comm -

Denoting an arbitrary estimator for « by &, we can estimate o}; by ¢i; = &;; zi;
and use these estimators to construct , and Q. Under well-known regularity
conditions [see Schmidt (1976, chs. 1, 2)], satisfied by our assumption A.2
below, the GLS estimator has asymptotic distribution

TY2 (B — ﬁ)—d—>N<O, lim (T-'X’Q" ' X)"! )

T—w©

Since the GLS estimator is efficient, the asymptotic efficiency, consistency, and
asymptotic normality of the EGLS estimator based on any & can be established
simultaneously by showing that ﬁEGLS converges in probability to [;GLS. Given
the regularity conditions for asymptotic normality of s, sufficient conditions
for the convergence in probability of Bgg s and Bgis are [see Judge et al. (1985,
p. 176}, Schmidt (1976, p. 71), or Theil (1971, p. 399)]:

pim 7T 'X'Q 'X = lim T 'X'Q7'X, (5)
T-x T-x

plim T-'2X"(Q" ' — Q@ “Yu=0. (6)
T—w

Thus, our main problem is to find an estimator & such that egs. (5) and (6) hold,
in which case there is no cost, asymptotically, to using EGLS instead of GLS.
Among the class of estimators & that satisfy (5) and (6), a secondary problem is to
find an efficient estimator since, as Amemiya and Judge observe, this should lead
to more efficient small sample estimates for . Moreover, as mentioned at the
outset, efficient estimators for « are of independent interest since, if their
asymptotic distributions are known, they can be used to conduct hypothesis
tests designed to detect heteroscedasticity.

4. The estimation procedure

Estimate « by first obtaining the OLS residuals i = u — X(X'X)™ ' X'y, This
can be accomplished by performing OLS on eq. (4) or by rearranging the model
by equations and performing OLS on each equation separately. However,
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estimation of eq. (4) permits the use of cross-equation parameter restrictions if

appropriate, as is the case with share equation systems. The residual subvector
for each observation is

bo=u— X(X'X)'X'u, t=1..,T 7

Next, denote the ith component of u, by u,; and analogously for #,, and form
the m(m + 1)/2-dimensional vectors of cross-products

ar A A A A A A A A oA
€1 = [y 8,y Upathyy GGy - UpmBim— 1 Uom i 1
! —
e; = (U Upy Uy Upply = Upp Uiy — 1 UpmUg ],
'

O-; = [Urll 0.1321 OJZZ  Omm—-1 O-inm:la (8)

Ulzet_ah

& =€ — e.
Denoting
T2, 0O 0 0]
o0 z% O 0 0
O/ O/ t’ OI 0/
z=. 7T ©)
O 0O - 0 zi,, 0
Lo 10 o zhm
we have g, = Z,a so that
& =Z,0+ v, + & (10)

Letting &' =[¢&) ... é7], e =[e}...er], o =[c]..0%7], v=e—a,
e=¢é—eand Z'=[Z ... Z}], we have ¢ = Za and may therefore write the
entire system as

ée=Zau+v+e (11)
Note that E(v) = 0 and E(vr’) = § = block diag{$,, ..., S}, where

S, = E((e, — a,)(e, — 6,)') = E(e,e;) — 0,0,.
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The multivariate normal distribution yields
— 1 t t i t
E(uguupuy) = 64504 + ooy + oo,
SO
t t t t t
64107 + 64164 641201 +6%20% 61209 + 06l,0Y;
6510 +0%,0%; '

— 1 t t I
S, =| 6%0% + 6% 6%

t t t 1
Om1Opmi + Om1Omi

[{ t t r
O1m0 im + 1m0 1m
1 t 1 t
T2m0 1m + G1m02m

t t r t
G2m0 2 + O2m02m

o'inmo-:nm + o-:nmo':nm

Eq. (11) provides a basis for estimating «. Unfortunately, the ‘error’ term v + ¢
has neither zero mean nor scalar identity covariance, so OLS is biased and
inefficient. Amemiya overcomes these problems in the single-equation context,
at least asymptotically, by applying EGLS to eq. (11), ignoring the effects of e.
This method corrects for the heteroscedasticity of v. He shows that ¢ does not
affect the asymptotic distribution of the estimator, so it can be ignored if
asymptotic properties are the only concern.

Singh and Ullah organize a variant of (11) by equation in the random
coefficients SUR context, rather than by observation, and then apply OLS to
each equation individually. This method disregards the heteroscedasticity of v.
Moreover, in the SUR context eq. (11) constitutes a second heteroscedastic SUR
system and should therefore be estimated jointly rather than by individual
equations since joint EGLS corrects for both heteroscedasticity and contempo-

raneous correlation. nrovided that the effects of ¢ remain neglicible as 7 — oo,
LA liwi/ o vvll\rlutl\!ll IJLUVI\L\.«U LRI L Lilw WilWwiwihag V1 O 1wiliichlil ‘lvéllélvlv A L

Joint estimation also permits the introduction of cross-equation restrictions of
the type mentioned in section 2.
The GLS estimator for eq. (11) obtained by ignoring ¢ is
bgLs = (Z'S™1Z) 1Z'S7 1,

while an EGLS estimator is obtained by substituting an estimator S for S:

&EGLS = (Z’S;_lZ)_IZ’SA_lé‘.
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To obtain S, we follow Amemiya in using the OLS estimator applied to eq. (11),
&OLS = (Z’Z)_lz'é,

which leads to preliminary estimates of the ¢};’s and hence S. Both GeLs and
doLs can incorporate cross-equation restrictions, if appropriate. We show in the
next section that the effects of ¢ remain negligible in the SUR context, so dgy s 1S
consistent and asymptotically normal. Then we show that dgeys converges in
probability to dg s, so EGLS in the SUR context retains the desirable properties
discussed by Amemiya for the single-equation case. Finally, we show that
eqs. (5) and (6) hold when fggs is based on dggys.

One potential problem warrants mention before proceeding to the asymptotic
properties. Monte Carlo studies using single-equation models of additive het-
eroscedasticity show that these models may produce estimated covariance
matrices that are not positive definite [ see, for example, Raj (1975)], in which
case a substantial degradation of the EGLS estimates for f§ occurs. Unfortu-
nately, there is no analytic solution to this problem within a linear estimation
framework. Applied researchers should check S and Q to assure that they are
positive definite. If a problem is encountered, the first solution should be to
obtain additional data since the asymptotic results assure that the estimates
approach the true positive definite matrices as the sample size tends to infinity.
The Monte Carlo results verify that the problem rarely occurs with large
samples. If additional data is unobtainable, it may be possible to solve the
problem analytically with nonlinear constraints or a nonlinear reparameteri-
zation of the model. However, in this case, an approach that accommodates
nonlinear covariance equations would be needed. Magnus (1978) discusses
a maximum likelthood approach and Judge et al. (1985, pp. 435-437, 808)
provide a summary of the methods available to assure positive definiteness.

5. Properties of the estimators

Denote the kth element of x,; by x,; and the kth element of zj; by zi; for
Lj=1,....mand t = 1,2, ... Our results rely on the following standard regu-
larity assumptions:

A.1. There exist upper bounds B, < o0 and B, < oo such that | x,;| < B, and
|zigl < B;fort=1,2,...,0,j=1,...,mand k=1, ..., K; (or G, as
appropriate).

A2, TT'X'X, T'X'QX, T 'X'Q'X, T 'Z'2 T 'Z'SZ and
T71Z2'S~1Z all converge to finite positive definite matrices as 7T — co.
These limits are denoted by Qy, Qgy, Qg-1y, etc.
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A.3. There exists a lower bound £y > 0 such that Det 2, > ¢, and Det S, > &g
fort=1,2,....

Asymptotic normality of &g s and g5 follow at once under these conditions
from the following generalization of Amemiya’s theorem (all proofs are con-
tained in the appendix).

Theorem 1. Let 4=(A'Z)"'A’é be an estimator for «, where A is
a (Tm(m + 1)/2 x G) matrix with elements bounded by B, as T — . Assume
further that T~ ' A’ Z converges to a finite positive definite matrix ® as T — .
Then

d
TU2(§ — a)-—»N(O, qs-l( lim T"lA’SA)cb'l),

T— o
provided this covariance limit exists.

Letting A = Z in Theorem 1 shows that
T (diors — 1) — N(O, Q5 05207 1), (12)
while letting A = $™'Z shows that
T4 (dgus — 0)— N(O, 054 z). (13)

Eq. (13) also provides the limiting distribution of dggps if dggLs converges in
probability to &g s. Given assumption A.2, sufficient conditions for this conver-
gence, analogous to egs. (5) and (6}, are

plim T 1Z'S'Z = Qs-12, (14)

Tow

plim T~ 12 Z'(S™1 — $71)(

v+e)=0. (15)

These conditions, as well as eqgs. (5) and (6), involve the limits of the inverses of
covariance matrices. The elements of these matrices can be expressed as the ratio
of a cofactor to the determinant, but we need to consider these elements
evaluated at various possible values for a. Thus, let H,(y) be the matrix that
results from substituting y in place of « in either Q, or §,, depending upon
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whether we are examining ﬁEGLs or dpgrs. Furthermore, let 4,(y) = DetH,(y)
and Ci;(y) be the cofactor of the (i, j) element of H,(y). The following funda-
mental properties of these functions are used to establish egs. (5), (6), (14), and
(15).

Lemma 1. A, and Ci; are uniformly (in t) continuous in y.
Corollary. For every Ce[0, c0) there exists Tp (independent of t) such that
T>Te and |y < C=4,(T Yy + a)| > &0/2.

Lemma 2. For every Ce[0, o0) there exists a bound By > 0 such that

| A(T™ Y2y + a)| < By.¢

7l <C= { o
|CL(T v+ 2)| < By ¢

SJor every t, T=1,2, ... and i,j=1,...,m [or m(m + 1)/2, as appropriate].
Egs. (5) and (14) are an immediate consequence of the following theorem.

Theorem 2. Let A be a (Tr x q) matrix with elements bounded by B, as T — <0,
and H,(y) be (rxr) matrices satisfying Lemmas | and 2 and the Corollary.
Moreover, assume

lim 77! A'[block diag{H(%), ..., Hr(2)}]1 '4 = &,

T—x

a finite positive definite matrix. If & is a consistent estimator for o, then

plim 77! A'[block diag{H,(&), ..., Hp(4)}]7*4 = &.

T—x

Verify eq. (5) when Qs based on dpGLs by assuming for the moment that dggys
1s consistent. Set r =m, A =X, B,=B,, ® = Qg-1y, and let H,(y) be the
matrix that results from substituting y in place of o in Q,, so that H,(«) = Q, and
H,(%gGLs) = €,. Then the conclusion of Theorem 2 yields eq. (5) once we show
that dggis is consistent (below). Eq.(14) is verified by noting that &g g is
consistent by (12). Hence, set r = m(m + 1}/2, A= Z, B, = B., ® = Qg .z, and
let H,(y) be the matrix that results from substituting 7 in place of # in S, so that
H,(2) = §, and H,(dors) = S,. Then Theorem 2 confirms eq. (14).

Egs. (6) and (15) present more formidable problems. Schmidt (1976,
pp. 68-70) shows that consistent estimators for the error covariance matrix in
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heteroscedastic models need not produce EGLS estimators that have the same
asymptotic distribution as the GLS estimator. This difficulty is sometimes
overlooked, as Crockett (1985) notes that several proposed ‘proofs’ of the
asymptotic equivalence of EGLS and GLS estimators in random coefficients
models are flawed. However, Crockett states a special case of a theorem
originally due to Carroll and Ruppert (1982), and then uses it to establish
asymptotic equivalence of EGLS and GLS in the Hildreth-Houck model. We
show below that this approach can be used in the present context to establish
egs. (6) and (15). As Schmidt’s example suggests, consistency of 4 is not sufficient
for an application of the Carroll-Ruppert Theorem, but if & satisfies the stronger
condition & — a = O,(7~'/2), then the Carroll-Ruppert Theorem can be ap-
plied to establish eqgs. (6) and (15). It is still possible that consistency of 4 is
sufficient to establish (6) and (15) using some other approach, because Schmidt’s
example does not fit the assumption that the heteroscedasticity takes the
additive form. Hence, in the present context Schmidt’s example is only sugges-
tive that a condition stronger than consistency is needed, but we know of no
correct proof that establishes (6) or (15) using only consistency of &. Currently,
the Carroll-Ruppert Theorem and its stronger requirement appear to be the
only correct approach. Alternatively, we know of no counter-example that
demonstrates insufficiency of consistency in an additive heteroscedastic model.
We first restate Crockett’s version of the Carroll-Ruppert Theorem [ for a proof,
sece Crockett (1983)], and then apply it to the current problem.

Theorem 3. (Carroll-Ruppert, Crockett). For T=12,... and t=1, ..., T,
and for every ye 9, let A,;(y) be a (g x r) matrix. Suppose:

1. A,7(0) = 0 for every t, T.

2. For every Ce(0, o) there exists T¢, Bc < o0 such that

Ivoll, Iyl <C and Tz Te=

A (7o) — Ar (I < TV 130 — 1 Be,

where ||| A,7ll| = max; ;|a;;|.

Let y7e R be random vectors for T = 1,2, ... such that
3. yr = O,(1).
Finally, let w,e #" be independent random vectors for t = 1,2, ... such that

4. E(w,} = 0 for every t.
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5. sup,E( [ w,|I?) < co.
Then, plimy_ T 12 Y 1 Ap{yr)w, = 0.

Theorem 4. Let A be a (Tr x q) matrix with elements bounded by B, as T — o0,
and let H,(y) be (r x r) matrices satisfying Lemmas [ and 2 and the Corollary.
Let w, be independent r-dimensional random vectors with E(w,) =0 and
E(|w,]|?) < B.. < o for every t. If & — o0 = O, (T~ /%), then

plim 7~ Y2 4’([block diag{H (&), ..., Hp(&)}]™*

T—-x
— [block diag{H (), ..., Hp(2)}J ) [wi, ..., wr] =0.

Verify eq. (6) when Q is based on dpgrs by assuming for the moment that
GegLs — @ = O,(T~'?). Let w, = u, and all other definitions be as in the verifica-
tion of eq.(5). Since E(|u|?) < m|«|G'?B,, the conclusion of Theorem 4
yields eq. (6) once we show that dgg s — @ = O,(T~ ''2) (below). By egs. (12) and
(13), egs. (5) and (6) aiso hold when 2 is based on dgp s or dgrs- Eq. (15) is verified
by noting that do s — « = O,(T~/?) by (12). Hence, let w, = v, and all other
definitions be as in the verification of eq.(14). Since E(|v,||) < m(m + 1)
X |loc|l?GB2, Theorem 4 yields

plimZ'(S™! — §™Y)v =0,

T—ox

However, the ¢ term does not satisfy the assumptions of the Carroll-Ruppert
Theorem (and hence Theorem 4). Following Amemtya, we show that the effect of
¢ vanishes as T — oo with the following theorem.

Theorem 5. plimy_, T-Y2Z(S™! — §™)e = 0.

Since dg1 s satisfies eqgs. (14) and (15), we have
1/27 % d -1
T'?(dggLs — ) —> N(O, Qs-1z),

which verifies that dpgrs — o = O,(T~ /%)

6. Applications

The model and estimation techniques described above may be applied in
several settings. First, it should be noted that whenever heteroscedasticity is
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suspected one option for the researcher is to assume a parametric structure and
then estimate the assumed structure. Qur model provides one candidate struc-
ture. Of course, if this structure is assumed incorrectly, then efficiency loss may
occur, and it is fremlenﬂv the case that a researcher has little theoretical

guidance on whether a pamcular parametric structure is appropriate. However,
Monte Carlo evidence for single-equation heteroscedastic models suggests that
assuming the wrong parametric structure may not entail large efficiency losses
[see Surekha and Griffiths (1984)]. Hence, our method provides at least one
parametric solution, that may be useful in a variety of settings, to the problem of

heteroscedasticity in an SUR model.

General Share Equation Estimation. Another application for our model and
estimation techniques is share equation systems, particularly models of pro-
ducer behavior such as those discussed by Christensen and Greene (1976) and
Christensen et al. (1975). Often, classical SUR is used to estimate these models,
and parameter restrictions are used to assure that the dictates of economic
theory are satisfied. However, the stochastic error terms may be incorrectly
assumed to satisfy Zellner’s specification, as discussed in section 2,

Chavas and Segerson’s (1987) general approach begins with an objective
function F(X,, 8, 2, 0,), where X, is a matrix of observable parameters to both
the researcher and the economic agent, # and o are vectors of parameters that
are unobservable by the researcher, and 6, is a J-dimensional vector of unob-
servable zero-mean shift parameters that capture the behavior not explained by
X, B, and 2. The matrix X, usually consists of a price vector p, and output or
income.

Optimization of F leads to m — 1 share equations, which form a system with
F that can be used to estimate f# and «. These models are usually assumed to be
linear in the errors 6,, so Chavas and Segerson assume that the share equations
take the separable form

Vie = (Ji(pn ﬁv CX) + B;hi(ph ﬁa “)a (16)

where y,; is the share of the ith demand in total outlay for the tth observation.

Ihoam tha anamamie agant 1c a oncetominimizing fAirm Chavace and Qacercan chaw
VY vl lllL« ceonomic asbuL iS a COSi- A E WL, L ld Vad allu DUELIDUVLL OV YY

that (16) and homogeneity of F (the cost function) in p, require the logarithmic
cost function to take the form

Yon = INF(X, B 0)=Q(pi. Ba) + O H(p,, B.2) + @(f. 2, 0,),

where ¢;(p,, f. 2} = 8Q(p,, B, 2)/0ln py;, H is a vector-valued function with com-
ponents H; for j =1, ..., J, h(p,, B, a) = 0H;(p,, B, a)/0lnp, is the jth com-
ponent of i;, and @, depends on ¢ because it may depend on X, exclusive of p,.
Hence, Q and ¢, are the deterministic parts of the logarithmic objective function
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and share equations, respectively, 8; H and 8, h; are the stochastic parts, and &, is
a constant of integration that was ignored in section 2 for simplicity.

There are two traditional simplifying assumptions in this cost minimization
model. First, the deterministic part of the system is usually written as a conven-
tional linear function of f, denoted X,pf. This is essentially an assumption that
[91 .- gm-10Q + @,]" can be written as X,f, and holds for the translog form
considered in section 2 as well as most other familiar function forms. Second, the
stochastic part of the logarithmic objective function, 8; H, is normally assumed
to be independent of f, although Jobson and Fuller (1980) consider models
in which the location vector is not separable from the covariance matrix
parameters. With these assumptions we have an SUR system with separable
location and covariance matrix parameters. The error vector for observation ¢
including all share equations and the cost function is u, = {4y ... U]’
=[8h, ... 8}h,- 8,H}, and is heteroscedastic in general even if
8, ~ 1ID(0, 62 1,), because in this case E(u,u;) is given by

h/lhl M h/lhmfl h’lH
Q = g2 . . : :
T Ry e R by ko H |

H'h, H'h,, _, H'H

where h; and H depend on p,. To obtain BEGLS, o can be ignored and we need
only obtain estimates of the elements of this matrix. These elements take the
additive form discussed above whenever the (i, j} element can be written in the
form Z,‘fgl ik S pe), where f are arbitrary functions of the price vector p,.

The usual cost exhaustion, homogeneity, symmetry, nonnegativity, and con-
cavity restrictions may apply to the estimation of . Chavas and Segerson
discuss these restrictions and note that the cost exhaustion constraint on the
stochastic parts of the share equations (Y 7o('h; = 0) results in the familiar
singularity problem of applying GLS or EGLS to share equation systems.
Barnett (1976) and others have argued that dropping a share equation in
a finite-step Aitken estimation is an unacceptable solution to the singularity
problem because the resulting estimates depend on which equation is omitted.
Hence, most researchers have adopted iterative techniques that converge to
maximum likelihood estimates under certain conditions (se¢ Barnett).

Since our methods for estimating x and f are both two-step methods,
Barnett's criticism warrants some comment in the present context. It is not
necessary for finite-step estimates like ours to vary with the equation deleted,
and since unique two-step estimates are obtainable, two-step procedures may be
preferable to iterative procedures both because two-step methods are casier
to apply (no convergence problems) and because Kmenta and Gilbert (1968,
p. 1196) find evidence that iterating may be ineflicient in small samples. Chavas
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and Segerson present one method for obtaining unique two-step estimates. This
method entails deleting a share equation and then performing a first-stage GLS
estimation with an assumed covariance matrix that is constructed to yield

actimatag invariant ta tha aanatinn dalatad Tha racnlting 1iniana racidinale ara
VOMIALUD UV ALIGIIL WU LV L Uativll ULV, 11U 100 UILILE ULy UL Lvdiduald aiv

used to obtain a unique estimate of the covariance matrix, which is singular like
the true covariance matrix if the constraints are imposed on the first-stage
estimation. Then, Theil’s (1971, p. 281) result on invariance of GLS estimates to
omission of linearly dependent observations shows that a second-stage EGLS
estimation without the omitted equation, but including any appropriate con-
straints, yields unique two-step estimates. Schmidt’s example (see section 5
above) shows that the properties of this estimator depend on the exact method
used to estimate the covariance matrix from the residuals, which in turn depends
on the form assumed by the covariance matrix.

The key observation of Chavas and Segerson in defense of finite-step proce-
dures is that any dependence on which equation is omitted arises because the
estimated covariance matrix may depend on the deleted equation, not because
the second-stage estimation depends on the deleted equation. If the constraints
are imposed on the first-stage estimation so that any estimated covariance
matrix is singular, as it should be, then Theil’s result shows that dropping any
share equation in a second-stage EGLS estimation yields unique estimates for
the location vector, for the given estimate of the covariance matrix. Hence, we
need only obtain a unique estimate of the covariance matrix in order to obtain
unique two-step estimates in share equation systems. But there is no difficulty in
obtaining a unique singular estimate of the covariance matrix without the
constructed first-stage covariance matrix of Chavas and Segerson, and we can
also utilize all of the data in the process. Simply perform joint OLS on the
complete set of equations with the cost exhaustion and any other appropriate
constraints imposed. This yields unique linearly dependent residuals. Then, an
assumption concerning the form of the covariance matrix, like the additive
structure considered above, yields a unique singular estimate of the true singular
covariance matrix. Our results show that if the additive structure is appropriate
the estimator obtained from this algorithm has desirable asymptotic properties.
Note, however, that our estimator for « in a share equation system involves all of
the share equations, so the singuiarity probiem arises again in the estimation of
a. Thus, the algorithm for obtaining unique two-step estimates must be applied
twice, once in the estimation of « and once in the estimation of f. Other
covariance structures may only require the aigorithm in the estimation of 8. In
fact, this algorithm was used by Caves et al. (1980) with a traditional SUR
covariance matrix.

Existing computer programs may not implement this technique in a straight-
forward manner. For example, the SAS®' SYSLIN procedure with the SUR

Y SAS is a registered trademark of the SAS Institute Inc., Cary, NC.



D.M. Mandy and C. Martins-Filho, SURs under additive heteroscedasticity 333

option does not impose cross-equation restrictions in the first-stage OLS es-
timation. Hence, the resulting estimated covariance matrix is nonsingular and
gives constrained EGLS estimates of the location vector even if all share
equations are included, but these are not the estimates of interest since the
estimated covariance matrix does not satisfy the dictates of theory. SYSLIN also
does not provide the flexibility to estimate more equations in the first stage than
in the second stage, as required by the two-step aigorithm for solving the
singularity problem. However, the equations can be stacked as in (4) and (11),
and single-equation procedures along with a matrix language can then be used
to implement the procedure.

Random Coefficients and Panel Data Models. Some models that assume a par-
ticular covariance structure across regimes or economic units are special cases of
the model presented above, although our estimation technique usually differs
from the methods suggested by the original authors. Letting ¢t denote one
dimension of the data for t = 1, ..., T and i denote the other dimension for
i=1,...,m, a general structure for such models is

K;
Yu= Z Beic Xeik + et (17)
1

k=

where S = B + . The stochastic terms satisfy

(1) E(u) = E(ew) =0 forall i k,

(1) E( )= o;; (independent of t) if t =71,
Hitki) =9 g otherwise,
(iii) (8. (independent of t) if =1
jkk N r J »

E(gc.:) =
(&rin&oju) i() otherwise,

(iv) E(ue.p) =0 forall ¢ 1,i4j k
This can be written in the form of egs.{1)-(4) of section 3 through the
following definttions. First, let u,; = p,; + Z,’f’;l Xk Erix SO that

. Ki K
gij + Z Z XX Oijie 1f £ =1,
k=1x=1
E(utiutj):

0 otherwise.

Then’ lett_lng Ve = (yll’ ’yrm)la Xy = (xn'ls T xtiK,-),’ ﬁ = (ﬁ—ll’ 5BIK1’ AR
Bmis - s Bmx, ), and u, = (441, ..., u,,) shows that this mode] is a special



334 D.M. Mandv and C. Martins-Filtho, SURs under additive heteroscedasticity

case of the additive heteroscedastic SUR model since in the present case
E(uu;)=0for t # 7 and Q, is given by

K: Ky Ki Km ]
Ot Y Y XakXoxOiie 0 Oim + Z z X1k X O Lk
k=1xk=1 k=1x=1
: : : (18)
Kn K Ky Kn
Oy + Z Z xrmerlxémlkk Oyt Z Z xrmermk(smmkx
k=1x=1 k=1k=1

The elements of Q, take the additive form with

A = (Uijaofﬂh OijZlv aijZZa ,Oin,(Kj—-1),()in,.Kj, 5.‘ju<j+1)1, —ee s

’

aijqu-Fl)KJv ey Oin,»lﬁ ef)in,-KJ) )

-

Zip = (L Xy Xyga s X412 Xpj1s X3i2 Xajae oo s Xaik Xejk ;= 10 XiiK  X1jK o

- - r

XeiK,+ 1) X2j1s oov s Xei(K,+ 1) XK o oo s XeiK Xejis oo s xn‘K-xij-) ,
J J J ' J

since d;jue = Oyjx DY symmetry, where we have assumed K; > K| for simplicity.

This model reduces to the SUR random coefficients model of Singh and Ullah
(1974) when 6,4, =0 for k # x and the data is interpreted as comprising
T observation on m equations. Note that if x,;; = 1 as in Singh and Ullah, then
o;; + d;;1; must be estimated as one intercept parameter. As mentioned in the
introduction, our method for estimating « is more efficient asymptotically than
the method suggested by Singh and Ullah.

Egs. (17) and (18) reduce to the random effects panel data model of Swamy
and Metha (1975, 1977) under the following conditions:

(a) t and i are interpreted as the two dimensions of the panel, with 77— o0 and
m fixed for all asymptotic results.

(b) K; = K for ail i, so that the number of independent variables is the same for
every observation in the panel.

(¢) fu = B for all i and k, so that the mean parameter vector is the same for
every observation in the panel.

(d} a;; = 0 for all i, j, so that y,; does not enter the model.

(€) O:jun = Ay for all i % j, so that the covariances of ¢, and ¢, do not vary
across i and j when i # J.
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Note that (b) and (c) imply that the § vector contains only K distinct elements, so
f must be constrained appropriately when estimating. This constraint can be
implemented by simply writing X, as X, = (x,, ..., X))’ rather than the speci-
fication given in (2). Also, parameter restrictions are required in the estimation of
o in this model since a;; is the same vector for all i, j provided i # j. Since our
method for estimating « is asymptotically efficient, it is at least as efficient in
large samples as the method suggested by Swamy and Metha.

7. Summary

We derived consistent, asymptotically efficient, and asymptotically normal
estimators for SUR systems that have additive heteroscedastic contem-
poraneous correlation. Both our estimator for the location vector and the
parameters of the covariance matrix possess these properties. The procedure
presented above is superior to the method proposed by Singh and Ullah (1974),
since we followed Amemiya (1977) in using GLS to estimate the parameters of

the cnvarianece matriy Our methad alen nermite the nee af oroce-eanatinn
Lilw WWwYydllidllvw lidilin, A ) AMIWLLIEIV/AL dlovw kl\illlllto Lilvw “UOW Vi1 wlwao \t\-iuﬂblull

parameter restrictions. We discuss how this type of heteroscedasticity arises
naturally in share equation systems and random coefficient models, and how
these models can be uniquely estimated with our two-step estimation technique.

Appendix
Proof of Theorem 1. Substituting eq. (11) into & yields

TY2(q@—a)=(T"'A'Z) 'T" V24 (v + &)

Since limy., (T '4’Z) " '=®"' we need only show that
T~Y2 4" (v + £)—— N(0, limy—, T~ ' A’SA). Partition 4 into T submatrices of
dimension (m(m + 1)/2xG), A’ =[A] ... A7), and note that A'(v + ¢) =
STy Ai(v, + &). Moreover E(A;v,) =0and V(A;v,) = A;5, A, fort=1,2, ...,
and v, 1s independent of v, for 1 # 7. Normality assures that the higher moments

AO -

of v, exist, so [ see Judge et al. (1985, p. 189)]

d T
T_l/zA'U——>N(O, lim T°! Z A;S,A,) = N(O, lim T_IA'SA).
T—oc =1 T
Thus, it only remains to show that plimr_., 7~ *?4’¢ = 0. Let a,, denote the
G-dimensional nth row of 4, and ¢, the nth element of &,. Then

T mim+1)/2
T 124 =T12Y Y g.tm.

t=1 n=1
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Since the inner sum is of finite length, we need only show that

T
plim 7Y% % a,¢, =0 for arbitrary n.
Tow t=1

To each n there corresponds an i and j indexing the ¢, vector, so from egs. (7) and
(8) we may write

Ern = Uyily; — Uyl
= (uy — X (X' X) ' X u)(u; — (X' X)X u) — uguy
= —(u;X,; + u,jfﬁ)'(X'X)_lX'u
+u X (X' X) 125X X) T X u,

for some i and j, where X;; is the ith row of X, including the zeros. Thus, it is
sufficient to show

T
pim T7Y2 Y a, (U, + 4 Xg) (X' X)X 'u =0, (A.1)
T-wx =1

T
plim 7712 Z At X (X' X) 15 % (X' X) ' X'u=0. (A2)
T =1

For (A.1) we have
T
[T‘”“ Y Gl + uui.f)'](T'lX'X)*(T*‘f“X'u),
t=1
where the hth column of the (G x K) term in brackets is
T
T34 Z am(urixrjh + uy; Xiin)-
=1
This random vector has zero mean and covariance
T

~3/2 Jopr 22 sz ¢ =2
T Z A1, (G5 X 5 + 205 XjnXean + 055 X1in)s
r=1

where the absolute value of one element of this covariance matrix is bounded by

T
BZBIT *? Y (lok| +|20%| + |oiyl) < T~ V2BIBI4||a|B,G™ 1%,

r=1
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which approaches zero as 7' — co. Hence, the hth column has zero probability
limit and the entire (G x K) matrix vanishes in probability. Moreover,
(T~'X’X)"! converges by assumption and (T~ %*X'y) has zero mean and
covariance T~ '?(T~'X'QX), which approaches zero since 7~ ' X'QX con-
verges. Thus,

plim (T™' X' X) " 1(T™3*X'u) = 0, (A.3)
T—x

which establishes (A.1). For (A.2), we have
T
[T“ Y a,,,(T‘”“u'X(T‘1X’X)‘1£,ii}j}(T“X’X)‘l(T‘3/4X’u),
t=1
where by (A.3) we need only show that the (G x K) matrix in brackets is
bounded in probability. The Ath column is
T

T an(T 3w XN T X' X) ' RuXy

t=1
T
= [ 7'y a,,,i,,.,,i;,-](T'1X'X)‘1(T-3/4X'u).
=1

Once again applying (A.3), we need only show that the (G x K) matrix in
brackets is bounded. Each element is clearly bounded by B,B2, which estab-
lishes (A.2). N

Proof of Lemma 1: We shall prove the result for A, when H,(y) is the matrix
that results from substituting y in place of « in §,. Since C}; is a determinant that
takes the same form as 4,, the proofs are identical. When H,(y) results from
substituting y in place of z in §,, the arguments are the same except that there are
more terms involved. Fix ye 2 and suppose that |7 — y|| < 6. We may write

A7) — AW =1 2 (TP 02% T Zoin = Y1020 = Vi Z i 1

where the sum ranges over all permutations (ji, ..., j,). Let d = 75,,24%,, ...
VmimZmjm and define d analogously. Then

140F) = 44D < XN (Frz, = 115.) 245d + T, 24,(d — )|
< Y [71j, — 71, IB:GIZ |yt Gom= 2 gm=1
+ 15,1 B.GY?|d — d|]

<, 8BTG™2 |y "' + [||yll + 61B.G*Y|d — d|,
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where n,, is the number of terms in the sum. Clearly the first term is arbitrarily
small through an appropriate choice of 4. The second term is a constant
(independent of ¢) multiplied by a sum that is analogous to what we began with,
but with one fewer term in each product. Hence, repeating the argument m times
gives the result. W

Proof of Corollary: By Lemma 1, there exists é > 0 (independent of t) such
that

IT™ 2y < 6= 14Ty + a) — A(2)] < &5/2.

But this implies 4,(x) —&/2 < 4(T" Y%y + a) < |4(T" Y%y + «)|. Since
|d,(&)] = & for every ¢,

IT™ 12y | <d=e0/2 <|A(T 2y + ).
Now, let y* € #¢ be any vector satisfying ||7*| = C. Clearly there exists T, such
that T> Tr= || T~ '2y* || < §. But for any vector satisfying ||y| < C we have

K772y < 1T 2y% ], s0

T>Teand 7] < C= T2y <d=e0/2 <|A(T "2y + ). W

Proof of Lemma 2: As in Lemma 1, we shall prove the result for 4,(y) when
H,(v) is obtained by substituting y for « in Q,. From Lemma 1,

4T "2y + )|

< ZKT_UZ)’UI +oog; ) zhyl I(T_Uz?’mjm + %mj, ) Zmjol

YT 2yl + No, DBGIE - (T2 g, |+ 0, 1) B-G i,
< Y(C + faf)y"BTG™

=n,(C + ||| )"B™"G™2. W

Proof of Theorem 2: First we use the uniform continuity of 4, and Cj; to
show that for every §, ¢ > 0 there exists T* such that

P()4,(4)] < &0/4,31) <, (A.4)

T>T*=< P(|4,(8)~— A,(a)] = o, 31t) <, (A.5)

P(|C};j(a) — Cij(a)] 2 0,3t) < e for all i, (A.6)
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By Lemma 1 there exists do > 0 such that ||& — a| < 8¢ =|4,(&) — 4,(a)]
< gy/4 for every t. Since |4,(a)] — &9/4 < |4,(&)] + |4, (2) — 4,(@)] — &o/4, we
have |4 — a] < 8g = |4,(2)}] — €0/4 < |4,(&)|. Set C = 0 in the Corollary and
note that the conclusion is then independent of T. Thus, | 4,(a)] > &,/2 and we
have ||d — a| < 8o =&5/4 < |4,(4)| for every t. By consistency of & there exists
T* such that T> T* = P(||d — o]l = dy) < & Thus,
T>T*=P(|4,(2)] <& /4,3t)
= P(|A4(4)| < £0/4, 3t, and [|& — x| = &)
+ P(|4,(3)] < &o/4, 3t, and & — all = o)
< P(|& —«l = do)
+ P(]4,(8)] < &o/4, 3t, and || & — | < Jo)

<é,

which establishes (A.4). Now choose J, such that [d—a| < dg=
|4,(&) — A,(o)] < & for every t. Then (A.5) follows since

T> T* = P(|4,(4) — 4,(a)! = 8,31)
= P(|4(&) — 4(2)] = 6, 3t, and [|& — a ]| = 8o)
+ P(|448) — A(a)) = 8, 3¢, and ||& — a]| < &)
<.

Finally, since (A.5) relies only upon uniform continuity and consistency, (A.6)
holds by the same arguments. Now, as in Theorem 1 partition A4 into T matrices
of dimension (rxq), A" =[A} --- A%], and note that

T

T-'A’[block diag{H(y), ... . Hr(y)}17'A=T"1 Y AH,(y)" 'A,.

=1

The (I, k) element of H (7)™ ! is Ci(y)/4,(7). Hence, the (i, j) element of the
above matrix is

Y Y aaClu(y)aw/dy),

t=11=1 k=1

M=

T—l
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and we need only show that the probability limit of this expression when y = & is
the (i, j) element of @, denoted by ¢;. Fix 8, ¢ > 0, let &; = e¢3/16B7r?, and use
(A.4), (A.5), (A.6), and the definition of @ to select T* such that

e T r r
|71 Z Z Z au Ci(0)an;/A(a) — ¢yl < &/2,

t=11=1k=1
P(|4.(8)] < &o/4, 31) <9/3,
P(14,(3) — 4,()| > max{./e,/4, &,/4Bpy 0}, 3t) < /3,

P(|CL(&) — Ci(a)| = max{./e;/4, &, /4By o}, 3t) < /3.

-

T>T*=<

Then,

T r r
T> T*:P(}T'l Y Y Y auChl@)aw;/A(d) — i

t=11=1k=1

>2)
T r r

sp(rl ST Y (agtug] | CLl@)A(E) — Ch()/Ax)]

t=11=1k=1
>2)

T r r
+‘r-1 S T Y auClale)an/ Ada) — by

r r

T
sp(r—lsg T Y Y |Ci(8)/4(d)

t=11=1k=1

— Ciu(2)/ A (a)] > 8/2)

r r

T
SP(T'1B§8/85 Y T Y |Cluld)d(a)

t=11=1k=1
— Cl(a)d,(a)] > 3/2)
+ P(]4,(&)] < /4, 1)

max |4,(2)Cly(&) — 4(2)Chla)| > & ) + 4/3.
<t<T
k<r
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For arbitrary I, k, and ¢, we have
T > T* = P(|4,(2)Clu(d) — 4(8) Clula)| > &)
< P([Clu(@) ]| 4:(a) — A/a)|
+ |48} Che(@) — Ch(a)| > &y)
< P(|Cu(d) — Crla)f 4,(2) — 4,(&)]
+ | Cl(a) | 4(a) — 4,(4)
+ 14,(8) — 4(a) )| Cly(&) — Cha()]
+ 14, Ci(3) — Clula)] > &)
< P(2{Ciy(&) — Clu(a) || 41(8) — A ()]
+ By.ol4:(&) — 4,(2)] + By o|Ciuld) — Cly(a)] > &)

by Lemma 2

< P2 /& /4 /e1/4 + & /4 + & /4>¢)+ 20/3
=26/3. A

Proof of Theorem 4: As in Theorem 2, partition A into T submatrices of
dimension (rxg), A" =[A4} ... A7]. Then

A

T-Y24'([block diag{H(d), ..., Hr(d)}]™ !

— block diag{H (), ... ,Hp(2)}] ") [w] ... wr]
T
=Ty AH/(3)"' = H(a) )w,.

t=1

Make the following definitions in Theorem 3;

(1) Ar(y) = AUH(T™ 2y + o)™ — H(2)™).

(2) For every C < oo, I satisfies the Corollary and B¢ =4rB,GB,; ¢
x{(2By ¢ + 1)/¢§, where B, ¢ is to be defined below.

() yr =T ~ w).
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Clearly A,7(0) =0, yr = O,(1), and w, satisfies hypothesis 4 and 5 of
Theorem 3. Hence, we need only verify the Lipschitz Condition, hypothesis 2.
Fix C and [ yo], [ y1]l < C, and note that
1 Aer(70) — Aer (YOI < rBAlll HAT™ Y290 + 2) — H(T ™72y, + 2)ll|
=rB,(C5(T V290 + a) /AT~ V2y4 + )
— ng(T_l/z}’l + o)/ 4,(T™ Y2y, + a)|,

for some i, j between 1 and r. Thus, for 7 > T, we have

Il Aer(70) — Aer (71l

< (4rB,/ed)| AT 2y + &) CH(T ™ 2y0 + @)
— ATy + ) CHT Y2y + @)

< (4rB,/ed){ 14T~y + a)CH(T™ V290 + a)
— ATy + ) CH(T 2y + )|
+14,(T™ 20 + a) CH(T™ 90 + @)
— AT 2y + @) CH(T™ 2y, + at)]
AT 12y + ) CiA TPy + a)
— ATy + @) CH(T™ 20 + )]}

< (4rBo/ed){2By.c| CH{T™ 2y + o) — CH{(T 2y, + )
+ 14T 29, + 2)CHT 2y + )
— ATy + ) CH(T™ Py + @)|}
by Lemma 2.

Suppose Ci;(T~ "2y + a)and 4,(T~'/*y + «) are differentiable functions of y on

&S, and that there exists a bound B; ¢ such that |y | < C implies every partial
derivative is less than B, ¢ in absolute value, for every ¢, T, i, and j. Then, by the
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Mean Value Theorem there exists y,7* on the line segment between y, and y,
(and hence satisfying {|y,7*| < C) such that

[CH(T™ 290 + ) — CHT 'V 2y; + o)l = T~ V2 VCH(er*) - (70 — 71)]
< GY2 By cT™ |90 — 71
Similarly,
14Ty, + 2)CI(T ™ 2ys + a)
— AT 2yo + 2)CH(T™ 2 y0 + )
<GBy cT | y0 — 111,

since the bound on 4, and Cj; (Lemma 2) assures that the partials of
A (T~ Y2y + a)Ci(T™ 'y + ) are bounded. Thus,

Ar(vo) — Ar{y Ol < (4rB.GB, /63)(2By.c + DT V2 {lyo — 11
= BCT_”2 [0 — y1l-

For diﬂerentiability, note that C;( T‘”Zy + a) and A,(T_”zy + oz) are poly-

namiale tarme lilla 777 1/2 1 nd ara Adirmanginnal

nomials in terms like 7 Vi + “k” /.“, WeErc 7y ana &, arc ukl-uuucumuual
subvectors of y and «. The boundedness of the partial derivatives follows from
the same arguments contained in Lemmas 1 and 2. W

Proof of Theorem 5: Note that

T
T V22§ ST e =T F ZyS ' - 87 e,

t=

Since each row of Z, has only one nonzero element, one element of this (G x 1)
vector can be written as

mim—+1)/2

T
TY2Y zlp Y (Ch(os) Adbors) — Cha(@)/ A(@))enm,

t=1 n=1

where zi, 1s the kth element of zj;. Since the inner sum is of finite length it
suffices to show

plim T~ 12 Z Z1a( Cu(dors)/ Ai(dors) — Cala)/ 4,(a)) ey, = 0,

T-w =1
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for arbitrary I, s, k, and n. Substituting for ¢,, as in Theorem [ yields the sufficient
conditions

T
plim [ T2 Z 215l CulBors)/ Ac(bors) — Canla}/ Ap(@))

T—-x t=1

x(uziitj'*'uzjizi)’:,(X,X)_IX’u:'0, (A7)

T
plim T~ 12 Z 21 Can(dors)/ de(dors) — Cunl(a)/ A(2))

T—-w =1
Xu'X(X'X) ' %X (X' X)X 'u=0. (A.8)
For (A.7), the hth element of the K-dimensional vector in brackets is

T
™' Z Z}sk(cin(&OLs)/Az(‘iOLs) - C;n(a)/At(o‘))(uriitjh + urjfi:h)

= T2 4"([block diag{4,(dors)/CL(doLs), -.. ,
Ar{ors)/Cldors)}] ™"
— [block diag{d,(x)/CL(a), ...,
Ar(@)/CL(a)} 1™ Wy - wrl

where A’ = [z} ... 25] and w, = u; % + ux, for ¢ =1, ..., T. Setting
g=r=1and B, =B, in Theorem 4 shows that the ith element vanishes in
probability since E(w,) = 0 and

= R v 2 2
E(w?) = o} %7% + 205 %, %un + 05;%%, < B24| o || B,G'/2

Thus, the entire vector in brackets vanishes in probability, Combining with (A.3)
demonstrates {A.7). For (A.8), recall from Theorem 2 that consistency of dp,g
implies

plim (C5(dos)/ 4dors) — Canl(@)/4i(@)) = 0,

uniformly in ¢. Following the methodology of Theorem 1, we need only show
that the K-dimensional vector

T
T Z 2L (Chldors)/ Ai(dors) — Cuul@)/ A, () XX 1 (A.9)

i=1
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is bounded in probability. Fix ¢ > 0 and select 7* such that
T > T* = P(|C(doLs)/ Ai(Gors) — Csala)/ ()] = 1,31) < &.

Then, for the pth element of (A.9) we have

T > T"‘:>P(T'l

T
Z Zisk(Cnldors)/ A:(dors)
t=1

- an(a)/At(a))ftjhgrip

> Bng)

< P(B.BZ > B.B}) + P(|C4(dors)/ A:(dovLs)

~ 1 J#Y « ¢ [ |
= 1,030) < &, -
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