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In this paper, we investigate the finite sample performance of four kernel-based estimators that are
currently available for additive non-parametric regression models – the classic backfitting estimator
(CBE), the smooth backfitting estimator, the marginal integration estimator, and two versions of a two-
stage estimator of which the first is proposed by Kim, Linton and Hengartner (1999) and the second is
proposed in this paper. The bandwidths are selected for each estimator by minimizing their respective
asymptotic approximation of the mean average squared errors. In our simulations, we are particularly
concerned with the performance of these estimators under this unified data-driven bandwidth selection
method, since in this case both the asymptotic and the finite sample properties of all estimators are
currently unavailable. The comparison is based on the estimators’ average squared error. Our Monte
Carlo results seem to suggest that the CBE is the best performing kernel-based procedure.
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Smooth backfitting; Marginal integration
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1. Introduction

Given a random vector (Y, X), Y ∈ " and X ∈ "d , the conditional expectation E(Y |X = x) =
m(x), where x ′ = (x1, . . . , xd) can be estimated non-parametrically under certain regularity
conditions. Stone [1] showed that the best rate obtainable in the estimation of m(x) is ns/(2s+d),
where s is the degree of smoothness of the function m. The fact that the optimal rate depends
inversely on d is known as the curse of dimensionality in non-parametric regression estimation.
However, as shown by Stone [2], if m(x) has an additive structure, i.e.

E(Y |X = x) = α +
d∑

δ=1

mδ(xδ) (1)
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24 C. Martins-Filho and K. Yang

with E(mδ(·)) = 0, each of the component functions mδ(·) can be estimated at an optimal rate
ns/(2s+1), which does not depend on d. This circumvention of the curse of dimensionality, as
well as the ease of interpreting the impacts of different regressors on the regressand has led
to the popularity of additive non-parametric regression models in both theoretical and applied
literatures.†

Four estimators have emerged as viable alternatives for the regression model in equation (1):
the Classic backfitting estimator (CBE), proposed by Buja et al. [5]; the Marginal integra-
tion estimator (MIE), proposed by Newey [6], Tjøstheim and Auestad [7] and Linton and
Nielsen [8]; a two-stage estimator (2SE), proposed by Linton [9] and Kim et al. [10]; and the
smooth backfitting estimator (SBE), recently proposed by Mammen et al. [11]. All these esti-
mators share, among other things, the use of kernel-based non-parametric estimation methods,
such as Nadaraya-Watson or local polynomial fitting in intermediate stages,‡ but they differ in
how the additive structure constraint is utilized to produce final estimators of the component
functions.

The CBE has been the most studied of these procedures. Using local polynomial as the
intermediate smoother, CBE converges to the true regression function at an optimal rate of
ns/(2s+1) (see [14] for the bivariate model and [15] for the multivariate model), but it is not oracle
efficient, i.e. the estimator of each component function does not have the same asymptotic bias
as when all other components are known. Compared with CBE, the MIE is computationally
more expensive, but it reaches the oracle efficiency bounds (see [8] for d = 2 and [16] for d >

2). In addition, MIE is more robust against model mis-specification, according to a simulation
study in [17]. However, the MIE becomes less efficient as the correlation among regressors
increases, due to the fact that it needs to estimate the model at many out-of-sample points.
The 2SE proposed by Kim et al. [10] reduces asymptotic variance by combining the MIE
with a one-step backfitting. They also suggest the use of an internalized Nadaraya-Watson
smoother in the MIE to avoid estimating the model at out-of-sample points. The 2SE is more
efficient than MIE when an oversmoothing bandwidth is applied to the second stage estimation.
More recently, Mammen et al. [11] proposed a smooth backfitting procedure that is motivated
by the projection interpretation of kernel estimators, suggested by Mammen et al. [18]. Its
implementation relies on iterative calculation of a system of first order equations from a
suitably defined distance minimization criterion. The SBE does not have the drawbacks of
CBE, MIE or 2SEs. It reaches both the optimal convergence rate and the oracle efficiency
bound. In addition, the asymptotic expressions of SBE for one component function do not
rely on other components that completely circumvents the problem caused by the correlation
among regressors.A simulation study in [19] shows that SBE is computationally quite efficient
even for a high dimensional model, e.g. d = 100.

For empirical researchers, how these different procedures perform in finite samples is of
essential interest. First, the slower convergence rate of non-parametric estimators compared
with parametric estimators suggests that their finite sample properties may be quite differ-
ent from what is suggested by the asymptotic theory. Second, unfortunately, all asymptotic
properties obtained for these estimators rely on bandwidths being non-stochastic. In practice,
however, bandwidths are chosen by data driven methods, such as cross validation, and various
plug-in methods (see for example [20] and [21]). Therefore, a carefully designed Monte Carlo
simulation based on data driven bandwidth selection methods would be valuable to reveal the
relative estimation accuracy of these procedures in various scenarios.

†See, inter alia, [3] and [4].
‡Alternative non-parametric smoothing methods, e.g. spline or wavelet method, could potentially be used, but such

methods have not received the attention given to kernel-based methods. See [12] and [13].
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Finite sample performance of kernel-based regression methods 25

There is a small number of simulation studies dealing with additive non-parametric
regression (see [17] and [19]). The current literature generally makes comparisons based on
bandwidth selection methods that favor one of the competing estimators. A variety of band-
width selection methods have been proposed for different estimators. These include the direct
plug-in method proposed by Opsomer and Ruppert [21] for the CBE with local polynomial
smoothing; rule of thumb bandwidths suggested by Linton and Nielsen [8] for the MIE and by
Kim et al. [10] for the 2SE; cross-validation methods proposed by Nielsen and Sperlich [19]
and penalized least square methods and plug-in methods proposed by Mammen and Park [22]
for the SBE. Here, to accurately assess the relative performance of the estimators, a unified
plug-in method is proposed for bandwidth selection in the simulation, which is inspired by
the DPI method of Opsomer and Ruppert [21] and involves a common criterion function for
bandwidth selection. To the best of our knowledge, this is the first simulation study for all four
of the available estimators with a unified bandwidth selection method. We are also particularly
interested in the impact of different degrees of regressor dependency on the estimation of mδ .
Robustness against model mis-specification is not an objective of our simulation, i.e. in all
experiments we conducted here, the underlying models are always assumed to be additive.†

Ultimately, our objective is to provide applied researchers with information that allows one
for a more accurate comparison of these competing estimation alternatives in a finite sample
setting.

Besides this introduction the paper has five more sections. Section 2 describes in a uni-
fied notation the estimators under study and their properties. Section 3 provides asymptotic
conditional bias and variance for the SBE, MIE and 2SE estimators, a plug-in formula to
select bandwidths and a description of how the bandwidth selection method is implemented.
Section 4 presents the data generation processes used in the simulation and section 5 discusses
the results and makes some recommendations. Section 6 provides a brief conclusion with some
directives for future research.

2. Estimators under study

For computational convenience, notation and exposition, a bivariate model is used in this
paper, but the conclusions extend to higher dimensions. Let (Y, X, Z) be a random vec-
tor with joint density f (y, x, z) such that E(Y |X = x, Z = z) = m(x, z) = α + m1(x) +
m2(z), with E(m1(X)) = E(m2(Z)) = 0 and V (Y |X = x, Z = z) = σ 2. Here α and σ 2

are unknown parameters and m1(·) and m2(·) are real valued functions with regularity
properties that will be made explicit later in this section. Suppose a random sample of
size n, denoted by {yi, xi, zi}ni=1 is available. Our primary interest is on the estimation
of m(x, z) = α + m1(x) + m2(z). Let $y = (y1, . . . , yn)

′, and define similarly $x and $z. In
addition, let $m1($x) = (m1(x1), . . . , m1(xn))

′, and similarly define $m2($z).
Since a local linear smoother will be used in defining the estimators under study, we first

introduce some notations. Let Khj
(·) = K(·/hj )/hj , where K(·) is an univariate kernel func-

tion and hj , j = 1, 2, are the bandwidths used for the estimation of m1 and m2, respectively.
The local linear smoothing matrix with respect to $x and $z are defined as

S1 =




s1(x1)

...

s1(xn)



, and S2 =




s2(z1)

...

s2(zn)



, (2)

†See [17] and [23] for simulation studies that address model mis-specifications.
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26 C. Martins-Filho and K. Yang

where s1(x), s2(z) : " → "n are

s1(x) = e(RX(x)′WX(x)RX(x))−1RX(x)′WX(x),

s2(z) = e(RZ(z)′WZ(z)RZ(z))−1RZ(z)′WZ(z), (3)

where e = (1, 0), WX(x) = diag{Kh1(xi − x)}ni=1, WZ(z) = diag{Kh2(zi − z)}ni=1, RX(x) =
($1n, $x − $1nx), RZ(z) = ($1n, $z − $1nz) and $1n is a one vector of size n.

Given a bivariate non-parametric estimator m̂(x, z) for m(x, z), one can, in general, define
estimators for m1(·), m2(·) and α as solutions for the following minimization problem:

minimize
∫∫

{m̂(x, z) − m1(x) − m2(z) − α}2dP(x, z)

subject to m1 ∈ H1, m2 ∈ H2, and α ∈ R, (4)

where P(·, ·) is a joint measure, while H1 and H2 are function classes members of which satisfy
the identification conditions such as

∫∫
m1(x)dP (x, z) = 0 and

∫∫
m2(z)dP (x, z) = 0. Note

that given E(m1(X)) = E(m2(Z)) = 0, a suitable estimator for α is ȳ = 1/n
∑n

i=1 yi . For
the rest of our discussion we will simply assume α is known since ȳ converges to α with rate√

n.

2.1 Classic backfitting estimator (CBE)

In the minimization problem defined in equation (4) if we take the measure P(x, z) to be the
joint probability measure of X and Z, i.e. dP(x, z) = fXZ(x, z)dxdz, with fXZ(x, z) being the
joint density of X and Z, the solution to the minimization problem should satisfy the following
equations:

m1(x) =
∫

m̂(x, z)
fXZ(x, z)

fX(x)
dz −

∫
m2(z)

fXZ(x, z)

fX(x)
dz − ȳ (5)

m2(z) =
∫

m̂(x, z)
fXZ(x, z)

fZ(z)
dx −

∫
m1(x)

fXZ(x, z)

fZ(z)
dx − ȳ (6)

where fX(·) and fZ(·) are marginal densities of X and Z, respectively. Replacing the condi-
tional expectations appearing in equations (5) and (6) with appropriate local linear projections,
the CBE can be expressed as the solution for

(
In S∗

1

S∗
2 In

) (
$mCB

1 ($x)

$mCB
2 ($z)

)

=
(

S∗
1

S∗
2

)
$y, (7)

with S∗
d = (In − (1/n)$1n

$1′
n)Sd ≡ DnSd for d = 1, 2, where In is an identity matrix.

2.2 Marginal integration estimator (MIE)

In the minimization problem defined in equation (4), if we let dP(x, z) = fX(x)fZ(z)dxdz
instead, the solutions to the minimization problem satisfy

m1(x) =
∫

m̂(x, z)fZ(z)dz − ȳ (8)

m2(z) =
∫

m̂(x, z)fX(x)dx − ȳ. (9)
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Finite sample performance of kernel-based regression methods 27

The MIE is essentially an empirical version of equations (8) and (9), with fZ(z) and fX(x)

replaced by empirical frequencies. More precisely, the MIE is defined by first obtaining an
estimator m̂(x, z), in this case a bivariate local linear estimator, defined as

m̂(x, z; h1, h2) = e2(X(x, z)′W(x, z)X(x, z))−1X(x, z)′W(x, z)$y, (10)

where e2 = (1, 0, 0), X(x, z) = ($1n, $x − $1nx, $z − $1nz) and W(x, z) = diag{Kh1(xi − x) ×
Kh2(zi − z)}ni=1. Then,

mMI
1 (x) = 1

n

n∑

i=1

m̂(x, zi) − ȳ, mMI
2 (z) = 1

n

n∑

i=1

m̂(xi, z) − ȳ. (11)

2.3 Two-stage estimators (2SE1 & 2SE2)

The 2SE is an effort to improve upon MIE by accounting for the dependency between X and
Z in solving equations (5) and (6). This is accomplished by estimating

∫
(m2(z)fXZ(x, z)/

fX(x))dz ≡ E(m2(z)|X = x) by s1(x) $mMI
2 ($z),

∫
(m1(x)fXZ(x, z)/fZ(z))dx ≡ E(m1(x)|Z =

z) by s2(z) $mMI
1 ($x), where $mMI

1 ($x) = (mMI
1 (x1), . . . , m

MI
1 (xn)), $mMI

2 ($z) = (mMI
2 (z1), . . . ,

mMI
2 (zn)). In addition,

∫
(m̂(x, z)fXZ(x, z)/fX(x))dz ≡ E(m̂(x, z)|X = x) and

∫
(m̂(x, z)fXZ

(x, z)/fZ(z))dx ≡ E(m̂(x, z)|Z = z) are estimated, respectively, by s1(x)$y and s2(z)$y. Kim
et al. [10] consider the case where mMI

1 and mMI
2 are based on a bivariate internalized

Nadaraya-Watson estimate for m(x, z)† and define the 2SE1 as,

$m2S1
1 (x) = s1(x)($y − $mMI

2 ($z) − $1nȳ) = s1(x)($y − $γ P
2 ($z)) and

$m2S1
2 (z) = s2(z)($y − $mMI

1 ($x) − $1nȳ) = s2(z)($y − $γ P
1 ($x)), (12)

where $γ P
1 ($x) = (γ P

1 (x1), . . . , γ
P
1 (xn))

′ and $γ P
2 ($z) are similarly defined with

γ P
1 (xi) = 1

n

n∑

j=1

Kg1(xj − xi)
f̂Z(zj )

f̂XZ(xj , zj )
yj , γ P

2 (zi) = 1
n

n∑

j=1

Kg2(zj − zi)
f̂X(xj )

f̂XZ(xj , zj )
yj

(13)
and f̂X(xi), f̂Z(zi) and f̂XZ(xi, zi) are kernel density estimates with bandwidth g1 and g2

associated with X and Z, respectively.
Since the internalized Nadaraya-Watson smoother does not produce an equivalent kernel

vector that sums to one, the 2SE1 may not be accurate even in the simplest case, where $y
is a constant vector. To achieve better finite sample performance, we propose an alternative
two-stage estimation procedure, 2SE2 as follows:

• First, pilot estimators for m1(xi) and m2(zi), i = 1, . . . , n are obtained by

mP
1 (xi) = 1

n

n∑

j=1

Kg1(xj − xi)
f̂Z(zj )

f̂XZ(xj , zj )
(yj − ȳ) (14)

mP
2 (zi) = 1

n

n∑

j=1

Kg2(zj − zi)
f̂X(xj )

f̂XZ(xj , zj )
(yj − ȳ); (15)

†See [24] and [10] for details.
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28 C. Martins-Filho and K. Yang

• Second, the final 2SE2 is obtained with a one step backfitting procedure,

$m2S2
1 (x) = s1(x)($y − $1nȳ − $mP

2 ($z)) and $m2S2
2 (z) = s2(z)($y − $1nȳ − $mP

1 ($x)), (16)

where $mP
1 ($x) = (mP

1 (x1), m
P
1 (x2), . . . , m

P
1 (xn))

′ and $mP
2 ($z) are similarly defined.

We expect that 2SE2 will outperform 2SE1 in general, and particularly so when α is of
relatively large scale.

2.4 Smooth backfitting estimator (SBE)

The local linear SBE is motivated by the following minimization problem

minimize
∫∫ n∑

i=1

{Yi − α − m1(x) − m2(z) − m
(1)
1 (x)(xi − x)

− m
(1)
2 (z)(zi − z)}2Kh1(xi − x)Kh2(zi − z)dxdz, (17)

subject to the identification conditions
∫ n∑

i=1

m1(x)Kh1(xi − x)dx =
∫ n∑

i=1

m2(z)Kh2(zi − z)dz = 0. (18)

Note that the minimization is with respect to α, m1(x) and m2(z) and their first derivatives
m

(1)
1 (x) and m

(1)
2 (z). Again, α can simply be estimated by ȳ, so the first order conditions of

the above minimization with respect to m1(x) and m
(1)
1 (x) are given by

(
mSB

1 (x)

m
(1),SB
1 (x)

)

=
(

m̃1(x)

m̃(1)(x)

)

− M̂X(x)−1
∫

ŜXZ(x, z)

(
mSB

2 (z)

m
(1),SB
2 (z)

)

dz, (19)

where
( m̃1(x)

m̃(1)(x)

)
is a local linear projection of ($y − $1nȳ) onto the subset of "n where $x takes

values and

M̂X(x) =
(

f̂X(x) f̂ X
X (x)

f̂ X
X (x) f̂ XX

X (x)

)

, ŜXZ(x, z) =
(

f̂XZ(x, z) f̂ Z
XZ(x, z)

f̂ X
XZ(x, z) f̂ XZ

XZ (x, z)

)

with

f̂X(x) = 1
n

n∑

i=1

Kh1(xi − x), f̂XZ(x, z) = 1
n

n∑

i=1

Kh1(xi − x)Kh2(zi − z),

f̂ X
X (x) = 1

n

n∑

i=1

Kh1(xi − x)(xi − x),

f̂ Z
XZ(x, z) = 1

n

n∑

i=1

Kh1(xi − x)Kh2(zi − z)(zi − z),

f̂ XZ
X (x, z) = 1

n

n∑

i=1

Kh1(xi − x)(xi − x)(zi − z) and

f̂ XZ
XZ = 1

n

n∑

i=1

Kh1(xi − x)Kh2(zi − z)(xi − x)(zi − z).
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Finite sample performance of kernel-based regression methods 29

Similar first order conditions as in equation (19) can be defined for m2(z) and m
(1)
2 (z). With

starting values set to mSB
j (·), m

(1),SB
j (·), m̃j (·), m̃

(1)
j (·) for j = 1, 2, the smooth backfitting

estimator is obtained by iterative calculation of equation (19) and its analogue with respect
to Z, until mSB

j (·), j = 1, 2 converge under a suitably chosen criterion. In implementing the
algorithm, the integral in the updating equation (19) can be approximated with a weighted
average of the integrand evaluated over a grid in the support of Z (or X).

3. Asymptotic approximations and bandwidth selection

The plug-in bandwidth selection methods, which we consider for all estimators, depend on
obtaining suitable asymptotic approximations for the conditional mean average squared errors
(MASE). By definition, for a generic estimator m̂(x, z) of m(x, z), we have

MASE(m̂|$x, $z) = 1
n

n∑

i=1

(E(m̂(xi, zi) − m(xi, zi)|$x, $z))2

= 1
n

n∑

i=1

(E(m̂(xi, zi)|$x, $z) − m(xi, zi))
2 + 1

n

n∑

i=1

V (m̂(xi, zi)|$x, $z). (20)

Since conditional on the regressors MASE can be written as the averaged squared conditional
bias and averaged conditional variance of the the estimator, we need expressions for the bias
and variance in order to obtain data dependent expressions for h1 and h2 that minimize an
asymptotic approximation for MASE (AMASE). To this end we make the following general
assumptions that are necessary to obtain the conditional bias and variance of the estimators
under study:

ASSUMPTION 1 The kernel K(·) is such that K: [−1, 1] → [0, BK) for some finite BK > 0,

K(ψ) = K(−ψ) for ψ ∈ ", µ1 =
∫

ψK(ψ)dψ = 0, µ2 =
∫

ψ2K(ψ)dψ < ∞ and there
exists a constant c such that |K(u) − K(v)| ≤ c|u − v| for all u, v ∈ ". In addition,∫

K2(ψ)dψ exists and we write RK =
∫

K2(ψ)dψ .

ASSUMPTION 2 The second derivative of the functions m1(x), m2(z), fX(x), fZ(z) and
fXZ(x, z), denoted by m

(2)
1 (x), m

(2)
2 (z), f

(2)
X (x), f

(2)
Z (z) and ∂2fXZ(x, z)/∂d∂d , respectively,

all exist and are continuous over their compact supports given by SX, SZ and SX × SZ . We
assume further that there exist generic constants 0 < bf < Bf that are, respectively, lower
and upper bounds on fX, fZ and fXZ.

ASSUMPTION 3 There exist non-stochastic bandwidths g1, h1 and g2, h2 associated with
regression directions m1(·) and m2(·), respectively. These bandwidths are such that
g1, h1, g2, h2 → 0, nh1h2, ng1g2 → ∞ as n → ∞, and that gd ∼ hd (same order) for
d = 1, 2.

3.1 Classic backfitting estimator (CBE)

Opsomer and Ruppert (1997) show that when (nh1)/(log n), (nh2)/(log n) → ∞ it is pos-
sible to obtain asymptotic approximations for the conditional bias and variance of mCB

1 (x)

and mCB
2 (z). These asymptotic approximations are most commonly used in obtaining the

estimator’s mean average squared error (AMASE). Since AMASE is highly non-linear on the
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30 C. Martins-Filho and K. Yang

bandwidths, the minimization ofAMASE can only be accomplished by a numerical procedure.
However, in the special case of independent regressors, it is possible to obtain an analytical
solution for the optimal bandwidths. Expressions for the optimal h1 and h2, in the sense that
they minimize the AMASE, for CBE are given by:

hCB
1 =

(
σ 2RK

nµ2
2θ11

n−1
n∑

i=1

fX(xi)
−1

)1/5

and hCB
2 =

(
σ 2RK

nµ2
2θ22

n−1
n∑

i=1

fZ(zi)
−1

)1/5

,

(21)
where θ11 = n−1∑n

i=1(m
(2)
1 (xi) −E(m

(2)
1 (xi)))

2 and θ22 = n−1∑n
i=1(m

(2)
2 (zi) −E(m

(2)
2 (zi)))

2.
A few points are worth noting regarding the practical use of these expressions: (a) θ11, θ22,
fX and fZ are unknown, rendering hCB

1 and hCB
2 inadequate for producing feasible CBE. In

practice, the unknown quantities θ11, θ22, fX and fZ must be estimated to render the expressions
in equation (21) useful; and (b) their relatively simple analytical form derives from assuming
independence of the regressors. A simulation study in [21] suggests that these bandwidths are
quite robust in increasing correlation between regressors. Therefore, we adopt this method in
implementing bandwidth selection in our simulations.

3.2 Smooth backfitting estimator (SBE)

The following theorem is a trivial extension of the results in [19] and [22] to give an
approximation for conditional bias, variance and MASE of SBE.

THEOREM 1 Under Assumptions 1–3 and if nh1h
2
2, nh2h

2
1 → ∞, for (x, z) ∈ SX × SZ, the

conditional bias and variance of local linear SBE can be written as:

E(mSB
1 (x) − m1(x)|$x) = 1

2
µ2h

2
1(m

(2)
1 (x) − E(m

(2)
1 (X))) + op(h2

1) (22)

V (mSB
1 (x)|$x) = 1

nh1
σ 2RKfX(x)−1 + op((nh1)

−1). (23)

Mutatis mutandis, similar expressions for mSB
2 (z) are obtained. The conditional MASE of

local linear SBE for m(x, z) is given by,

MASE = 1
4
µ2

2h
4
1θ11 + 1

4
µ2

2h
4
2θ22 + 1

4
µ2

2h
2
1h

2
2θ12 + 1

nh1
σ 2RK

n∑

i=1

fX(xi)
−1

+ 1
nh2

σ 2RK

n∑

i=1

fZ(zi)
−1 + op(h4

1 + h4
2) + op((nh1)

−1 + (nh2)
−1), (24)

where θ11, θ22 are the same as defined in equation (21) and θ12 = ∑n
i=1(m

(2)
1 (xi) −

E(m
(2)
1 (xi)))(m

(2)
2 (zi) − E(m

(2)
2 (zi)))

The plug-in estimators for bandwidths that minimize the AMASE, denoted by hSB
1 and hSB

2 ,
can be obtained from the following procedures:

1. Fit the model with local linear SBE with a preliminary bandwidth, denote the estimates
m̂0

1($x), m̂0
2($z). Use the residuals to calculate σ̂ 2;

2. Project m̂0
1($x) onto the subset of "n, where $x takes values using a local cubic kernel

smoother to obtain estimates for m
(2)
1 (xi), denoted by m̌

(2)
1 (xi), similarly get m̌

(2)
2 (zi) for
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Finite sample performance of kernel-based regression methods 31

all i = 1, . . . , n. Estimate θ11, θ12 and θ22 by averaging over sample points. Denote the
estimates by θ̂11, θ̂12 and θ̂22; and

3. Plug θ̂11, θ̂12, θ̂22 and σ̂ 2 into AMASE and find hSB
1 > 0, hSB

2 > 0 that minimize the
AMASE.

This procedure is a revised version of the plug-in method in [22], where an iterative SBE
fitting is used for the optimal bandwidth searching. Our procedure is computationally simpler
as it requires only one SBE fitting, which should be the most time consuming part in the
search procedure. The relative performance of these two alternative procedures for bandwidth
selection has not been investigated. Note that in general, no analytical expressions for hSB

1
and hSB

2 are available. In the special case where X is independent from Z, the term θ12 is of
order Op(n−1) and, therefore, can be ignored in AMASE. In this case, the hSB

1 and hSB
2 can be

written as

hSB
1 =

(
σ 2RKn−1 ∑n

i=1 fX(xi)
−1

nµ2
2θ11

)1/5

and hSB
2 =

(
σ 2RKn−1 ∑n

i=1 fZ(zi)
−1

nµ2
2θ22

)1/5

.

(25)
These expressions are identical to hCB

1 and hCB
2 and the plug-in bandwidth for univariate local

linear regression of Ruppert et al. [25]. The only difference here is that the unknown quantities
are estimated using SBE. Based on the good performance of this bandwidth for CBE in the
presence of dependence among regressors, we conjecture that it should work reasonably well
for SBE.

3.3 Marginal integration estimator (MIE)

Linton and Nielsen [8] show that when nh1h
2
2, nh2h

2
1 → ∞ then

√
nhj (m

MI
j (·) − E(mMI

j (·))),
for j = 1, 2, are asymptotically normal. However, the AMASE for the MIE, even under
regression independence, does not produce closed analytical expressions for optimal band-
widths similar to those for CBE and SBE. The AMASE for the MIE and the optimal
bandwidths that minimize AMASE are presented in the following theorem, the proof of which
is straightforward, compared with the results in [8], and is omitted.

THEOREM 2 Let (x, z) ∈ SX × SZ and assume that X and Z are independent. Assume that
Assumptions 1–3 are holding and that nh1h

2
2, nh2h

2
1 → ∞.

(i) The conditional bias and variance of mMI
1 (x) for x ∈ SX are given by,

E(mMI
1 (x) − m1(x)|$x, $z) = 1

2
h2

1µ2m
(2)
1 (x) + 1

2
h2

2µ2E(m
(2)
2 (Z)) + op(h2

1 + h2
2) (26)

and

V (mMI
1 (x)|$x, $z) = 1

nh1
σ 2RKfX(x)−1 + op((nh1)

−1). (27)

Mutatis mutandis identical expressions for mMI
2 (z) are obtained. For mMI(x, z) = ȳ +

mMI
1 (x) + mMI

2 (z) we have,

E(mMI(x, z) − m(x, z)|$x, $z) = 1
2
h2

1µ2

(
m

(2)
1 (x) + E(m

(2)
1 (X))

)

+ 1
2
h2

2µ2

(
m

(2)
2 (z) + E(m

(2)
2 (Z))

)
+ op(h2

1 + h2
2)
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32 C. Martins-Filho and K. Yang

and

V (mMI(x, z)|$x, $z) = 1
nh1

σ 2RKfX(x)−1 + 1
nh2

σ 2RKfZ(z)−1

+ op((nh1)
−1 + (nh2)

−1). (28)

(ii) The conditional MASE for the MIE is given by,

MASE = 1
4
h4

1µ
2
2ψ11 + 1

2
h2

1h
2
2µ

2
2ψ12 + 1

4
h4

2µ
2
2ψ22

+ σ 2RK

n

(
1

nh1

n∑

i=1

fX(xi)
−1 + 1

nh2

n∑

i=1

fZ(zi)
−1

)

+ op

(
h4

1 + h4
2 + (nh1)

−1 + (nh2)
−1) ,

where ψdδ = 1/n
∑n

i=1(m
(2)
d (xi) + E(m

(2)
d (xi)))(m

(2)
δ (zi) + E(m

(2)
δ (zi))) for d, δ =

1, 2.
(iii) The bandwidths that minimize the conditional AMASE, disregarding the term op(·),

denoted by hMI
1 , hMI

2 , must satisfy,

(hMI
1 )5µ2

2ψ11 + (hMI
1 )3(hMI

2 )2µ2
2ψ12 = σ 2RK

n

(
1
n

n∑

i=1

fX(xi)
−1

)

(29)

(hMI
2 )5µ2

2ψ22 + (hMI
2 )3(hMI

1 )2µ2
2ψ12 = σ 2RK

n

(
1
n

n∑

i=1

fZ(zi)
−1

)

. (30)

As in the case of CBE, these optimal bandwidths depend on unknown quantities in
equation (29) and (30) that have to be estimated to render them useful. Specifically, it is
necessary to estimate ψdδ , fX and fZ . Hence, the stochastic nature of the estimates of hMI

1 and
hMI

2 and their dependence on the regressand produce the same non-linearities and difficulties
that were alluded to when discussing CBE.

3.4 Two stage estimator (2SE1 & 2SE2)

In this section we obtain the conditional MASE for the 2SEs. The next two theorems provide a
simplified version of the conditional bias, variance and MASE for 2SE1 and 2SE2, respectively.
The more general results and their proofs are given in Theorem 1 and 2 in the Appendix. The
proofs depend on Lemma 1 that establishes uniform convergence of certain bounded functions
of X and Z. These results are then used to construct conditional MASE and to obtain optimal
bandwidths for the two stage estimators. As in the case of CBE, SBE and MIE estimation,
certain requirements on the speed of convergence to zero of the bandwidths are necessary.

THEOREM 3 Suppose that Assumptions 1–3 hold, ng3
1(ln(g1))

−1 → ∞ and n(g1g2)
3

(ln(g1g2))
−1 → ∞. Put γ1(x) = α + m1(x) and γ2(z) = α + m2(z). If X and Z are

independent, and under the assumption that the bandwidths used in the first stage – g1, g2 – are
identical to those – h1, h2 – used in the second stage of the estimation, we have that:
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Finite sample performance of kernel-based regression methods 33

(i) The conditional bias for m2S1
1 (x) is given by,

E(m2S1
1 (x) − m1(x)|$x, $z) = 1

2
h2

1µ2m
(2)
1 (x) − 1

2
h2

2µ2E(m
(2)
2 (Z))

+ 1
2
h2

2µ2

∫
f

(2)
Z (v)γ2(v)dv + op(h2

1 + h2
2)

and the conditional variance is given by

V (m2S1
1 (x)|$x, $z) = 1

nh1
σ 2RKfX(x)−1 + op((nh1)

−1).

Mutatis mutandis, similar expressions for m2S1
2 (z) are obtained;

(ii) The conditional bias and variance for m2S1(x, z) are given by,

E(m2S1(x, z) − m(x, z)|$x, $z) = 1
2
h2

1µ2

(
m

(2)
1 (x) − E(m

(2)
1 (X)) +

∫
f

(2)
X (v)γ1(v)dv

)

+ 1
2
h2

2µ2

(
m

(2)
2 (z) − E(m

(2)
2 (Z)) +

∫
f (2)

z (v)γ2(v)dv

)
+ op(h2

1 + h2
2)

and

V (m2S1(x, z)|$x, $z) = 1
nh1

σ 2RKfX(x)−1 + 1
nh2

σ 2RKfZ(z)−1

+ op((nh1)
−1 + (nh2)

−1);

(iii) The conditional MASE for the 2SE1 is given by

MASE = 1
4
h4

1µ
2
2φ11 + 1

4
h4

2µ
2
2φ22 + 1

2
h2

1h
2
2µ2φ12

+ σ 2RKn−1

(
1

nh1

n∑

i=1

fX(xi)
−1 + 1

nh2

n∑

i=1

fZ(zi)
−1

)

+ op

(
h4

1 + h4
2 + (nh1)

−1 + (nh2)
−1) ,

where

φ11 = 1
n

n∑

i=1

(
m

(2)
1 (xi) − E(m

(2)
1 (X)) +

∫
f

(2)
X (v)γ1(v)dv

)2

φ22 = 1
n

n∑

i=1

(
m

(2)
2 (zi) − E(m

(2)
1 (X)) +

∫
f

(2)
X (v)γ2(v)dv

)2

φ12 = 1
n

n∑

i=1

(
m

(2)
1 (xi) − E(m

(2)
1 (X)) +

∫
f

(2)
X (v)γ1(v)dv

)

×
(

m
(2)
2 (zi) − E(m

(2)
2 (Z)) +

∫
f

(2)
Z (v)γ2(v)dv

)
.

THEOREM 4 Suppose that Assumptions 1–3 hold, that ng3
1(ln(g1))

−1 → ∞ and
n(g1g2)

2p+1(ln(g1g2))
−1 → ∞. If X and Z are independent, and under the assumption that
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34 C. Martins-Filho and K. Yang

the bandwidths used in the first stage – g1, g2 – are identical to those – h1, h2 – used in the
second stage of the estimation, we have that:

(i) The conditional bias for m2S2
1 (x) is given by,

E(m2S2
1 (x) − m1(x)|$x, $z) = 1

2
h2

1µ2m
(2)
1 (x) − 1

2
h2

2µ2E(m
(2)
2 (Z))

+ 1
2
h2

2µ2

∫
f

(2)
Z (v)m2(v)dv + op(h2

1 + h2
2)

and the conditional variance is given by

V (m2S2
1 (x)|$x, $z) = 1

nh1
σ 2RKfX(x)−1 + op((nh1)

−1).

Mutatis mutandis, similar expressions for m2S2
2 (z) are obtained;

(ii) The conditional bias and variance for m2S2(x, z) are given by,

E(m2S2(x, z) − m(x, z)|$x, $z)

= 1
2
h2

1µ2

(
m

(2)
1 (x) − E(m

(2)
1 (X)) +

∫
f

(2)
X (v)m1(v)dv

)

+ 1
2
h2

2µ2

(
m

(2)
2 (z) − E(m

(2)
2 (Z)) +

∫
f

(2)
Z (v)m2(v)dv

)

+ op(h2
1 + h2

2)

and

V (m2S2(x, z)|$x, $z) = 1
nh1

σ 2RKfX(x)−1 + 1
nh2

σ 2RKfZ(z)−1

+ op

(
(nh1)

−1 + (nh2)
−1) ;

(iii) The conditional MASE for 2SE2 is given by

MASE = 1
4
h4

1µ
2
2χ11 + 1

4
h4

2µ
2
2χ22 + 1

2
h2

1h
2
2µ2χ12

+ σ 2RKn−1

(
1

nh1

n∑

i=1

fX(xi)
−1 + 1

nh2

n∑

i=1

1
fZ

(zi)
−1

)

+ op

(
h4

1 + h4
2 + (nh1)

−1 + (nh2)
−1) ,

where

χ11 = 1
n

n∑

i=1

(
m

(2)
1 (xi) − E(m

(2)
1 (X)) +

∫
f

(2)
X (v)mx(v)dv

)2

χ22 = 1
n

n∑

i=1

(
m

(2)
2 (zi) − E(m

(2)
2 (Z)) +

∫
f

(2)
Z (v)m2(v)dv

)2

χ12 = 1
n

n∑

i=1

(
m

(2)
1 (xi) − E(m

(2)
1 (X)) +

∫
f

(2)
X (v)m1(v)dv

)

×
(

m
(2)
2 (zi) − E(m

(2)
2 (Z)) +

∫
f

(2)
Z (v)m2(v)dv

)
.
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Finite sample performance of kernel-based regression methods 35

A number of remarks are in order regarding Theorems 3 and 4.

1. Although the conditional bias of all estimators under study are of similar order, the 2SE
conditional bias in direction md (d = 1, 2) under independence of X and Z have two extra
terms of order O(h2

δ) for δ .= d, if compared with the bias of the univariate local linear
estimator, i.e. (1/2)h2

dµ2m
(2)
d (x). The impact of these terms on the conditional bias of the

estimators is unclear, since their sign and magnitude depends on the data generating process.
Likewise, it is not possible to ascertain the relative magnitude of these terms and those of
similar order which appear in the conditional bias expression for CBE, SBE and MIE. In the
case where X and Z are not independent (Theorems 1 and 2 in the Appendix), comparisons
are made even more difficult by the presence of an additional term of order O(h2

δ). Kim
et al. [10] are able to eliminate these extra terms with undersmoothing in the first stage
estimation, i.e. letting g1, g2 degenerate at a faster speed relative to h1, h2 (see Theorems 1
and 2 in the Appendix). Note that this oracle property of the estimation procedure can be
obtained in the context of backfitting by choosing bandwidths that oversmooth at the last
step of the backfitting algorithm.

2. When X and Z are independent, both CBE and SBE with local linear smoother produce
conditional bias and variance are given by

E(mCB
1 (x) − m1(x)|$x, $z) = 1

2
h2

1µ2(m
(2)
1 (x) − E(m

(2)
1 (X))) + op(h2

1 + h2
2) (31)

and

V (mCB
1 (x)|$x, $z) = 1

nh1
σ 2RKfX(x)−1 + op((nh1)

−1). (32)

Hence, for both mCB
1 and mSB

1 the biases depend only on the curvature of m1, weighted
by the density. On the other hand, the biases of the m2S1

1 and m2S2
1 , as well as that of

the mMI
1 depend on the curvature of the other component function, even when X and Z

are independent. As pointed out by Opsomer and Ruppert [14, p. 198], it seems natural
to expect estimators for an additive model, where the regressors are independent to have
asymptotic bias for one of the component functions to be independent of the other. Whether
this theoretical advantage of CBE and SBE translates into better estimation accuracy in
finite sample is a question we want to answer with our simulations.

3. The 2SEs have conditional variances that are of the same order and identical (of order
O((nhd)

−1)) to that of CBE, SBE and MIE and a univariate local linear estimator.

Given the AMASE results from Theorems 3 and 4 the optimal bandwidths that minimize
the conditional AMASE for 2SE1 and 2SE2 must satisfy the following two sets of equations:

(h2S1
1 )5µ2

2φ11 + (h2S1
2 )2(h2S1

1 )3µ2φ12 = σ 2RK

(
1
n

n∑

i=1

fX(xi)
−1

)

(33)

(h2S1
2 )5µ2

2φ22 + (h2S1
1 )2(h2S1

2 )3µ2φ12 = σ 2RK

(
1
n

n∑

i=1

fZ(zi)
−1

)

(34)

and

(h2S2
1 )5µ2

2χ11 + (h2S2
2 )2(h2S2

1 )3µ2χ12 = σ 2RK

(
1
n

n∑

i=1

fX(xi)
−1

)

(35)

(h2S2
2 )5µ2

2χ22 + (h2S2
1 )2(h2S1

2 )3µ2χ12 = σ 2RK

(
1
n

n∑

i=1

fZ(zi)
−1

)

. (36)
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36 C. Martins-Filho and K. Yang

3.5 Data driven bandwidth selection

The choice of data driven bandwidth for the Monte Carlo experiments was based on two con-
siderations. First, we want to have a bandwidth selection rule that interferes minimally with the
performance of the estimators. By this, we mean a bandwidth estimator that transfers minimal
noise from the estimation of fX, fZ , θdδ , ψd,δ , φd,δ and χdδ for d, δ = 1, 2,

∫
f

(2)
X (v)γ1(v)dv,∫

f
(2)
Z (v)γ2(v)dv,

∫
f

(2)
X (v)m1(v)dv and

∫
f

(2)
Z (v)m2(v)dv to the estimation of m1 and m2. This

provides an ideal setting to compare the performance of the estimators, as any differences can
be attributed to the structure of the estimators themselves and not to the estimation of the
unknowns in the expressions for the optimal bandwidths. Second, we want to compare the
performance of the estimators when using bandwidth selection rules proposed in the previous
section and those already proposed in the literature.

3.5.1 True bandwidths. Elimination of the noise that is generated by the estimation of the
parameters in the expression for optimal bandwidths – equation (21) for CBE, equation (25)
for SBE, equations (29) and (30) for MIE, equations (33) and (34) for 2SE1 and equations (35)
and (36) for 2SE2 – can be accomplished in a Monte Carlo study setting since the true values
of these unknowns can be obtained directly from the specification of the DGP. Hence, the first
set of bandwidths that we use are based on complete information about the normally unknown
functionals that appear on the specification of the optimal bandwidths.† In this case the only
difficulty involves the evaluation of the integrals that define the expectations that appears in
ψd,δ , φd,δ and χdδ for d, δ = 1, 2 and

∫
f

(2)
X (v)γ1(v)dv,

∫
f

(2)
Z (v)γ2(v)dv,

∫
f

(2)
X (v)m1(v)dv

and
∫
f

(2)
Z (v)m2(v)dv. These expectations can be difficult to compute, depending on the nature

of md . In our study, all integrals were calculated numerically using the Gauss-Legendre
quadrature method.

3.5.2 Estimated bandwidths. The estimated bandwidths for the CBE were obtained using
the procedure proposed by Opsomer and Ruppert [21] to estimate θ11, θ22 and σ 2. We assumed
that fX and fZ are uniform densities over a compact support and the terms n−1 ∑n

i=1 fX(xi)
−1

and n−1 ∑n
i=1 fZ(zi)

−1 are estimated by maxi (xi) − mini (xi) and maxi (zi) − mini (zi),
respectively, where maxi (xi) and mini (xi) are the maximum and minimum sample values in $x.

Since the SBE share the same analytical solutions of optimal bandwidth with the CBE, the
same bandwidths are used for SBE as those for CBE.

Two different estimated bandwidths are considered for MIE. The first were proposed by
Linton and Nielsen [8] and take the form,

ḧ1 =
(

σ̈ 2RK(maxi (xi) − mini (xi))

nµ2
2(β̂1 + β̂2)2

)1/5

and ḧ2 =
(

σ̈ 2RK(maxi (zi) − mini (zi))

nµ2
2(β̂1 + β̂2)2

)1/5

,

where β̂1 and β̂2 are OLS estimates of the parameters associated with x2
i /2 and z2

i /2 of a
regression of yi on a constant, x2

i /2, z2
i /2, xi , zi and xizi . σ̈ 2 is the typical estimate for the

variance in a classical linear regression model. The second procedure involves the numerical
solution of equations (29) and (30).‡ Once again, we assumed that fX and fZ are uniform
densities over a compact support and estimated their inverses by maxi (xi) − mini (xi) and

†Note that the true optimal bandwidths are different across samples since MASE is evaluated at sample points.
‡Numerical solutions for the non-linear systems defined by equations (29) and (30), (33) and (34) as well as (35)

and (36) are obtained using a quasi-Newton method (step-by-step line search) with an analytical Jacobian. See [26].
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Finite sample performance of kernel-based regression methods 37

maxi (zi) − mini (zi). ψdδ were estimated using the same procedure for the estimation of θdδ

with the necessary sign changes inside the summations.
We also consider two different estimated bandwidths for 2SE1. The first is the simple rule

of thumb proposed in Kim et al. [10] in which h1 and h2 are selected as follows,

hK
1 = n−1/5 1

2
σ̂X and hK

2 = n−1/5 1
2
σ̂Z,

where σ̂X =
√

1/n
∑n

i=1(xi − x̄)2 and σ̂Z =
√

1/n
∑n

i=1(zi − z̄)2. These estimated band-
widths produce an estimator that we label 2SE1K in the tables describing the simulation
results. The second bandwidth selection procedure we consider for the 2SE1 is based on the
numerical solution of equations (33) and (34). To this end the unknown quantities φdδ must
be estimated together with fX, fZ and σ 2. The estimation of φdδ depends on the estimation
of two parts – m

(2)
d (xi) − E(m

(2)
d ) and

∫
f

(2)
X (v)γ1(v)dv (or

∫
f

(2)
Z (v)γ2(v)dv). The first term

is estimated as in the case of CBE, the second term can be interpreted as Eγ1(v)
f

(2)
X (v)

fX(v)
, which

is estimated by n−1 ∑n
i=1 γ̂1(xi)

f̂
(2)
X (xi )

f̂X(xi )
, where γ̂1 comes from a preliminary CBE and f̂ is

estimated by a kernel-density estimator with a Silverman’s rule-of-thumb bandwidth. σ 2 is
estimated as in the case for CBE.

Finally, the estimated bandwidths used to produce the 2SE2 are the result of the numerical
solution for equations (35) and (36). As in the case for 2SE1, the unknowns that appear in
the above mentioned equations, i.e. χdδ must be estimated together with fX, fZ and σ 2. We
follow the same estimation procedure described above for 2SE1 with the exception that γ̂d is
substituted by m̂d .

4. The data generating process (DGP)

The data used in this study is generated from a fully specified bivariate additive model. First,
the independent variables {xi}ni=1 and {zi}ni=1 are generated from a bivariate normal distribution
with joint density given by

(
xi

zi

)
∼ N

((
0.5
0.5

)
,

(
1/9 c/9
c/9 1/9

))
,

where c = 0, 0.25, 0.75, gives the desired correlation between the random variables. We allow
for different correlation values because one of our objectives is to evaluate how regressor
dependency impacts the performance of the estimators. One of the assumptions required to
obtain expressions for the conditional mean and variance of the estimators under study is that
fXZ have compact support. To satisfy this assumption we discard every generated data point
that is outside [0, 1] and resample until all generated pseudorandom numbers are within this
interval. The regression error εi is generated independently as a standard normal, and the
regressands {yi}ni=1 are obtained in accordance with three models:

Model 1 : yi = m1(xi) + m2(zi) + εi (37)

Model 2 : yi = m1(xi) + m3(zi) + εi (38)

Model 3 : yi = m2(xi) + m3(zi) + εi , (39)

where m1(x) = 1 − 6x + 36x2 − 53x3 + 22x5, m2(x) = sin(5πx) and m3(x) = exp(3x).
The fact that these functions have very different curvatures makes the use of a common
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38 C. Martins-Filho and K. Yang

Figure 1. 3D Plot of true models.

bandwidth inadequate. Figure 1 provides graphs of the three models over the relevant range
of X and Z.

We generate samples of size n = 200, 350, 500 and for all sample sizes we generated 500
replications. Samples of relatively small size are used for two reasons. First, the small sample
sizes reduce the computational burden in the Monte Carlo. Second, we wanted to evaluate the
estimators performance under fairly undesirable conditions.

5. Estimation results

A Gaussian kernel is used to construct the estimators. Computer codes for the estimation
were written in GAUSS 5.0 and estimation was done on a PC running on a 3.1 Ghz Intel®

Pentium® IV processor. Table 1 provides the computational time (in seconds) for all estimators
considered for an experiment using model 1.† The columns listed under hCB, hSB, hMI and h2S

represent the elapsed time to calculate the estimated bandwidths described in section 3.5.2,
and the columns under m̂(x, z) represent the elapsed time to calculate the estimators once
bandwidths are available. The time to compute the bandwidths for MIE, 2SE1 and 2SE2 is
larger than that necessary to obtain bandwidths for CBE and SBE. This comes as no surprise

†There is a small variation in computing time for different models, but none of the conclusions described in the
text are changed.
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Finite sample performance of kernel-based regression methods 39

Table 1. Computation time (seconds) by estimator.

CBE SBE MIE 2SE1/2SE2

c hCB m̂(x, z) hSB m̂(x, z) hMI m̂(x, z) h2S m̂(x, z)

n = 200
0 2.641 0.953 2.641 3.547 2.750 68.687 2.922 0.672
0.25 2.656 0.953 2.656 3.687 2.735 68.500 2.734 0.672
0.75 2.640 0.953 2.640 3.547 2.703 68.310 2.719 0.656

n = 350
0 17.562 7.938 17.562 11.453 17.735 871.094 18.469 5.890
0.25 17.515 6.718 17.515 11.313 17.687 868.344 18.687 4.813
0.75 17.562 9.125 17.562 11.433 17.703 872.781 18.344 4.781

n = 500
0 52.375 19.734 52.375 25.984 52.969 3630.735 54.391 14.188
0.25 52.454 19.625 52.454 26.016 52.781 3616.375 54.078 14.110
0.75 52.515 19.625 52.515 25.859 52.844 3641.562 54.078 14.078

as the former require the numerical solution of a non-linear set of equations, whereas the
latter are based on a closed form expression. However, the extra computational burden is very
moderate, and in no case greater than 1.5 seconds.

Computational time does vary significantly across estimators. MIE is, by far, the most
demanding with regards to computing time of all estimators under study, due to the fact that
it evaluates the model at n2 points, whereas the others require evaluation only at n points.
Since MIE underperformed compared with all other estimators in a preliminary full set of
simulations, particularly in models where the correlation among independent variables are high
(c = 0.75), we did not include MIE in the reported tables. Once the bandwidths are selected,
the 2SE1 and 2SE2 are faster to implement than all other estimators. Although both CBE and
SBE are based on iterative procedures, in our simulation, convergence occurs in just a few steps,
even in the case where X and Z are highly correlated. SBE takes more time to compute than the
CBE due to the extra integral term in updating equation (19). Finally, we observe the expected
significant increase in computational time for all estimators, as the sample size n increases.

The analysis of the experimental results focuses on the average squared error (ASE) of the
estimators, their average bias (AB), average variance and on the estimation of the bandwidths
across all replications. Let ȳr , m̂r

1(xi) and m̂r
2(zi) represent estimates for replication r =

1, . . . , 500 based on CBE, SBE, 2SE1 or 2SE2 and define the ASEr and the ABr for m̂r
1(xi)

in the rth replication as,

ASEr (m̂1) = 1
n

n∑

i=1

(m̂r
1(xi) − (m1(xi) − E(m1(X)))2,

ABr (m̂1) = 1
n

n∑

i=1

(m̂r
1(xi) − (m1(xi) − E(m1(X)))

and similarly for m̂r
2(zi).† For m̂r (xi, zi) = ȳr + m̂r

1(xi) + m̂r
2(zi), we put

ASEr (m̂) = 1
n

n∑

i=1

(yi − m̂r (xi, zi))
2, and ABr (m̂1) = 1

n

n∑

i=1

(yi − m̂r (xi, zi)).

†We note that the functions md used in the DGP do not satisfy E(md) = 0 for d = 1, 2, 3. Therefore, the estimators
considered in the study are estimating md − E(md). As such, the definition for ASEr (m̂d ) and ABr (m̂d ) incorporates
the constants E(md).
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40 C. Martins-Filho and K. Yang

Table 2. Average squared error using true bandwidth.

n = 200 n = 350 n = 500

c CBE SBE 2SE1 2SE2 CBE SBE 2SE1 2SE2 CBE SBE 2SE1 2SE2

Model 1

0 0.084 0.088 0.120 0.089 0.054 0.055 0.071 0.056 0.039 0.041 0.051 0.041
0.25 0.090 0.094 0.125 0.095 0.056 0.059 0.075 0.059 0.042 0.045 0.056 0.045
0.75 0.083 0.095 0.150 0.106 0.051 0.063 0.098 0.068 0.040 0.051 0.076 0.055

Model 2

0 0.061 0.200 2.550 0.142 0.039 0.143 1.441 0.090 0.028 0.104 0.933 0.055
0.25 0.055 0.251 2.749 0.165 0.036 0.201 1.561 0.093 0.028 0.172 1.094 0.073
0.75 0.062 1.007 8.877 0.783 0.038 0.930 6.289 0.580 0.028 0.905 5.037 0.463

Model 3

0 0.079 0.314 4.671 0.235 0.051 0.212 2.721 0.142 0.039 0.170 1.809 0.101
0.25 0.086 0.366 5.095 0.310 0.055 0.264 2.812 0.161 0.040 0.230 2.045 0.128
0.75 0.079 1.060 11.111 0.933 0.052 0.985 8.330 0.751 0.040 0.955 6.925 0.648

The numbers reported in the tables are average squared errors and bias across all replica-
tions. Since some preliminary finite sample experimental evidence on the performance of
these estimators are already available ([21,17,19]), we are primarily interested in the relative
performance of the estimators.

Tables 2 and 3 provide ASE across experiments using true and estimated bandwidths,
respectively, for all estimators, for different sample sizes and for various correlation levels.
Some general regularities are promptly identified.As expected, increases in sample size reduce
ASE for all estimators and across all correlation levels with true and estimated bandwidths.

The effects of increased correlation on the ASE of the estimators are quite different. For
the classic backfitting estimator ASE is similar across correlation levels for each sample size,
but they do differ across models. In some cases the results even show mild decrease in ASE
as correlation increases. These regularities are true when true and estimated bandwidths are
used. Results are quite different for SBE, MIE and 2SEs. All estimators seem to be impacted
by increased correlation, with ASE increasing as c grows. This is true when true or estimated
bandwidths are used. It is apparent, however, that ASE is not significantly affected by mild
correlation among the regressors. The increase is significant, however, when the correlation
moves from low levels 0.25 to 0.75. For SBE and 2SEs, the impact of increases in c on their
ASE do vary across models. In model 1, the increases in c only mildly increases the ASE of
SBE, 2SE1 and 2SE2. However, the same increase in c causes much more trouble for SBE
and 2SEs. This seems to suggest that it is the combination of correlation and unbalanced scale
across component functions that causes the increases in ASE for SBE and 2SEs. Increases in
sample size do not seem to reduce the disparity in ASE across models.†

One should also observe that, as expected, across all experiments and estimators the reported
ASEs increase from table 2 to table3, confirming that in finite samples the noise introduced by
estimated bandwidths impacts the performance of the estimators. Also as expected, increased
sample size dampens this impact.

The most noticeable result from tables 2 and 3 is that, as measured by ASE, the CBE is
superior to all estimators across all correlation levels, sample sizes and models. The second

†In the preliminary simulation, the MIE seems to be the most sensitive of the estimators with respect to increases
in c. This coincides with the fact that its asymptotic variance increase significantly with c. Intuitively, this loss of
accuracy is caused by the fact that the MIE needs to estimate the function at many out-of-sample points. When the
correlation is high, the values of the function at those points are very hard to capture due to their distance from the
observed values of the function.
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Table 4. Average bias using true bandwidth.

n = 200 n = 350 n = 500

c CBE SBE 2SE1 2SE2 CBE SBE 2SE1 2SE2 CBE SBE 2SE1 2SE2

Model 1

0 0.010 0.010 0.164 −0.008 0.005 0.006 0.119 −0.010 0.005 0.006 0.100 −0.006
0.25 −0.000 −0.000 0.168 −0.012 0.003 0.004 0.126 −0.006 0.004 0.005 0.108 −0.001
0.75 −0.024 −0.025 0.192 −0.085 −0.016 −0.016 0.163 −0.064 −0.012 −0.012 0.146 −0.055

Model 2

0 −0.028 −0.029 1.510 0.149 −0.007 −0.008 1.149 0.151 −0.010 −0.011 0.923 0.109
0.25 0.018 0.018 1.601 0.196 0.020 0.020 1.222 0.172 0.030 0.031 1.030 0.168
0.75 0.044 0.045 2.824 0.396 0.052 0.053 2.394 0.360 0.060 0.060 2.160 0.328

Model 3

0 −0.022 −0.023 2.082 0.240 −0.014 −0.014 1.595 0.201 −0.006 −0.007 1.302 0.173
0.25 −0.020 0.047 2.160 0.277 −0.011 −0.012 1.609 0.204 0.007 0.007 1.391 0.219
0.75 0.152 0.152 3.302 0.603 0.160 0.161 2.893 0.591 0.136 0.137 2.633 0.563

best is the 2SE2 that we propose, followed in order by SBE, and 2SE1 estimation. The SBE is
fairly accurate in model 1 but surprisingly loses accuracy in models 2 and 3. We suspect the the
reason is that approximation of the integral is less accurate in models 2 and 3, since the range
of m2(·) is much wider in the latter two cases. An increase of the number of grid points on
which the integral is approximated should be able to improve the overall performance of SBE,
but the computation time will certainly increase. From table 3, we observe that our proposed
bandwidth estimation procedure for 2SE1 outperforms the bandwidth selection procedure
proposed by Kim et al. [10] (2SE1) across all experiments.

Tables 4 and 5 provide average bias for all estimators across experiments using true and
estimated bandwidths, respectively. As in the case of ASE, some general regularities can be
noticed. With almost no exception (these involve 2SE2) the CBE and SBE show smallest
biases across estimators followed by 2SE2, when bandwidths are estimated. As in the case of
ASE, our proposed bandwidth selection methods reduce the bias of the 2SE1.

Tables 4 and 5 also reveal that the average bias increases with c across all experiments
and estimators. Again, this is particularly noticeable when c = 0.75. The impact of sample
size on bias when true bandwidths are used is different across estimators. For CBE and
2SE1 no discernible pattern is observed, but for 2SE2 the bias falls with sample size. When
bandwidths are estimated the bias falls for all estimators and models as n increases, except
for CBE. Combining the results from tables 2 and 3 with tables 4 and 5, we can conclude
that the variance of the estimators decreases with sample size across all experiments for all
estimators.†

Tables 6 and 7 provide ASEs for the estimation of md for d = 1, 2 for all correlation levels
and sample sizes using true and estimated bandwidths. The general regularities observed for
ASE in tables 2 and 3 seem to apply in each regression direction. In addition, these results
suggest that the ASE per direction is impacted significantly by the curvature of the functions
being estimated and that the curvature of one function impacts the ASE properties of the other
regression direction for all estimators.

Tables 8 and 9 provide the average true and estimated bandwidths across experiments for
different sample sizes, correlations and models. Tables 8 and 9 reveal that true and esti-
mated bandwidths for all estimators are quite insensitive to correlation levels. They do,
however, noticeably change across models. Although expected gains from increased sam-
ple size do not appear dramatic for the sample sizes considered in this experiment, our

†Note that for any estimator considered the variance for the rth replication can be obtained by ASEr − ABr .
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Table 6. ASE regression direction using true bandwidth.

CBE SBE 2SE1 2SE2

c m1 m2 m1 m2 m1 m2 m1 m2

Model 1
n = 200

0 0.030 0.056 0.029 0.059 0.038 0.066 0.032 0.060
0.25 0.034 0.060 0.035 0.061 0.043 0.069 0.037 0.063
0.75 0.033 0.060 0.037 0.072 0.051 0.087 0.046 0.078

n = 350
0 0.018 0.036 0.019 0.038 0.023 0.041 0.019 0.038
0.25 0.021 0.036 0.0224 0.038 0.026 0.042 0.022 0.038
0.75 0.019 0.037 0.247 0.051 0.033 0.058 0.029 0.051

n = 500
0 0.012 0.027 0.013 0.028 0.016 0.03 0.013 0.028
0.25 0.015 0.028 0.016 0.030 0.018 0.03 0.015 0.029
0.75 0.017 0.029 0.020 0.043 0.028 0.04 0.025 0.040

CBE SBE 2SE1 2SE2

c m1 m3 m1 m3 m1 m3 m1 m3

Model 2
n = 200

0 0.032 0.107 0.180 0.116 0.650 0.725 0.073 0.142
0.25 0.027 0.103 0.244 0.111 0.700 0.867 0.090 0.150
0.75 0.036 0.114 1.470 0.302 2.984 2.668 0.915 0.486

n = 350
0 0.020 0.071 0.126 0.0 0.363 0.436 0.040 0.092
0.25 0.018 0.063 0.193 0.068 0.393 0.499 0.048 0.087
0.75 0.021 0.066 1.332 0.276 2.106 1.972 0.665 0.360

n = 500
0 0.014 0.052 0.092 0.054 0.231 0.285 0.025 0.062
0.25 0.013 0.042 0.166 0.046 0.272 0.364 0.036 0.063
0.75 0.016 0.048 1.291 0.254 1.670 1.621 0.534 0.300

CBE SBE 2SE1 2SE2

c m2 m3 m2 m3 m2 m3 m2 m3

Model 3
n = 200

0 0.052 0.134 0.309 0.149 1.205 1.300 0.144 0.191
0.25 0.055 0.121 0.361 0.132 1.334 1.377 0.191 0.188
0.75 0.057 0.141 1.416 0.302 3.683 3.466 1.082 0.510

n = 350
0 0.033 0.071 0.203 0.080 0.692 0.758 0.077 0.103
0.25 0.034 0.084 0.255 0.091 0.711 0.786 0.091 0.120
0.75 0.036 0.091 1.321 0.241 2.785 2.683 0.842 0.424

n = 500
0 0.025 0.055 0.1613 0.060 0.456 0.524 0.054 0.079
0.25 0.026 0.056 0.222 0.061 0.515 0.600 0.066 0.089
0.75 0.027 0.062 1.279 0.204 2.326 2.213 0.702 0.352

proposed bandwidth estimation procedure produces bandwidths that are much closer to the
true bandwidths than those produced by the procedures suggested by Linton and Nielsen [8]
and Kim et al. [10] for MIE and 2SE1 estimation, respectively. In addition, the true band-
widths are identical (up to two decimal points) for all estimators, across all models and
experiments. All estimated bandwidths for models 1 and 2 undersmooth if compared with
the true bandwidths reported in table 6. For model 3 bandwidths oversmooth if compared
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Table 7. ASE by regression direction using estimated bandwidth.

CBE SBE 2SE1 2SE1K 2SE2

c m1 m2 m1 m2 m1 m2 m1 m2 m1 m2

Model 1
n = 200

0 0.036 0.064 0.035 0.066 0.046 0.075 0.053 0.073 0.038 0.068
0.25 0.039 0.064 0.040 0.065 0.052 0.076 0.057 0.077 0.042 0.067
0.75 0.039 0.068 0.041 0.079 0.056 0.095 0.064 0.098 0.051 0.086

n = 350
0 0.020 0.044 0.021 0.045 0.025 0.049 0.031 0.045 0.021 0.046
0.25 0.024 0.043 0.025 0.044 0.029 0.049 0.034 0.047 0.025 0.044
0.75 0.021 0.043 0.026 0.056 0.034 0.064 0.041 0.067 0.031 0.056

n = 500
0 0.014 0.034 0.013 0.028 0.018 0.037 0.022 0.033 0.015 0.035
0.25 0.016 0.032 0.016 0.030 0.020 0.036 0.024 0.036 0.017 0.033
0.75 0.018 0.033 0.022 0.043 0.028 0.050 0.034 0.053 0.026 0.044

CBE SBE 2SE1 2SE1K 2SE2

c m1 m3 m1 m3 m1 m3 m1 m3 m1 m3

Model 2
n = 200

0 0.036 0.115 0.231 0.131 1.174 1.179 1.813 1.805 0.102 0.156
0.25 0.033 0.112 0.304 0.130 1.300 1.435 1.883 2.017 0.133 0.166
0.75 0.041 0.123 1.517 0.405 4.225 3.655 5.033 4.387 1.210 0.527

n = 350
0 0.022 0.075 0.021 0.045 0.51 0.571 1.038 1.080 0.050 0.096
0.25 0.020 0.067 0.025 0.044 0.59 0.689 1.109 1.203 0.063 0.093
0.75 0.022 0.070 0.026 0.056 2.66 2.440 3.557 3.217 0.808 0.392

n = 500
0 0.016 0.054 0.108 0.057 0.301 0.349 0.689 0.723 0.030 0.064
0.25 0.015 0.044 0.185 0.051 0.368 0.451 0.763 0.859 0.045 0.066
0.75 0.016 0.050 1.317 0.276 2.001 1.901 2.861 2.647 0.628 0.327

CBE SBE 2SE1 2SE1K 2SE2

c m2 m3 m2 m3 m2 m3 m2 m3 m2 m3

Model 3
n = 200

0 0.058 0.143 0.316 0.161 1.644 1.687 1.614 1.678 0.159 0.195
0.25 0.065 0.129 0.401 0.152 1.755 1.735 1.782 1.789 0.210 0.192
0.75 0.063 0.152 1.461 0.342 4.691 4.272 4.477 4.128 1.249 0.484

n = 350
0 0.039 0.074 0.198 0.083 0.749 0.785 0.941 0.983 0.079 0.103
0.25 0.040 0.086 0.250 0.095 0.760 0.822 0.983 1.035 0.093 0.120
0.75 0.041 0.096 1.339 0.264 3.203 3.016 3.367 3.175 0.907 0.413

n = 500
0 0.029 0.057 0.156 0.062 0.462 0.515 0.628 0.681 0.055 0.077
0.25 0.031 0.058 0.218 0.063 0.519 0.586 0.706 0.777 0.068 0.087
0.75 0.033 0.066 1.288 0.223 2.553 2.385 2.800 2.612 0.742 0.343

with the true bandwidths reported in table 6. How much under or oversmoothing occurs
depends largely on the degree of curvature of the md that compose the models. When there
is more curvature, as in the case of models 1 and 3 the degree of under and oversmoothing
seems to increase, indicating that increased curvature makes for more difficult bandwidth
estimation.
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Table 8. Average true bandwidths.

CBE/SBE 2SE1 2SE2

c h1 h2 h1 h2 h1 h2

Model 1
n = 200

0 0.062 0.036 0.061 0.036 0.062 0.036
0.25 0.062 0.036 0.062 0.036 0.062 0.036
0.75 0.063 0.036 0.063 0.036 0.063 0.036

n = 350
0 0.055 0.032 0.055 0.032 0.055 0.032
0.25 0.055 0.032 0.055 0.032 0.055 0.032
0.75 0.056 0.032 0.056 0.032 0.056 0.032

n = 500
0 0.051 0.030 0.051 0.030 0.051 0.030
0.25 0.051 0.030 0.051 0.030 0.051 0.030
0.75 0.052 0.030 0.052 0.030 0.052 0.030

Model 2
n = 200

0 0.061 0.066 0.055 0.059 0.061 0.066
0.25 0.062 0.067 0.055 0.059 0.062 0.066
0.75 0.063 0.067 0.056 0.059 0.063 0.067

n = 350
0 0.055 0.059 0.049 0.052 0.055 0.059
0.25 0.055 0.059 0.049 0.052 0.055 0.059
0.75 0.056 0.060 0.050 0.053 0.056 0.060

n = 500
0 0.051 0.055 0.046 0.049 0.051 0.055
0.25 0.051 0.055 0.046 0.049 0.051 0.055
0.75 0.052 0.056 0.046 0.049 0.052 0.056

Model 3
n = 200

0 0.036 0.066 0.035 0.061 0.036 0.066
0.25 0.036 0.066 0.035 0.062 0.036 0.066
0.75 0.036 0.068 0.035 0.062 0.036 0.067

n = 350
0 0.032 0.059 0.032 0.055 0.032 0.059
0.25 0.032 0.059 0.032 0.055 0.032 0.059
0.75 0.032 0.060 0.031 0.056 0.032 0.060

n = 500
0 0.030 0.055 0.029 0.051 0.030 0.055
0.25 0.030 0.055 0.029 0.051 0.030 0.055
0.75 0.030 0.056 0.029 0.052 0.030 0.056

6. Conclusions

Additive non-parametric regression models have gained increased popularity by their ease of
interpretation and the fact that these models allow for the circumvention of the curse of dimen-
sionality. Classic backfitting, smooth backfitting, marginal integration and two stage estimators
have recently emerged as viable alternatives for the estimation of additive non-parametric
regression models. Little is known about the finite and asymptotic properties of all estima-
tors when bandwidths are selected by data driven procedures. Applied researchers are not only
uninformed about the estimators’properties but are also unaware of their relative performance.
In this paper, we provided experimental evidence on the finite sample properties of these esti-
mators and on their relative performances. We also propose a modification of the two-stage
estimator first introduced by Kim et al. [10] that outperforms the original two-stage estimator.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f C

ol
or

ad
o 

at
 B

ou
ld

er
 L

ib
ra

rie
s]

 a
t 1

9:
48

 3
1 

M
ar

ch
 2

01
5 
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Table 9. Average estimated bandwidths.

CBE/SBE 2SE1 2SE1K 2SE2

c h1 h2 h1 h2 h1 h2 h1 h2

Model 1
n = 200

0 0.054 0.042 0.054 0.042 0.042 0.042 0.054 0.042
0.25 0.054 0.040 0.054 0.040 0.042 0.042 0.054 0.040
0.75 0.057 0.043 0.057 0.043 0.041 0.041 0.057 0.043

n = 350
0 0.051 0.039 0.051 0.039 0.038 0.038 0.051 0.0394
0.25 0.050 0.038 0.050 0.038 0.038 0.038 0.050 0.0388
0.75 0.052 0.038 0.052 0.038 0.036 0.036 0.052 0.0389

n = 500
0 0.047 0.037 0.047 0.037 0.035 0.035 0.047 0.037
0.25 0.048 0.035 0.048 0.035 0.035 0.035 0.048 0.035
0.75 0.049 0.036 0.049 0.036 0.034 0.034 0.049 0.036

Model 2
n = 200

0 0.054 0.048 0.054 0.048 0.042 0.042 0.054 0.048
0.25 0.054 0.046 0.054 0.046 0.042 0.042 0.054 0.046
0.75 0.055 0.041 0.054 0.041 0.041 0.041 0.055 0.041

n = 350
0 0.050 0.047 0.050 0.047 0.038 0.038 0.050 0.0476
0.25 0.049 0.045 0.049 0.045 0.038 0.038 0.049 0.0450
0.75 0.051 0.040 0.051 0.040 0.036 0.036 0.051 0.0401

n = 500
0 0.047 0.045 0.047 0.045 0.035 0.035 0.047 0.045
0.25 0.047 0.043 0.047 0.043 0.035 0.035 0.047 0.043
0.75 0.049 0.038 0.049 0.038 0.034 0.034 0.049 0.038

Model 3
n = 200

0 0.041 0.047 0.041 0.047 0.042 0.042 0.041 0.047
0.25 0.043 0.048 0.043 0.047 0.042 0.042 0.043 0.048
0.75 0.043 0.040 0.043 0.040 0.041 0.041 0.043 0.040

n = 350
0 0.039 0.047 0.039 0.047 0.038 0.038 0.039 0.047
0.25 0.039 0.046 0.039 0.046 0.038 0.038 0.039 0.046
0.75 0.039 0.040 0.039 0.040 0.036 0.036 0.039 0.040

n = 500
0 0.036 0.045 0.036 0.045 0.035 0.035 0.036 0.045
0.25 0.036 0.045 0.036 0.045 0.035 0.035 0.036 0.045
0.75 0.036 0.039 0.036 0.039 0.034 0.034 0.036 0.039

Although the theoretic results suggest that both smooth backfitting and two-stage estimators
could reach the oracle efficiency bound, our experiments suggest that in the finite sample the
classic backfitting estimator seems to emerge as the best estimator among those currently avail-
able in the literature. This superiority is based on an evaluation of the estimators’ ASE under
estimated and true bandwidths. Separate evidence on their bias is also provided to support this
conclusion. Although Monte Carlo studies suffer from the problem of specificity, we believe
that the results here are strong enough to recommend the use of classic backfitting estimation.
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Appendix: Theorems and Proofs

LEMMA 1 Assume Assumptions 1–3 hold and suppose that φ(x, z) : "2 → " is a continuous
function, G1 a compact subset of ", and |φ(x, z)| < Bφ < ∞. Let

sj (x) = (ng1)
−1

n∑

i=1

K

(
xi − x

g1

) (
xi − x

g1

)j

φ(xi, zi) with j = 0, 1, 2.

a) If ng2p+1
1 (ln(g1))

−1 → ∞ for p > 0, then supx∈G1
|sj (x) − E(sj (x))| = op(g

p
1 ).
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b) Let G2 be a compact subset of "2 and

ŝ(x, z) = (ng1g2)
−1

n∑

i=1

K

(
xi − x

g1

) (
zi − z

g2

)j

φ(xi, zi).

If n(g1g2)
2p+1(ln(g1g2))

−1 → ∞ for p > 0, then sup(x,z)∈G2
|ŝ(x, z) − E(ŝ(x, z))| =

op((g1g2)
p).

Proof a) We prove the case where j = 0. Similar arguments can be used for j = 1, 2. Let
B(x0, r) = {x ∈ " : |x − x0| < r} for r ∈ "+. G1 compact implies that there exists x0 ∈ G1

such that G1 ⊆ B(x0, r). Therefore, for all x, x ′ ∈ G1 |x − x ′| < 2r . Let g1 > 0 be a sequence
such that g1 → 0 as n → ∞ where n ∈ {1, 2, 3 . . .}. For any n, by the Heine–Borel theorem
there exists a finite collection of sets {B(xk, g

a
1 )}lnk=1 such that G1 ⊂ ∪ln

k=1B(xk, g
a
1 ) for xk ∈ G1

with ln < g−a
1 r for a ∈ (0, ∞). By assumption |s0(x) − s0(xk)| ≤ (ng1)

−1 ∑n
i=1 c|g−1

1 (xk −
x)|Bφ < Bφcga−2

1 for x ∈ B(xk, g
a
1 ). Similarly, |E(s0(xk)) − E(s0(x))| < Bφcga−2

1 for x ∈
B(xk, g

a
1 ). Hence, |s0(x) − E(s0(x))| ≤ |s0(xk) − E(s0(xk))| + 2Bφcga−2

1 for x ∈ B(xk, g
a
1 )

and

sup
x∈G1

|s0(x) − E(s0(x))| ≤ max
1≤k≤ln

|s0(xk) − E(s0(xk))| + 2Bφcga−2
1 .

To show that limn→∞ P(supx∈G1
|s0(x) − E(s0(x))| ≥ g

p
1 ε) = 0 for p > 0, we need g

a−p−2
1

→ 0 as n → ∞ and limn→∞ P(max1≤k≤ln |s0(x) − E(s0(x))| ≥ g
p
1 ε) = 0. But

P( max
1≤k≤ln

|s0(xk) − E(s0(xk))| ≥ g
p
1 ε) ≤

ln∑

k=1

P(|s0(xk) − E(s0(xk))| ≥ g
p
1 ε).

Put Win = g−2
1 E(K2

(
xi−xk

g1

)
φ2(xi, zi)) − (g−1

1 E(K
(

xi−xk

g1

)
φ(xi, zi)))

2 and use Bernstein’s
inequality to obtain

P(|s0(xk) − E(s0(xk))| ≥ g
p
1 ε) < 2 exp

(
−ng2p

1 ε2

2(σ̄ 2 + BWg
p
1 ε/3)

)

,

where σ̄ 2 = n−1 ∑n
i=1 V (Win). Under Assumptions 1–3 and the fact that φ(x, z) and

fXZ(x, z) are continuous we have that g1σ̄
2 = O(1). Hence, for the desired result, the

right-hand side of the inequality must approach zero as n → ∞. It suffices to show that
(ng2p

1 ε2)/(2σ̄ 2 + 2/3BWg
p
1 ε) + a ln(g1) → ∞, which given that g1σ̄

2 = O(1) will result if
(ng2p+1

1 )/(ln(g1)) → ∞.
b) Let θ = (x, z)′, a typical element in "2. Let B(θ0, r) = {θ ∈ "2 : ||θ − θ0|| < r} for
r ∈ "+. G2 compact implies that there exists θ0 ∈ G2 such that G2 ⊆ B(θ0, r). Therefore, for
all θ, θ ′ ∈ G2 ||θ − θ ′|| < 2r . Let g1, g2 > 0 be a sequence such that g1, g2 → 0 as n → ∞,
where n ∈ {1, 2, 3 . . .}. For any n, by the Heine–Borel theorem there exists a finite col-
lection of sets {B(θk, rn)}lnk=1 such that G2 ⊂ ∪ln

k=1B(θk, rn) for θk ∈ G2 with ln < r−1
n r2,

rn = (g1g2)
a for a ∈ (0, ∞). For θ ∈ B(θk, rn), |ŝ(θ) − ŝ(θk)| ≤ Bφc(g1 + g2)(g1g2)

a−2.
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Similarly, |E(ŝ(θk)) − E(ŝ(θ))| < Bφc(g1 + g2)(g1g2)
a−2. Hence,

sup
θ∈G2

|ŝ(θ) − E(ŝ(θ))| ≤ max
1≤k≤ln

|ŝ(θk) − E(s(θk))| + 2Bφc(g1 + g2)(g1g2)
a−2.

To show that limn→∞ P(supθ∈G2
|ŝ(θ) − E(ŝ(θ))| ≥ (g1g2)

pε) = 0 for p > 0 it suffices to
have (g1g2)

a−p−2 = O(1) and limn→∞ P(max1≤k≤ln |ŝ(θ) − E(ŝ(θ))| ≥ (g1g2)
pε) = 0. But

P( max
1≤k≤ln

|ŝ(θk) − E(ŝ(θk))| ≥ (g1g2)
pε) ≤

ln∑

k=1

P(|ŝ(θk) − E(ŝ(θk))| ≥ (g1g2)
pε).

PutWin = 1
g1g2

K1
(

xi−x
g1

)
K

(
zi−z
g2

)
− E

( 1
g1g2

K
(

xi−x
g1

)
K

(
zi−z
g2

))
and using Bernstein’s inequality,

we have

P(|ŝ(θk) − E(ŝ(θk))| ≥ (g1g2)
pε) < 2 exp

( −n(g1g2)
2p+1ε2

2g1g2σ̄ 2 + 2BW(g1g2)pε/3

)
,

where σ̄ 2 = 1/n
∑n

i=1 V (Win).
Hence, for the desired result the right-hand side of the inequality must approach zero as

n → ∞. For this it suffices to have (n(g1g2)
2p+1)/(ln(g1g2)) → ∞. !

THEOREM 1 Suppose that Assumptions 1–3 hold, ng3
1(ln(g1))

−1 → ∞ and n(g1g2)
3

(ln(g1g2))
−1 → ∞. Put γ1(x) = α + m1(x) and γ2(z) = α + m2(z). Then, the conditional

bias of m2S1
1 (x) for x ∈ SX is given by,

E(m2S1
1 (x) − m1(x)|$x, $z) = h2

1

2
µ2m

(2)
1 (x) − 1

2
g2

2µ2E(m
(2)
2 (Z)|$x)

− 1
2
g2

2µ2E

(∫
f

(2)
X (v)m(v, zi)dv|$x

)

+ 1
2
g2

2µ2E

(∫
m(v, Z)fX(v)f −1

XZ (v, Z)

2∑

d=1

∂2fXZ(v, Z)

∂d∂d

dv|$x
)

+ op(h2
1) + op(g2

2)

and

V (m2S1
1 (x)|$x, $z) = 1

nh1
σ 2RKfX(x)−1 + op((nh1)

−1). (A1)

Mutatis mutandis similar expressions are obtained for m2. The conditional bias and variance
of m2S1(x, z) are

E(m2S1(x, z) − m(x, z)|$x, $z) = h2
1

2
µ2m

(2)
1 (x) − 1

2
g2

2µ2E(m
(2)
2 (Z)|$x)

− 1
2
g2

2µ2E

(∫
f

(2)
X (v)m(v, Z)dv|$x

)
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Finite sample performance of kernel-based regression methods 51

+ 1
2
g2

2µ2E

(∫
m(v, Z)fX(v)f −1

XZ (v, Z)

2∑

d=1

∂2fXZ(v, Z)

∂d∂d

dv|$x
)

+ h2
2

2
µ2m

(2)
2 (z) − 1

2
g2

1µ2E(m
(2)
1 (X)|$z)

− 1
2
g2

1µ2E

(∫
f

(2)
Z (v)m(xi, v)dv|$z

)

+ 1
2
g2

1µ2E

(∫
m(X, v)fZ(v)f −1

XZ (X, v)

2∑

d=1

∂2fXZ(X, v)

∂d∂d

dv|$z
)

+ op(h2
1) + op(g2

2) + op(h2
2) + op(g2

1)

and

V (m2S1(x, z)|$x, $z) = 1
nh1

σ 2RKfX(x)−1 + 1
nh2

σ 2RKfZ(z)−1 + op((nh1)
−1 + (nh2)

−1).

(A2)

Proof Let ε′ = (ε1, . . . , εn), where εi = yi − α − m1(xi) − m2(zi) and γ P
2 ($z) be as defined

in equation (13). By construction,

m2S1
1 (x) = s1(x)($y − $γ P

2 ($z))
= s1(x)(1nα + $m1($x) + $m2($z) + ε − $γ P

2 ($z))
= s1(x)( $m1($x) + ε) + s1(x)( $γ2($z) − $γ P

2 ($z)), (A3)

where $γ2($z)′ = (γ2(z1), . . . , γ2(zn)). Under our assumptions and using the results of Fan [27]
for local linear estimation,

E(s1(x)( $m1($x) + ε)|$x, $z) = s1(x) $m1($x) = m1(x) + h2
1

2
µ2m

(2)
1 (x) + op(h2

1). (A4)

We now look at the second term in equation (A3). Note that the i th element of −( $γ2($z) − $γ P
2 ($z))

is

γ P
2 (zi) − γ2(zi) = 1

n

n∑

k=1

1
g2

K

(
zk − zi

g2

)
f̂X(xk)

f̂XZ(xk, zk)
yk − γ2(zi)

= L̂1n(zi) + L̂2n(zi) + L̂3n(zi),

where

L̂1n(zi) = 1
n

n∑

k=1

1
g2

K

(
zk − zi

g2

)
f̂X(xk)

f̂XZ(xk, zk)
εk

L̂2n(zi) = 1
n

n∑

k=1

1
g2

K

(
zk − zi

g2

)
f̂X(xk)

f̂XZ(xk, zk)
(m2(zk) − m2(zi))

L̂3n(zi) = 1
n

n∑

k=1

{
1
g2

K

(
zk − zi

g2

)
f̂X(xk)

f̂XZ(xk, zk)
m(xk, zi) − γ2(zi)

}

.
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52 C. Martins-Filho and K. Yang

If L̂′
1 =(L̂1n(z1), . . . , L̂1n(zn)), L̂′

2 =(L̂2n(z1), . . . , L̂2n(zn)) and L̂′
3 =(L̂3n(z1), . . . , L̂3n(zn)),

then the last term in equation (A3) can be written as

s1(x)( $γ2($z) − $γ P
2 ($z)) = −s1(x)(L̂1 + L̂2 + L̂3) (A5)

and E(s1(x)( $γ2($z) − $γ P
2 ($z))|$x, $z) = −s1(x)(E(L̂1|$x, $z) + E(L̂2|$x, $z) + E(L̂3|$x, $z)). By

assumption E(L̂1|$x, $z) = 0, we now treat L̂2 and L̂3 separately. In what follows
we define f̄X(x) = E(f̂X(x)) = g−1

1

∫
K

(
v−x
g1

)
fX(v)dv and f̄XZ(x, z) = E(f̂XZ(x, z)) =

(g1g2)
−1

∫∫
K

(
v−x
g1

)
K

(
u−z
g2

)
fXZ(u, v)dudv, and

L2n(zi) = 1
n

n∑

k=1

1
g2

K

(
zk − zi

g2

)
f̄X(xk)

f̄XZ(xk, zk)
(m2(zk) − m2(zi)).

Given that there exists 0 < Bdm2 such that |m(1)
2 (z)| < Bdm2 for all z ∈ SZ compact, we have

that by using the Mean Value Theorem

|L̂2n(zi) − L2n(zi)| ≤ Bdm2BZ sup
(xk,zk)∈SX×SZ

∣∣∣∣∣
f̂X(xk)

f̂XZ(xk, zk)
− f̄X(xk)

f̄XZ(xk, zk)

∣∣∣∣∣ f̂Z(zi) (A6)

for a bound BZ on |zk − zi |. Hence, it follows fromAssumption 2 that there exists 0 < B1, BfZ
,

BfX
such that |fZ(z)| < BfZ

for all z ∈ SZ , |fX(x)| < BfX
for all x ∈ SX and |fXZ(x, z)|−1 <

B1, for all (x, z) ∈ SX × SZ . Therefore, we have

sup
zi∈SZ

|L̂2n(zi) − L2n(zi)|

≤ Bdm2BZ sup
(xk,zk)∈SX×SZ

∣∣∣∣∣
f̂X(xk)

f̂XZ(xk, zk)
− f̄X(xk)

f̄XZ(xk, zk)

∣∣∣∣∣ × ( sup
zi∈SZ

|f̂Z(zi) − f̄Z(zi)| + BfZ
)

≤
(

sup
zi∈SZ

|f̂Z(zi) − f̄Z(zi)| + BfZ

)

Bdm2BZ

(

sup
xk∈SX

|f̂X(xk) − f̄X(xk)|

× sup
(xk,zk)∈SX×SZ

|f̂ −1
XZ (xk, zk) − f̄ −1

XZ (xk, zk)| + B1 sup
xk∈SX

|f̂X(xk) − f̄X(xk)|

+BfX
sup

(xk,zk)∈SX×SZ

|f̂ −1
XZ (xk, zk) − f̄ −1

XZ (xk, zk)|
)

. (A7)

Let an(zi) = (µ2/2)g2
2m

(2)
2 (zi) and note that by the triangle inequality we have

sup
zi∈SZ

|L̂2n(zi) − an(zi)| ≤ sup
zi∈SZ

|L̂2n(zi) − L2n(zi)| + sup
zi∈SZ

|E(L2n(zi)) − an(zi)|

+ sup
zi∈SZ

|L2n(zi) − E(L2n(zi))|. (A8)

Since E(L2n(zi)) = g−1
2

∫∫
K

(
zk−zi

g2

)
f̄X(xk)

f̄XZ(xk,zk)
(m2(zk)m2(zi))fXZ(xk, zk)dxkdzk and m2(zk) −

m2(zi) = m
(1)
2 (zi)(zk − zi) + (1/2)m

(2)
2 (zi)(zk − zi)

2 + (zk − zi)
2o(1) we have that

E(L2n(zi)) = g2m
(1)
2 (zi)F1n(zi) + 1

2
g2

2m
(2)
2 (zi)F2n(zi) + g2

2F2n(zi)o(1),
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Finite sample performance of kernel-based regression methods 53

where

F1n(zi) = g−1
2

∫∫
K

(
zk − zi

g2

)
f̄X(xk)

f̄XZ(xk, zk)

zk − zi

g2
fXZ(xk, zk)dxkdzk

and

F2n(zi) = g−1
2

∫∫
K

(
zk − zi

g2

)
f̄X(xk)

f̄XZ(xk, zk)

(zk − zi)
2

g2
2

fXZ(xk, zk)dxkdzk.

Let F11n(zi) = g−1
2

∫∫
K

(
zk−zi

g2

)
zk−zi

g2

(
f̄X(xk)

f̄XZ(xk,zk)
− fX(xk)

fXZ(xk,zk)

)
(f̄XZ(xk, zk) − fXZ(xk, zk))dxkdzk

and F12n(zi) = g−1
2

∫∫
K

(
zk−zi

g2

)
zk−zi

g2

fX(xk)
fXZ(xk,zk)

(f̄XZ(xk, zk) − fXZ(xk, zk))dxkdzk , then given

that
∫

ψK(ψ)dψ = 0 we can write F1n(zi) = −F11n(zi) − F12n(zi). We now write

F12n(zi) = g−1
2

∫∫
K

(
zk − zi

g2

)
fX(xk)

fXZ(xk, zk)

×
(

1
2
µ2

2∑

i=1

∂2fXZ

∂i∂i

(xk, zk)g
2
i + o(g2

1 + g2
2)

)

dxkdzk.

Given that
∫

ψK(ψ)dψ = 0, and by Lebesgue’s dominated convergence theorem, we have
F12n(zi) = o(g2

1 + g2
2) uniformly in SZ . Since F11n(zi) is clearly of smaller order, and g1 ∼ g2,

we conclude that F1n(zi) = o(g2
2) uniformly in SZ .

Let F21n(zi) = g−1
2

∫∫
K

(
zk−zi

g2

)(
zk−zi

g2

)2(
f̄X(xk)

f̄XZ(xk,zk)
− fX(xk)

fXZ(xk,zk)

)
(f̄XZ(xk, zk) − fXZ(xk, zk))

dxkdzk and F22n(zi) = g−1
2

∫∫
K

(
zk−zi

g2

) (
zk−zi

g2

)2
fX(xk)

fXZ(xk,zk)
(f̄XZ(xk, zk) − fXZ(xk, zk))dxkdzk ,

then given that
∫

ψ2K(ψ)dψ = µ2 we can write F2n(zi) = µ2 − F21n(zi) − F22n(zi). We
now write

F22n(zi) = g−1
2

∫∫
K

(
zk − zi

g2

) (
zk − zi

g2

)2
fX(xk)

fXZ(xk, zk)

×
(

1
2
µ2

2∑

i=1

∂2fXZ

∂i∂i

(xk, zk)g
2
i + o(g2

1 + g2
2)

)

dxkdzk.

Given that
∫

ψ2K(ψ)dψ = µ2, and by Lebesgue’s dominated convergence theorem, we
have F22n(zi) = O(g2

1 + g2
2) + o(g2

1 + g2
2) uniformly in SZ . Since F21n(zi) is clearly of

smaller order, and g1 ∼ g2, we conclude that F2n(zi) = µ2 + O(g2
2) + o(g2

2) uniformly in
SZ . Combining the results for F1n and F2n we conclude that

E(L2n(zi)) − 1
2
g2

2µ2m
(1)
2 (zi) ≡ E(L2n(zi)) − an(zi) = o(g2

2) uniformly in SZ. (A9)
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54 C. Martins-Filho and K. Yang

Finally, by Lemma 1 supzi∈SZ
|L2n(zi) − E(L2n(zi))| = op(1), hence, combining equa-

tions (A7), (A8) and (A9) we have L̂2n(zi) = (µ2/2)g2
2m

(2)
2 (zi) + op(g2

2) uniformly in SZ .
Let L3n(zi) = 1

n

∑n
k=1

( 1
g2

K
(

zk−zi

g2

)
f̄X(xk)

f̄ (xk,zk)
m(xk, zi) − γ2(zi)), then if there exists 0 < Bm

such that m(x, z) < Bm for all (x, z) ∈ SX × SZ we have

|L̂3n(zi) − L3n(zi)| ≤ Bm sup
(xk,zk)∈SX×SZ

∣∣∣∣∣
f̂X(xk)

f̂XZ(xk, zk)
− f̄X(xk)

f̄XZ(xk, zk)

∣∣∣∣∣ sup
zi∈SZ

f̂Z(zi),

which is similar in structure to inequality equation (A6). Hence, using the same arguments we
have that L̂3n(zi) = L3n(zi) + op(g2

2) uniformly in SZ . Let

An
1(zi) = 1

n

n∑

k=1

1
g2

K

(
zk − zi

g2

)
f̄X(xk)

f̄XZ(xk, zk)
and

An
2(zi) = 1

n

n∑

k=1

1
g2

K

(
zk − zi

g2

)
f̄X(xk)

f̄XZ(xk, zk)
m1(xk).

Now note that,

L3n(zi) = αAn
1(zi) + An

2(zi) + m2(zi)A
n
1(zi) − γ2(zi)

= γ2(zi)(A
n
1(zi) − 1) + An

2(zi)

and consequently E(Ln
3(zi)) = γ2(zi)(E(An

1(zi)) − 1) + E(An
2(zi)). We look at each expec-

tation separately.

E(An
1(zi)) =

∫∫
1
g2

K

(
zk − zi

g2

)
f̄X(xk)

f̄XZ(xk, zk)
fXZ(xk, zk)dxkdzk

=
∫∫

1
g2

K

(
zk − zi

g2

)
f̄X(xk)dxkdzk

−
∫∫

1
g2

K

(
zk − zi

g2

)
f̄X(xk)

f̄XZ(xk, zk)
(f̄XZ(xk, zk) − fXZ(xk, zk))dxkdzk

=
∫∫

1
g2

K

(
zk − zi

g2

)
(f̄X(xk) − fX(xk))dxkdzk

+
∫∫

1
g2

K

(
zk − zi

g2

)
fX(xk)dxkdzk

−
∫∫

1
g2

K

(
zk − zi

g2

)
f̄X(xk)

f̄XZ(xk, zk)
(f̄XZ(xk, zk) − fXZ(xk, zk))dxkdzk
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Finite sample performance of kernel-based regression methods 55

= 1 +
∫∫

1
g2

K

(
zk − zi

g2

)
(f̄X(xk) − fX(xk))dxkdzk

−
(∫∫

1
g2

K

(
zk − zi

g2

) (
f̄X(xk)

f̄XZ(xk, zk)
− fX(xk)

fXZ(xk, zk)

)
(f̄XZ(xk, zk)

− fXZ(xk, zk))dxkdzk +
∫∫

1
g2

K

(
zk − zi

g2

)
fX(xk)

fXZ(xk, zk)
(f̄XZ(xk, zk)

− fXZ(xk, zk))dxkdzk

)

= 1 + Cn
1 (zi) − (Cn

2 (zi) + Cn
3 (zi)).

Also, using the fact that E(m1(X)) = 0, we can similarly write

E(An
2(zi)) =

∫∫
1
g2

K

(
zk − zi

g2

)
(f̄X(xk) − fX(xk))m1(xk)dxkdzk

−
∫∫

1
g2

K

(
zk − zi

g2

)
fX(xk)

fXZ(xk, zk)
(f̄XZ(xk, zk) − fXZ(xk, zk))m1(xk)dxkdzk

−
∫∫

1
g2

K

(
zk − zi

g2

) (
f̄X(xk)

f̄XZ(xk, zk)
− fX(xk)

fXZ(xk, zk)

)
m1(xk)(f̄XZ(xk, zk)

− fXZ(xk, zk))dxkdzk

= Dn
1 (zi) + Dn

2 (zi) + Dn
3 (zi).

By Taylor’s Theorem, for all (x, z) ∈ SX × SZ and δ > 0

− g2
1

1
2
f

(2)
X µ2 − 1

2
µ2g

2
1δ < f̄X(x) − fX(x) < g2

1
1
2
f

(2)
X (x)µ2 + 1

2
µ2g

2
1δ and

− µ2

2

2∑

i=1

∂2fXZ(x, z)

∂i∂i
g2

i − µ2

2

2∑

i=1

g2
i δ < f̄XZ(x, z) − fXZ(x, z) <

µ2

2

2∑

i=1

∂2fXZ(x, z)

∂i∂i
g2

i + µ2

2

2∑

i=1

g2
i δ.

Therefore, given Assumption 2 and provided that SX is bounded

Cn
1 (zi)

g2
2

= µ2

2

∫
f

(2)
X (v)dv + o(1) uniformly in SZ, and

Cn
3 (zi)

g2
2

= µ2

2

∫
fX(v)

∂2fXZ(v, zi)

∂1∂1

1
fXZ(v, zi)

dv

+ µ2

2

∫
fX(v)

∂2fXZ(v, zi)

∂2∂2

1
fXZ(v, zi)

dv + o(1)

uniformly in SZ . We ignore Cn
2 (zi) as it is of order smaller than that of Cn

1 (zi) and Cn
3 (zi).

Also,

Dn
1 (zi)

g2
2

= µ2

2

∫
f

(2)
X (v)m1(v)dv + o(1) and

Dn
2 (zi)

g2
2

= µ2

2

∫
fX(v)m1(v)

∂2fXZ(v, zi)

∂1∂1

1
fXZ(v, zi)

dv

+ µ2

2

∫
fX(v)m1(v)

∂2fXZ(v, zi)

∂2∂2

1
fXZ(v, zi)

dv + o(1)
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56 C. Martins-Filho and K. Yang

uniformly in SZ . As above, we ignore Dn
3 (zi) as it is of order smaller than Dn

1 (zi) and Dn
2 (zi).

Now, note that

sup
zi∈SZ

|L3n(zi) − E(L3n(zi))| ≤ Bm sup
zi∈SZ

|An
1(zi) − E(An

1(zi))| + sup
zi∈SZ

|An
2(zi) − E(An

2(zi))|.

By Lemma 1

1
g2

2
sup
zi∈SZ

|L3n(zi) − E(L3n(zi))| = op(1) (A10)

given that f̄X(xk)

f̄XZ(xk,zk)
is bounded. Let τn(zi) = γ2(zi)(T1n(zi) − 1) + T2n(zi), where

T1n(zi) = 1 + µ2

2
g2

2

∫
f

(2)
X (v)dv − µ2

2
g2

2

∫
fX(v)

∂2fXZ(v, zi)

∂1∂1

1
fXZ(v, zi)

dv

− µ2

2
g2

2

∫
fX(v)

∂2fXZ(v, zi)

∂2∂2

1
fXZ(v, zi)

dv

T2n(zi) = µ2

2
g2

2

∫
m1(v)f

(2)
X (v)dv − µ2

2
g2

2

∫
fX(v)m1(v)

∂2fXZ(v, zi)

∂1∂1

1
fXZ(v, zi)

dv

− µ2

2
g2

2

∫
fX(v)m1(v)

∂2fXZ(v, zi)

∂2∂2

1
fXZ(v, zi)

dv.

Then,

1
g2

2
sup
zi∈SZ

|E(L3n(zi)) − τn(zi)| ≤ 1
g2

2
sup
zi∈SZ

|E(An
1(zi)) − T1n(zi)|

+ 1
g2

2
sup
zi∈SZ

|E(An
2(zi)) − T2n(zi)|. (A11)

Hence,

1
g2

2
sup
zi∈SZ

|L̂3n(zi) − τn(zi)| ≤ 1
g2

2
sup
zi∈SZ

|L̂3n(zi) − L3n(zi)| + 1
g2

2
sup
zi∈SZ

|L3n(zi) − E(L3n(zi))|

+ 1
g2

2
sup
zi∈SZ

|E(L3n(zi)) − τn(zi)| (A12)

and combining equations (A10),(A11) and (A12), we obtain

L̂3n(zi) = µ2

2
g2

2

∫
f

(2)
X (v)m(v, zi)dv − µ2

2
g2

2

(∫
m(v, zi)fX(v)

∂2fXZ(v, zi)

∂1∂1
f −1

XZ (v, zi)dv

+
∫

m(v, zi)fX(v)
∂2fXZ(v, zi)

∂2∂2
f −1

XZ (v, zi)dv
)

+ op(g2
2)

uniformly in SZ . Hence, combining the approximations for L̂2n(zi) and L̂3n(zi), we have

s1(x)L̂2 = 1
2
g2

2µ2E(m
(2)
2 (zi)|$x) + op(h2

1) + op(g2
2) and
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Finite sample performance of kernel-based regression methods 57

s1(x)L̂3 = 1
2
g2

2µ2E

(∫
f

(2)
X (v)m(v, zi)dv|$x

)

− 1
2
g2

2µ2E

(∫
m(v, zi)fX(v)f −1

XZ (v, zi)

2∑

d=1

∂2fXZ(v, zi)

∂d∂d

dv|$x
)

+ op(h2
1) + op(g2

2),

which completes the proof of part a) of the theorem.
b) Let [aij]m,p

i=1,j=1 denote an m × p matrix with typical element aij. We write $y − $γ P
2 ($z) =(

I − 1
ng2

Bn

)
$y where

Bn =
[

K

(
zj − zi

g2

)
f̂X(xj )

f̂XZ(xj , zj )

]n,n

i=1,j=1

.

Hence, E(m2S1
1 (x)|$x, $z) = s1(x)

(
I − 1

ng2
Bn

)
$m($x, $z) and

nh1V (m2S1
1 (x)|$x, $z) = nh1σ

2s1(x)

(
I − 1

ng2
Bn

) (
I − 1

ng2
Bn

)′
s1(x)′ (A13)

= σ 2
(

nh1s1(x)s1(x)′ − nh1

ng2
s1(x)B ′

ns1(x)′ − nh1

ng2
Bns1(x)′

+ nh1

n2g2
2
s1(x)BB′s1(x)′

)

= σ 2 (V1n(x) + V2n(x) + V3n(x) + V4n(x)). (A14)

From [27] we have V1n(x)
p→ 1

fX(x)

∫
K2(v)dv. Now,

V2n(x) = e

(
R′

X(x)WX(x)RX(x)

nh1

)−1
R′

X(x)WX(x)BnWX(x)RX(x)

n2g2h1

×
(

R′
X(x)WX(x)RX(x)

nh1

)−1

e′,

since (R′
X(x)WX(x)RX(x)/nh1)

−1 converges in probability to a finite matrix we focus on

R′
X(x)WX(x)BnWX(x)RX(x)

n2g2h1
≡

(
m11 m12

m21 m22

)
,
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58 C. Martins-Filho and K. Yang

where

m11 = h1
1

nh1

n∑

i=1

K

(
xi − x

h1

)
f̂X(xi)

f̂XZ(xi, zi)

1
nh1g2

n∑

j=1

K

(
zi − zj

g2

)
K

(
xj − x

h1

)
,

m12 = h2
1

1
nh1

n∑

i=1

K

(
xi − x

h1

)
xi − x

h1

f̂X(xi)

f̂XZ(xi, zi)

1
nh1g2

n∑

j=1

K

(
zi − zj

g2

)
K

(
xj − x

h1

)
,

m21 = h2
1

1
nh1

n∑

i=1

K

(
xi − x

h1

)
xi − x

h1

f̂X(xi)

f̂XZ(xi, zi)

1
nh1g2

n∑

j=1

× K

(
zi − zj

g2

)
K

(
xj − x

h1

)
xj − x

h1
,

m22 = h3
1

1
nh1

n∑

i=1

f̂X(xi)

f̂XZ(xi, zi)
K

(
xi − x

h1

)
xi − x

h1

1
nh1g2

n∑

j=1

× K

(
zi − zj

g2

)
K

(
xj − x

h1

)
xj − x

h1
.

We now show that mij = op(1) for all i, j . First,

m11 = h1
1

nh1

n∑

i=1

K

(
xi − x

h1

)
(f̂XZ(x, zi) − fXZ(x, zi))

(
f̂X(xi)

f̂XZ(xi, zi)
− fX(xi)

fXZ(xi, zi)

)

+ h1
1

nh1

n∑

i=1

K

(
xi − x

h1

)
(f̂XZ(x, zi) − fXZ(x, zi))

fX(xi)

fXZ(xi, zi)

+ h1
1

nh1

n∑

i=1

K

(
xi − x

h1

)
fXZ(x, zi)

(
f̂X(xi)

f̂XZ(xi, zi)
− fX(xi)

fXZ(xi, zi)

)

+ h1
1

nh1

n∑

i=1

K

(
xi − x

h1

)
fXZ(x, zi)

fX(xi)

fXZ(xi, zi)

= α1 + α2 + α3 + α4

and |m11| ≤ |α1| + |α2| + |α3| + |α4|. Now we note that

|α1| ≤ h1 sup
zi∈SZ

|f̂XZ(x, zi) − fXZ(x, zi)| sup
xi ,zi∈SX×SZ

∣∣∣∣∣
f̂X(xi)

f̂XZ(xi, zi)
− fX(xi)

fXZ(xi, zi)

∣∣∣∣∣

× 1
nh1

n∑

i=1

K

(
xi − x

h1

)
,

|α2| ≤ h1BfX
B−1

fX,Z
sup
zi∈SZ

|f̂XZ(x, zi) − fXZ(x, zi)|
1

nh1

n∑

i=1

K

(
xi − x

h1

)
,
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Finite sample performance of kernel-based regression methods 59

|α3| ≤ h1BfX,Z
sup

xi ,zi∈SX×SZ

∣∣∣∣∣
f̂X(xi)

f̂XZ(xi, zi)
− fX(xi)

fXZ(xi, zi)

∣∣∣∣∣
1

nh1

n∑

i=1

K

(
xi − x

h1

)
,

|α4| ≤ h1BfX

1
nh1

n∑

i=1

K

(
xi − x

h1

)
.

Hence, by Lemma 1 all expressions to the left of the inequalities converge in probability to
zero, and consequently m11

p→ 0. Now, note that m12 (m21 is identical in structure) is identical
to m11 except for the presence in the summand of (xi − x)/h1, but since K(·) = 0 outside
of its compact support and SX is compact, we have by Lemma 1 that m12

p→ 0. The same
argument is also applied to show that m22

p→ 0 and, therefore, V2n, V3n
p→ 0.

V4n = e

(
R′

X(x)WX(x)RX(x)

nh1

)−1
R′

X(x)WX(x)BnB
′
nWX(x)RX(x)

n3g2
2h1

×
(

R′
X(x)WX(x)RX(x)

nh1

)−1

e′

and as in the case of V2n, we focus on showing that the matrix (R′
X(x)WX(x)BnB

′
nWX(x)RX

(x))/(n3g2
2h1) converges in probability to zero. Note that,

R′
X(x)WX(x)BnB

′
nWX(x)RX(x)

n3g2
2h1

≡
(

u11 u12

u21 u22

)
,

where

u11 = g2
1
n

n∑

i=1

(
f̂X(xi)

f̂XZ(xi, zi)

)2
1

ng2
2

n∑

l=1

K

(
xl − x

h1

)
K1

(
zi − zl

g2

)

× 1
nh1g2

n∑

j=1

K

(
zi − zj

g2

)
K

(
xj − x

h1

)
,

u12 = h1g2
1
n

n∑

i=1

(
f̂X(xi)

f̂XZ(xi, zi)

)2
1

ng2
2

n∑

l=1

K

(
xl − x

h1

)
K1

(
zi − zl

g2

)

× 1
nh1g2

n∑

j=1

K

(
zi − zj

g2

)
K

(
xj − x

h1

)
xj − x

h1
,

u21 = h1g2
1
n

n∑

i=1

(
f̂X(xi)

f̂XZ(xi, zi)

)2
1

ng2
2

n∑

l=1

K

(
xl − x

h1

)
xl − x

h1
K

(
zi − zl

g2

)

× 1
nh1g2

n∑

j=1

K

(
zi − zj

g2

)
K

(
xj − x

h1

)
,

u22 = h2
1g2

1
n

n∑

i=1

(
f̂X(xi)

f̂XZ(xi, zi)

)2
1

ng2
2

n∑

l=1

K

(
xl − x

h1

)
xl − x

h1
K

(
zi − zl

g2

)

× 1
nh1g2

n∑

j=1

K

(
zi − zj

g2

)
K

(
xj − x

h1

)
xj − x

h1
.
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60 C. Martins-Filho and K. Yang

We will argue that uij
p→ 0 for all i, j . First, we observe that

|u11| = g2
1
n

n∑

i=1

(
f̂X(xi)

f̂XZ(xi, zi)

)2 ∣∣∣f̂ 2
XZ(x, zi) − f 2

XZ(x, zi)
∣∣∣

+ g2
1
n

n∑

i=1

(
f̂X(xi)

f̂XZ(xi, zi)

)2

f 2
XZ(x, zi)

≤ g2

(

sup
zi∈SZ

∣∣∣f̂ 2
XZ(x, zi) − f 2

XZ(x, zi)
∣∣∣ + B2

fXZ

)
1
n

n∑

i=1

(
f̂X(xi)

f̂XZ(xi, zi)

)2

≤ g2

(

sup
zi∈SZ

∣∣∣f̂ 2
XZ(x, zi) − f 2

XZ(x, zi)
∣∣∣ + B2

fXZ

) 

1
n

n∑

i=1

∣∣∣∣∣∣

(
f̂X(xi)

f̂XZ(xi, zi)

)2

−
(

fX(xi)

fXZ(xi, zi)

)2
∣∣∣∣∣ + B

)

≤ g2

(

sup
zi∈SZ

∣∣∣f̂ 2
XZ(x, zi) − f 2

XZ(x, zi)
∣∣∣ + B2

fXZ

) 

 sup
(xi ,zi )∈SX×SZ

∣∣∣∣∣∣

(
f̂X(xi)

f̂XZ(xi, zi)

)2

−
(

fX(xi)

fXZ(xi, zi)

)2
∣∣∣∣∣ + B

)

and, since by Lemma 1 f̂XZ(x, z) − fXZ(x, z) = op(1) and f̂X(x) − fX(x) = op(1) uniformly,
u11 = op(1). We also note that u21, u12 and u22 differ from u11 only in that (xj − x)/h1 and
(xl − x)/h1 appear in the summands.Again, since K(·) = 0 outside of its compact support and
SX compact, we have by Lemma 1 that u21, u12, u22 = op(1) and consequently V4n = op(1).

!

THEOREM 2 Suppose that Assumptions 1–3 hold, that ng3
1(ln(g1))

−1 → ∞ and
n(g1g2)

2p+1(ln(g1g2))
−1 → ∞ and let µ(x, z) = m1(x) + m2(z). Then, the conditional bias

of m2S2
1 (xi) is given by,

E(m2S2
1 (x) − m1(x)|$x, $z) = h2

1

2
µ2m

(2)
1 (x) − 1

2
g2

2µ2E(m
(2)
2 (Z)|$x)

− 1
2
g2

2µ2E

(∫
f

(2)
X (v)µ(v, Z)dv|$x

)

+1
2
g2

2µ2E

(∫
µ(v, Z)fX(v)f −1

XZ(v, Z)

2∑

d=1

∂2fXZ(v, Z)

∂d∂d

dv|$x
)

+ op(h2
1) + op(g2

2)

and

V (m2S2
1 (x)|$x, $z) = 1

nh1
σ 2RKf −1

X (x) + op((nh1)
−1). (A15)

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f C

ol
or

ad
o 

at
 B

ou
ld

er
 L

ib
ra

rie
s]

 a
t 1

9:
48

 3
1 

M
ar

ch
 2

01
5 



Finite sample performance of kernel-based regression methods 61

Mutatis mutandis, similar expressions are obtained for m2. The conditional bias and variance
of m2S2(xi, zi) are

E(m2S2(x, z) − m(x, z)|$x, $z) = h2
1

2
µ2m

(2)
1 (x) − 1

2
g2

2µ2E(m
(2)
2 (Z)|$x)

− 1
2
g2

2µ2E

(∫
f

(2)
X (v)µ(v, Z)dv|$x

)

+ 1
2
g2

2µ2E

(∫
µ(v, Z)fX(v)f −1

XZ(v, Z)

2∑

d=1

∂2fXZ(v, Z)

∂d∂d

dv|$x
)

+ h2
2

2
µ2m

(2)
2 (z) − 1

2
g2

1µ2E(m
(2)
1 (xi)|$z) − 1

2
g2

1µ2E

(∫
f

(2)
Z (v)µ(X, v)dv|$z

)

+ 1
2
g2

1µ2E

(∫
µ(X, v)fZ(v)f −1

XZ(X, v)

2∑

d=1

∂2fXZ(X, v)

∂d∂d

dv|$z
)

+ op(h2
1) + op(g2

2) + op(h2
2) + op(g2

1)

and

V (m2S2(x, z)|$x, $z) = 1
nh1

σ 2RKf −1
X (x) + 1

nh2
σ 2RKf −1

Z (z)

+ op

(
(nh1)

−1) + op

(
(nh2)

−1) . (A16)

Proof Let ε′ = (ε1, · · · , εn) where εi = yi − α − m1(xi) − m2(zi). By construction,

m2S2
1 (x) = s1(x)($y − $1nȳ − $mP

2 ($z))
= s1(x)$1n(α − ȳ) + s1(x)( $m1($x) + ε) + s1(x)( $m2($z) − $mP

2 ($z)). (A17)

Note that for the first term it is easy to show that E(α − ȳ|$x, $z) = Op(n−1/2), the second term
is identical to the first term that appeared in equation (A3) in the proof of Theorem 1. Now
we look at the ith element of −( $m2($z) − $mP

2 ($z)), which is

mP
2 (zi) − m2(zi) = 1

n

n∑

k=1

1
g2

K

(
zk − zi

g2

)
f̂X(xk)

f̂XZ(xk, zk)
(yk − ȳ) − m2(zi)

= L̂0n(zi) + L̂1n(zi) + L̂2n(zi) + L̂3n(zi),

where

L̂0n(zi) = 1
n

n∑

k=1

1
g2

K

(
zk − zi

g2

)
f̂X(xk)

f̂XZ(xk, zk)
(α − ȳ) = An

1(zi)(α − ȳ)

L̂1n(zi) = 1
n

n∑

k=1

1
g2

K

(
zk − zi

g2

)
f̂X(xk)

f̂XZ(xk, zk)
εk

L̂2n(zi) = 1
n

n∑

k=1

1
g2

K

(
zk − zi

g2

)
f̂X(xk)

f̂XZ(xk, zk)
(m2(zk) − m2(zi))
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62 C. Martins-Filho and K. Yang

L̂3n(zi) = 1
n

n∑

k=1

{
1
g2

K

(
zk − zi

g2

)
f̂X(xk)

f̂XZ(xk, zk)
µ(xk, zi) − m2(zi)

}

= A2n(zi) + m2(zi)(A1n(zi) − 1),

where A1n(zi), A2n(zi), L̂1n(zi) and L̂2n(zi) are as defined in the proof of Theorem 1. Hence,
using the convergence results of Theorem 1 we obtain the desired expression for the conditional
bias of m2S2

1 (x). For the conditional variance we note that, for ε̄ = n−1$1′
nε

m2S2
1 (x) − E(m2S2

1 (x)|$x, $z) = s1(x)

(
I − 1

ng2
Bn

)
(ε − ε̄)

and consequently,

V (m2S2
1 (x)|$x, $z) = s1(x)

(
I − 1

ng2
Bn

)
E

(
(ε − ε̄)(ε − ε̄)′|$x, $z

) (
I − 1

ng2
Bn

)′
s1(x)′

= σ 2s1(x)

(
I − 1

ng2
Bn

) (
I − 1

ng2
Bn

)′
s1(x)′

− σ 2s1(x)

(
I − 1

ng2
Bn

) $1n
$1′

n

n

(
I − 1

ng2
Bn

)′
s1(x)′ ≡ V1 − V2

nh1V (m2S2
1 (x)|$x, $z) = nh1(V1 − V2).

The first term in the conditional variance expression is identical to equation (A10) in the proof
of Theorem 1, and the second term can easily be shown to be op(1). !
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