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1. Introduction

Recently there has been a growing interest in the specification of nonparametric regression models in which
the regression errors’ correlation structure can be described parametrically. For example, Xiao et al. [38] consider
a nonparametric regression with stationary error terms that have an invertible linear process representation which
encompasses all finite order ARMA(p, q) processes; Vilar-Fernandez and Francisco-Fernandez [32] consider a fixed design
nonparametric regression whose errors follow an AR(1) process; Lin and Carroll [18], Ruckstuhl et al. [25] and Wang [34]
consider a nonparametric regression for panel/clustered data where the error term covariance structure follows a pre-
specified parametric structure; Fan et al. [11] consider a nonparametric regression frontier model with errors whose
covariance structure follows a parametric specification proposed by Aigner et al. [1] and Smith and Kohn [28] consider the
estimation of a finite set of nonparametric regressions whose error structure follows the parametric seemingly unrelated
structure proposed by Zellner [39].

These models can be viewed as extensions of the regression literature in two related but distinct ways. First, they
represent an extension of the vast Generalized Least Squares (GLS) linear and nonlinear parametric regression literatures [13,
37] to the nonparametric regression setting, and as such they represent improvements on the modeling of (un)conditional
expectations. Second, they can be viewed as extensions of the nonparametric regression literature from the typical case
where regression errors are independent and identically distributed (iid) to cases where specific parametric structures for
correlation and heteroscedasticity are allowed [27]. In either case, the usefulness of these extensions in econometric and
statistical practice is well recognized and documented [23,10]. In their most general form, these regression models can be
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written as

Yi=mX)+U, i=1,2,... (1)
where X; is a vector of regressors, Y; is a regressand and the error U; is such that

E(U)=0 foralli=1,2,..., E(UiUj) = w;ij(Bo), 6o € WP, p < oo. (2)

The important characteristic of (2) is that each element of the error covariance can be expressed as a function w;;(6) of
a finite set of parameters 6,. Previous works on the estimation of these models have had two main objectives. The first
is to establish the asymptotic properties of well known nonparametric regression estimators such as local polynomial and
Nadaraya-Watson estimators under the assumed error correlation structure [38,32]. Although progress in this direction has
been made, it is unfortunate that most asymptotic results for traditional estimators are specific to the assumed covariance
structure and lack the generality that would allow their applicability under alternative parametric structures for the error
correlation. A more general result under covariance structure (2) for the local linear estimator seems to be especially
useful as this estimator has a number desirable properties, such as design adaptability, reduced bias (as compared to
Nadaraya-Watson estimators), good boundary properties and mini-max efficiency [7-9]. The first contribution of this
paper is to provide a set of sufficient conditions under which the asymptotic normality of the local linear estimator can
be established when the error correlation structure has the general parametric structure in (2). These conditions encompass
a number of models proposed so far in the nonparametric literature as well as other structures that have been popular in
the GLS parametric literature [20].

The second objective of the existing literature is to propose estimators that by incorporating the information contained
in the error covariance structure will lead to better performance - asymptotically or in finite sample - vis a vis the
traditional estimators [27,18,25,34]. How to best incorporate the error covariance matrix information into local polynomial
nonparametric regression estimators is still an open question. Lin and Carroll [18] show that in typical random effects
panel data models, when a standard kernel based estimator is used, it is better to estimate the regression by ignoring the
correlation structure within a cluster — the “working independence” approach. An alternative kernel smoothing method
proposed by Wang [34] achieves smaller variance when the correlation structure is taken into account. However, it is not
clear how to generalize this approach to the case of a general error covariance. A particularly promising approach has been
the pre-whiten method proposed by Ruckstuhl et al. [25] and adopted by Xiao et al. [38]. However, as in the case of the local
linear estimator, the asymptotic properties of this pre-whiten estimator have been established only for specific parametric
structures of the error covariance (random effects panel data and autocorrelated errors). In fact, as will be argued below,
establishing the asymptotic normality of the pre-whiten estimator in general settings could be quite difficult. Hence, in
the second part of this paper we propose a new two-step estimator, inspired by Ruckstuhl et al. [25], that incorporates
information contained in the error covariance structure and is asymptotically normal under fairly mild restrictions on the
parametric structure of the covariance (see Assumptions A6 and TA 4.1-4.3). Our estimator is an improvement over the
traditional local linear estimator in that its bias is of the same order but its asymptotic distribution has strictly smaller
variance.

Our results are useful from at least two perspectives. First, since our results hold for generally specified parametric
covariances, they eliminate the need to repeatedly establish asymptotic normality for both estimators - local linear and
the two-step procedure proposed herein - under specific structures of w;(6p). Second, because the two estimators are
asymptotically normal and converge at similar rates, establishing relative efficiency is facilitated. At their technical core, both
contributions in this paper can be viewed as extensions to the results of Mack and Silverman [19] and Masry and Fan [22].
These extensions are made possible by relying on inequalities for non-stationary processes provided by Doukhan [6] and
Volkonskii and Rozanov [33]. The rest of the paper is organized as follows. Section 2 provides the general characteristics of
the regression model that we consider, defines the local linear estimator, and gives a list of assumptions and the two main
theorems necessary for establishing the properties of the local linear estimator for model (1)-(2). In Section 3 we define
a new two-step estimator based on the knowledge of w;;(6y) and give sufficient conditions for obtaining its asymptotic
normality. We then obtain the asymptotic equivalence of the two-step estimator based on w;(6p) and its feasible version
based on an estimator w (), where §— 6y = 0,(1). These results are obtained for a special class of parametric covariances as
specified by our Assumptions A6 and TA 4.1-4.3 in Theorem 4. Section 4 gives two applications of our results that illustrate
how our theorems encompass and extend previous results in the literature. Section 5 contains a Monte Carlo study that
implements our two-step estimator, sheds some light on its finite sample properties, and compares its performance to that
of existing estimators. Section 6 provides a summary of the paper.

2. A nonparametric regression model with general parametric covariance

Suppose there are n observations y = (Y1,...,Y,), X = (Xi,...,X,)’ on the regressand and regressors for the model
(1)-(2). The objective is to estimate the regression function m(x) at some point x € ®°, D < n.! There is a vast literature [15]

1 1n what follows we proceed for simplicity with the assumption that D = 1. Mutatis mutandis all results follow for D > 1.
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on how to proceed with estimation of m. Here, we focus our attention on the local linear estimator (LLE) which was
popularized by Fan [7] due to its well known desirable properties. Furthermore, our results for the LLE are easily extended
to the also popular Nadaraya-Watson estimator. Let ¢’ = (1, 0), 1;, = (1, ..., 1), a vector of ones of length n,and h, > 0 a
sequence of bandwidths; then the LLE is defined as

m(x) = ¢ (RKR) ™ RKJ (3)
where R, = (1,,% — 1,x), Ky = diag{K (X'h—;">}n_l It will be convenient for our purposes to rewrite (3) as m(x) =

Ly w, (h; x) Y;, where W, (z, ) = ¢S, (0)(1,2)'K(2) and

SR B 2 G I U G [ (et 59
G B )

To establish the asymptotic normality of m(x) for model (1)-(2) we follow the traditional approach of breaking the
problem into two parts. First, we establish the uniform convergence in probability of the components of R KR, after a
suitable normalization. This is accomplished as an application of Theorem 1 which is given below. Second, we establish
the asymptotic distribution of the R K,y vector (and of the estimator itself) in Theorem 2. We now provide a list of general
assumptions that will be selectively adopted in these theorems and introduce some notation. In what follows C always
denotes a generic constant that may take different values in % and the sequence of bandwidths h, is such that h, — 0 and
nh? — oo asn — oo.

Assumption A1l. 1. Let f;(x) be the marginal density of X; evaluated at x, with f;(x) < Cforalliand x; 2. f,-<d) (x) is the dth-order
derivative of f;(x) evaluated at x and we assume that |f1.“)(x)\ < G 3. 1fi(x) — fi(x)| < Clx — x| for all x, X'; 4. fixigmo (X1, - . ., Xo)
denotes the joint density of X;, ..., X, evaluated at x;, ..., x, and we assume that fymo(x;, ..., %,) < Cforallx, ..., x,. 5.
fi@) =n""Y" fi(x) — f(x) asn — oo where 0 < f(x) < 00; 6.as n — 00 0 < inf,cqlfy(x)| < Cforx € G a compact set.

Assumption A2. K(x) : ® — R is a symmetric bounded function with compact support S such that: 1. [ K(x)dx = 1; 2.
[xK(x)dx = 0; 3. [ x*K(x)dx = 02; 4. for all x, X' € Sy we have [K(x) — K(X)| < C|x —X/|.

Assumption A3. w;(6) is the (i, j) element of 2 = E(UU’) with |w;j(6o)| < C for all i, j, @,(0) = n~! YL, wi(9) — @(O) as
n — oo where 0 < @(6) < oo for every 6 and @y, (x, 0) = n~1 31, wi(0)fi(x) — @r(x, 0) asn — oo where 0 < @y (x, 6) < 00
for every x and 6.

Let {R;} be a sequence of random variables defined in a probability space (S, F, P) and 3! be the o-algebra of events generated
by the random variables {R; : @ < t < b}; then a(3}, J7) = sup,cyp pead IP(AN B) — P(A)P(B)| and a(m) = sup, a (3", I77,,)-
A stochastic process is said to be @-mixing if process a(m) — 0 as m — oo. Then we assume:

Assumption A4. 1. {(X;, U;)'}i=1.2,... is an w-mixing process of size —2, which implies that Z].Z]j“a(j)l‘% < ooforéd > 2

and a > 1 — 2/6; 2. we denote the joint density of (X;, U;)’' by fx, u, (xi, u;), the density of X; conditional on U; by fx,y, (x) with
fxiu;(¥) < Cand the conditional density of X;, X; given Ui, U; by fix;juu; (%i, ;) With fxxuu, (%, ) < Cfor allx;, x;; 3. there exists

e P 1/2
a sequence of positive integers satisfying s, — oo and s, = o((nh,)'/?) such that (%) a(s,) — 0asn — oo.

Assumption A5. m@ (x) < Cforallxandd = 1, 2, where m? (x) is the dth-order derivative of m(x) evaluated at x.

Our Assumption A1 requires the densities of regressor X; to be smooth and bounded functions, and in the case where the
X; come from heterogeneous distributions, the average of the densities must converge. This is automatically satisfied if the X;
come from the same distribution, or the X; are part of a strictly stationary sequence. Assumption A2 is a standard assumption
for the kernel functions in the nonparametric regression estimation. Assumption A3 ensures that the weighted average of
the diagonal terms of the error covariance converges as n — oo, which is trivially met when there is a homoscedastic error
structure. Under the mixing conditions imposed in Assumption A4, the dependence among {(X;, U;)’} will diminish as the
distance between indices increases, which is general enough to include many interesting cases like panel data models or
autoregressive models of order (p) (see Section 4), while still allowing a central limit theorem to apply on the standardized
summation. We impose a smoothness condition on m(x) in Assumption A5 so the standard Taylor approximations could
carry through.

We now state Theorem 1 which is a supporting result for the main theorems that follow. All proofs are provided in
Appendix A.

Theorem 1. Let {(X;, U;)}[_, be a stochastic sequence of vectors, {v;}l, be a uniformly bounded non-stochastic sequence in R and
define



312 C. Martins-Filho, F. Yao / Journal of Multivariate Analysis 100 (2009) 309-333

n Xi—x\ (X —x\ L
si(x) = (nhy)~! ;K( lhn > < Ihn ) g(U)v; withj=0,1,2

whereg : % — R is measurable. Assume that: 1. E(|g(U;)|>*%) < Cforsome 6 > 0and alli; 2. sup,.¢ [ 1g(U)|%fx..u; (x, UdU; < oo
for some a > 1; 3. Assumptions A2 and A4. For G a compact subset of R we have

nhn —-1/2
leél(l;) |sj(X) — E(S}-(X))| = OP ((ln(n)) ) (4)

provided that s, B > 2 and we have that n0+1/9(F+15+1.25-p/2 “L15F/2 (1 (7))025+8/2 _, ,

By taking v; = 1 and g()2<) 1: 1 for all i and x in Theorem 1 we have that sup,. |s. j(x) — E(sn,j(x))| = o,(h?) for p > 0 and
+
j=0,1,2provided that ™ — s oo. The last condition is consistent with n@+1/9(b+15)+1.25-6/2p175-B/2 (| (3y)0.25+8/2 _,
nh3

In(n)
asn — oo for@ > 0and s > 2. Consequently, ifp = 1, ey — cowe have that sup,.¢ ﬁ|sn,j(x) — E(sn,j(x))] = 0,(1).

The next theorem establishes the asymptotic /nh,- normality for the local linear estimator under general parametric
covariance structure. We stress that the importance of the result lies in the fact that the regression errors are not restricted

to being (iid) or even weakly stationary. We do assume, however, that {X}i=1,2, . and {Ui}i=12,.. are independent processes.

Theorem 2. Let {(X;, U;)}[_; be a stochastic sequence of vectors and assume that Y; = m(X;) + U; fori = 1,2, ..., {Xi}iz1,2,..
and {Uj}i=1,2,... are independent with E(U;) = O foralli = 1,2, ..., E(UiU;) = w;(6p) 6 € RP,p < oo. If we assume that
Assumptions A1-A5 are met and E(|U;|**?) < C for some 8 > 0 and all i, then

() V2 ((0) — m(x) — By 1 () > N (o, %}g") 1<2(¢>d¢) (5)
where B, 1(x) = %o,%m@) (x) + 0, (h?), provided % — 0and h?In(n) — 0.

In the case where {(X;, U;)'} is an iid sequence with f(x) being the marginal density for X; and w(6) the variance of U,
the asymptotic variance is simplified to being %?)) [ K?(¢)d¢. Theorem 2 can therefore be seen as a generalization of the
classic asymptotic normality result for local linear estimation under the iid assumption. Examples in Section 4 illustrate the
applicability of this general result in regression models where the error covariance has a random effects panel data structure,

and an AR(p) structure.

3. Two-step estimation — Asymptotic normality

The estimator rm(x) studied in the previous section has the desirable property of being /nh,-asymptotically normal.
However, the fact that none of the information provided by the error covariance structure is used in its construction suggests
that alternative estimators can provide improved performance. How to incorporate the covariance structure in defining an
alternative estimator has been the subject of various papers (see inter alia [27,18], but one promising approach has been a
two-step procedure that transforms the model to yield spherical regression errors. The motivation behind the procedure
is quite simple. Let £2(6,) be an n x n matrix with the (i, j) element given by w;j(6), P~1(8) an n x n matrix with the (i, j)
element given by v;(6p) and P(6y) an n x n matrix with the (i, j) element given by p;;(6) such that 22(6p) = P(6p)P(6p)’. Let
m = (mX),...,mX,)), U = (Ui, ..., Uy, I, be the identity matrix of size n and define Z = P='(6)y + (I, — P~ (6p))m.
Then,

Z=m+P Y (O)U=mm+e¢. (6)

Given that the components of the stochastic process {U;};—1.2... can be written as U; = ZJL pi&; whereqg = 1,2,...,n,
if {&;}iz1.2.... is an independent identically distributed process with zero mean and variance o? then the model described
in (6) is the standard nonparametric regression model with spherical errors. The difficulty in dealing with such a model
stems from the fact that the regressand Z is not observed since m and the components of P~'(6) are generally unknown -
since 6 is unknown - and must be substituted by suitable estimates. Hence, implementation normally requires a first-stage
estimation in which m(x) and estimators for the elements of P~ (6,), say P~' (9) (normally using residuals U; = Y;—m(X;)), are
obtained, and a second stage in which the regressand Z = p~! @y + 1, — P71 ((9))1?1 is used in (6). The asymptotic properties
of the resulting estimator are not known in general, but Xiao et al. [38] have obtained +/nh,-asymptotic normality for a
stationary error structure that has an invertible linear process representation U, = Y% cje,;. A key feature of their structure
is that the diagonal elements of P~'(6) are all equal to 1, a property that we will see below has important consequences in
establishing the asymptotic normality of the estimator. Since this cannot be generally assumed we will propose a slightly
different estimator that circumvents the difficulties that we encountered with the estimator for general models.

In what follows we will restrict ourselves to stochastic processes {U;}i—1,... that can be constructed from linear
transformations of iid processes. Hence, we assume:
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Assumption A6. The components of the stochastic process {U;}i—1 ».... can be written as U; = Zle pij&jwhereq=1,2,...,n
and {¢;}i—1,2,.. is an independent identically distributed process with zero mean and unit variance.

For economy of notation we also write pj, v;;, P and P~! where it is well understood that all of these variables depend on
6. Let H = diag{v; '}, and define Z = HP~'y 4 (I, — HP~')mn. Then,

Z=m+HP \U=m+y. (7)

Given Assumption A6, {};}i—1.2.... is an independent heterogeneous sequence with E(y) = 0 and E(yy’) = H> = diag{v;2 v
As above, the regression error y; in the transformed regression (7) is independent and heteroscedastic, but the vector of

regressands is unknown. If m(X;) is estimated at a first stage by m(X;), then the only source of ignorance about Z is due to

P~! or the fact that 6, is unknown. In Theorem 3 below we focus on establishing the asymptotic normality of the estimator

m(x) = e (RKR) ™ RK.Z (8)

where Z = HP~'y — (HP™! — 1), ' = (ta(X1), . .., m(X,)) and for the moment we assume that 6y, and therefore P~! (and
consequently H), is known.

Theorem 3. Let {(X;, U;)}!_; be a stochastic sequence of vectors and assume that Y; = m(X;) + U; fori =1, 2, ..., {Xi}iz1,2,.. and
{Ui}iz1,2,... are independent with E(U;) = 0 foralli = 1,2, ..., E(UiU;)) = w;(6o) 6o € WP, p < oc. Consider the estimator i(x)
described above, such that h,, is the bandwidth used in the first-stage estimation and g, is the bandwidth used in the second stage
of the estimation. If we assume that Assumptions A1-A6 are met and E(|U;|>*?) < C for some 6 > 0 and all i, then,

802000~ ) = 1,100 0. 20 [ i pa0) ©)
where Bn 1) = ZoZm® (x) + op(g,,) @y (x, 00) = limyce § XL fi(x)v;* provided that: 1. i — 0and g, = 0(n~'7%); 2.
sup; ] 1,j#i }ZU} = 0(1) and sup; ) 1,j#i ::;;: = O( )

We note that difference between the variances of the asymptotic distributions of m(x) and m(x) is given by

lim
n— 00 nf( )2

By Theorem 12.2.10 in [14] we have that p;v; > 1. Consequently,

Zf(x) (wuwo) - V) [ @ @)de. (10)

n

n
Mz o) =pi+ Y Pz
Vii j=T,ji ii
which establishes that m(x) is efficient relative to m(x). The improvement over local linear estimation is obtained even though
m(x) ignores the heteroscedastic structure of the error.

Notice also that we impose two more assumptions in Theorem 3. The first one relates to undersmoothing in the first-stage
regression so that the magnitude of the bias created by m(x) will be smaller than the leading bias term in the second stage.
This assumption is common in two-stage nonparametric regression estimation, e.g., Assumption 7 in [38], Assumption B5
in [29] and Remark 1 in [34]. The second assumption is essentially uniform summability of the rows of error covariance,
which is a sufficient condition used in the proof of Theorem 3 to control the order of magnitude for summation terms
showing up in the second stage. Similar assumptions have been used in the literature, i.e., Assumption A.3 in [12] and
Assumption 5 in [38].

An important part in the proof of Theorem 3 (Appendix A) is that Z; = m(X;) — Yt Z—Z (m(X;) —m(X;)) + y;:. If instead we
were considering the estimator m(x) = ¢’ (R,KR,) ™' R,K,Z where Z = P~1j— (P~ —I,)n, then Z, = m(X;)+&— Y v () —

m(X;)) + (m(X;) —m(X;)) and B, (x) = Wl(x) YK (M) Z*, which is asymptotically equivalent to m(x) — m(x), would have

an extra term given by ; }X) é SrLK (X' ) (M(X;) — m(X;)) which cannot easily be shown to be o,((ng,)~'/?) under the

general conditions that we consider. By construction, whenever the diagonal elements of P~ 1 are equal to 1 this extra term
does not appear even when Z = P~y — (P~! — I,)m. Hence, we have the following result which we state as a Corollary to
Theorem 3.

Corollary 1. Let {(X;, U;)}_, be a stochastic sequence of vectors and assume that Y; = m(X;) + U; fori = 1,2, ..., {Xi}iz1,2,... and
{Ui}iz1.2,... are independent with E(U;) = 0 foralli = 1, 2, ..., E(U;iUj) = w;j(6) 6p € R, p < oo. Consider the estimator m(x)
described above, such that h,, is the bandwidth used in the first-stage estimation and g, is the bandwidth used in the second stage
of the estimation. If we assume that Assumptions A1-A6 are met and E(|U;|*t?) < C for some 6 > 0 and all i, then,

(nga) V2 ((x) — m(x) — mm»w( o / K2(¢>d¢) (11)
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provided that: 1. Z—: — 0and g, = O(n~'/3); 2. sup; 31, . Ivil = O(1) and sup; 31, .; [vil = 0(1); 3. P~"(6o) is such that
vii(6p) = 1 foralli.

The use of Theorem 3 and its Corollary is restricted in practice due to the fact that the parameter 6 used in defining
P is generally unknown and must be estimated. Hence, we now turn our attention to a feasible estimator m(x) =
e (R;KXRX)_] R;KXZ where Z = H(é)P*] (9)37 — (H(é)Pfl(é) — I,)m and for which o — 0o = 0,(1). The next theorem provides
sufficient conditions under which /ng,(m(x) — m(x)) = o,(1). As such, it gives conditions under which the feasible
estimator is asymptotically equivalent to m(x), therefore inheriting its desirable properties, namely asymptotic normality
and efficiency relative to the LLE. The theorem can be viewed as an extension of the theorem in [20] to the case of
nonparametric regression.

Theorem 4. Suppose that all assumptions in Theorem 3 are holding and assume in addition that:

TA 4.1: H(®)P~1(8) has at most W < oo distinct nonzero elements for every n, denoted by g,,,(9) forw = 1,2, ..., W. That is,
there are n> — W elements that are either zero or duplicates of other nonzero elements in H(8)P~ (). For each w, g, (8) converges
uniformly as n — oo to a real valued function g,,(6) on an open set O containing 6y, where g,, is continuous at 6.

TA 4.2: The number of nonzero elements in each column (and row) of H(6)P~'(6) is uniformly bounded by X as n — oo.
TA 4.3: There exists C < oo such that }_ | |w;j(6)| < Cforeveryn=1,2,...andj=1,2,....
If & — 6y = 0,(1) then we have

Vg (M(x) — m(x)) = 0p(1).

4. Selected applications

In this section we provide two applications for the results that we have obtained. The first deals with clustered or panel
data models. Here, the asymptotic normality result that we obtain for the local linear and the two-stage estimators is novel.
The second application is for nonparametric regression models with autoregressive errors of order p, which have been
studied by Vilar-Fernandez and Francisco-Fernandez [32] for the case where p = 1 under fixed design regressors. The
examples illustrate the applicability of our theorems to popular nonparametric models and reveal the ease of verifying the
conditions listed in Theorems 3 and 4.

4.1. Clustered or panel data models

We focus on the regression models for clustered data proposed by Ruckstuhl et al. [25] and also studied by Wang [34].
The model is a direct extension to the nonparametric regression setting of the one-way random effects model that is popular
in the panel data literature [2]. Consider

Yij:mx,‘j)-’-ot,‘-f—&j izl,...,N;j:],...,J, (12)

where {a;}i=12,... are independent with E(e;) = 0 and V(«;) = o2 for all §; {g;}ij=1,2... are independent with E(e;) = 0
and V(g;) = o2 for all i, j and the processes {e;}i=12.... and {g;};j=1.2.... are independent. Ruckstuhl et al. [25] assume that

{Xi}iz1,2,.. where X{ = (Xi1, . . ., Xy) is an independent and identically distributed vector sequence with the marginal density
of X; given by f;.

We define Y/ = (Yir,...,Yy),y = (Y], ....YR), X = X1, ... Xy, X = (X, ..., X)) and U; = o + &;. Then, given the
assumptions on «; and &; we have that for U] = (Uy, ..., Uy, EUU) = X = o2 + oz1j1jand if U = (U}, ..., Uy),
EUU) = Iy ® ¥ = 0(0?,02). In this context we have that m(x) = ¢ (R;I_(,(RX)AR;I_(J/ where R, = (Iy, X — 1yx),
K, = diag {K (X’;,n_x> }IN:] _-Letn = NJ; then the LLE estimator can be written as m(x) = e i i Wi (X’;T_X x) Y.

We assume Assumption Al.1-4 and verify that Assumption A1.5-6 hold since f,(x) = Jl ijlj;(x) and as assumed in

Ruckstuhl etal. [25]if0 < fi(x) < CwehaveO < f,(x) < B.Assumption A3 is verified since 0 < 02, 62 < Cand consequently
I3 wi(02, 02) = 0 + o? and @y (x, 0%, 0%) = (0 + a2)f,(x). Now, since the process {X;} is independent and identically
distributed, {X;} is such that «(t) = 0 for all t > J. Similarly, since {¢;} is independent and {¢;} is independent, we have that
U; and Uyy is independent for all i # i for all j, j/ and therefore a(t) = 0 for all t > J, verifying Assumption A4 given the
independence of {X;} and {U;}. Assumption A6 is easily verified by the independence of {«;} and {g;} and noting that U = Pv
where v is a vector of iid random variables with E(v;) = 0 and V(v;) = 1. Hence, we conclude that

2 2
G£+aa

(2)
Vg (m)—m(x)—(a,%m Z(X)g5+op<gﬁ)))iw 0, —5—= / K*(¢)dg | . (13)
] LA
]:
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From [35] we have that P~1(02, 02) = Iy ® V~/2 where

Vo Vo
1 - ... =
Vg Vd
Vo Vo
- 1 R
V2 =y, | Ve Va (14)
Vo Vo 1
Vi V4

where vy = L — (] - %) Landvg = — (l - "f) L and oy = ,/Jo2 + 2. Hence, since 0 < 02,02 < C and J is finite,

Og o1) Joe Ui] Joe
we have that the sum of the elements in every row and column of HP~! (excluding the diagonals) is (J — 1)%’ < C, which
satisfies condition 2 in Theorem 3. TA 4.1 is met with W = 2, g1(02, 02) = vo/vqs and g2(02, 02) = 1 the uniform convergence
is trivial as neither function depends on n and the continuity is easily verified. TA 4.2 is met with & = J and TA 4.3 is met
since Y1, |w;(60)| < Jo2 + o?.
Consistent estimators for o2 and o7 are given by 62 = 7t I, Y-, (Y — m(Xy) — (Y — m))? and 62 = § 3L, (Vi —

m)? — 162, where ¥; = § Yi_, Yyand m; = i YI_, M(X;).Thus, we conclude that

-2
. m? (x) ol(1-11-2
N (m(X) —m(x) — (0,3 Sg e ) ) SN0 = ( L~ ) sz(d))dqb : (15)
13 ()
j=1
4.2. Nonparametric regression with AR(p) errors
We now consider
Yi=mX)+U; fort=1,...,n (16)

where {X;} is independent of {U;}, satisfies Assumptions A1, A3 and is ¢-mixing of size —2. U; is strictly stationary with
Ui = rU_1 +nUc_y + - +1rU_, + vifori = 0,£1, £2, ... where v; ~ iid(0, %) with probability density function f, (x).
Then {U;} satisfies the relevant portions of Assumption A3. Pham and Tran [24] show that {U;} is e-mixing with «(j) — 0
exponentially as j — oo, which gives that {U;} is of size —a for all a € R, therefore satisfying Assumption A4.1. Hence,

5 m® (x 0
N (m(x) — (o) - (aﬁ gy op(gb)) LN (o, 2 e (¢>)d¢) (17)
where y(0) is the variance of the AR(p) process.

Following Mandy and Martins-Filho [20] we note that since 0 < 6% < C we can find a p x p lower triangular matrix A
such that

AE((u1, ..., up) (U1, ..., up))A = o?l, and
P~ (6o)
A | 0 0
- - - | == === == —— : (18)
_ —Tp . —r1 | 1 0 0
= 0 —7, | —T1 1 0
: . - | - . . :
0 0 | —1y -r 1
where 6y = (11,12, .....1p, 0?). Since there are a finite number of bounded nonzero elements in each column and row

of P~1(6y), condition 2 in Theorem 3 is automatically met. Also, P~ is a lower triangular matrix where all elements that
lie more than p positions away from the main diagonal are zero, verifying TA 4.2 with & = p + 1. Also, there are at most
W = p(p+1)/24(p+1) distinct functions in P~1, all of which are independent of n for n > W (implying uniform convergence
trivially) and continuous at 8, since the operations involved in obtaining A are continuous when 0 < o? < C. This verifies
TA4.1.

To verify TA 4.3 we note that an AR(p) process can be written as a p-dimensional VAR(1) process e; = Re;_1 + &;, where
e = (U,'_p+1 . U,‘)/, & = (0, . 0, Vj)/, and
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0o 1 0 -~ ... 0
R= . . . (19)
. .0
0 -+ v ... 0 1
Tp Tp—1 T T

If the process is strictly stationary then the absolute eigenvalues of Rare less than 1, and also E(e;e}) = RI=IE(e.e;) for arbitrary
t. From the definition of e;, the sum }_1_; |[E(U;U;)| is the lower right element of }_7. , |E(eie;)| where the absolute value is taken
elementwise. But,

n n

D IE(eie))| <2 [E(eiep)| < 2 (Z |Rf|) |E(eoep)|
i=1

i=1 i=0

and re-writing |R'| in Jordan canonical form yields

Xn: E(eie))| < 21| (Xn: Ail) U~ 11E(eoep)|

i=1 i=0
where A is a diagonal matrix involving the eigenvalues of R and J is a fixed matrix depending only on R. Since the absolute
eigenvalues are less than one "2 | 4;| converges, which verifies TA 4.3.
Consistent estimators ; forr;,i = 1, ..., p, can be obtained (see [32] by defining residuals U; = Y; — m(X;) and performing
least squares estimation on the following artificial regression:

U=nU_14+nUi o+ - +nrU_,+¥ fori=p+1,p+2,....

where V; is an arbitrary regression error. Hence, we conclude

2 2
g (m(x) - mo) - (o,%’" gy op<gﬁ))) SN (o, =/ 1<2(</>)d¢) . (20)

5. Monte Carlo study

In this section, we perform a Monte Carlo study to implement our two-step estimator, henceforth referred to as 2SLL,
and illustrate its finite sample performance. We consider a one-way random effects panel data and an AR(2) parametric
covariance structure, under which the asymptotic properties of 2SLL and of LLE are provided in the previous section.

For panel data structure, the data generating process (DGP) is given by (12), where the univariate pseudo-random
variable Xj is generated independently from an uniform distribution with support [—2, 2]. The pseudo-random variable
«; is independently generated from a normal distribution with zero mean and variance o2 = 4, and ¢; is independently
generated from a standard normal distribution. We investigate three function specifications for m(x): m;(x) = sin(0.75x),
ma(x) = 0.5+ % and m3(x) = 1 — 0.9 exp(—2x?). m;(x) was used by Fan [7] to illustrate the advantage of LLE over
Nadaraya-Watson and Gasser-Miiller estimators, and m,(x) and m3(x) were used by Martins-Filho and Yao [21] to model
the volatility of financial asset returns. All specifications for m(-) are nonlinear and twice differentiable. We fix ] = 2, and
consider three sample sizes N = 100, 150 and 200.

For the AR(2) structure, the DGP is given by (16), where the univariate pseudo-random variable X; is generated
independently from a uniform distribution with support [—2, 2]. For the error U; = riU;_1 + r,Ui_» +v;, we setry = 0.5, 1, =
—0.4 and generate the pseudo-random variable v; independently from a standard normal distribution. It is straightforward
to verify that for this choice of parameters {U;} is a stationary process. The same three functional forms for m(-) as were
given above are adopted. We consider three sample sizes n = 100, 200, and 400.

The implementation of our 2SLL estimator requires the selection of bandwidth sequences h, and g,. We select the
bandwidth g, using the rule-of-thumb data driven plug-in method of Ruppert et al. [26] and let i, = (N])*%g,, in the panel
data model and i, = n*%gn in the AR(2) model. An Epanechnikov kernel is utilized throughout the simulations. We note
that the choice of bandwidth and kernel satisfies the requirements in Theorems 2 and 3.

For comparison purposes, we include in our simulations several estimators proposed in the extant literature. Ullah and
Roy [31], Lin and Carroll [ 18] and Henderson and Ullah [ 16] consider the panel data model and local linear estimators based
on transformed observations to incorporate the information contained in error covariance structure in a specific fashion.
Their estimators are defined as

8i(x) = ¢ (RW, ()R 'RW, (x)y

_1 _1 .
fori = 1,2 and Wi(x) = (P"1)KP~! and W,(x) = K, > 27 'K, *. Essentially, &;(x) is a LLE on the transformed observa-

-1 - -1 - . A . . . . -1 - -1 -
tions Ky 2P~'y and K, 2P~ '%, while 8, (x) is obtained using transformed observations P~'K, 2y and P~ 'K, ?x. These are also
among the estimators considered by Welsh and Yee [36] in the context of a seemingly unrelated regression (SUR) and vector
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measurement error (VME) model (see their equation (5)). They focus on 5, (x) as all other estimators that they consider are
generally inconsistent in the presence of nonzero correlation in the panel model.? As observed by Lin and Carroll [ 18], Ruck-
stuhl et al. [25] and Su and Ullah [30], for the clustered/panel data model of Section 4.1, Si(x) cannot achieve asymptotic
improvement over LLE, but we include both in our simulation to verify their finite sample performance relative to 2SLL.
Henderson and Ullah [16] provide feasible versions of 8i(x) by estimating the unknowns in (2 consistently. Henceforth, we
refer to 3,-(x) as HUi and their feasible versions as FHUi. We note that their estimators for the parameters in the covariance
matrix coincide with those provided in Section 4.1. For the panel data structure, we also consider the two-step estimator
proposed by Ruckstuhl et al. [25], henceforth referred to as RWC, which is more efficient than the local linear estimator, and
follow their suggestion to set T = o.. Note that if we set 7 = é then RWC coincides with 2SLL. Alternatively, as proposed
by Su and Ullah [30], the RWC estimator can be constructed with an optimal t that minimizes an asymptotic approximation
for the mean squared error. In their simulation, the optimal 7 is selected via a grid search over the interval [0, 02 +02] and is
approximately i Hence, the performance of their estimator is similar to ours.? The unknown parameters in 2 are estimated
as described in Section 4.1.

For the AR(2) error structure, we consider the two-step estimator proposed in [32], henceforth referred to as VFF. Their
estimator is defined for the AR(1) model and they show that under fixed design, VFF outperforms the LLE for finite samples.
We consider VFF under a random design with an AR(2) covariance structure, where

((1 Fr)(d 4 —r)(1—r — rz))%

1-— )
riyf1—13 5
P*] _ —ﬁ 1/ 1-— r 0 0 0
—I —nI 1 0 0
0 —I —n 1 0
0 0 —I —nI 1

Since H in 2SLL is a diagonal matrix with the diagonal element being the reciprocal of that in P~!, we observe that VFF differs
from 2SLL only in the treatment of the first two observations; hence the estimators are asymptotically equivalent. Hence,
we expect the estimators to have similar finite sample performances, which is confirmed in the Monte Carlo study. Although
HUi were initially proposed for a panel data error structure, it is straightforward to adapt to the AR(2) structure. We follow
the procedures in Section 4.2 to estimate the unknown parameters in 2.

In total, for the panel data structure we consider nine estimators: LLE, four infeasible estimators where we utilize the
true covariance matrix parameters which are available in the simulation study - HU1, HU2, RWC, 2SLL, and four feasible
estimators - FHU1, FHU2, FRWC, and F2SLL, where we attach the letter “F” in front of the acronyms to indicate that the
unknown parameters in the covariance matrix are estimated. For the AR(2) error structure we consider nine estimators:
LLE, HU1, HU2, VFF, 2SLL, FHU1, FHU2, FVFF and F2SLL. All the estimators, except 2SLL and F2SLL, are implemented with
bandwidth g, described previously. For each experiment design, we perform 1000 repetitions, evaluate m(x) at twenty
equally spaced points over the support interval for the regressor (X) and obtain the average bias, standard deviation and
root mean squared error of each estimator. To avoid evaluation over areas of support where data are sparse, we exclude the
lower and upper 5% of the support interval. The results are reported in Tables 1 and 2 (Appendix B) for the panel data error
structure and AR(2) structure, respectively.

As the sample size increases, across all experiment designs, all estimators generally perform better in terms of averaged
standard deviation, root mean squared error and bias, where exceptions occur in bias, whose magnitude is much smaller.
This confirms the asymptotic results in Section 4, and agrees with the consistency of the alternative estimators. In terms
of the relative performance measured by standard deviation and root mean squared error, when panel data and infeasible
estimators are considered, we observe that 2SLL consistently performs the best, followed closely by the RWC estimator. For
all three functional forms considered, we notice that the reduction of standard deviation and root mean squared error by 2SLL
and RWC over LLE are well over 15%. These results are consistent with our Theorem 3, as well as Theorem 4 in [25], which
suggests that two-step estimation properly accounting for the covariance information can improve upon the classical local
linear estimator. LLE carries similar standard deviation and root mean squared error to HU2, but both LLE and HU2 always
outperform the HU1 estimator. Hence, HUi estimators do not seem to provide gains in terms of efficiency over LLE, at least
under the panel data error specification.

When the AR(2) model is considered, across all specifications for m(x), VFF and 2SLL perform similarly and outperform all
the other alternatives. The improvement in efficiency from both estimators against LLE is over 10%. Again this is consistent

2 See [36, p. 3016].

3 We have investigated the relative performance of their estimator and our 2SLL proposed here by selecting t in accordance with their equation (3.2).
The simulation results (available upon request) show that across different experiment designs, the average RMSE for their estimator decreases with n, and
is smaller than that of LLE but still larger than that of our 2SLL.
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with our Theorem 3 as well as the comments above regarding the similarity of the two estimators. In addition, our results
indicate that the simulation results in [32] carry through in the case of the DGP that we specify.

For the AR(2) error structure, both HU1 and HU2 estimators outperform the LLE, with HU1 outperforming HU2. The
asymptotic distributions for the HUi estimators under an AR(p) structure are unknown, but on the basis of our simulations
these might be viable alternatives. As we expected, the feasible estimators perform slightly worse than the infeasible
estimators, where exceptions occur for the HUi estimators under the panel data error structure. We notice that the extra
burden in computing the unknown parameter is minimal since the increase in magnitude of average standard deviation and
root mean squared error is small. Consequently, the observations regarding the relative performances among alternative
estimators are largely maintained as those for their infeasible versions. This observation gives support for our Theorem 4 in
that feasible 2SLL, obtained by estimating the unknown parameters of the covariance matrix, is asymptotically equivalent
to its infeasible version and outperforms the traditional LLE.

6. Summary

In this paper we provide sufficient conditions for the asymptotic normality of the local linear estimator proposed by
Fan [7] in regression models where the regression error has a non-spherical parametric covariance structure and the
regressors are dependent and heterogeneously distributed. In this context, it seems natural to define an alternative estimator
that incorporates the parametric covariance structure in an attempt to reduce the variance of the asymptotic distribution.
We propose a two-step estimator that incorporates the parametric information given by the error covariance and provide
sufficient conditions for obtaining its asymptotic distribution. A feasible version of the two-step estimator that substitutes
true parameter values with consistent estimators is shown to be ,/ng, asymptotically equivalent in probability to the
two-step estimator under some easily verified conditions. A Monte Carlo study reveals that the asymptotic results for our
estimator are confirmed for finite samples and that our estimator can outperform previously proposed estimators.

Appendix A

Proof of Theorem 1. We prove the case where j = 0. Similar arguments can be used forj = 1, 2. Let B(xo,7) = {x € R :
|x — xo| < r}forr € M*. G compact implies that there exists X, € G such that G € B(xq, r). Therefore for all x,x' € G,
|x — x'| < 2r.Let h, > 0be such that h, — 0asn — oo wheren € {1, 2, 3...}. For any n by the Heine-Borel Theorem there

. . ) ~1/2\ | . -1/2 . 1/2
exists a finite collection of sets {B <x,<, (h%) >} such thatG Cc U, B <x,<, (l) > for x, € Gwithl, < (h%) r. The

hy
proof has three steps.
(1) We show that

k=1

Sup o) — E(so(x))| < max Iso(x) — E(so(x))| + C(nh2)~'72.
X€ <k=<ly

(2) Let sB(x) = (nhy) ' S0, K (X;;X>g(ui)vil(|g(u,v)| < B,) where By < B, < ---,such that }_°, Bi* < oo for some s > 0 and

I(+) is the indicator function. We show that

sug so(x) — s5(x) — E(so(x) — s5(x))| = O4s(B}™°).

“12
(3)Let0 < A <00, 8> 2and g, = (l;"(‘;)) / A; we show that

P (1mka)l( ’sg(xk) _ E(sg(xk))‘ > Sn) _ O(BE-H.Sn1425—ﬂ/2h;1.75—ﬂ/2(ln(n))0.25+ﬂ/2).

—-1/2
Step 1: Forx € B <st (fz) / )

w2 (< (7))
- i)Vi
nhy & h, n )

‘l n
— C
nh, =

[so(x) — so(xi)| =

Xk — X
hy

IA

‘ lg(Uj)vi| by Assumption A2.4.

1 (n\ 1@ 18
€ (hz) =3 lgUvil < Cn2)2 =3 (g(Uy)]
n n n i=1 n i=1

By the measurability of g and Assumption A4, {|g(U;)|}i=1.».... is «-mixing of size —2. Furthermore, given that E(|U;|**?) < C
for some 6 > 0 and all i, we have from McLeish’s LLN (see [37], p. 49) that % Y le(Y)— % Y1 E(Ig(Y)]) = 0,(1) and since
13 VE(Ig(Up]) < Cwe have |so(x) —so(x)| < C(nh2)~"/2 and similarly, E(Jso(x) — so(X)|) < C(nh?)~"/2. Combining the two
results, sup,c [so(x) — E(so(x))| < maxq <<y, [so(Xc) — E(s(x))| + 2C(nh2)~1/2,
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Step 2: sup,cc So(x) — sB(x) — E(so(x) — s5(x))| < T1 + Tz, where Ty = sup, |so(x) — s5(x)| and To = sup,¢ [E(so(x) — s (x))].
We show that T; = og(1) and T, = O(B!=) fors > 0.T; = sup,.c |(nh,)~! ?zlk(xfh;*) g(Uvil(lg(U))| > By)|. By the
Borel-Cantelli Lemma, for any € > 0 and for all m satisfying m’ < m < n we have P(|g(U,)| < B,) > 1 — € and by
Chebyshev’s Inequality and the increasing nature of the B; sequence, forn > N € R we have P(|g(U;)| < B;,) > 1 — € for
i < m'. Hence, for n > max{N, m} we have that for all i < n, P(|g(U;)| < B,) > 1 — € and therefore I(|g(U;)| > B,) = 0 with
probability 1, which gives Ty = o0,4(1).

Blso() —s§0) = -3 > /MM ( - ) Ui, (% Uty

&
< S sup [ 18Ul Updu
N 27 xeG Jig(Up)|>Bn

By Holder’s inequality, for s > 1,

1/s 1-1/s
[ s 1800 x )t = ( [ 1) e, Uyt ) ( [ 181 > B UL )
8(Ui)|>Bn
where the first integral after the inequality is uniformly bounded by assumption and since fy,y(x) < C, we have by
Chebyshev’s Inequality (/ I(|g(Us)| > Ba)fx..u, (x. UDdUy) '™ * < C(P(1g(Uy)| > B,))'~"/* < CB!~*. Hence, T, = O(B1~).
Step 3: P (Maxi i<, [s5(t0) — E(s5(x))| = €a) < Y01y P(|s§(x) — EGs§(x¢))| = €,) and let s§(x) — E(s5(x)) = 1 37 | Z where

1

Zi= oK (’%) 2(Ul(1g(U)| < By) — (hlk (% - ) ewvidle)i <5,)).

By the uniform bound on v;, Assumption A2 and |g(U;)|I(|g(U;)| < B,) < B, we have that |Z;| < Ch;'B,. Let ||Zi|l = inf{a :
P(Z; > a) = 0}; then sup;;, 1 Zillo < CB" Then, from Theorem 1.3 in [4] we have that foreachq= 1,2, ..., [n/2]

1| —&2q 4CB,\'? n
P(= (> z| > &) < 4e m 22 (1 -
(n P - ) P <8v2(q)> * ( * enhn> 1 ([Zq])

where v*(q) = 50%(q) + G, p = n/2q,

o*(g) = omax E(((ipl+1—Jp)Zjpi1 + Zipi2 + - + Zigeop + (G + Dp — [G + DPDZigvpr1)*)

and [a] denotes the integer part of a € :%. We first note that %"oz(q) = 0(1). To see this note that

o%(q) < max o EZH+2 ) > |E(Ziz))|

05j=2a=1 | i <i<{G1)p+11 U+ 1=I=IG+ Dp] [pH+-1<i<[G+1)p+1]
<1

Given Assumption A4.2 and E(|g(U;)|**?) < C for some @ > 0 and all i we have after some simple algebra

> E@) <0(p/hy).

lipl<i<[G+Dp+1]

Using Theorem(3)1 in [6], for § > 2 we have that |E(ZZ,)| < Chy 2% (a(i — 1))1-2/%. Now, for any [ such that [jp] + 1 < [ <
[G + 1)p] we have that 3y, 1 cicrpeny E@Z)1 < Y05 E@Z0) | + X0 E(ZiZi-)| where px = [(i+ 1)p + 11 — [ip] + 1.
Letting d, be a sequence of integers such that d,h, — 0 we can write

px—1 px—1

Z |E(ZIZI+1)|—Z|E(ZIZI+1)|+ > IE@Zi) =)+

i=dp+1

and it can be easily shown that J; = o(h;!) and J, = 0O(h;"). Similarly we obtain >?*;" |E(ZZ_;)| = O(h;!). Combining
the results on the variance and covariances we have that ';10 (q9) =< C for n sufficiently large. Hence, we have that

pha.v?(q) < C + CpB,é&, and choosing p = (B,&,)~! we have that for n sufficiently large ph,v?(q) < C. Then, 4 exp (8_‘5%;)) <

2
4exp< F""’“‘) < 4n~f&c. Now,

4CB,\ /2 n B,\ /2 hye 1/2 n
22 (1 t —|)=22(=2) n? (— 4c) ([7})
( + enhn) qa([ZqD (8n> B, * “ 2q
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and since ”;’% — 0 as n — oo we have that for n large enough and by Assumption A4, for § > 2
n

4CB,\ /2 B\ 1/2
21+ 50) () =c(3) megm
8nhn 2q En 2p

Cnh;l/zBfﬂAsgﬁHoAs.

A

Thus, P(maxi<<y, |s5(x) — EG5(x)| > &) < C”l/z <4n—ﬁ + Cnhy 2B 15 ﬂ*“) and if A is chosen such that

% > 1 the first term in the summation to the right of the inequality is negligible and we have that

P (Max; <<y, |s8(xe) — EGE(x))| = €4) < CBET' (In(n))025+/21.25-8/2 1 75F/2 and therefore
p (]mka)l( ‘Sg(xk) _ E(sg(xk))D — O(Bf_H'S (ln(n))0.25+ﬂ/2nl.25—5/2h;1.75—ﬂ/2)'

Lastly, if B, ~ n'/**% fors > 2,0 > 0 we have that sup,|so(x) — s5(x) — E(so(¥) — s5(x))] = o(n~'/?) and if
n(9+1/s)(ﬂ+1.5)+1.zs-ﬁ/zhnf1~757ﬂ/2(ln(n))o.25+ﬂ/2 — 0asn — oo, then

P (max [shw) ~ BB = &) = 0,1

which completes the proof. O

Proof of Theorem 2. Note that m(x) = ;- Y, W, (5%, x) (m(x) + m® (9 (X; — x)) and put S(x) = (f”éx) szo (X)>.Then
KIn

m(x) — m) = - >0 1w ( )y* where ¥ = Y; — m(x) — mV (x)(X; — x). Let A,(x) = - (e/ (Sa(0)"1 — s(x)-l)ze)l/z.
Dy(x) = () — m() -~ S0, K (%) vy Then,

il( (X" _x> v;

i= hn
D01 = €510 =57 ) i“(kif;x) =
< hun()— ( ( ) Ly 1<<X"h_x> (X"h_x> Y{‘)
i=1 n n

by Hélder’s Inequality. Under the conditions of Theorem 1 sup,.c |$a,j(x) — E(snj(x))| = 0,(h,) forj = 0, 1, 2 provided that

ni 3 = -
e $n2(X) — OFfa (x)‘ < SUPyeq [Sn2(%) — E(Sn2(x))| + SUPyeq |E(sn,2(%)) — 02fu(x)|, but

— oc. Now, sup,.
_ 12

sup [E(s,.2(0) — 0F,(0| < Y~ [ FK@x-+ ha) —f01d < huCo?
xe i=1

given Assumptions A1 and A2. Therefore, sup,.c [sp.2(X) — 02f,(x)| < o0,(h,) + O(h,) = 0,(h,) and similar arguments give

SUP,ec [Sn.o(®) — fi (x)‘ = 0p(hy) and sup,; |sy1(x)| = 0,(h,). As a result, A,(x) = 0,(1) uniformly in G. We now turn our

attention to B,(x) = m YLK (X‘h;"> ¥, Since Y} = m(X;) — m(x) — m™ (x)(X; — x) + U; and K has a bounded support,
Y = 1m@x)(X; — x)? + U + 0,(h?) and

_ h2 1 1 Xi—x 1 @ Xi—x 2 L 1 1 Xi—x :
By(x) = o nhn,ZK<Tn >2m (x) (Tn ) +fn(><) nh,,,;1<< i )U,
2 (5
We examine each B, j(x) forj = 1, 2, 3 separately.
1 1 & Xi—x\ - . ,
s = = ((nhzlx( - )—fn(X)) +fn(X)) o(h?) and

1 (|1 & (Xi—x\ -
|Bn,3<x>|sfn(x)<nhmz<( - )—fn(x>

+o(h;

) — Bur (%) + Baz (%) + B3 (x).

Tl

+fn(X)) o(h?).
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Since f(x) — f(x) asn — 00, [By3(¥)| < (0,(h,) + Do(h2) = o,(h?). Furthermore, if infyc|fi(x)| > 0asn — oo,

SUP,cc [Bn3(X)| = op(hﬁ). Bn1(x) = ’"(zf) ((Xx))h" sn,2(x) and therefore by Theorem 1, given that infyeclfu(x)| > 0asn — oo,
h o ) h 27 3
sup |By, <C S n ) =0,(h).
Xlelgl 1(x) — 5 Zogm® ()| 2nfocl ) Sup [sn,2(%) — oicfa ()| = Op(hy)

Hence B, 1 (x) = ' 02m® (x) + 0, (h2) uniformly inG.
Letz; = iK (Xf’”) U;; then B, »(x) = I (x) H Zl 1Z;. Since the processes {X;}!_, and {U;}{_, are independent and E(U;) = 0,

E(Z) = 0.Now note that V(z) = -E (KZ (XI**)) E(UZ) = Lwi(Bo) [ K2()fi(x + hugp)d¢b. Since |wi(6)| < Cand fi(x) < C we
have that h,V(Z) < C [ K?(¢)d¢ and sup; h,V(Z;) = 0(1). We now consider

> feov(znz)l = Y |E(Z,-,Z,-)|<ZlE(z,,zw)\+Z|E(ZHZ_J)|

J=1i# J=1i# j=1 j=1

First write 31 |E(Zi, Ziy))| = Zdr] |EZi, Zu)| + Xy, [EEis Zinj)| = Jaa + Jn.2, where d, is a sequence of integers such that
d, — oo and d,h, — 0. Then,

X,'—X> (Xi+j_x>
EK K\ —— ) UiUiy;
’ ( hy hy o

141(00)] / K (1) K (42) foias (% + huhr. x + huchy)dprdepy

a

1

n

]n,] -

._.
=
| —

.
—_

o
B

=
dp—1

> (f K (1) d¢>1)2 = C(d,— 1) < Cdy.

IA

Since d,h, — 0 we have that h,J, 1 < Cdyh, =o0(1)andJ,; = o(h,ﬂ). Given that K(-) is measurable we have that Z; is o(X;, U;)
measurable, where o(X;, U;) is the o-algebra generated by (X;, U;). By Theorem 3(1) in [6] withp = ¢ = § > 2 we have

2
|E(Zi, Ziij)| < 8E(1ZI*)E(1Zii* ) (0(Xi, Up), 0(Xisg, Up)) 75

where a/(0/(Xi, Up), 0(Xisj, Uirj)) = SUPaco(x;.up Beoxiy. Uiy [P(A N B) — P(A)P(B)|. Now define # Flo =0( .., Xii1, U1, X;, U),
Fi35 = 0(Xiyj, Uiy, Xigjs1, Ui, - . ) and a(j) = sup; a(F! 29)- Then, a(o(Xi, Uy), 0(Xiy;s 1+1)) < a(j). Also,

—00? 1+j
1 Xi —x
Elz® = E(|uf|5)h;5“h—5 (1<5( Ih ))
n n

E(IU)h; 1 f K (@), (x + hap)dep

< CE(|U;|®)h; 51 /Ka((f))d(]ﬁ by Assumption A1
< Ch;8+1.
242
Similarly E|Z;|® < Ch;%*' and we have |E(Z,Z;)| < S(Ch*‘m)z/‘sa(j)]*% = Chy 2+"oz(j)lf%. Hence, J,» <
oi2
Chy, Ak PR «(j)"~% and since j > d, we have that for some a > 1 — 2>01 dﬂ > landJ,, < Ch, 2+5d;” Zf;’dnj”a(i)l‘§.

2 0 -1
But, Z | o)1~ 50 by Assumption A4 as n — oo. Now, h? 1d;“ = ((h"d,f’z)l‘%> and choosing d, such that

h,l,fgdﬁ = 1 the right hand side of the last equality is equal to 1 and we have J,, = o(h;"). This is obviously consistent

with d,h, — 0 in the sense that % >1=a>1-% Furthermore it is easily seen from the developments above that
sup; Un,1| + sup; Un.2| = o(h, ") and h, sup; >} |E(Zizi+,)| = o(1). Similar arguments show that Y1, |E(ZZ;_;)| = o(h, ") and
hn sup; 3L [E(ZiZiy)| = o(1). Hence, combining results we have 37, i [cov(Z;, Z)| = o(h;1) and sup, Y1y lcOV(Zi, Z)| =
o(h;"). Now, observe that V (% >, Zl-> =LY E@) + 5 Yy Yy ju E(ZZ) = Va1 + Voo

1M1 11
o = 5 2 et / K@ 1) 5GP+ 5 3 3 -onl6o) / K2($)fi(0)dg

1 2
Vn,] +Vn.l‘
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By the Lipschitz condition on f;(x) and Assumption A2, |V, ]| < an >, wi(B) and therefore nh,|V, l| < C"" Yy wi(6o)
and by Assumption A3 we have nh,|V! 11l = 0(hy). Also,

V2 = [ 1@ S i) — by ) [ K)o,
ni3

Hence, % 371 | E(Z2) = @y (x, 6o) [ K*(¢)d¢p + O(h,). Now,

< 7Zh sup 3" [E@Z)| = o(1)

=1 I j=1,i#

= Z Z E(Z:Z)

i=1 j=1,i#j

where the last equality follows from our previous results. Hence, we have that

4 <\/ﬁi XH:Z.) = wy(x, o) f K(¢)d¢ + 0(hy) + o(1). (21)
i=1

We now consider B, »(x). Here we adopt the method first proposed by Bernstein [3] and adopted by Masry and Fan [22] to
partition the sums into large and small blocks. First, partition the set {1, ..., n} into 2k, + 1 subsets with large blocks of size

r, and small blocks of size s, and k, = [ } Let Z,; = ~/hyZiyq fori = 0 1,...,n— 1sothatB,(x) = Ly 7 and
iy S Zi = 5 Y Zai Now let

n+Sn f(x)n

J(rn4sn)+m—1

n= Y  Zn for0O<j<k,—1
i=j(rn+sn)
G+ 1) (rtsn)—1
§= Y Zy forO<j<k,—1
i=j(rn+sn)+n

n—1
G = Z Zni

i=kn (rn+sn)

2
and write v/nh, 30,2 = (Z,k"o1 ni+ L &+ Cj) = :(Q + Q + Q). We show that E<(ﬁQﬁ) ) - 0,
2 . . . . . . ’ ” 2
E((ﬁq@”) ) — 0; then the asymptotic distribution of B, (x) is determined by Q. Note that E<(ﬁQ") ) =
1 ((Zkﬂ 151) ) =1 j’.‘;glE(sz) + 1yst gL E(&&) and by Assumption A4 there exists g, — oo such that
12
Gsn = o((nhy)'72), qu (,T)/ a(s)) = o(1). Then defining r, = [“22] asn — oo we have & = o) /o,

2 [(nhn) /2 /gn]
mo_ [ @h)!/27 1 (nhy)1/? _ _naGp) . (n : _ G+ D (s -1
L= [ Zn ] Pl 0, (nhn )1/2 = [ ;n :| (nhn )1/2 O. T Ol(Sn) [(nh")1n/2] ~ (E) qna(sn) — 0. Since Ej = Zi:j(r,,ﬁsn)irn Zn,i

E}

qn
we have

]k” 1 ) kn—1 sp kn—1 sp Sn
- Z EE)=="1|> D> EZ ,(r"+sn)+rn+9) +> ) E(Zj(ry+s0)+ra+6Zj(rntsn)+ra+8) | -

j=0 6=1 j=0 6=16=1,6#6

But hn an—l Z E(Z (rn+5n)+rn+6) < kn—l Z 1 hn sup; E(Ziz) < C%knsn < Cr"i”s” = o(1). Also, since
Sup1 }=1,1;é] |C0V(ZH Z)| - O(hn ])-

h kn—1 sp Sn

=200 Y EGrsw it Ziatsn) tmts)
M 520 6=15=1.020

h kn—1 sp Sp

n
7 Z Z |C0V(Zj(r"+s”)+r"+6’ Zj(rn+5n)+rn+8)|
M 120 6=15=1,626

IA

kn—1 sn n

1
- hn ) sup Z |C0V(Zj(r"+s,,)+rn+0, ZI)|
M 520 921 §Cn+sn)+m+0 =1, I4i(ryfsn)-+rn+0

=o0(1)

IA

kn Sn
= ]—n< 1
o( )sns <o( )r"+s

n
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lk"_l kn—1 Sn_ Sn

= Z > EEE)| < Z Z ZZ|E(Z](rn+Sn)+rn+SZl(rn+s,,)+rn+9)|
20 1201

and therefore E(( Yhole )) =0(1). Now, £& = hy >0 1 S5 1 Zitratsn)+rm+6Zi(rmtsm)+rat6 AN consequently
hn
n  6=1 6=

1010!#}

and sincej # [ the distance between the indexes must be greater thanr, as |j(r, +s,) +r+6— (I(ry+s,) +1,+0)| > r+1 > 1.
Thus,

1 —1 kn—1 h n—r, n hn n—1 n
- Z Z EGE)| =23 D IE@H)I =25 ) [E@Z)|
N 520 120,12 i=1 j=ity n 315
hn n n
==y Z E(ziz)| < th sup Y [cov(Z;, Z)| = o(1).
N3 =10 -1 i T

2
Combining the results above we have that E ( (%ﬁQﬁ) ) = o(1). We now turn our attention to the Q" term.

1 n—1 1 n—1 n—1
<<\/»qu”> ) = — Z E(Zi,)—f— E Z Z E(Zn,iZn,j)

M ik (rntsn) i=kn (ra+5n) j=kn (n-+sn), i
hn n—1 h n—1 n—1

SR S OEL N S SR-CRen)
N ik Gtsi) i=kn (rn-Fsn) j=kn (Tn+sn) i)

Given sup; h,E(Z?) < C we have that 2 377! s E@H1) < 4 Z?:‘kln(rmn) sup; haE(Z3) = Cn~(n — ky(ry, +50)) = 0(1), since
by construction n — ky(r, +5,) < 1y + s, and therefore n='(n — (r, + s,)) < n~'(ry + sn) = 0(1). Now,

hn n—1 n—1 1 n—1 n—1
- D E@Zig) < - Y. he Y |cOV(Zi1, Zi)
Mk Gntsin) =k Gt i M ikn(rutsn)  j=kn(Fatsn).ii
1 n—1 n
< - ) suph, ) |cov(Z,Z)|
i=kn(rm+sn) ! J=1,i#

< o(1) - (1~ ka1 +50) = o(1)

2
and by combining the results above we have E ((\%Q;”) ) = o(1). We now turn our attention to the Q, term. n; =

Yt 7, i for 0 < j < ky — 1and by construction 77; = 2 Yt 7, 1. Now let #/ be the o-algebra generated
by the random variables {X;, U; : i <t < j}, ie, & = o(X;, Ui, ..., X;, U) so that n; is ?;1(5”:';"));'{" measurable. Note that
Jra+s0) +1—= (G — 1)(ra + s0) + 1) = s, + 1 and if we define V; = exp(itn;), by Lemma 1.1in [33] we have

k=1 k=1 k1 k=1
E(H vj> - [T1Ew)|=E (exp(it > nj)) — |1 Ecexp(itny))
j=0 j=0 =0

j=0
(kp — Da(s, + 1) < - +S " _as, +1) = ﬁa(s,1 + 1) and since by construction i—g — 0, %a(sn) — 0 we have that

< 16(k, — Da(s, + 1). (22)

16(k, — Da(s, + 1) — 0. Thus, by Corollary 14.1 in [17], {n;}o<j<k,—1 forms a sequence which is independent as n — oc.
NOW, n] — ]/2 Z}(rn+5n)+rn*1 Zi+] and

i=j(rn+sn)
kn 1 hn kn—1j(rn+sn)+rm—1j(rn+sp)+rm—1
= Z E(’I, = — E(Ziv1Zi1)
20 imitmtsn)  I=ilmsn)
h kn—1j(rp+sp)+m—1 h kn—1j(rn~+sn)+rm—1j(rn+sn)+ra—1
n
=) ) EZRo+—) Y Y. E@nzin)
=0 i=j(ra+sn) =0 i=j(ratsn)  I=j(ratsn),i#l
= In,] + 1n$2~
Also,
hn kn—1 1 n
2l = | = E(Zirytsu)+6Zj(ry+s0)+5)
520 6=18=1,60
h kn—1 1 n
n
= 1COV(Zir+50)+0> Zitra-+sm)+5)|

.
Il
o
5
Il
—_
[~
Il
—_
o

'S
S
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1 kn—1 1 n
< - hy sup R (17 ¢/ A
520 =1 J(ra+sn)+6 |=1,1%](rn+50)+0
kur,
= = 0(1).

n

For the term I, ; note that E(Z?) = ﬁw,-,-(@o) [K2(@)fi(x + ha¢p)dg and from Taylor’s expansion |fi(x + h,$) — fi(x)| < O(h,).
Therefore,
hy, kn—1j(rn+sn)+m—1

1
= Y (o @) [ @+ hg) — i ()dp

M50 isj(rmtsn)

1
+ o @)@ [ @d0) =+
n
and looking at the last two terms separately we have
hy, kn—1j(rn+sn)+m—1

1
bl = 223 Y o) [ @+ hd) — fin ()14

[ P S

A

k,, 1j(rn+sp)+m—1

o) [ K2<¢>d¢ I S

=0 i=j(rn+sn)

IA

and since ! Y7 Z’l(r;(fnﬁ)s:)’” Ywit1i01(00) < 'Y, wi(Fp) — @(6o) asn — oo we have that [l 11| = O(h,).

kn—1j(rn+sp)+m—1

1 1&
L2 = /Kz(fﬁ)dd’g oY) o) () = /K2(¢)d¢g > wi(B0)fi(x)
i=1

j=0  i=j(rn+sn)

1 kn—=1 (7+1)(ra+sn)—1 1 n—1
-[=>2 XY oG+ = Y o1 Go)fir () /1(2(¢)d¢~
n j=0i=j(rp+sn)+rn i=kn (rn+sn)

Now, =1 Y"1 | @ii(00)fi(x) — @p(x, 6p) < oo by Assumption A3 and since |w;(6p)], fi(x) < C,

1 kn—1 (+1)(rp+sn)—1

S,
=3 Y o G)fi (x) < C—
T 520 izjtraton)+a Tn + Sn

— 0.

Similarly, % Z;’z’k]n(ws”) Wiy 1,i+1(00)fiy1(x) — 0. Combining the above results we have that 1, 1 = @ (x, 6p) [ K2(¢)dg+o(1) +

0(hy), and given that I, » = o(1) we conclude that

1 kn—1

- Z E(n?) = @y(x, 6) f K2($)d + 0(1) + O(hy).

Now let 0 = ¥i%' Zy where Z, = il SIE0 K (57 ) Ui and ) = 25" EZy — E(Z,))%, where 5}
Z"” 1 1E(n]2) — ay(x,0) [K*(¢p)dp as n — oo. We first observe that if we define W, = sT,TﬁQé and let Yy, (1)

E(exp(iAW,)) be the characteristic function of W, we have

) kn—1 1 kn—1 ) 1
E (exp <1A on s, m)) - }:]_([) E (exp (Minl/zsn Wj))
kn—1

ITE (exp <1A 1/125 nj> - exp(—kz/2)>' =A; +A;.

j=0

ButA; = o(1) by theresult on Eq.(22) and A, = o(1) by Lindeberg’s CLT (Theorem 23.6 in[5]), which is implied by Lyapunov’s
condition. Hence,

[Yw, (1) — exp(=2%/2)| <

+

hlz ol 1z, 24
> S] —N(0,1) asn— oo provided that lim Z E|Z| =o0forsomes > 0.
j=0 =n n
2+

kn—1 246 kn—1 |j(rn+sp)+m—1

Z; 1 _ Xiv1 — X
Y EZE = ($3)7'92(nh,) 5/2 ZE oK <'+T> Uis1
=0 IS i=j{ra+sn) n

246

A

kn—]}(rn+5n)+rn—1 . —
(Sﬁ)q—a/z(nhn)—s/zzwal Z Z lE ‘K <X,+1 x) Uiy
0 imiiisy n
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. . L 246 P .
by the ¢; inequality. Furthermore, ;-E ‘K (X’%") U,»+1‘ =rE (I<2+5 (X’”“h—‘nx)) E|Ui11*"® and given that E |Up11*"® < C we
have that

1 Xir1 —
fE‘K( i+1 X) Uit
hy, hy,

2448
<c f K2 ()i (¢ + hap)dp < C

by Assumption A2. Therefore,

1 kn—1j(rn+sp)+m—1 1 X: —Xx 246 T
,Z Z fE‘K( i1 )UiJrl <c n S C
L= STt n Tn = Sn

248

kn— Zjn

and since Sz — @y (6o, x) [ K*(¢)d¢ as nh, — oo we have lim, . 325 =0.
Finally, combining the results of % % and Q"T: we conclude that  (nh,)"/2B,2(x) > N(O, w’}i’;)g")

[ K%(¢)d¢) as n — oo. Combining with B, ;(x) = a,(m(z) (%) + 0,(h2) gives

1 1 Xi—x d &)f(xv o) / 2
= K Y — B, N[O, —— | K d as .
((nhn)l/an(x) 2 (57 ’M) - ( for ) @0) e
Now, we note from our previous results on B, 1(x), B, 3(x) and by applying Theorem 1to fn(x)Bn,z(x) with g(U;)) = U,
j=0andv; = 1 for all i that we have .- Y"1, K (X’ )Y* = 0,(h?) + 0, (( By ) ) and -1 Y7, K (Xf”‘) (X'T;") Y: =

In(n) hn

1
0,(h?) + 0, ((IQ’Z;') 2 > uniformly in G. Hence,

172
(nh) 2IDa()| < (nhe) /20, (K2) + (nhy) /20, ((“1:(”)) ) .

Now, provided that h2 In(n) = o(1) the right hand side of the inequality is o(1) and we have

wys(x, 0p)

. d
(nhy)'7? (Mm(x) — m(x) — By,1(x)) > N (0, )2

/ 1<2(¢)d¢> asn— co. O

Proof of Theorem 3. Let Z; be the ith component of the vector Z. Note that fi(x) — m(x) = e i Wy ( )Z* where

5 =5 m() — mO () (X — 0. Let 4,00 = (¢ (5,007 = 56071 ¢) " D) = i) — mx) — AT K () 77 A

mn lheOl em 1
8n

_ 1 /(c—1 —1 i=1
Da)] = -GS0 =T [ T e
> K Z
i—1 &n 8n
1 (| /X—x\ nXi— X\ (X=X x
gnAn(x)< (PN + [ (*5) (B X)Z:‘)
ngn \|i=q 8n &n &n
and A,(x) = 0,(1) uniformly in G. We now turn our attention to B,(x) = m YK (X’ )Z* Since Z; = m(X;) —
Ytz k(M) — m(X;)) + y; we have

Bn(x)z_iin1<(Xi_x)m(Z)(X)(X,-—x)ZJr_] iﬂl((X"_X)yi

IA

fa(%) N = &n 2 fa(x) ngn = &n
P 1 L U Xi —x _ 1 L 1 Xi—x 1 ﬁ v vy :
JrO(g")fn(X) ngn i3 K( &n > fu(x) ngn ,;K< &n ) JZ;: Vii (m() —m(X)

= Bn,l(X) + Bn,Z(X) + Bn,3(x) - Bn,4(x)~

We examine each B, ;(x) for j = 1,2, 3, 4 separately. From Theorem 2 B, 1(x) = %o,%m@ (%) + 0,(g2), Bu3(x) = 0,(g?)

uniformly in G. Also, from Theorem 2, (ng,)'/?B, »(x) — N (0, wjr((i){;‘)) [ K? (q’))dqb) where @;(x, 6p) = limy_o 2 1, fix)v; 2.

We now examine B, 4(x). From the definition of Y;* and Theorem 2
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1 _x;
) = mOg) = s YK (F ) mx) - meg) i 05) (%~ %))
n\Aj) = n

1 n X —X; 3 Lh“ ~1/2
+7nhnﬁl(xj);1<< T >U1+Op(hn)+0p<<m(n)) [

and therefore we can write B, 4(x) = By 41(X) + B 42(x) + By 43(x) where

‘l n n n vl] ‘l

n2g,hyfy (x) ; = Vit fu (X))
J#
1 UL Vii 1 X,' —X X[ — X
Brap(®) = ————— 4 1<< )K( ])U
200 gt & § Zuion s, b )

— < Vi (Xi—X 3 nhy 72
Bn,43(x) gnfn(x) 121:%: 7”I<( 2 ) (Op(hn) + Op ((ln(n)) hn .

We look at each of these terms separately. Note that

Bpa1(x) =

K (Xig_ X) K (X' h Xj) (m(X) = m(X) —m () (X = X))

n
Vij

Xi — 1 X — X
> *K( &n X> i K< T ]> (m(x) — m(X) — m () (X - X))

B,
M) = an(X) =11 Vii nhnfn(X) 1=

and the term inside the curly brackets {-} is 0,(h?) uniformly in G from Theorem 2. Hence,

3oy (M)

ngnfn(x) i=1 j=1 |Vn

|Bn,41 (X)| = Op(hz)

J#
n (XX S Tl
< 0,(hH)——— >k ( )sup d
gnfn(x) ,Z: &n i ; Vi
i#
1 1 X —x
< 0,(t)0(1)— K( ! )
P ngnfn(x) ; &n
where sup; >, % = 0(1) by assumption. Furthermore, from Theorem 1 é YK (X';g"‘) = 0,(1) and by Assumption Al
_ oo n n
fu(x) — F(x). Hence, sup,. |By.a1(x)] = 0,(h?). Using similar arguments and Theorem 2 we have sup, By 43(x)| =

~1/2
0,(h) + 0, ((%) hn>.

_ Vi, (Xi—X Xi—X
Bn,42(x) - nfn(x) Z JZI: Tlgnhnfn(x) ; Vii K( 8n )K< hn )

J#

= Tlfn (X) Z Ulkln(x)

Note that E(B, 42(x)) = 0 and

n n

1/2 _
V((ngn) Bn,42(X)) = nfn(X) ;;E(Uluk)"ln(x)}\-kn(x))
gﬂ n n
f o E(A n )"cn .
< F R ;k; |0 (60) [|EGrin () A ()|
We define ay = 5. Ki =K (XI_X) Ky =K (th_nxj) and examine

Ain (%) Akn = —_—
[ECGn (00 2an ()] lemzl Z n2g? hzfn(X)fn<xo)

J# o#m

1 KiK, I(,,KkD
Z Z n2g2 2‘ il |@mo |E
i3 =7 m1 oot °gihy Fn(X)fn (Xo)
J# o#m

a,-jamul(,-l(m Kleko

IA
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Since infyeclf,(x)| > 0 we have

n

Cn " ) mo
Vi) ) = B z|w,,<<eo>|z 3 3 g £ ko)
n I =1j =

=1 k=1

A

a#m
n

Cg |ag]la |
= B |wu<eo>|zzzz el ()
nfp(x)? = 2hz

i=1 j=1 m=1 o=1

J# oFm
Cg i lamo|
Y Y 3233 3 e
fn() =1k i=1 =t m=1 o1 ngshs
pEall oFm

= Tin + Ton-

We need to show that Ty, T2, = 0o(1). The strategy that we use is to establish the order of the partial sums that emerge from
considering all possible combinations of the indexes [, k, i,j, m, 0in T1,,, T,.4 Each of these partial sums is shown to be 0,(1)
by first establishing the order of 7, = ,2 > E(KiKnK;iK;o) and p, = ,2 > E(KiKnK;jKy,). Here we show the cases in which [ and k
are distinct from the indexes in the four inner sums, i.e., i, j, m, 0. We need to consider seven cases, and given Assumptlon Al
we have from calculating the expectations the following bounds: Case 1 (i = mand j = o): 7, < h , Pn < g— ;Case2(i=o
andj=m)m, < i, pp < G Case3(i=m):m, < o, pn < s Case 4 (i = o), Case 5 (j = m),Case7( i£j#m=o)m <C
pn <C;Caseb6(j=o0)m, < ﬁ 0 < C. We now denote the partial sums associated with V((ng,)'/?B, 42(x)) in each of these

casesbys;,i=1,...,7. Hence, we have the following inequalities, where the first term refers to the partial sums in Ty, and
the second term refers to the partial sums in Ty, for each case:

S 2NN g 2
S]Shnfnz(x) ZZIyl +7gnf2()l gnlelk(90)| n ;ZWM

i=1 j=1 k 1 j=1
i oA
C&)n 5 n n 5 n n
S2 < ————& | N lajil |y gn lwi(Bo)| | n~ |asil [y
hr1f,12(x) 121:121: fz( ) = kZl: ; =1
i#i kAl i
Cooy, 2 n C 5 n on
$3 = = ZZlazﬂ Z |aio +722gnz|wlk(90)| n ZZ'G'J| Z |aio |
fn(x) i=1 j=1 Tlf()l k=1 i=1 j=1
J# 0%1# k#l i 0#1%]
C&)ngn 5 n n n 3 n n n
$4 < — n2Y Y lagl Yo laml | + = gn2|wlk(90)| Y lagl Y lamil
fn (X) i=1 j=1 m=1 f ( ) 1= k=1 i=1 j=1 m=1
i miz] kA i moiz]
Ccz)ngn 72 n n C 2 n n
S5 < ) ZZ |ag Z gl | + =~ 2 gn Z lww(Bo)] | n Z Z |ag] Z |ajo
fe®) i=1 j=1 f()l k=1 i=1 j=1
i ot Kl i it
Cwngn 2 L PN n
S6 = ——= ZZMH Z lamil | + =~ = gnZlek(OO)l n szxﬂ Z ||
nhyf7 (x) i1 j=1 nfy (x ( ) i k=1 i=1 j=1 m=1
i i kAl i i
2 2
Cd)ngn 2 - 2 n
$7 = = n2 Y0 Jayl — gn Z low@o)| [ n™2 | DD lay]
f2() =1 f ( ) = = =1
J# J#i

By Assumptions A1.6 and A3 we have that % Y on(@o) — @(0p) and infyc¢ If,(x)| > 0. Furthermore, we note that from
Theorem 1 g, ZL]J# | (o) = o(1) and consequently, provided that sup; 31 ;4 % = 0(1) and sup; 3 ;1 4 :2}\ =0(1)
the first term and second term in each case are o(1).

Therefore, B, 42(x) = 0,((ng,)~"/?) and B, 4(x) = 0,(h?) + 0,((ng,)~/?) + 0, (("7” ln(n))1/2>. Now, provided that g—: -0

3
and 1?1%2) — oo we have that the last term is o(g2) and we obtain B, 4(x) = 0,(h?)+0,((ng,)~"/?)+0,(g2). Now, if g, = 0(n~"/>)

then (ng,)'/?B, 3 = 0,(1) and consequently we have

4 See the note on indexes at the end of this Appendix A.
5 Bounds for all other cases described in Appendix A are available from the authors upon request.
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2)( ) 2 2 d (l)f(x 6o) )
NTA (B () — ( — & +op<g,,))> aw(o, 5 / K(¢)dg) . (23)
Lastly, it follows from arguments similar to those in the proof of Theorem 2 that
Vi (m(x) —m(o) - (aK W op<gﬁ))) N (o, Treus 1<2(¢>d¢) (24)
X

which proves the theorem. O

R . T =1 i , .
Proof of Theorem 4. /ng, ((x) —m(x)) =¢'S; | "g’; 1; X; (x o X,)—x “|where g = 37 .i(a5(6) — a3 (60)) (M (X)) —

Vg —i=1 ( 8n >< &n )"'
m(X;) — U;) and since S; ' (x) = 0,(1) and K has compact support, it suffices to show that —= ﬁ YK (X' ”‘) gi = 0,(1). Hence,
we must show that

‘l n n
oy = M;F%K( = )(ag(e) 0;(60))U; = 0,(1) (25)

and

1 n n X — . 5
fr= o ;1-:12#,-’(( _ ") (a5©) — a;(60)) ((X;) — m(X)) = 0p(1). (26)

Letgo(@) =0and Ly, = {i=1,2,...,n: a;(0) = gw(6)}. Then,

a= = Xy K (M

n j w=1 j€ljyn
J#

b

JROW_ T "

) (a50) — a;60)U;

+

x) (a5(0) — a;(60))U;

T
J#i
+ JZE g}_guwzﬂl}wn #iK (X"g: X) (80(6) — £0(60))U;
= 222 K(222) @u®) ~ gty
J#
Wi(gwnw) Zun(60)) le§ 1<( )

But given TA 4.1, the consistency of & and the fact that W is finite and does not depend on n, it suffices to show that
Op1 = \/% > Zj”e,iwn#l K ( ) U; = 0,(1) for arbitrary w. Given the independence of {X;} and {U;} and taking expectation
of the square yields
2
E(0?) = ZE <1<2 < )) E[] > U

ﬂgn i= T€ljyn
TH#I

LB DR (5 e

ngy i=1 t€liwn j=1 teljyn n

A JF
2
Cy Can &
5*25 ZUT + ZZZZE(Utr)
nisa €liyn i=1 t€liyy j=1 teljyy
T# A A (A
C n
<Y Y Y el Tr X Y lol
i=1 T€ljyn teliyn =1 t€liyn j=1 teljyn

A A A A
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By TA 4.2 T belongs to at most R different index sets I, (the same for t); hence given that |w,.| is bounded the first term on the
right hand side of the last inequality is bounded by CX?2. For the second term, note that >7_; 3" tefyn lwrel < 8 31, |wp| < CR
i#i 7

by assumptions TA 4.3; hence

= Z ) Z D Jwel < 8.C8* = 0(1).

=1 t€liwn j=1 teljyy
A A

The same manipulations as were used above show that

= Z(gwn (9) gwn(00)) — Z Z (
w=1

" i=1 Jeliwn
J#

") ((X) — m(x)

and therefore we need only show that T]? S Y jein K (X‘g’x) (m(X;) — m(X;)) = 0,(1). Let K; and Kj; be as defined in the
" # "
proof of Theorem 3; then we can write

—X\
K Xj) — X)) = n + Pon + DP3n .
ﬁ21§ ( ) 10 = mO) = Bua6) + Ban() + Ban(®)

where
Pun() = Z > 3K (mx) - mx) — mP05) (X~ X)),
g0 = 116;‘”',,. = nhafa (X)
KK
Pn®) = i= 11511,;',,, =1 nhnfn(]x)
Ban(x) = Z > K (o (h3) + 0, ( ( nhy )1/2)),
” i=1 Jj€liyn ln(n)

J#

We show that B, (x) = 0,(1) fori =1, 2, 3. From Theorem 2,

Bu| < K20, <1>m2 > K

i=1 Jj€ljwn
J#

IA

1 & 1 @&
Rhﬁop(l)(ngn)l/zn— Y K < R(ng,)'/*h20,(1) since — > K; = 0,(1)

n =1 n i=1

0,(1) provided g, = 0(n~"/%), h, = 0(n~'/>).

Also,

A

|B3n(x)| Nh?’(ngn)]/zo (‘l)i iKi —Q—N( nhy, )7] hy, (ngn)]/zo (])7 ZK
- " ng ng

n im1 In(n) n i=1

IA

~1,2
ln?n)> hn(ngn)]/zop(l)

((nhEg)'/2 + (gaha In(n))'/2) RO,(1)
= 0,(1) provided g, = 0(n~"/%), h, = 0(n~ /).

8h3(ng,)'20,(1) + &(

We now examine f,,(x). We write

Bul) = VAE~ Y U Y0 Y A

n= nh,g, i=1 j€liwn fn(Xj)
J#

L KiK;;
nh,g, = i€l fn()(})
i

‘1 n
= /ng,— Z Uccy Wherec, =
i3

Since {X;} and {U;} are independent it is easy to verify E(8,,(x)) = 0 and
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V(Ban(x)) = ngn— 2 ZZE(UIUk)E(CnIan)

=1 k=

B Z Z |on(B0)||E(cucn)| ~ and since infieqlfy ()| > 0,

IA

< B3 o B0) | o th YT Y EEKiKnKio)
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= Tin + Ton.

We need to show that Ty,, T, = 0(1). We adopt the same strategy as was used in Theorem 3, i.e., establish the order of
partial sums that emerge from considering all possible combinations of the indexes I, k, i, j, m, o in Ty1, Ty, 2. Each of these
partial sums is bounded by establishing the order 7, = E(KiK;jKnKio) - 23 and p, = E(KiK;iKnKio) 2

We need to show that Ty,, T, = o(1). The strategy that we use is to establish the order of the partial sums that emerge
from considering all possible combinations of the indexes I, k, i, j, m, o in Ty,, T»,.% Each of these partial is are shown to be
0,(1) by first establishing the order of &, = ﬁE(KiKmKUK,O) and p, = ﬁE(l@KmKleko). Here we show the cases in which
I and k are distinct from the indexes in the four inner sums, i.e., i,j, m, 0.” We need to consider seven cases, and given
Assumption A1 we have from calculating the expectations the following bounds: Case 1 (i = mandj = o): m, < e
On < g%;CaseZ(i =oandj=m)m, < %,pn < C;Case3(i=m):m, < g%,pn < g%; Case 4 (i = o), Case 5 (j = m), Case
7i#j#m#o0)m <Cp, <CCase6( =o):m < rTC" pn < C. We now denote the partial sums associated with

V((ngy)"/?B,.42(x)) in each of these cases by s;,i = 1, ..., 7. Hence, we have the following inequalities, where the first term
refers to the partial sums in Ty, and the second term refers to the partial sums in T, for each case:
C Cgn _ C & 1
$S1< —y Zgn Z | (601, L it - Zgn Z |wi(Bo) |
nh, = nh, nc = =
k£l kel
N2 _ Rz & n N2g, _ cnz n
3 —@nt+ 55— & low)l, 54 < Jos vy Zgn Z | (6o) |-
n n“gn =1 n
k£l k#l
Case 5 is identical to Case 4 and
CN2g, _ CRZ n Cg
S5 = — = @n — Zgn Z loi(B0)], 57 < CngnR*C+ —* ZZ |1 (60) [N
n =1 k=1
k#l ksl

Hence, given Assumption A1 and the fact that from Theorem 1 g, Z}j:]#k |ww(Bo)| = 0(1) we conclude that in each case the
first and second terms are O(1). O

Note on indexes: To construct the set of all index combinations for the sixfold sums we first note that for the four inner sums
we need to consider seven different possible cases for i, j, m, 0: Case 1(i=mandj = o,i # j); Case 2 (i = oandj = m, i # j);
Case 3 (i = m, but i, j, o distinct); Case 4 (i = o, but i, j, m distinct); Case 5 (j = m, but i, m, o distinct); Case 6 (j = o, but i, j, m
distinct); Case 7 (i # j # m # o). In each of these cases we must then investigate all possible subcases where I and k are
equal or distinct from the indexes considered in Ty, and Ty,,.

Case 1: For the term Ty, there are 3 subcases: (1.1) I, i, j distinct; (1.2) [ = i and i, j distinct; (1.3) | = j and i, j distinct. For
the term Ty, there are 7 subcases: (1.1) I, k, i, j distinct; (1.2) k = i, I, k, j distinct; (1.3) k = j, I, k, i distinct; (1.4) [ = i, L, k, j
distinct; (1.5) I =j, I, k, i distinct; (1.6) [ = i, k = j, I, k distinct; (1.7) | = j, k = i, I, k distinct.

Case 2: The subcases are identical to those in Case 1.

Case 3: For the term Ty, there are 4 subcases: (3.1) I, i, j, o distinct; (3.2) I = i and i, j, o distinct; (3.3) I = j and i, j, o distinct;
(3.4)1 = o and i, j, o distinct. For the term T, there are 13 subcases: (3.1) I, k, i, j, o distinct; (3.2) k = i, 1, k, j, o distinct; (3.3)
I =i,i,k,j,odistinct; (3.4) k = j, i, I, j, o distinct; (3.5) I = j, I, k, i, o distinct; (3.6) [ = o, I, k, i, j distinct; (3.7) k = o, I, i, ], k
distinct; (3.8) I =i,k =j, I, k, o distinct; (3.9) | = j, i = k, I, k, o distinct; (3.10) | = i, k = o, I, k, j distinct; (3.11) = o,i = k,
I, k, jdistinct; (3.12) I = j, k = o, i, I, k distinct; (3.13) I = o, k = j, I, k, i distinct.

6 See the note on indexes in the end of Appendix A.
7 Bounds for all other cases described in Appendix A are available from the authors upon request.
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Case 4: For the term Ty, there are 4 subcases: (4.1) [, i, j, m distinct; (4.2) | = mand i, j,  distinct; (4.3) = iand i, j, m distinct;
(4.4)1 = jand i, j, m distinct. For the term T, there are 13 subcases: (4.1) I, k, i, j, m distinct; (4.2) k = m, I, k, j, i distinct;
(4.3)1 =m, 1,1, k, jdistinct; (4.4) k = i, , k, j, m distinct; (4.5) | = i, I, k, j, m distinct; (4.6) k = j, I, k, i, m distinct; (4.7) | = j,
m, i, ], k distinct; (4.8) 1 = m, k = i, 1, k, j distinct; (4.9) | = i,m = k, I, k, j distinct; (4.10) | = m, k = j, I, k, i distinct; (4.11)
I=j,m=k,1 k,idistinct; (4.12) [ =i, k = j, m, I, k distinct; (4.13) | = j, k = i, [, k, m distinct.

Case 5: identical to Case 4 due to symmetry.

Case 6: For the term Ty, there are 4 subcases: (6.1) [, i, j, m distinct; (6.2) [ = i and [, m, j distinct; (6.3) = mand i, j,  distinct;
(6.4)1 = jand i, I, m distinct. For the term T, there are 13 subcases: (6.1) I, k, i, j, m distinct; (6.2) k = i, I, k, j, m distinct;
(6.3)I =1i,1, k, m,jdistinct; (6.4) k = m, L, k, j, i distinct; (6.5) = m, L, k, i, j distinct; (6.6) k = j, I, k, i, m distinct; (6.7) [ = j,
m, i, I, k distinct; (6.8) 1 = i,k = m, I, k, j distinct; (6.9) k = i, m = I, I, k, j distinct; (6.10) [ = i, k = j, I, k, m distinct; (6.11)
I=j,i=k1, k, mdistinct; (6.12) [ = m, k = j, i, I, k distinct; (6.13) | = j, k = m, I, k, i distinct.

Case 7: For the term Ty, there are 5 subcases: (7.1) [ # i #j # m # o0; (7.2) | = iand I, j, m, o are distinct; (7.3) [ = j and
1,i, m, o are distinct; (7.4) | = m and i, j, I, o are distinct; (7.5) | = o and i, j, m, | are distinct. For the term T, there are 21
subcases: (7.1) # k #i#j# m#0;(72)] =i,j = kand,j, m, o are distinct; (7.3) | = k,j = l and i, j, m, o are distinct;
(7.4)1 = ik = mand i,j, m, o are distinct; (7.5)i = k,1 = m and i, j, m, o are distinct; (7.6)! = i,k = o and i,j, m, o are
distinct; (7.7)i = k, I = o and i, j, m, o are distinct; (7.8) | = j, k = m and i, j, m, o are distinct; (7.9)j = k,l = mand i, j, m, 0
are distinct; (7.10)l = j, k = o and i, j, m, o are distinct; (7.11)j = k, I = o and i, j, m, o are distinct; (7.12) | = m, k = o and
i,j, m, o are distinct; (7.13) m = k, I = o and i, j, m, o are distinct; (7.14) i = k, I, k, j, m, o are distinct; (7.15)i =1, I, k,j, m, 0
are distinct; (7.16)j = k, I, k, i, m, o are distinct; (7.17)l = j, I, k, i, m, o are distinct; (7.18) m = k, L, k, i, j, o are distinct; (7.19)
m=11,k,1i,j,oaredistinct; (7.20) o = k, I, k, i, j, m are distinct; (7.21) = o, L, k, i, j, m are distinct.

Appendix B

See Tables 1 and 2.

Table 1
Average bias ( x 102) (B), standard deviation (S) and root mean squared error (R) with panel data models and J = 2
Estimators my(x) my (x) ms3(x)

B S] R B S R B S R
N =100
LLE 335 336 336 392 333 335 1.078 .349 .356
HU1 —.709 472 474 721 467 A77 —10.294 519 .569
HU2 315 .338 .338 175 333 335 420 .352 .358
RWC 322 .284 .285 318 281 .285 1.449 294 .306
2SLL 278 277 278 .268 275 278 1.042 289 298
FHU1 —.707 463 465 755 460 470 —9.999 .506 551
FHU2 .329 .337 .337 .163 333 335 431 351 357
FRWC 327 .285 .286 .320 282 .286 1.451 296 .308
F2SLL .289 .280 .280 271 277 .280 1.056 291 .300
N =150
LLE —.020 271 272 —.118 270 274 1.371 .285 295
HU1 —.496 373 .375 —.416 374 .385 —9.795 423 479
HU2 .093 271 272 .304 273 276 .906 289 297
RWC —.047 228 230 —.121 229 236 1.694 242 .257
2SLL —.051 223 224 —.162 225 230 1.364 238 249
FHU1 —.502 .368 .370 —.409 370 381 —9.597 419 471
FHU2 .102 271 271 297 272 276 931 289 297
FRWC —.048 229 231 —-.120 230 236 1.689 243 257
F2SLL —.054 224 225 —.158 226 231 1.365 239 .250
N =200
LLE —.348 237 237 —.638 237 .240 120 249 256
HU1 —-.397 .330 335 203 334 .348 —10.232 .376 451
HU2 —.604 237 237 —.955 239 241 .062 247 253
RWC —-.372 .198 .199 —.705 201 .207 .364 .209 221
2SLL —.387 .194 194 —.652 197 201 125 204 213
FHU1 =B .327 331 210 331 .345 —10.050 373 443
FHU2 —.602 .236 237 —.953 238 241 .061 247 253
FRWC -.371 .199 .200 —.706 202 207 .365 210 221

F2SLL —.383 194 .195 —.652 197 .201 129 .205 214
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Table 2
Average bias (x 10_2) (B), standard deviation (S) and root mean squared error (R) with AR(2) model
Estimators mq(x) my(x) m3(x)

B S R B S R B S R
n =100
LLE .081 227 227 .149 225 229 .510 .245 252
HU1 —.285 .207 .208 415 210 213 —.623 .236 241
HU2 214 221 221 419 220 223 .648 239 .246
VFF .071 .202 .203 .243 .203 207 .567 .220 228
2SLL .089 .203 .203 228 203 .208 .554 221 228
FHU1 —.284 212 212 357 213 216 —.838 .243 .248
FHU2 .198 221 222 419 220 223 .662 239 .246
FVFF .069 .203 204 225 204 .209 576 222 230
F2SLL .085 .204 .205 212 .205 .209 .561 222 .230
n =200
LLE .384 .156 157 .011 .162 .166 452 171 179
HU1 214 .146 147 273 151 155 —.649 .166 171
HU2 .335 153 154 .038 .158 .162 418 .170 177
VFF 420 141 142 —.018 .145 .149 422 154 162
2SLL 424 142 142 —.017 .146 .150 419 .154 .162
FHU1 .230 147 .148 .264 152 .155 —.633 .169 174
FHU2 347 153 154 .015 .158 .162 419 .170 176
FVFF 412 141 142 —.029 .145 .150 435 .154 .162
F2SLL 415 142 142 —.023 .146 .150 435 154 .163
n = 400
LLE —.174 11 112 —.102 114 119 332 128 135
HU1 —.484 .103 .104 .089 .108 113 -.513 125 128
HU2 —.181 .108 .109 .000 112 117 332 126 132
VFF —.184 .099 .101 —.113 .102 .109 297 114 121
2SLL —.188 .099 .101 —.115 .102 .109 290 114 121
FHU1 —.488 .104 .105 .063 .109 113 —.515 127 130
FHU2 —.193 .108 .109 —.009 112 117 327 126 132
FVFF —.182 .099 .101 —.113 .103 .109 295 114 122
F2SLL —.188 .099 .101 —.114 .103 .109 .289 114 122
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