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the parametric information in the error covariance matrix is proposed. Sufficient conditions
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is established. We give examples of how our results are useful in some recently studied
regression models. A Monte Carlo study confirms the asymptotic theory predictions and
compares our estimator with some recently proposed alternative estimation procedures.
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1. Introduction

Recently there has been a growing interest in the specification of nonparametric regression models in which
the regression errors’ correlation structure can be described parametrically. For example, Xiao et al. [38] consider
a nonparametric regression with stationary error terms that have an invertible linear process representation which
encompasses all finite order ARMA(p, q) processes; Vilar-Fernández and Francisco-Fernández [32] consider a fixed design
nonparametric regression whose errors follow an AR(1) process; Lin and Carroll [18], Ruckstuhl et al. [25] and Wang [34]
consider a nonparametric regression for panel/clustered data where the error term covariance structure follows a pre-
specified parametric structure; Fan et al. [11] consider a nonparametric regression frontier model with errors whose
covariance structure follows a parametric specification proposed by Aigner et al. [1] and Smith and Kohn [28] consider the
estimation of a finite set of nonparametric regressions whose error structure follows the parametric seemingly unrelated
structure proposed by Zellner [39].

These models can be viewed as extensions of the regression literature in two related but distinct ways. First, they
represent an extension of the vast Generalized Least Squares (GLS) linear and nonlinear parametric regression literatures [13,
37] to the nonparametric regression setting, and as such they represent improvements on the modeling of (un)conditional
expectations. Second, they can be viewed as extensions of the nonparametric regression literature from the typical case
where regression errors are independent and identically distributed (iid) to cases where specific parametric structures for
correlation and heteroscedasticity are allowed [27]. In either case, the usefulness of these extensions in econometric and
statistical practice is well recognized and documented [23,10]. In their most general form, these regression models can be
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written as

Yi = m(Xi)+ Ui, i = 1, 2, . . . (1)

where Xi is a vector of regressors, Yi is a regressand and the error Ui is such that

E(Ui) = 0 for all i = 1, 2, . . . , E(UiUj) = ωij(θ0), θ0 ∈ Rp, p <∞. (2)

The important characteristic of (2) is that each element of the error covariance can be expressed as a function ωij(θ) of
a finite set of parameters θ0. Previous works on the estimation of these models have had two main objectives. The first
is to establish the asymptotic properties of well known nonparametric regression estimators such as local polynomial and
Nadaraya–Watson estimators under the assumed error correlation structure [38,32]. Although progress in this direction has
been made, it is unfortunate that most asymptotic results for traditional estimators are specific to the assumed covariance
structure and lack the generality that would allow their applicability under alternative parametric structures for the error
correlation. A more general result under covariance structure (2) for the local linear estimator seems to be especially
useful as this estimator has a number desirable properties, such as design adaptability, reduced bias (as compared to
Nadaraya–Watson estimators), good boundary properties and mini–max efficiency [7–9]. The first contribution of this
paper is to provide a set of sufficient conditions under which the asymptotic normality of the local linear estimator can
be established when the error correlation structure has the general parametric structure in (2). These conditions encompass
a number of models proposed so far in the nonparametric literature as well as other structures that have been popular in
the GLS parametric literature [20].

The second objective of the existing literature is to propose estimators that by incorporating the information contained
in the error covariance structure will lead to better performance – asymptotically or in finite sample – vis a vis the
traditional estimators [27,18,25,34]. How to best incorporate the error covariance matrix information into local polynomial
nonparametric regression estimators is still an open question. Lin and Carroll [18] show that in typical random effects
panel data models, when a standard kernel based estimator is used, it is better to estimate the regression by ignoring the
correlation structure within a cluster — the “working independence” approach. An alternative kernel smoothing method
proposed by Wang [34] achieves smaller variance when the correlation structure is taken into account. However, it is not
clear how to generalize this approach to the case of a general error covariance. A particularly promising approach has been
the pre-whiten method proposed by Ruckstuhl et al. [25] and adopted by Xiao et al. [38]. However, as in the case of the local
linear estimator, the asymptotic properties of this pre-whiten estimator have been established only for specific parametric
structures of the error covariance (random effects panel data and autocorrelated errors). In fact, as will be argued below,
establishing the asymptotic normality of the pre-whiten estimator in general settings could be quite difficult. Hence, in
the second part of this paper we propose a new two-step estimator, inspired by Ruckstuhl et al. [25], that incorporates
information contained in the error covariance structure and is asymptotically normal under fairly mild restrictions on the
parametric structure of the covariance (see Assumptions A6 and TA 4.1–4.3). Our estimator is an improvement over the
traditional local linear estimator in that its bias is of the same order but its asymptotic distribution has strictly smaller
variance.

Our results are useful from at least two perspectives. First, since our results hold for generally specified parametric
covariances, they eliminate the need to repeatedly establish asymptotic normality for both estimators – local linear and
the two-step procedure proposed herein – under specific structures of ωij(θ0). Second, because the two estimators are
asymptotically normal and converge at similar rates, establishing relative efficiency is facilitated. At their technical core, both
contributions in this paper can be viewed as extensions to the results of Mack and Silverman [19] and Masry and Fan [22].
These extensions are made possible by relying on inequalities for non-stationary processes provided by Doukhan [6] and
Volkonskii and Rozanov [33]. The rest of the paper is organized as follows. Section 2 provides the general characteristics of
the regression model that we consider, defines the local linear estimator, and gives a list of assumptions and the two main
theorems necessary for establishing the properties of the local linear estimator for model (1)–(2). In Section 3 we define
a new two-step estimator based on the knowledge of ωij(θ0) and give sufficient conditions for obtaining its asymptotic
normality. We then obtain the asymptotic equivalence of the two-step estimator based on ωij(θ0) and its feasible version
based on an estimatorωij(θ̇), where θ̇−θ0 = op(1). These results are obtained for a special class of parametric covariances as
specified by our Assumptions A6 and TA 4.1–4.3 in Theorem 4. Section 4 gives two applications of our results that illustrate
how our theorems encompass and extend previous results in the literature. Section 5 contains a Monte Carlo study that
implements our two-step estimator, sheds some light on its finite sample properties, and compares its performance to that
of existing estimators. Section 6 provides a summary of the paper.

2. A nonparametric regression model with general parametric covariance

Suppose there are n observations Ey = (Y1, . . . , Yn)
′, Ex = (X1, . . . , Xn)

′ on the regressand and regressors for the model
(1)–(2). The objective is to estimate the regression function m(x) at some point x ∈ RD, D < n.1 There is a vast literature [15]

1 In what follows we proceed for simplicity with the assumption that D = 1. Mutatis mutandis all results follow for D > 1.
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on how to proceed with estimation of m. Here, we focus our attention on the local linear estimator (LLE) which was
popularized by Fan [7] due to its well known desirable properties. Furthermore, our results for the LLE are easily extended
to the also popular Nadaraya–Watson estimator. Let e′ = (1, 0), 1′n = (1, . . . , 1), a vector of ones of length n, and hn > 0 a
sequence of bandwidths; then the LLE is defined as

m̌(x) = e′
(
R′xKxRx

)−1
R′xKxEy (3)

where Rx = (1n, Ex − 1nx), Kx = diag
{
K
(

Xi−x
hn

)}n
i=1

. It will be convenient for our purposes to rewrite (3) as m̌(x) =

1
nhn

∑n
i=1 Wn

(
xi−x
hn

, x
)
Yi, where Wn(z, x) = e′S−1

n (x)(1, z)′K(z) and

Sn(x) =
1
nhn


n∑

i=1
K
(
Xi − x

hn

) n∑
i=1

K
(
Xi − x

hn

)(
Xi − x

hn

)
n∑

i=1
K
(
Xi − x

hn

)(
Xi − x

hn

) n∑
i=1

K
(
Xi − x

hn

)(
Xi − x

hn

)2

 =
(
sn,0(x) sn,1(x)
sn,1(x) sn,2(x)

)
.

To establish the asymptotic normality of m̌(x) for model (1)–(2) we follow the traditional approach of breaking the
problem into two parts. First, we establish the uniform convergence in probability of the components of R′xKxRx after a
suitable normalization. This is accomplished as an application of Theorem 1 which is given below. Second, we establish
the asymptotic distribution of the R′xKxEy vector (and of the estimator itself) in Theorem 2. We now provide a list of general
assumptions that will be selectively adopted in these theorems and introduce some notation. In what follows C always
denotes a generic constant that may take different values in R and the sequence of bandwidths hn is such that hn → 0 and
nh2

n →∞ as n→∞.

Assumption A1. 1. Let fi(x) be the marginal density of Xi evaluated at x, with fi(x) < C for all i and x; 2. f (d)i (x) is the dth-order
derivative of fi(x) evaluated at x and we assume that |f (1)

i (x)| < C; 3. |fi(x)− fi(x′)| ≤ C|x− x′| for all x, x′; 4. flkijmo(xl, . . . , xo)
denotes the joint density of Xl, . . . , Xo evaluated at xl, . . . , xo and we assume that flkijmo(xl, . . . , xo) < C for all xl, . . . , xo. 5.
f̄n(x) = n−1 ∑n

i=1 fi(x)→ f̄ (x) as n→∞where 0 < f̄ (x) <∞; 6. as n→∞ 0 < infx∈G|f̄n(x)| < C for x ∈ G a compact set.

Assumption A2. K(x) : R → R is a symmetric bounded function with compact support SK such that: 1.
∫
K(x)dx = 1; 2.∫

xK(x)dx = 0; 3.
∫
x2K(x)dx = σ2

K; 4. for all x, x′ ∈ SK we have |K(x)− K(x′)| ≤ C|x− x′|.

Assumption A3. ωij(θ0) is the (i, j) element of Ω = E(UU′) with |ωij(θ0)| < C for all i, j, ω̄n(θ) = n−1 ∑n
i=1 ωii(θ)→ ω̄(θ) as

n→∞where 0 < ω̄(θ) <∞ for every θ and ω̄f n(x, θ) = n−1 ∑n
i=1 ωii(θ)fi(x)→ ω̄f (x, θ) as n→∞where 0 < ω̄f (x, θ) <∞

for every x and θ.

Let {Rt} be a sequence of random variables defined in a probability space (S, F, P) and=ba be the σ-algebra of events generated
by the random variables {Rt : a ≤ t ≤ b}; then α(=ba,=dc) = supA∈=ba,B∈=

d
c
|P(A ∩ B)− P(A)P(B)| and α(m) = supt α(=

t
−∞

,=∞t+m).
A stochastic process is said to be α-mixing if process α(m)→ 0 as m→∞. Then we assume:

Assumption A4. 1. {(Xi,Ui)
′
}i=1,2,... is an α-mixing process of size −2, which implies that

∑
∞

j=1 jaα(j)1− 2
δ < ∞ for δ > 2

and a > 1 − 2/δ; 2. we denote the joint density of (Xi,Ui)
′ by fXi,Ui(xi, ui), the density of Xi conditional on Ui by fXi|Ui(x) with

fXi|Ui(x) < C and the conditional density of Xi, Xj given Ui,Uj by fXiXj|UiUj(xi, xj) with fXiXj|UiUj(xi, xj) < C for all xi, xj; 3. there exists

a sequence of positive integers satisfying sn →∞ and sn = o((nhn)
1/2) such that

(
n
hn

)1/2
α(sn)→ 0 as n→∞.

Assumption A5. m(d)(x) < C for all x and d = 1, 2, where m(d)(x) is the dth-order derivative of m(x) evaluated at x.

Our Assumption A1 requires the densities of regressor Xi to be smooth and bounded functions, and in the case where the
Xi come from heterogeneous distributions, the average of the densities must converge. This is automatically satisfied if the Xi

come from the same distribution, or the Xi are part of a strictly stationary sequence. Assumption A2 is a standard assumption
for the kernel functions in the nonparametric regression estimation. Assumption A3 ensures that the weighted average of
the diagonal terms of the error covariance converges as n→∞, which is trivially met when there is a homoscedastic error
structure. Under the mixing conditions imposed in Assumption A4, the dependence among {(Xi,Ui)

′
} will diminish as the

distance between indices increases, which is general enough to include many interesting cases like panel data models or
autoregressive models of order (p) (see Section 4), while still allowing a central limit theorem to apply on the standardized
summation. We impose a smoothness condition on m(x) in Assumption A5 so the standard Taylor approximations could
carry through.

We now state Theorem 1 which is a supporting result for the main theorems that follow. All proofs are provided in
Appendix A.

Theorem 1. Let {(Xi,Ui)}
n
i=1 be a stochastic sequence of vectors, {vi}ni=1 be a uniformly bounded non-stochastic sequence in R and

define
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sj(x) = (nhn)
−1

n∑
i=1

K
(
Xi − x

hn

)(
Xi − x

hn

)j

g(Ui)vi with j = 0, 1, 2

where g : R→ R is measurable. Assume that: 1. E(|g(Ui)|
2+θ) < C for some θ > 0 and all i; 2. supx∈G

∫
|g(Ui)|

afXi,Ui(x,Ui)dUi <∞
for some a > 1; 3. Assumptions A2 and A4. For G a compact subset of R we have

sup
x∈G
|sj(x)− E(sj(x))| = Op

((
nhn

ln(n)

)−1/2)
(4)

provided that s,β > 2 and we have that n(θ+1/s)(β+1.5)+1.25−β/2h
−1.75−β/2
n (ln(n))0.25+β/2

→ 0.

By taking vi = 1 and g(x) = 1 for all i and x in Theorem 1 we have that supx∈G |sn,j(x) − E(sn,j(x))| = op(hp
n) for p > 0 and

j = 0, 1, 2 provided that nh
2p+1
n

ln(n)
→∞. The last condition is consistent with n(θ+1/s)(β+1.5)+1.25−β/2h

−1.75−β/2
n (ln(n))0.25+β/2

→ 0

as n→∞ for θ > 0 and s > 2. Consequently, if p = 1, nh3
n

ln(n)
→∞we have that supx∈G

1
hn
|sn,j(x)− E(sn,j(x))| = op(1).

The next theorem establishes the asymptotic
√
nhn- normality for the local linear estimator under general parametric

covariance structure. We stress that the importance of the result lies in the fact that the regression errors are not restricted
to being (iid) or even weakly stationary. We do assume, however, that {Xi}i=1,2,... and {Ui}i=1,2,... are independent processes.

Theorem 2. Let {(Xi,Ui)}
n
i=1 be a stochastic sequence of vectors and assume that Yi = m(Xi) + Ui for i = 1, 2, . . ., {Xi}i=1,2,...

and {Ui}i=1,2,... are independent with E(Ui) = 0 for all i = 1, 2, . . ., E(UiUj) = ωij(θ0) θ0 ∈ Rp, p < ∞. If we assume that
Assumptions A1–A5 are met and E(|Ui|

2+θ) < C for some θ > 0 and all i, then

(nhn)
1/2(m̌(x)− m(x)− Bn,1(x))

d
→N

(
0,
ω̄f (x, θ0)

f̄ 2(x)

∫
K2(φ)dφ

)
(5)

where Bn,1(x) =
h2
n

2 σ
2
Km

(2)(x)+ op(h2
n), provided ln(n)

nh3
n
→ 0 and h2

n ln(n)→ 0.

In the case where {(Xi,Ui)
′
} is an iid sequence with f (x) being the marginal density for Xi and ω(θ) the variance of Ui,

the asymptotic variance is simplified to being ω(θ)
f (x)

∫
K2(φ)dφ. Theorem 2 can therefore be seen as a generalization of the

classic asymptotic normality result for local linear estimation under the iid assumption. Examples in Section 4 illustrate the
applicability of this general result in regression models where the error covariance has a random effects panel data structure,
and an AR(p) structure.

3. Two-step estimation — Asymptotic normality

The estimator m̌(x) studied in the previous section has the desirable property of being
√
nhn-asymptotically normal.

However, the fact that none of the information provided by the error covariance structure is used in its construction suggests
that alternative estimators can provide improved performance. How to incorporate the covariance structure in defining an
alternative estimator has been the subject of various papers (see inter alia [27,18], but one promising approach has been a
two-step procedure that transforms the model to yield spherical regression errors. The motivation behind the procedure
is quite simple. Let Ω(θ0) be an n × n matrix with the (i, j) element given by ωij(θ0), P−1(θ0) an n × n matrix with the (i, j)
element given by vij(θ0) and P(θ0) an n× n matrix with the (i, j) element given by pij(θ0) such that Ω(θ0) = P(θ0)P(θ0)

′. Let
Em′ = (m(X1), . . . ,m(Xn)), U′ = (U1, . . . ,Un), In be the identity matrix of size n and define Z = P−1(θ0)Ey + (In − P−1(θ0)) Em.
Then,

Z = Em+ P−1(θ0)U = Em+ ε. (6)

Given that the components of the stochastic process {Ui}i=1,2,... can be written as Ui =
∑q

j=1 pijεj where q = 1, 2, . . . , n,
if {εi}i=1,2,... is an independent identically distributed process with zero mean and variance σ2 then the model described
in (6) is the standard nonparametric regression model with spherical errors. The difficulty in dealing with such a model
stems from the fact that the regressand Z is not observed since Em and the components of P−1(θ0) are generally unknown –
since θ0 is unknown – and must be substituted by suitable estimates. Hence, implementation normally requires a first-stage
estimation in which m̌(x) and estimators for the elements of P−1(θ0), say P−1(θ̇) (normally using residuals Ǔi = Yi−m̌(Xi)), are
obtained, and a second stage in which the regressand Ẑ = P−1(θ̇)Ey+ (In− P−1(θ̇)) Ěm is used in (6). The asymptotic properties
of the resulting estimator are not known in general, but Xiao et al. [38] have obtained

√
nhn-asymptotic normality for a

stationary error structure that has an invertible linear process representation Ut =
∑
∞

j=0 cjεt−j. A key feature of their structure
is that the diagonal elements of P−1(θ0) are all equal to 1, a property that we will see below has important consequences in
establishing the asymptotic normality of the estimator. Since this cannot be generally assumed we will propose a slightly
different estimator that circumvents the difficulties that we encountered with the estimator for general models.

In what follows we will restrict ourselves to stochastic processes {Ui}i=1,2,... that can be constructed from linear
transformations of iid processes. Hence, we assume:
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Assumption A6. The components of the stochastic process {Ui}i=1,2,... can be written as Ui =
∑q

j=1 pijεj where q = 1, 2, . . . , n
and {εi}i=1,2,... is an independent identically distributed process with zero mean and unit variance.

For economy of notation we also write pij, vij, P and P−1 where it is well understood that all of these variables depend on
θ. Let H = diag{v−1

ii }
n
i=1 and define Z = HP−1Ey+ (In − HP−1) Em. Then,

Z = Em+ HP−1U = Em+ γ. (7)

Given Assumption A6, {γi}i=1,2,... is an independent heterogeneous sequence with E(γ) = 0 and E(γγ ′) = H2
= diag{v−2

ii }
n
i=1.

As above, the regression error γi in the transformed regression (7) is independent and heteroscedastic, but the vector of
regressands is unknown. If m(Xi) is estimated at a first stage by m̌(Xi), then the only source of ignorance about Z is due to
P−1 or the fact that θ0 is unknown. In Theorem 3 below we focus on establishing the asymptotic normality of the estimator

m̂(x) = e′
(
R′xKxRx

)−1
R′xKxŽ (8)

where Ž = HP−1Ey− (HP−1
− In)m̌, m̌′ = (m̌(X1), . . . , m̌(Xn)) and for the moment we assume that θ0, and therefore P−1 (and

consequently H), is known.

Theorem 3. Let {(Xi,Ui)}
n
i=1 be a stochastic sequence of vectors and assume that Yi = m(Xi)+ Ui for i = 1, 2, . . ., {Xi}i=1,2,... and

{Ui}i=1,2,... are independent with E(Ui) = 0 for all i = 1, 2, . . ., E(UiUj) = ωij(θ0) θ0 ∈ Rp, p < ∞. Consider the estimator m̂(x)
described above, such that hn is the bandwidth used in the first-stage estimation and gn is the bandwidth used in the second stage
of the estimation. If we assume that Assumptions A1–A6 are met and E(|Ui|

2+θ) < C for some θ > 0 and all i, then,

(ngn)
1/2(m̂(x)− m(x)− Bn,1(x))

d
→N

(
0,
ω̄f (x, θ0)

f̄ 2(x)

∫
K2(φ)dφ

)
(9)

where Bn,1(x) =
g2
n
2 σ

2
Km

(2)(x) + op(g2
n), ω̄f (x, θ0) = limn→∞

1
n

∑n
i=1 fi(x)v

−2
ii provided that: 1. hn

gn
→ 0 and gn = O(n−1/5); 2.

supi

∑n
j=1,j6=i

|vij|

|vii|
= O(1) and supi

∑n
j=1,j6=i

|vji|

|vjj|
= O(1).

We note that difference between the variances of the asymptotic distributions of m̌(x) and m̂(x) is given by

lim
n→∞

1
nf̄ (x)2

n∑
i=1

fi(x)

(
ωii(θ0)−

1
v2
ii

) ∫
K2(φ)dφ. (10)

By Theorem 12.2.10 in [14] we have that piivii ≥ 1. Consequently,

p2
ii ≥

1
v2
ii

⇒ ωii(θo) = p2
ii +

n∑
j=1,j6=i

p2
ij ≥

1
v2
ii

which establishes that m̂(x) is efficient relative to m̌(x). The improvement over local linear estimation is obtained even though
m̂(x) ignores the heteroscedastic structure of the error.

Notice also that we impose two more assumptions in Theorem 3. The first one relates to undersmoothing in the first-stage
regression so that the magnitude of the bias created by m̂(x) will be smaller than the leading bias term in the second stage.
This assumption is common in two-stage nonparametric regression estimation, e.g., Assumption 7 in [38], Assumption B5
in [29] and Remark 1 in [34]. The second assumption is essentially uniform summability of the rows of error covariance,
which is a sufficient condition used in the proof of Theorem 3 to control the order of magnitude for summation terms
showing up in the second stage. Similar assumptions have been used in the literature, i.e., Assumption A.3 in [12] and
Assumption 5 in [38].

An important part in the proof of Theorem 3 (Appendix A) is that Ži = m(Xi)−
∑n

j=1,j6=i
vij
vii

(m̌(Xj)−m(Xj))+γi. If instead we
were considering the estimator m̃(x) = e′

(
R′xKxRx

)−1
R′xKxŽ where Ž = P−1Ey−(P−1

−In)m̌, then Ži = m(Xi)+εi−
∑n

j=1 vij(m̌(Xj)−

m(Xj))+ (m̌(Xi)−m(Xi)) and Bn(x) =
1

ngn f̄n(x)

∑n
i=1 K

(
Xi−x
gn

)
Ž∗i , which is asymptotically equivalent to m̃(x)−m(x), would have

an extra term given by 1
f̄n(x)

1
ngn

∑n
i=1 K

(
Xi−x
gn

)
(m̌(Xi) − m(Xi)) which cannot easily be shown to be op((ngn)−1/2) under the

general conditions that we consider. By construction, whenever the diagonal elements of P−1 are equal to 1 this extra term
does not appear even when Ž = P−1Ey − (P−1

− In)m̌. Hence, we have the following result which we state as a Corollary to
Theorem 3.

Corollary 1. Let {(Xi,Ui)}
n
i=1 be a stochastic sequence of vectors and assume that Yi = m(Xi)+ Ui for i = 1, 2, . . ., {Xi}i=1,2,... and

{Ui}i=1,2,... are independent with E(Ui) = 0 for all i = 1, 2, . . ., E(UiUj) = ωij(θ0) θ0 ∈ Rp, p < ∞. Consider the estimator m̃(x)
described above, such that hn is the bandwidth used in the first-stage estimation and gn is the bandwidth used in the second stage
of the estimation. If we assume that Assumptions A1–A6 are met and E(|Ui|

2+θ) < C for some θ > 0 and all i, then,

(ngn)
1/2(m̃(x)− m(x)− Bn,1(x))

d
→N

(
0,

1
f̄ (x)

∫
K2(φ)dφ

)
(11)
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provided that: 1. hn
gn
→ 0 and gn = O(n−1/5); 2. supi

∑n
j=1,j6=i |vij| = O(1) and supi

∑n
j=1,j6=i |vji| = O(1); 3. P−1(θ0) is such that

vii(θ0) = 1 for all i.

The use of Theorem 3 and its Corollary is restricted in practice due to the fact that the parameter θ used in defining
P is generally unknown and must be estimated. Hence, we now turn our attention to a feasible estimator ṁ(x) =

e′
(
R′xKxRx

)−1
R′xKxŻ where Ż = H(θ̇)P−1(θ̇)Ey − (H(θ̇)P−1(θ̇) − In)m̌ and for which θ̇ − θ0 = op(1). The next theorem provides

sufficient conditions under which
√
ngn(ṁ(x) − m̂(x)) = op(1). As such, it gives conditions under which the feasible

estimator is asymptotically equivalent to m̂(x), therefore inheriting its desirable properties, namely asymptotic normality
and efficiency relative to the LLE. The theorem can be viewed as an extension of the theorem in [20] to the case of
nonparametric regression.

Theorem 4. Suppose that all assumptions in Theorem 3 are holding and assume in addition that:
TA 4.1: H(θ)P−1(θ) has at most W < ∞ distinct nonzero elements for every n, denoted by gwn(θ) for w = 1, 2, . . . ,W. That is,
there are n2

−W elements that are either zero or duplicates of other nonzero elements in H(θ)P−1(θ). For each w, gwn(θ) converges
uniformly as n→∞ to a real valued function gw(θ) on an open set O containing θ0, where gw is continuous at θ0.
TA 4.2: The number of nonzero elements in each column (and row) of H(θ)P−1(θ) is uniformly bounded by ℵ as n→∞.
TA 4.3: There exists C <∞ such that

∑n
i=1 |ωij(θ)| < C for every n = 1, 2, . . . and j = 1, 2, . . . .

If θ̇− θ0 = op(1) then we have
√
ngn(m̂(x)− ṁ(x)) = op(1).

4. Selected applications

In this section we provide two applications for the results that we have obtained. The first deals with clustered or panel
data models. Here, the asymptotic normality result that we obtain for the local linear and the two-stage estimators is novel.
The second application is for nonparametric regression models with autoregressive errors of order p, which have been
studied by Vilar-Fernández and Francisco-Fernández [32] for the case where p = 1 under fixed design regressors. The
examples illustrate the applicability of our theorems to popular nonparametric models and reveal the ease of verifying the
conditions listed in Theorems 3 and 4.

4.1. Clustered or panel data models

We focus on the regression models for clustered data proposed by Ruckstuhl et al. [25] and also studied by Wang [34].
The model is a direct extension to the nonparametric regression setting of the one-way random effects model that is popular
in the panel data literature [2]. Consider

Yij = m(Xij)+ αi + εij i = 1, . . . ,N; j = 1, . . . , J, (12)

where {αi}i=1,2,... are independent with E(αi) = 0 and V(αi) = σ2
α for all i; {εij}i,j=1,2,... are independent with E(εij) = 0

and V(εij) = σ
2
ε for all i, j and the processes {αi}i=1,2,... and {εij}i,j=1,2,... are independent. Ruckstuhl et al. [25] assume that

{Xi}i=1,2,... where X′i = (Xi1, . . . , XiJ) is an independent and identically distributed vector sequence with the marginal density
of Xij given by fj.

We define Y ′i = (Yi1, . . . , YiJ), Ey = (Y ′1, . . . , Y
′

N)
′, X′i = (Xi1, . . . , XiJ), Ex = (X′1, . . . , X

′

N)
′ and Uij = αi + εij. Then, given the

assumptions on αi and εij we have that for U′i = (Ui1, . . . ,UiJ), E(UiU′i) = Σ = σ2
ε IJ + σ

2
α1J1′J and if U = (U′1, . . . ,U

′

N)
′,

E(UU′) = IN ⊗ Σ = Ω(σ2
ε ,σ

2
α). In this context we have that m̌(x) = e′

(
R̄′xK̄xR̄x

)−1
R̄′xK̄xEy where R̄x = (1NJ, Ex − 1NJx),

K̄x = diag
{
K
(

Xij−x

hn

)}N,J

i=1,j=1
. Let n = NJ; then the LLE estimator can be written as m̌(x) = 1

nhn

∑N
i=1

∑J
j=1 Wn

(
Xij−x

hn
, x
)
Yij.

We assume Assumption A1.1–4 and verify that Assumption A1.5–6 hold since f̄n(x) =
1
J

∑J
j=1 fj(x) and as assumed in

Ruckstuhl et al. [25] if 0 < fj(x) < C we have 0 < f̄n(x) < B. Assumption A3 is verified since 0 < σ2
α,σ

2
ε < C and consequently

1
n

∑n
i=1 ωii(σ

2
α,σ

2
ε ) = σ

2
α + σ

2
ε and ω̄f (x,σ2

α,σ
2
ε ) = (σ2

α + σ
2
ε )f̄n(x). Now, since the process {Xi} is independent and identically

distributed, {Xij} is such that α(t) = 0 for all t ≥ J. Similarly, since {αi} is independent and {εij} is independent, we have that
Uij and Ui′ j′ is independent for all i 6= i′ for all j, j′ and therefore α(t) = 0 for all t ≥ J, verifying Assumption A4 given the
independence of {Xi} and {Uij}. Assumption A6 is easily verified by the independence of {αi} and {εij} and noting that U = Pv
where v is a vector of iid random variables with E(vi) = 0 and V(vi) = 1. Hence, we conclude that

√
ngn

(
m̌(x)− m(x)−

(
σ2
K

m(2)(x)

2
g2
n + op(g

2
n)

))
d
→N

0,
σ2
ε + σ

2
α

1
J

J∑
j=1

fj(x)

∫
K2(φ)dφ

 . (13)
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From [35] we have that P−1(σ2
α,σ

2
ε ) = IN ⊗ V−1/2 where

V−1/2
= vd



1
v0

vd
· · ·

v0

vdv0

vd
1 · · ·

v0

vd
...

...
. . .

...
v0

vd

v0

vd
· · · 1


(14)

where vd =
1
σε
−

(
1− σε

σ1

)
1
Jσε

and v0 = −
(

1− σε
σ1

)
1
Jσε

and σ1 =
√
Jσ2
α + σ

2
ε . Hence, since 0 < σ2

α,σ
2
ε < C and J is finite,

we have that the sum of the elements in every row and column of HP−1 (excluding the diagonals) is (J − 1) v0
vd

< C, which
satisfies condition 2 in Theorem 3. TA 4.1 is met with W = 2, g1(σ

2
α,σ

2
ε ) = v0/vd and g2(σ

2
α,σ

2
ε ) = 1 the uniform convergence

is trivial as neither function depends on n and the continuity is easily verified. TA 4.2 is met with ℵ = J and TA 4.3 is met
since

∑n
i=1 |ωij(θ0)| ≤ Jσ2

α + σ
2
ε .

Consistent estimators for σ2
α and σ2

ε are given by σ̇2
ε =

1
N(J−1)

∑N
i=1

∑J
j=1(Yij − m̌(Xij) − (Ȳi − m̄i))

2 and σ̇2
α =

1
N

∑N
i=1(Ȳi −

m̄i)
2
−

1
J
σ̇2
ε , where Ȳi =

1
J

∑J
j=1 Yij and m̄i =

1
J

∑J
j=1 m̌(Xij).Thus, we conclude that

√
ngn

(
ṁ(x)− m(x)−

(
σ2
K

m(2)(x)

2
g2
n + op(g

2
n)

))
d
→N

0,
σ2
ε

(
1− 1

J
(1− σε

σ1
)
)−2

1
J

J∑
j=1

fj(x)

∫
K2(φ)dφ

 . (15)

4.2. Nonparametric regression with AR(p) errors

We now consider

Yi = m(Xi)+ Ui for t = 1, . . . , n (16)

where {Xi} is independent of {Ui}, satisfies Assumptions A1, A3 and is α-mixing of size −2. Ui is strictly stationary with
Ui = r1Ui−1 + r2Ui−2 + · · · + rpUi−p + vi for i = 0,±1,±2, . . . where vi ∼ iid(0,σ2) with probability density function fv(x).
Then {Ui} satisfies the relevant portions of Assumption A3. Pham and Tran [24] show that {Ui} is α-mixing with α(j) → 0
exponentially as j→∞, which gives that {Ui} is of size−a for all a ∈ R+, therefore satisfying Assumption A4.1. Hence,

√
ngn

(
m̌(x)− m(x)−

(
σ2
K

m(2)(x)

2
g2
n + op(g

2
n)

))
d
→N

(
0,
γ(0)

f̄

∫
K2(φ)dφ

)
(17)

where γ(0) is the variance of the AR(p) process.
Following Mandy and Martins-Filho [20] we note that since 0 < σ2 < C we can find a p × p lower triangular matrix A

such that

AE((u1, . . . , up)
′(u1, . . . , up))A

′
= σ2Ip and

P−1(θ0)

=



A | 0 · · · · · · 0

−−−− −−−− −−−− | − −−− −−−− −−−−
...

−rp · · · −r1 | 1 0 · · · 0
0 −rp · · · | −r1 1 · · · 0
...

. . .
. . . |

. . .
. . .

. . .
...

0 0 | −rp · · · −r1 1


(18)

where θ0 = (r1, r2, . . . ., rp,σ2). Since there are a finite number of bounded nonzero elements in each column and row
of P−1(θ0), condition 2 in Theorem 3 is automatically met. Also, P−1 is a lower triangular matrix where all elements that
lie more than p positions away from the main diagonal are zero, verifying TA 4.2 with ℵ = p + 1. Also, there are at most
W = p(p+1)/2+(p+1) distinct functions in P−1, all of which are independent of n for n ≥ W (implying uniform convergence
trivially) and continuous at θ0 since the operations involved in obtaining A are continuous when 0 < σ2 < C. This verifies
TA 4.1.

To verify TA 4.3 we note that an AR(p) process can be written as a p-dimensional VAR(1) process ei = Rei−1 + εi, where
ei = (Ui−p+1 . . .Ui)

′, εi = (0, . . . 0, vi)′, and
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R =



0 1 0 · · · · · · 0
...

. . .
. . .

...

. . .
. . . 0

0 · · · · · · · · · 0 1
rp rp−1 · · · · · · r2 r1


. (19)

If the process is strictly stationary then the absolute eigenvalues of R are less than 1, and also E(eie′j) = R|i−j|E(ete′t) for arbitrary
t. From the definition of ei, the sum

∑n
i=1 |E(UiUj)| is the lower right element of

∑n
i=1 |E(eie

′

j)|where the absolute value is taken
elementwise. But,

n∑
i=1
|E(eie

′

j)| ≤ 2
n∑

i=1
|E(eie

′

0)| ≤ 2
(

n∑
i=0
|Ri
|

)
|E(e0e

′

0)|

and re-writing |Ri
| in Jordan canonical form yields

n∑
i=1
|E(eie

′

j)| ≤ 2|J|
(

n∑
i=0
|Λi
|

)
|J−1
||E(e0e

′

0)|

where Λ is a diagonal matrix involving the eigenvalues of R and J is a fixed matrix depending only on R. Since the absolute
eigenvalues are less than one

∑
∞

i=0 |Λi| converges, which verifies TA 4.3.
Consistent estimators ṙi for ri, i = 1, . . . , p, can be obtained (see [32] by defining residuals Ǔi = Yi− m̌(Xi) and performing

least squares estimation on the following artificial regression:

Ǔi = r1Ǔi−1 + r2Ǔi−2 + · · · + rpǓi−p + v̌i for i = p+ 1, p+ 2, . . . .

where v̌i is an arbitrary regression error. Hence, we conclude

√
ngn

(
ṁ(x)− m(x)−

(
σ2
K

m(2)(x)

2
g2
n + op(g

2
n)

))
d
→N

(
0,
σ2

f̄

∫
K2(φ)dφ

)
. (20)

5. Monte Carlo study

In this section, we perform a Monte Carlo study to implement our two-step estimator, henceforth referred to as 2SLL,
and illustrate its finite sample performance. We consider a one-way random effects panel data and an AR(2) parametric
covariance structure, under which the asymptotic properties of 2SLL and of LLE are provided in the previous section.

For panel data structure, the data generating process (DGP) is given by (12), where the univariate pseudo-random
variable Xij is generated independently from an uniform distribution with support [−2, 2]. The pseudo-random variable
αi is independently generated from a normal distribution with zero mean and variance σ2

α = 4, and εij is independently
generated from a standard normal distribution. We investigate three function specifications for m(x): m1(x) = sin(0.75x),
m2(x) = 0.5 + exp(−4x)

1+exp(−4x) and m3(x) = 1 − 0.9 exp(−2x2). m1(x) was used by Fan [7] to illustrate the advantage of LLE over
Nadaraya–Watson and Gasser–Müller estimators, and m2(x) and m3(x) were used by Martins-Filho and Yao [21] to model
the volatility of financial asset returns. All specifications for m(·) are nonlinear and twice differentiable. We fix J = 2, and
consider three sample sizes N = 100, 150 and 200.

For the AR(2) structure, the DGP is given by (16), where the univariate pseudo-random variable Xi is generated
independently from a uniform distribution with support [−2, 2]. For the error Ui = r1Ui−1+ r2Ui−2+ vi, we set r1 = 0.5, r2 =

−0.4 and generate the pseudo-random variable vi independently from a standard normal distribution. It is straightforward
to verify that for this choice of parameters {Ui} is a stationary process. The same three functional forms for m(·) as were
given above are adopted. We consider three sample sizes n = 100, 200, and 400.

The implementation of our 2SLL estimator requires the selection of bandwidth sequences hn and gn. We select the
bandwidth ĝn using the rule-of-thumb data driven plug-in method of Ruppert et al. [26] and let ĥn = (NJ)−

1
10 ĝn in the panel

data model and ĥn = n−
1

10 ĝn in the AR(2) model. An Epanechnikov kernel is utilized throughout the simulations. We note
that the choice of bandwidth and kernel satisfies the requirements in Theorems 2 and 3.

For comparison purposes, we include in our simulations several estimators proposed in the extant literature. Ullah and
Roy [31], Lin and Carroll [18] and Henderson and Ullah [16] consider the panel data model and local linear estimators based
on transformed observations to incorporate the information contained in error covariance structure in a specific fashion.
Their estimators are defined as

δ̂i(x) = e′(R′xWr(x)Rx)
−1R′xWr(x)Ey

for i = 1, 2 and W1(x) = (P−1)′KxP−1 and W2(x) = K
−

1
2

x Ω−1K
−

1
2

x . Essentially, δ̂1(x) is a LLE on the transformed observa-

tions K
−

1
2

x P−1Ey and K
−

1
2

x P−1Ex, while δ̂2(x) is obtained using transformed observations P−1K
−

1
2

x Ey and P−1K
−

1
2

x Ex. These are also
among the estimators considered by Welsh and Yee [36] in the context of a seemingly unrelated regression (SUR) and vector
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measurement error (VME) model (see their equation (5)). They focus on δ̂2(x) as all other estimators that they consider are
generally inconsistent in the presence of nonzero correlation in the panel model.2 As observed by Lin and Carroll [18], Ruck-
stuhl et al. [25] and Su and Ullah [30], for the clustered/panel data model of Section 4.1, δ̂i(x) cannot achieve asymptotic
improvement over LLE, but we include both in our simulation to verify their finite sample performance relative to 2SLL.
Henderson and Ullah [16] provide feasible versions of δ̂i(x) by estimating the unknowns in Ω consistently. Henceforth, we
refer to δ̂i(x) as HUi and their feasible versions as FHUi. We note that their estimators for the parameters in the covariance
matrix coincide with those provided in Section 4.1. For the panel data structure, we also consider the two-step estimator
proposed by Ruckstuhl et al. [25], henceforth referred to as RWC, which is more efficient than the local linear estimator, and
follow their suggestion to set τ = σε. Note that if we set τ = 1

vd
, then RWC coincides with 2SLL. Alternatively, as proposed

by Su and Ullah [30], the RWC estimator can be constructed with an optimal τ that minimizes an asymptotic approximation
for the mean squared error. In their simulation, the optimal τ is selected via a grid search over the interval [0,σ2

ε +σ
2
α] and is

approximately 1
vd

. Hence, the performance of their estimator is similar to ours.3 The unknown parameters in Ω are estimated
as described in Section 4.1.

For the AR(2) error structure, we consider the two-step estimator proposed in [32], henceforth referred to as VFF. Their
estimator is defined for the AR(1) model and they show that under fixed design, VFF outperforms the LLE for finite samples.
We consider VFF under a random design with an AR(2) covariance structure, where

P−1
=



(
(1+ r2)(1+ r1 − r2)(1− r1 − r2)

1− r2

) 1
2

0 0 · · · · · · 0

−
r1

√
1− r2

2

1− r2

√
1− r2

2 0 0 · · · 0

−r2 −r1 1 0 · · · 0
0 −r2 −r1 1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 −r2 −r1 1


.

Since H in 2SLL is a diagonal matrix with the diagonal element being the reciprocal of that in P−1, we observe that VFF differs
from 2SLL only in the treatment of the first two observations; hence the estimators are asymptotically equivalent. Hence,
we expect the estimators to have similar finite sample performances, which is confirmed in the Monte Carlo study. Although
HUi were initially proposed for a panel data error structure, it is straightforward to adapt to the AR(2) structure. We follow
the procedures in Section 4.2 to estimate the unknown parameters in Ω .

In total, for the panel data structure we consider nine estimators: LLE, four infeasible estimators where we utilize the
true covariance matrix parameters which are available in the simulation study – HU1, HU2, RWC, 2SLL, and four feasible
estimators – FHU1, FHU2, FRWC, and F2SLL, where we attach the letter “F” in front of the acronyms to indicate that the
unknown parameters in the covariance matrix are estimated. For the AR(2) error structure we consider nine estimators:
LLE, HU1, HU2, VFF, 2SLL, FHU1, FHU2, FVFF and F2SLL. All the estimators, except 2SLL and F2SLL, are implemented with
bandwidth ĝn described previously. For each experiment design, we perform 1000 repetitions, evaluate m(x) at twenty
equally spaced points over the support interval for the regressor (X) and obtain the average bias, standard deviation and
root mean squared error of each estimator. To avoid evaluation over areas of support where data are sparse, we exclude the
lower and upper 5% of the support interval. The results are reported in Tables 1 and 2 (Appendix B) for the panel data error
structure and AR(2) structure, respectively.

As the sample size increases, across all experiment designs, all estimators generally perform better in terms of averaged
standard deviation, root mean squared error and bias, where exceptions occur in bias, whose magnitude is much smaller.
This confirms the asymptotic results in Section 4, and agrees with the consistency of the alternative estimators. In terms
of the relative performance measured by standard deviation and root mean squared error, when panel data and infeasible
estimators are considered, we observe that 2SLL consistently performs the best, followed closely by the RWC estimator. For
all three functional forms considered, we notice that the reduction of standard deviation and root mean squared error by 2SLL
and RWC over LLE are well over 15%. These results are consistent with our Theorem 3, as well as Theorem 4 in [25], which
suggests that two-step estimation properly accounting for the covariance information can improve upon the classical local
linear estimator. LLE carries similar standard deviation and root mean squared error to HU2, but both LLE and HU2 always
outperform the HU1 estimator. Hence, HUi estimators do not seem to provide gains in terms of efficiency over LLE, at least
under the panel data error specification.

When the AR(2) model is considered, across all specifications for m(x), VFF and 2SLL perform similarly and outperform all
the other alternatives. The improvement in efficiency from both estimators against LLE is over 10%. Again this is consistent

2 See [36, p. 3016].
3 We have investigated the relative performance of their estimator and our 2SLL proposed here by selecting τ in accordance with their equation (3.2).

The simulation results (available upon request) show that across different experiment designs, the average RMSE for their estimator decreases with n, and
is smaller than that of LLE but still larger than that of our 2SLL.
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with our Theorem 3 as well as the comments above regarding the similarity of the two estimators. In addition, our results
indicate that the simulation results in [32] carry through in the case of the DGP that we specify.

For the AR(2) error structure, both HU1 and HU2 estimators outperform the LLE, with HU1 outperforming HU2. The
asymptotic distributions for the HUi estimators under an AR(p) structure are unknown, but on the basis of our simulations
these might be viable alternatives. As we expected, the feasible estimators perform slightly worse than the infeasible
estimators, where exceptions occur for the HUi estimators under the panel data error structure. We notice that the extra
burden in computing the unknown parameter is minimal since the increase in magnitude of average standard deviation and
root mean squared error is small. Consequently, the observations regarding the relative performances among alternative
estimators are largely maintained as those for their infeasible versions. This observation gives support for our Theorem 4 in
that feasible 2SLL, obtained by estimating the unknown parameters of the covariance matrix, is asymptotically equivalent
to its infeasible version and outperforms the traditional LLE.

6. Summary

In this paper we provide sufficient conditions for the asymptotic normality of the local linear estimator proposed by
Fan [7] in regression models where the regression error has a non-spherical parametric covariance structure and the
regressors are dependent and heterogeneously distributed. In this context, it seems natural to define an alternative estimator
that incorporates the parametric covariance structure in an attempt to reduce the variance of the asymptotic distribution.
We propose a two-step estimator that incorporates the parametric information given by the error covariance and provide
sufficient conditions for obtaining its asymptotic distribution. A feasible version of the two-step estimator that substitutes
true parameter values with consistent estimators is shown to be

√
ngn asymptotically equivalent in probability to the

two-step estimator under some easily verified conditions. A Monte Carlo study reveals that the asymptotic results for our
estimator are confirmed for finite samples and that our estimator can outperform previously proposed estimators.

Appendix A

Proof of Theorem 1. We prove the case where j = 0. Similar arguments can be used for j = 1, 2. Let B(x0, r) = {x ∈ R :

|x − x0| < r} for r ∈ R+. G compact implies that there exists x0 ∈ G such that G ⊆ B(x0, r). Therefore for all x, x′ ∈ G,
|x− x′| < 2r. Let hn > 0 be such that hn → 0 as n→∞where n ∈ {1, 2, 3 . . .}. For any n by the Heine–Borel Theorem there

exists a finite collection of sets
{
B
(
xk,

(
n
h2
n

)−1/2
)}ln

k=1
such that G ⊂ ∪ln

k=1 B
(
xk,

(
n
h2
n

)−1/2
)

for xk ∈ G with ln <
(

n
h2
n

)1/2
r. The

proof has three steps.
(1) We show that

sup
x∈G
|s0(x)− E(s0(x))| ≤ max

1≤k≤ln
|s0(xk)− E(s0(xk))| + C(nh2

n)
−1/2.

(2) Let sB0(x) = (nhn)
−1 ∑n

i=1 K
(

Xi−x
hn

)
g(Ui)viI(|g(Ui)| ≤ Bn) where B1 ≤ B2 ≤ · · ·, such that

∑
∞

i=1 B−si <∞ for some s > 0 and
I(·) is the indicator function. We show that

sup
x∈G
|s0(x)− sB0(x)− E(s0(x)− sB0(x))| = Oas(B

1−s
n ).

(3) Let 0 < ∆ <∞, β > 2 and εn =
(

nhn
ln(n)

)−1/2
∆; we show that

P
(

max
1≤k≤ln

∣∣∣sB0(xk)− E(sB0(xk))
∣∣∣ ≥ εn) = O(Bβ+1.5

n n1.25−β/2h−1.75−β/2
n (ln(n))0.25+β/2).

Step 1: For x ∈ B
(
xk,

(
n
h2
n

)−1/2
)

,

|s0(x)− s0(xk)| =

∣∣∣∣∣ 1
nhn

n∑
i=1

(
K
(
Xi − x

hn

)
− K

(
Xi − xk

hn

))
g(Ui)vi

∣∣∣∣∣
≤

1
nhn

n∑
i=1

C

∣∣∣∣ xk − x

hn

∣∣∣∣ |g(Ui)vi| by Assumption A2.4.

≤
1
h2
n

C

(
n

h2
n

)−1/2 1
n

n∑
i=1
|g(Ui)vi| ≤ C(nh2

n)
−1/2 1

n

n∑
i=1
|g(Ui)| .

By the measurability of g and Assumption A4, {|g(Ui)|}i=1,2,... isα-mixing of size−2. Furthermore, given that E(|Ui|
2+θ) < C

for some θ > 0 and all i, we have from McLeish’s LLN (see [37], p. 49) that 1
n

∑n
i=1 |g(Yi)|−

1
n

∑n
i=1 E(|g(Yi)|) = op(1) and since

1
n

∑n
i=1 E(|g(Ui)|) < C we have |s0(x)− s0(xk)| ≤ C(nh2

n)
−1/2 and similarly, E(|s0(x)− s0(xk)|) ≤ C(nh2

n)
−1/2. Combining the two

results, supx∈G |s0(x)− E(s0(x))| ≤ max1≤k≤ln |s0(xk)− E(s(xk))| + 2C(nh2
n)
−1/2.
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Step 2: supx∈G |s0(x)− sB0(x)− E(s0(x)− sB0(x))| ≤ T1 + T2, where T1 = supx∈G |s0(x)− sB0(x)| and T2 = supx∈G |E(s0(x)− sB0(x))|.
We show that T1 = oas(1) and T2 = O(B1−s

n ) for s > 0. T1 = supx∈G

∣∣∣(nhn)
−1 ∑n

i=1 K
(

Xi−x
hn

)
g(Ui)viI(|g(Ui)| > Bn)

∣∣∣. By the
Borel–Cantelli Lemma, for any ε > 0 and for all m satisfying m′ < m < n we have P(|g(Um)| ≤ Bn) > 1 − ε and by
Chebyshev’s Inequality and the increasing nature of the Bi sequence, for n > N ∈ R we have P(|g(Ui)| < Bn) > 1 − ε for
i < m′. Hence, for n > max{N,m} we have that for all i ≤ n, P(|g(Ui)| < Bn) > 1 − ε and therefore I(|g(Ui)| > Bn) = 0 with
probability 1, which gives T1 = oas(1).

E(s0(x)− sB0(x)) =
1
nhn

n∑
i=1

∫ ∫
|g(Ui)|>Bn

K
(
Xi − x

hn

)
g(Ui)vifXi,Ui(Xi,Ui)dXidUi

≤
C

n

n∑
i=1

sup
x∈G

∫
|g(Ui)|>Bn

|g(Ui)|fXi,Ui(x,Ui)dUi.

By Hölder’s inequality, for s > 1,∫
|g(Ui)|>Bn

|g(Ui)|fXi,Ui(x,Ui)dUi ≤

(∫
|g(Ui)|

sfXi,Ui(x,Ui)dUi

)1/s (∫
I(|g(Ui)| > Bn)fXi,Ui(x,Ui)dUi

)1−1/s

where the first integral after the inequality is uniformly bounded by assumption and since fXi|Ui(x) < C, we have by
Chebyshev’s Inequality

(∫
I(|g(Ui)| > Bn)fXi,Ui(x,Ui)dUi

)1−1/s
≤ C(P(|g(Ui)| > Bn))

1−1/s
≤ CB1−s

n . Hence, T2 = O(B1−s
n ).

Step 3: P
(
max1≤k≤ln

∣∣sB0(xk)− E(sB0(xk))
∣∣ ≥ εn) ≤∑ln

i=1 P
(∣∣sB0(xk)− E(sB0(xk))

∣∣ ≥ εn) and let sB0(xk)− E(sB0(xk)) =
1
n

∑n
i=1 Zi where

Zi =
1
hn

K
(
Xi − xk

hn

)
g(Ui)viI(|g(Ui)| ≤ Bn)− E

( 1
hn

K
(
Xi − xk

hn

)
g(Ui)viI(|g(Ui)| ≤ Bn)

)
.

By the uniform bound on vi, Assumption A2 and |g(Ui)|I(|g(Ui)| ≤ Bn) ≤ Bn we have that |Zi| ≤ Ch−1
n Bn. Let ‖Zi‖∞ = inf{a :

P(Zi > a) = 0}; then sup1≤i≤n ‖Zi‖∞ ≤ C Bn
hn

. Then, from Theorem 1.3 in [4] we have that for each q = 1, 2, . . . , [n/2]

P

(
1
n

∣∣∣∣∣ n∑
i=1

Zi

∣∣∣∣∣ > εn
)
≤ 4 exp

(
−ε2

nq

8v2(q)

)
+ 22

(
1+

4CBn

εnhn

)1/2

qα
([

n

2q

])

where v2(q) = 2
p2 σ

2(q)+ CBnεn
2hn

, p = n/2q,

σ2(q) = max
0≤j≤2q−1

E((([jp] + 1− jp)Z[jp]+1 + Z[jp]+2 + · · · + Z[(j+1)p] + ((j+ 1)p− [(j+ 1)p])Z[(j+1)p+1])
2)

and [a] denotes the integer part of a ∈ R. We first note that hn
p
σ2(q) = O(1). To see this note that

σ2(q) ≤ max
0≤j≤2q−1

 ∑
[jp]<i≤[(j+1)p+1]

E(Z2
i )+ 2

∑
[jp]+1≤l≤[(j+1)p]

l<i

∑
[jp]+1<i≤[(j+1)p+1]

|E(ZlZi)|

 .

Given Assumption A4.2 and E(|g(Ui)|
2+θ) < C for some θ > 0 and all i we have after some simple algebra∑

[jp]<i≤[(j+1)p+1]
E(Z2

i ) ≤ O(p/hn).

Using Theorem(3)1 in [6], for δ > 2 we have that |E(ZiZl)| ≤ Ch
−2+2/δ
n (α(i − l))1−2/δ. Now, for any l such that [jp] + 1 ≤ l ≤

[(j+ 1)p]we have that
∑
[jp]+1<i≤[(j+1)p+1] |E(ZlZi)| ≤

∑p∗−1
i=1 |E(ZlZl+i)| +

∑p∗−1
i=1 |E(ZlZl−i)|where p∗ = [(j+ 1)p+ 1] − [jp] + 1.

Letting dn be a sequence of integers such that dnhn → 0 we can write

p∗−1∑
i=1
|E(ZlZl+i)| =

dn∑
i=1
|E(ZlZl+i)| +

p∗−1∑
i=dn+1

|E(ZlZl+i)| = J1 + J2

and it can be easily shown that J1 = o(h−1
n ) and J2 = O(h−1

n ). Similarly we obtain
∑p∗−1

i=1 |E(ZlZl−i)| = O(h−1
n ). Combining

the results on the variance and covariances we have that hn
p
σ2(q) ≤ C for n sufficiently large. Hence, we have that

phnv2(q) ≤ C + CpBnεn and choosing p = (Bnεn)
−1 we have that for n sufficiently large phnv2(q) ≤ C. Then, 4 exp

(
−ε2

nq

8v2(q)

)
≤

4 exp
(
−ε2

nnhn
16C

)
≤ 4n−

∆2
16C . Now,

22
(

1+
4CBn

εnhn

)1/2

qα
([

n

2q

])
= 22

(
Bn

εn

)1/2
h−1/2

(
hnεn

Bn
+ 4C

)1/2

qα
([

n

2q

])
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and since hnεn
Bn
→ 0 as n→∞we have that for n large enough and by Assumption A4, for β > 2

22
(

1+
4CBn

εnhn

)1/2

qα
([

n

2q

])
≤ C

(
Bn

εn

)1/2
h−1/2
n

n

2p
[p]−β

≤ Cnh−1/2
n Bβ+1.5

n εβ+0.5
n .

Thus, P
(
max1≤k≤ln

∣∣sB0(xk)− E(sB0(xk))
∣∣ ≥ εn) < Cn1/2

hn

(
4n−

∆2
16C + Cnh

−1/2
n Bβ+1.5

n ε
β+0.5
n

)
and if ∆ is chosen such that

∆2

16C > 1 the first term in the summation to the right of the inequality is negligible and we have that
P
(
max1≤k≤ln

∣∣sB0(xk)− E(sB0(xk))
∣∣ ≥ εn) < CBβ+1.5

n (ln(n))0.25+β/2n1.25−β/2h
−1.75−β/2
n and therefore

P
(

max
1≤k≤ln

∣∣∣sB0(xk)− E(sB0(xk))
∣∣∣) = O(Bβ+1.5

n (ln(n))0.25+β/2n1.25−β/2h−1.75−β/2
n ).

Lastly, if Bn ≈ n1/s+θ for s > 2, θ > 0 we have that supx∈G |s0(x) − sB0(x) − E(s0(x) − sB0(x))| = o(n−1/2) and if
n(θ+1/s)(β+1.5)+1.25−β/2h

−1.75−β/2
n (ln(n))0.25+β/2

→ 0 as n→∞, then

P
(

max
1≤k≤ln

∣∣∣sB0(xk)− E(sB0(xk))
∣∣∣ ≥ εn) = Op(1)

which completes the proof. �

Proof of Theorem 2. Note that m(x) = 1
nhn

∑n
i=1 Wn

(
Xi−x
hn

, x
)
(m(x) + m(1)(x)(Xi − x)) and put S(x) =

(
f̄n(x) 0

0 σ2
K f̄n(x)

)
. Then

m̌(x) − m(x) = 1
nhn

∑n
i=1 Wn

(
Xi−x
hn

, x
)
Y∗i , where Y∗i = Yi − m(x) − m(1)(x)(Xi − x). Let An(x) =

1
hn

(
e′
(
Sn(x)−1

− S(x)−1)2
e
)1/2

,

Dn(x) = m̌(x)− m(x)− 1
nhn f̄n(x)

∑n
i=1 K

(
Xi−x
hn

)
Y∗i . Then,

|Dn(x)| =
1
nhn

∣∣∣∣∣∣∣∣∣e
′(S−1

n (x)− S−1(x))


n∑

i=1
K
(
Xi − x

hn

)
Y∗i

n∑
i=1

K
(
Xi − x

hn

)(
Xi − x

hn

)
Y∗i


∣∣∣∣∣∣∣∣∣

≤ hnAn(x)
1
nhn

(∣∣∣∣∣ n∑
i=1

K
(
Xi − x

hn

)
Y∗i

∣∣∣∣∣+
∣∣∣∣∣ n∑
i=1

K
(
Xi − x

hn

)(
Xi − x

hn

)
Y∗i

∣∣∣∣∣
)

by Hölder’s Inequality. Under the conditions of Theorem 1 supx∈G

∣∣sn,j(x)− E(sn,j(x))
∣∣ = op(hn) for j = 0, 1, 2 provided that

nh3
n

ln(n)
→∞. Now, supx∈G

∣∣∣sn,2(x)− σ2
K f̄n(x)

∣∣∣ ≤ supx∈G

∣∣sn,2(x)− E(sn,2(x))
∣∣+ supx∈G

∣∣∣E(sn,2(x))− σ2
K f̄n(x)

∣∣∣, but

sup
x∈G

∣∣∣E(sn,2(x))− σ2
K f̄n(x)

∣∣∣ ≤ 1
n

n∑
i=1

∫
φ2K(φ)|fi(x+ hnφ)− fi(x)|dφ ≤ hnCσ

2
K

given Assumptions A1 and A2. Therefore, supx∈G

∣∣∣sn,2(x)− σ2
K f̄n(x)

∣∣∣ ≤ op(hn) + O(hn) = Op(hn) and similar arguments give

supx∈G

∣∣∣sn,0(x)− f̄n(x)
∣∣∣ = Op(hn) and supx∈G

∣∣sn,1(x)∣∣ = Op(hn). As a result, An(x) = Op(1) uniformly in G. We now turn our

attention to Bn(x) =
1

nhn f̄n(x)

∑n
i=1 K

(
Xi−x
hn

)
Y∗i . Since Y∗i = m(Xi) − m(x) − m(1)(x)(Xi − x) + Ui and K has a bounded support,

Y∗i =
1
2m

(2)(x)(Xi − x)2
+ Ui + op(h2

n) and

Bn(x) =
h2
n

f̄n(x)

1
nhn

n∑
i=1

K
(
Xi − x

hn

) 1
2
m(2)(x)

(
Xi − x

hn

)2
+

1
f̄n(x)

1
nhn

n∑
i=1

K
(
Xi − x

hn

)
Ui

+ o(h2
n)

1
f̄n(x)

1
nhn

n∑
i=1

K
(
Xi − x

hn

)
= Bn,1(x)+ Bn,2(x)+ Bn,3(x).

We examine each Bn,j(x) for j = 1, 2, 3 separately.

Bn,3(x) =
1

f̄n(x)

((
1
nhn

n∑
i=1

K
(
Xi − x

hn

)
− f̄n(x)

)
+ f̄n(x)

)
o(h2

n) and

|Bn,3(x)| ≤
1

f̄n(x)

(∣∣∣∣∣ 1
nhn

n∑
i=1

K
(
Xi − x

hn

)
− f̄n(x)

∣∣∣∣∣+ f̄n(x)

)
o(h2

n).
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Since f̄n(x) → f̄ (x) as n → ∞, |Bn,3(x)| ≤ (Op(hn) + 1)o(h2
n) = op(h2

n). Furthermore, if infx∈G|f̄n(x)| > 0 as n → ∞,
supx∈G |Bn,3(x)| = op(h2

n). Bn,1(x) =
m(2)(x)h2

n
2f̄n(x)

sn,2(x) and therefore by Theorem 1, given that infx∈G|f̄n(x)| > 0 as n→∞,

sup
x∈G
|Bn,1(x)−

h2
n

2
σ2
Km

(2)(x)| ≤ C
h2
n

2infx∈G f̄n(x)
sup
x∈G
|sn,2(x)− σ

2
K f̄n(x)| = Op(h

3
n).

Hence Bn,1(x) =
h2
n

2 σ
2
Km

(2)(x)+ op(h2
n) uniformly in G.

Let Zi = 1
hn
K
(

Xi−x
hn

)
Ui; then Bn,2(x) =

1
f̄n(x)

1
n

∑n
i=1 Zi. Since the processes {Xi}

n
i=1 and {Ui}

n
i=1 are independent and E(Ui) = 0,

E(Zi) = 0. Now note that V(Zi) =
1
h2
n
E
(
K2
(

Xi−x
hn

))
E(U2

i ) =
1
hn
ωii(θ0)

∫
K2(φ)fi(x+ hnφ)dφ. Since |ωii(θ0)| < C and fi(x) < C we

have that hnV(Zi) ≤ C
∫
K2(φ)dφ and supi hnV(Zi) = O(1). We now consider

n∑
j=1,i6=j

|cov(Zi, Zj)| =
n∑

j=1,i6=j

|E(Zi, Zj)| ≤
n∑

j=1
|E(Zi, Zi+j)| +

n∑
j=1
|E(Zi, Zi−j)|.

First write
∑n

j=1 |E(Zi, Zi+j)| =
∑dn−1

j=1 |E(Zi, Zi+j)| +
∑n

j=dn
|E(Zi, Zi+j)| = Jn,1 + Jn,2, where dn is a sequence of integers such that

dn →∞ and dnhn → 0. Then,

Jn,1 =
dn−1∑
j=1

1
h2
n

∣∣∣∣EK (Xi − x

hn

)
K
(
Xi+j − x

hn

)
UiUi+j

∣∣∣∣
=

dn−1∑
j=1
|ωi,i+j(θ0)|

∫
K (φ1) K (φ2) fi,i+j(x+ hnφ1, x+ hnφ2)dφ1dφ2

≤ C
dn−1∑
j=1

(∫
K (φ1) dφ1

)2
= C(dn − 1) ≤ Cdn.

Since dnhn → 0 we have that hnJn,1 ≤ Cdnhn = o(1) and Jn,1 = o(h−1
n ). Given that K(·) is measurable we have that Zi is σ(Xi,Ui)

measurable, where σ(Xi,Ui) is the σ-algebra generated by (Xi,Ui). By Theorem 3(1) in [6] with p = q = δ > 2 we have

|E(Zi, Zi+j)| ≤ 8E(|Zi|δ)E(|Zi+j|δ)α(σ(Xi,Ui),σ(Xi+j,Ui+j))
1− 2

δ

where α(σ(Xi,Ui),σ(Xi+j,Ui+j)) = supA∈σ(Xi,Ui),B∈σ(Xi+j,Ui+j)
|P(A ∩ B) − P(A)P(B)|. Now define F i

−∞
= σ(. . . , Xi−1,Ui−1, Xi,Ui),

F ∞i+j = σ(Xi+j,Ui+j, Xi+j+1,Ui+j+1, . . .) and α(j) = supi α(F
i
−∞

,F ∞i+j). Then, α(σ(Xi,Ui),σ(Xi+j,Ui+j)) ≤ α(j). Also,

E|Zi|
δ
= E(|Ui|

δ)h−δ+1
n

1
hn

E
(
Kδ
(
Xi − x

hn

))
= E(|Ui|

δ)h−δ+1
n

∫
Kδ(φ)fi(x+ hnφ)dφ

≤ CE(|Ui|
δ)h−δ+1

n

∫
Kδ(φ)dφ by Assumption A1

≤ Ch−δ+1
n .

Similarly E|Zi+j|δ ≤ Ch−δ+1
n and we have |E(Zi, Zi+j)| ≤ 8(Ch−δ+1

n )2/δα(j)1− 2
δ = Ch

−2+ 2
δ

n α(j)1− 2
δ . Hence, Jn,2 ≤

Ch
−2+ 2

δ
n

∑
∞

j=dn
α(j)1− 2

δ and since j ≥ dn we have that for some a > 1 − 2
δ
> 0, ja

dan
≥ 1 and Jn,2 ≤ Ch

−2+ 2
δ

n d−an

∑
∞

j=dn
jaα(j)1− 2

δ .

But,
∑
∞

j=dn
jaα(j)1− 2

δ → 0 by Assumption A4 as n → ∞. Now, h
2
δ
−1

n d−an =

(
(hnd

aδ
δ−2
n )1− 2

δ

)−1

and choosing dn such that

h
1− 2

δ
n da

n = 1 the right hand side of the last equality is equal to 1 and we have Jn,2 = o(h−1
n ). This is obviously consistent

with dnhn → 0 in the sense that aδ
δ−2 > 1 ⇒ a > 1 − 2

δ
. Furthermore, it is easily seen from the developments above that

supi |Jn,1| + supi |Jn,2| = o(h−1
n ) and hn supi

∑n
j=1 |E(ZiZi+j)| = o(1). Similar arguments show that

∑n
j=1 |E(ZiZi−j)| = o(h−1

n ) and
hn supi

∑n
j=1 |E(ZiZi+j)| = o(1). Hence, combining results we have

∑n
j=1,i6=j |cov(Zi, Zj)| = o(h−1

n ) and supi

∑n
j=1,i6=j |cov(Zi, Zj)| =

o(h−1
n ). Now, observe that V

(
1
n

∑n
i=1 Zi

)
=

1
n2
∑n

i=1 E(Z2
i )+

1
n2
∑n

i=1
∑n

j=1,j6=i E(ZiZj) = Vn,1 + Vn,2.

Vn,1 =
1
n2

n∑
i=1

1
hn
ωii(θ0)

∫
K2(φ)(fi(x+ hnφ)− fi(x))dφ+

1
n2

n∑
i=1

1
hn
ωii(θ0)

∫
K2(φ)fi(x)dφ

= V1
n,1 + V2

n,1.
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By the Lipschitz condition on fi(x) and Assumption A2, |V1
n,1| ≤ C 1

n2
∑n

i=1 ωii(θ0) and therefore nhn|V
1
n,1| ≤

Chn
n

∑n
i=1 ωii(θ0)

and by Assumption A3 we have nhn|V
1
n,1| = O(hn). Also,

nhnV
2
n,1 =

∫
K2(φ)dφ

1
n

n∑
i=1

fi(x)ωii(θ0)→ ω̄f (x, θ0)

∫
K2(φ)dφ.

Hence, hn
n

∑n
i=1 E(Z2

i ) = ω̄f (x, θ0)
∫
K2(φ)dφ+ O(hn). Now,

nhn

∣∣∣∣∣∣ 1
n2

n∑
i=1

n∑
j=1,i6=j

E(ZiZj)

∣∣∣∣∣∣ ≤ 1
n

n∑
i=1

hn sup
i

n∑
j=1,i6=j

|E(ZiZj)| = o(1)

where the last equality follows from our previous results. Hence, we have that

V

(√
nhn

1
n

n∑
i=1

Zi

)
= ω̄f (x, θ0)

∫
K(φ)dφ+ O(hn)+ o(1). (21)

We now consider Bn,2(x). Here we adopt the method first proposed by Bernstein [3] and adopted by Masry and Fan [22] to
partition the sums into large and small blocks. First, partition the set {1, . . . , n} into 2kn+ 1 subsets with large blocks of size
rn and small blocks of size sn and kn =

[
n

rn+sn

]
. Let Zn,i =

√
hnZi+1 for i = 0, 1, . . . , n − 1 so that Bn,2(x) =

1
f̄n(x)

1
n

∑n
i=1 Zi and

√
nhn

1
n

∑n
i=1 Zi =

1
√
n

∑n−1
i=0 Zn,i. Now let

ηj =

j(rn+sn)+rn−1∑
i=j(rn+sn)

Zn,i for 0 ≤ j ≤ kn − 1

ξj =
(j+1)(rn+sn)−1∑
i=j(rn+sn)+rn

Zn,i for 0 ≤ j ≤ kn − 1

ζj =
n−1∑

i=kn(rn+sn)

Zn,i

and write
√
nhn

1
n

∑n
i=1 Zi =

1
√
n

(∑kn−1
j=0 ηj +

∑kn−1
j=0 ξj + ζj

)
=

1
√
n
(Q ′n + Q ′′n + Q ′′′n ). We show that E

((
1
√
n
Q ′′n
)2
)
→ 0,

E
((

1
√
n
Q ′′′n

)2
)
→ 0; then the asymptotic distribution of Bn,2(x) is determined by 1

√
n
Q ′n. Note that E

((
1
√
n
Q ′′n
)2
)
=

1
n
E
((∑kn−1

j=0 ξj
)2
)
=

1
n

∑kn−1
j=0 E

(
ξ2
j

)
+

1
n

∑kn−1
j=0

∑kn−1
l=0,l6=j E(ξjξl) and by Assumption A4 there exists qn → ∞ such that

qnsn = o((nhn)
1/2), qn

(
n
hn

)1/2
α(sn) = o(1). Then defining rn =

[
(nhn)1/2

qn

]
as n → ∞ we have sn

rn
=

o((nhn)1/2)/qn
[(nhn)1/2/qn]

→ 0,
rn
n
=

[
(nhn)1/2

qn

]
1
n
→ 0, rn

(nhn)1/2 =

[
(nhn)1/2

qn

]
1

(nhn)1/2 → 0, n
rn
α(sn) =

nα(sn)[
(nhn)1/2

qn

] ≈ (
n
hn

)1/2
qnα(sn)→ 0. Since ξj =

∑(j+1)(rn+sn)−1
i=j(rn+sn)+rn

Zn,i

we have

1
n

kn−1∑
j=0

E(ξ2
j ) =

hn

n

kn−1∑
j=0

sn∑
θ=1

E(Z2
j(rn+sn)+rn+θ

)+
kn−1∑
j=0

sn∑
θ=1

sn∑
δ=1,δ6=θ

E(Zj(rn+sn)+rn+θZj(rn+sn)+rn+δ)

 .

But hn
n

∑kn−1
j=0

∑sn
θ=1 E(Z2

j(rn+sn)+rn+θ
) ≤

1
n

∑kn−1
j=0

∑sn
θ=1 hn supi E(Z

2
i ) ≤ C 1

n
knsn ≤ C sn

rn+sn
= o(1). Also, since

supi

∑n
j=1,i6=j |cov(Zi, Zj)| = o(h−1

n ),∣∣∣∣∣∣hn

n

kn−1∑
j=0

sn∑
θ=1

sn∑
δ=1,δ6=θ

E(Zj(rn+sn)+rn+θZj(rn+sn)+rn+δ)

∣∣∣∣∣∣
≤

hn

n

kn−1∑
j=0

sn∑
θ=1

sn∑
δ=1,δ6=θ

|cov(Zj(rn+sn)+rn+θ, Zj(rn+sn)+rn+δ)|

≤
1
n

kn−1∑
j=0

sn∑
θ=1

hn sup
j(rn+sn)+rn+θ

n∑
l=1,l6=j(rn+sn)+rn+θ

|cov(Zj(rn+sn)+rn+θ, Zl)|

= o(1)
kn
sn

sn ≤ o(1)
sn

rn + sn
= o(1)
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and therefore 1
n
E
((∑kn−1

j=0 ξj
))2
= o(1). Now, ξjξl = hn

∑sn
θ=1

∑sn
δ=1 Zj(rn+sn)+rn+δZl(rn+sn)+rn+θ and consequently∣∣∣∣∣∣1n

kn−1∑
j=0

kn−1∑
l=0,l6=j

E(ξjξl)

∣∣∣∣∣∣ ≤ hn

n

kn−1∑
j=0

kn−1∑
l=0,l6=j

sn∑
δ=1

sn∑
θ=1
|E(Zj(rn+sn)+rn+δZl(rn+sn)+rn+θ)|

and since j 6= l the distance between the indexes must be greater than rn as |j(rn+sn)+rn+δ−(l(rn+sn)+rn+θ)| ≥ rn+1 > rn.
Thus, ∣∣∣∣∣∣1n

kn−1∑
j=0

kn−1∑
l=0,l6=j

E(ξjξl)

∣∣∣∣∣∣ ≤ 2
hn

n

n−rn∑
i=1

n∑
j=i+rn

|E(ZiZj)| ≤ 2
hn

n

n−1∑
i=1

n∑
j=i+1
|E(ZiZj)|

=
hn

n

n∑
i=1

n∑
j=1,i6=j

|E(ZiZj)| ≤
1
n

n∑
i=1

hn sup
i

n∑
j=1,j6=i

|cov(Zi, Zj)| = o(1).

Combining the results above we have that E
((

1
√
n
Q ′′n
)2
)
= o(1). We now turn our attention to the Q ′′′n term.

E

(( 1
√
n
Q ′′′n

)2)
=

1
n

n−1∑
i=kn(rn+sn)

E(Z2
n,i)+

1
n

n−1∑
i=kn(rn+sn)

n−1∑
j=kn(rn+sn),i6=j

E(Zn,iZn,j)

=
hn

n

n−1∑
i=kn(rn+sn)

E(Z2
i+1)+

hn

n

n−1∑
i=kn(rn+sn)

n−1∑
j=kn(rn+sn),i6=j

E(Zi+1Zj+1).

Given supi hnE(Z2
i ) ≤ C we have that hn

n

∑n−1
i=kn(rn+sn)

E(Z2
i+1) ≤

1
n

∑n−1
i=kn(rn+sn)

supi hnE(Z2
i ) = Cn−1(n− kn(rn + sn)) = o(1), since

by construction n− kn(rn + sn) ≤ rn + sn and therefore n−1(n− (rn + sn)) ≤ n−1(rn + sn) = o(1). Now,

hn

n

n−1∑
i=kn(rn+sn)

n−1∑
j=kn(rn+sn),i6=j

E(Zi+1Zj+1) ≤
1
n

n−1∑
i=kn(rn+sn)

hn

n−1∑
j=kn(rn+sn),i6=j

|cov(Zi+1, Zj+1)|

≤
1
n

n−1∑
i=kn(rn+sn)

sup
i

hn

n∑
j=1,i6=j

|cov(Zi, Zj)|

≤ o(1)
1
n
(n− kn(rn + sn)) = o(1)

and by combining the results above we have E
((

1
√
n
Q ′′′n

)2
)
= o(1). We now turn our attention to the Q ′n term. ηj =∑j(rn+sn)+rn−1

i=j(rn+sn)
Zn,i for 0 ≤ j ≤ kn − 1 and by construction ηj = h

1/2
n

∑j(rn+sn)+rn−1
i=j(rn+sn)

Zi+1. Now let F j
i be the σ-algebra generated

by the random variables {Xt,Ut : i ≤ t ≤ j}, i.e., F j
i = σ(Xi,Ui, . . . , Xj,Uj) so that ηj is F j(rn+sn)+rn

j(rn+sn)+1 measurable. Note that
j(rn + sn)+ 1− ((j− 1)(rn + sn)+ rn) = sn + 1 and if we define Vj = exp(itηj), by Lemma 1.1 in [33] we have∣∣∣∣∣E

(
kn−1∏
j=0

Vj

)
−

kn−1∏
j=0

E(Vj)

∣∣∣∣∣ =
∣∣∣∣∣E
(

exp(it
kn−1∑
j=0
ηj)

)
−

kn−1∏
j=0

E(exp(itηj))

∣∣∣∣∣ ≤ 16(kn − 1)α(sn + 1). (22)

(kn − 1)α(sn + 1) ≤ n
rn+sn

α(sn + 1) = n
rn(1+ sn

rn
)
α(sn + 1) and since by construction sn

rn
→ 0, n

rn
α(sn) → 0 we have that

16(kn − 1)α(sn + 1) → 0. Thus, by Corollary 14.1 in [17], {ηj}0≤j≤kn−1 forms a sequence which is independent as n → ∞.
Now, ηj = h

1/2
n

∑j(rn+sn)+rn−1
i=j(rn+sn)

Zi+1 and

1
n

kn−1∑
j=0

E(η2
j ) =

hn

n

kn−1∑
j=0

j(rn+sn)+rn−1∑
i=j(rn+sn)

j(rn+sn)+rn−1∑
l=j(rn+sn)

E(Zi+1Zl+1)

=
hn

n

kn−1∑
j=0

j(rn+sn)+rn−1∑
i=j(rn+sn)

E(Z2
i+1)+

hn

n

kn−1∑
j=0

j(rn+sn)+rn−1∑
i=j(rn+sn)

j(rn+sn)+rn−1∑
l=j(rn+sn),i6=l

E(Zi+1Zl+1)

= In,1 + In,2.

Also,

|In,2| =

∣∣∣∣∣∣hn

n

kn−1∑
j=0

rn∑
θ=1

rn∑
δ=1,δ6=θ

E(Zj(rn+sn)+θZj(rn+sn)+δ)

∣∣∣∣∣∣
≤

hn

n

kn−1∑
j=0

rn∑
θ=1

rn∑
δ=1,δ6=θ

|cov(Zj(rn+sn)+θ, Zj(rn+sn)+δ)|
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≤
1
n

kn−1∑
j=0

rn∑
θ=1

hn sup
j(rn+sn)+θ

n∑
l=1,l6=j(rn+sn)+θ

|cov(Zj(rn+sn)+θ, Zl)|

= o(1)
knrn
n
≤ o(1)

rn
rn + sn

= o(1).

For the term In,1 note that E(Z2
i ) =

1
hn
ωii(θ0)

∫
K2(φ)fi(x + hnφ)dφ and from Taylor’s expansion |fi(x + hnφ) − fi(x)| ≤ O(hn).

Therefore,

In,1 =
hn

n

kn−1∑
j=0

j(rn+sn)+rn−1∑
i=j(rn+sn)

( 1
hn
ωi+1,i+1(θ0)

∫
K2(φ)(fi+1(x+ hnφ)− fi+1(x))dφ

+
1
hn
ωi+1,i+1(θ0)fi+1(x)

∫
K2(φ)dφ

)
= In,11 + In,12

and looking at the last two terms separately we have

|In,11| ≤
hn

n

kn−1∑
j=0

j(rn+sn)+rn−1∑
i=j(rn+sn)

1
hn
ωi+1,i+1(θ0)

∫
K2(φ)|fi+1(x+ hnφ)− fi+1(x)|dφ

≤ O(hn)

∫
K2(φ)dφ

1
n

kn−1∑
j=0

j(rn+sn)+rn−1∑
i=j(rn+sn)

ωi+1,i+1(θ0)

and since 1
n

∑kn−1
j=0

∑j(rn+sn)+rn−1
i=j(rn+sn)

ωi+1,i+1(θ0) ≤ n−1 ∑n
i=1 ωii(θ0)→ ω̄(θ0) as n→∞we have that |In,11| = O(hn).

In,12 =

∫
K2(φ)dφ

1
n

kn−1∑
j=0

j(rn+sn)+rn−1∑
i=j(rn+sn)

ωi+1,i+1(θ0)fi+1(x) =
∫

K2(φ)dφ
1
n

n∑
i=1
ωii(θ0)fi(x)

−

1
n

kn−1∑
j=0

(j+1)(rn+sn)−1∑
i=j(rn+sn)+rn

ωi+1,i+1(θ0)fi+1(x)+
1
n

n−1∑
i=kn(rn+sn)

ωi+1,i+1(θ0)fi+1(x)

∫ K2(φ)dφ.

Now, n−1 ∑n
i=1 ωii(θ0)fi(x)→ ω̄f (x, θ0) <∞ by Assumption A3 and since |ωii(θ0)|, fi(x) < C,

1
n

kn−1∑
j=0

(j+1)(rn+sn)−1∑
i=j(rn+sn)+rn

ωi+1,i+1(θ0)fi+1(x) ≤ C
sn

rn + sn
→ 0.

Similarly, 1
n

∑n−1
i=kn(rn+sn)

ωi+1,i+1(θ0)fi+1(x)→ 0. Combining the above results we have that In,1 = ω̄f (x, θ0)
∫
K2(φ)dφ+o(1)+

O(hn), and given that In,2 = o(1) we conclude that

1
n

kn−1∑
j=0

E(η2
j ) = ω̄f (x, θ0)

∫
K2(φ)dφ+ o(1)+ O(hn).

Now let 1
√
n
Q ′n =

∑kn−1
j=0 Zjn where Zjn =

1
(nhn)1/2

∑j(rn+sn)+rn−1
i=j(rn+sn)

K
(

Xi+1−x
hn

)
Ui+1 and S2

n =
∑kn−1

j=0 E(Zjn − E(Zjn))2, where S2
n =∑kn−1

j=0
1
n
E(η2

j ) → ω̄f (x, θ0)
∫
K2(φ)dφ as n → ∞. We first observe that if we define Wn =

1
Sn

1
√
n
Q ′n and let ψWn(λ) =

E(exp(iλWn)) be the characteristic function of Wn we have

|ψWn(λ)− exp(−λ2/2)| ≤

∣∣∣∣∣E
(

exp
(

iλ
kn−1∑
j=0

1
n1/2Sn

ηj

))
−

kn−1∏
j=0

E
(

exp
(

iλ
1

n1/2Sn
ηj

))∣∣∣∣∣
+

∣∣∣∣∣kn−1∏
j=0

E
(

exp
(
iλ

1
n1/2Sn

ηj

)
− exp(−λ2/2)

)∣∣∣∣∣ = A1 + A2.

But A1 = o(1) by the result on Eq. (22) and A2 = o(1) by Lindeberg’s CLT (Theorem 23.6 in [5]), which is implied by Lyapunov’s
condition. Hence,

kn−1∑
j=0

Zjn
Sn

d
→N(0, 1) as n→∞ provided that lim

n→∞

kn−1∑
j=0

E

∣∣∣∣ZjnSn
∣∣∣∣2+δ = 0 for some δ > 0.

kn−1∑
j=0

E

∣∣∣∣ZjnSn
∣∣∣∣2+δ = (S2

n)
−1−δ/2(nhn)

−δ/2 1
nhn

kn−1∑
j=0

E

∣∣∣∣∣∣
j(rn+sn)+rn−1∑

i=j(rn+sn)

K
(
Xi+1 − x

hn

)
Ui+1

∣∣∣∣∣∣
2+δ

≤ (S2
n)
−1−δ/2(nhn)

−δ/221+δ 1
n

kn−1∑
j=0

j(rn+sn)+rn−1∑
i=j(rn+sn)

1
hn

E

∣∣∣∣K (Xi+1 − x

hn

)
Ui+1

∣∣∣∣2+δ
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by the cr inequality. Furthermore, 1
hn
E
∣∣∣K ( Xi+1−x

hn

)
Ui+1

∣∣∣2+δ = 1
hn
E
(
K2+δ

(
Xi+1−x

hn

))
E |Ui+1|

2+δ and given that E |Ui+1|
2+δ < C we

have that

1
hn

E

∣∣∣∣K (Xi+1 − x

hn

)
Ui+1

∣∣∣∣2+δ ≤ C
∫

K2+δ(φ)fi+1(x+ hnφ)dφ < C

by Assumption A2. Therefore,

1
n

kn−1∑
j=0

j(rn+sn)+rn−1∑
i=j(rn+sn)

1
hn

E

∣∣∣∣K (Xi+1 − x

hn

)
Ui+1

∣∣∣∣2+δ ≤ C
rn

rn + sn
→ C

and since S2
n → ω̄f (θ0, x)

∫
K2(φ)dφ as nhn →∞we have limn→∞

∑kn−1
j=0 E

∣∣∣ ZjnSn ∣∣∣2+δ = 0.

Finally, combining the results of Q ′n√
n

, Q ′′n√
n

and Q ′′′n√
n

we conclude that (nhn)
1/2Bn,2(x)

d
→N(0,

ω̄f (x,θ0)

f̄ (x)2∫
K2(φ)dφ) as n→∞. Combining with Bn,1(x) =

h2
n

2 σ
2
Km

(2)(x)+ op(h2
n) gives(

1
(nhn)1/2 f̄n(x)

n∑
i=1

K
(
Xi − x

hn

)
Y∗i − Bn,1(x)

)
d
→N

(
0,
ω̄f (x, θ0)

f̄ (x)2

∫
K2(φ)dφ

)
as n→∞.

Now, we note from our previous results on Bn,1(x), Bn,3(x) and by applying Theorem 1 to f̄n(x)Bn,2(x) with g(Ui) = Ui,

j = 0 and vi = 1 for all i, that we have 1
nhn

∑n
i=1 K

(
Xi−x
hn

)
Y∗i = Op(h2

n) + Op

((
nhn

ln(n)

)−1/2
)

and 1
nhn

∑n
i=1 K

(
Xi−x
hn

) (
Xi−x
hn

)
Y∗i =

Op(h2
n)+ Op

((
nhn

ln(n)

)−1/2
)

uniformly in G. Hence,

(nhn)
1/2
|Dn(x)| ≤ (nhn)

1/2Op(h
3
n)+ (nhn)

1/2Op

((
hn ln(n)

n

)1/2)
.

Now, provided that h2
n ln(n) = o(1) the right hand side of the inequality is o(1) and we have

(nhn)
1/2 (m̌(x)− m(x)− Bn,1(x)

) d
→N

(
0,
ω̄f (x, θ0)

f̄ (x)2

∫
K2(φ)dφ

)
as n→∞. �

Proof of Theorem 3. Let Ži be the ith component of the vector Ž. Note that m̂(x) − m(x) = 1
ngn

∑n
i=1 Wn

(
Xi−x
gn

, x
)
Ž∗i , where

Ž∗i = Ži −m(x)−m(1)(x)(Xi − x). Let An(x) =
1
gn

(
e′
(
Sn(x)−1

− S(x)−1)2
e
)1/2

, Dn(x) = m̂(x)−m(x)− 1
ngn f̄n(x)

∑n
i=1 K

(
Xi−x
gn

)
Ž∗i . As

in Theorem 1

|Dn(x)| =
1
nhn

∣∣∣∣∣∣∣∣∣e
′(S−1

n (x)− S−1(x))


n∑

i=1
K
(
Xi − x

gn

)
Ž∗i

n∑
i=1

K
(
Xi − x

gn

)(
Xi − x

gn

)
Ž∗i


∣∣∣∣∣∣∣∣∣

≤ gnAn(x)
1
ngn

(∣∣∣∣∣ n∑
i=1

K
(
Xi − x

gn

)
Ž∗i

∣∣∣∣∣+
∣∣∣∣∣ n∑
i=1

K
(
Xi − x

gn

)(
Xi − x

gn

)
Ž∗i

∣∣∣∣∣
)

and An(x) = Op(1) uniformly in G. We now turn our attention to Bn(x) =
1

ngn f̄n(x)

∑n
i=1 K

(
Xi−x
gn

)
Ž∗i . Since Ži = m(Xi) −∑n

j=1,j6=i
vij
vii

(m̌(Xj)− m(Xj))+ γi we have

Bn(x) =
1

f̄n(x)

1
ngn

n∑
i=1

K
(
Xi − x

gn

)
m(2)(x)

2
(Xi − x)2

+
1

f̄n(x)

1
ngn

n∑
i=1

K
(
Xi − x

gn

)
γi

+ o(g2
n)

1
f̄n(x)

1
ngn

n∑
i=1

K
(
Xi − x

gn

)
−

1
f̄n(x)

1
ngn

n∑
i=1

K
(
Xi − x

gn

) n∑
j=1
j6=i

vij
vii

(m̌(Xj)− m(Xj))

= Bn,1(x)+ Bn,2(x)+ Bn,3(x)− Bn,4(x).

We examine each Bn,j(x) for j = 1, 2, 3, 4 separately. From Theorem 2 Bn,1(x) =
g2
n
2 σ

2
Km

(2)(x) + op(g2
n), Bn,3(x) = op(g2

n)

uniformly in G. Also, from Theorem 2, (ngn)1/2Bn,2(x)→ N
(

0,
ω̄f (x,θ0)

f̄ (x)2

∫
K2(φ)dφ

)
where ω̄f (x, θ0) = limn→∞

1
n

∑n
i=1 fi(x)v

−2
ii .

We now examine Bn,4(x). From the definition of Y∗i and Theorem 2
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m̌(Xj)− m(Xj) =
1

nhn f̄n(Xj)

n∑
l=1

K
(
Xl − Xj

hn

)
(m(Xl)− m(Xj)− m(1)(Xj)(Xl − Xj))

+
1

nhn f̄n(Xj)

n∑
l=1

K
(
Xl − Xj

hn

)
Ul + Op(h

3
n)+ Op

((
nhn

ln(n)

)−1/2

hn

)

and therefore we can write Bn,4(x) = Bn,41(x)+ Bn,42(x)+ Bn,43(x) where

Bn,41(x) =
1

n2gnhn f̄n(x)

n∑
i=1

n∑
j=1
j6=i

n∑
l=1

vij
vii

1
f̄n(Xj)

K
(
Xi − x

gn

)
K
(
Xl − Xj

hn

)
(m(Xl)− m(Xj)− m(1)(Xj)(Xl − Xj))

Bn,42(x) =
1

n2gnhn f̄n(x)

n∑
i=1

n∑
j=1
j6=i

n∑
l=1

vij
vii

1
f̄n(Xj)

K
(
Xi − x

gn

)
K
(
Xl − Xj

hn

)
Ul

Bn,43(x) =
1

ngn f̄n(x)

n∑
i=1

n∑
j=1
j6=i

vij
vii

K
(
Xi − x

gn

)(
Op(h

3
n)+ Op

((
nhn

ln(n)

)−1/2

hn

))
.

We look at each of these terms separately. Note that

Bn,41(x) =
1

ngn f̄n(x)

n∑
i=1

n∑
j=1
j6=i

vij
vii

K
(
Xi − x

gn

){ 1
nhn f̄n(Xj)

n∑
l=1

K
(
Xl − Xj

hn

)
(m(Xl)− m(Xj)− m(1)(Xj)(Xl − Xj))

}

and the term inside the curly brackets {·} is Op(h2
n) uniformly in G from Theorem 2. Hence,

|Bn,41(x)| ≤ Op(h
2
n)

1
ngn f̄n(x)

n∑
i=1

n∑
j=1
j6=i

|vij|

|vii|
K
(
Xi − x

gn

)

≤ Op(h
2
n)

1
ngn f̄n(x)

n∑
i=1

K
(
Xi − x

gn

)
sup

i

n∑
j=1
j6=i

|vij|

|vii|

≤ Op(h
2
n)O(1)

1
ngn f̄n(x)

n∑
i=1

K
(
Xi − x

gn

)

where supi

∑n
j=1
j6=i

|vij|

|vii|
= O(1) by assumption. Furthermore, from Theorem 1 1

ngn

∑n
i=1 K

(
Xi−x
gn

)
= Op(1) and by Assumption A1

f̄n(x) → f̄ (x). Hence, supx∈G |Bn,41(x)| = Op(h2
n). Using similar arguments and Theorem 2 we have supx∈G |Bn,43(x)| =

Op(h3
n)+ Op

((
nhn

ln(n)

)−1/2
hn

)
.

Bn,42(x) =
1

nf̄n(x)

n∑
l=1

Ul

n∑
j=1
j6=i

1
ngnhn f̄n(Xj)

n∑
i=1

vij
vii

K
(
Xi − x

gn

)
K
(
Xl − Xj

hn

)

=
1

nf̄n(x)

n∑
l=1

Ulλln(x).

Note that E(Bn,42(x)) = 0 and

V((ngn)
1/2Bn,42(x)) =

gn

nf̄n(x)2

n∑
l=1

n∑
k=1

E(UlUkλln(x)λkn(x))

≤
gn

nf̄n(x)2

n∑
l=1

n∑
k=1
|ωlk(θ0)||E(λln(x)λkn(x))|.

We define aij =
vij
vii

, Ki = K
(

Xi−x
gn

)
, Klj = K

(
Xl−Xj
hn

)
and examine

|E(λln(x)λkn(x))| = E

∣∣∣∣∣∣∣
n∑

i=1

n∑
j=1
j6=i

n∑
m=1

n∑
o=1
o6=m

1
n2g2

nh
2
n f̄n(Xj)f̄n(Xo)

aijamoKiKmKljKko

∣∣∣∣∣∣∣
≤

n∑
i=1

n∑
j=1
j6=i

n∑
m=1

n∑
o=1
o6=m

1
n2g2

nh
2
n

|aij||amo|E

(
KiKmKljKko

f̄n(Xj)f̄n(Xo)

)
.
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Since infx∈G|f̄n(x)| > 0 we have

V((ngn)
1/2Bn,42(x)) ≤

Cgn

nf̄n(x)2

n∑
l=1

n∑
k=1
|ωlk(θ0)|

n∑
i=1

n∑
j=1
j6=i

n∑
m=1

n∑
o=1
o6=m

|aij||amo|

n2g2
nh

2
n

E
(
KiKmKljKko

)

=
Cgn

nf̄n(x)2

n∑
l=1
|ωll(θ0)|

n∑
i=1

n∑
j=1
j6=i

n∑
m=1

n∑
o=1
o6=m

|aij||amo|

n2g2
nh

2
n

E
(
KiKmKljKlo

)

+
Cgn

nf̄n(x)2

n∑
l=1

n∑
k=1
k6=l

|ωlk(θ0)|
n∑

i=1

n∑
j=1
j6=i

n∑
m=1

n∑
o=1
o6=m

|aij||amo|

n2g2
nh

2
n

E
(
KiKmKljKko

)
= T1n + T2n.

We need to show that T1n, T2n = o(1). The strategy that we use is to establish the order of the partial sums that emerge from
considering all possible combinations of the indexes l, k, i, j,m, o in T1n, T2n.4 Each of these partial sums is shown to be op(1)
by first establishing the order of πn =

1
h2
ng

2
n
E(KiKmKljKlo) and ρn =

1
h2
ng

2
n
E(KiKmKljKko). Here we show the cases in which l and k

are distinct from the indexes in the four inner sums, i.e., i, j,m, o.5 We need to consider seven cases, and given Assumption A1
we have from calculating the expectations the following bounds: Case 1 (i = m and j = o): πn ≤

C
gnhn

, ρn ≤
C
gn

; Case 2 (i = o

and j = m) πn ≤
C
hn

, ρn ≤ C; Case 3 (i = m): πn ≤
C
gn

, ρn ≤
C
gn

; Case 4 (i = o), Case 5 (j = m), Case 7 (i 6= j 6= m 6= o): πn ≤ C,
ρn ≤ C; Case 6 (j = o): πn ≤

C
hn

, ρn ≤ C. We now denote the partial sums associated with V((ngn)1/2Bn,42(x)) in each of these
cases by si, i = 1, . . . , 7. Hence, we have the following inequalities, where the first term refers to the partial sums in T1n and
the second term refers to the partial sums in T2n for each case:

s1 ≤
Cω̄n

hn f̄ 2
n (x)

n−2
n∑

i=1

n∑
j=1
j6=i

|aij|
2

+ C

ngn f̄ 2
n (x)

n∑
l=1

gn
n∑

k=1
k6=l

|ωlk(θ0)|

n−2
n∑

i=1

n∑
j=1
j6=i

|aij|
2



s2 ≤
Cω̄n

hn f̄ 2
n (x)

gn

n−2
n∑

i=1

n∑
j=1
j6=i

|aji||aij|

+ C

nf̄ 2
n (x)

n∑
l=1

gn
n∑

k=1
k6=l

|ωlk(θ0)|

n−2
n∑

i=1

n∑
j=1
j6=i

|aji||aij|



s3 ≤
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f̄ 2
n (x)

n−2
n∑

i=1

n∑
j=1
j6=i

|aij|
n∑

o=1
o6=i6=j

|aio|

+ C

ngn f̄ 2
n (x)

n∑
l=1

gn
n∑
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k6=l

|ωlk(θ0)|

n−2
n∑

i=1

n∑
j=1
j6=i

|aij|
n∑

o=1
o6=i6=j

|aio|



s4 ≤
Cω̄ngn

f̄ 2
n (x)

n−2
n∑

i=1

n∑
j=1
j6=i

|aij|
n∑
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m6=i6=j

|ami|

+ C

nf̄ 2
n (x)

n∑
l=1

gn
n∑

k=1
k6=l

|ωlk(θ0)|

n−2
n∑
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n∑
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j6=i

|aij|
n∑
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m6=i 6=j

|ami|



s5 ≤
Cω̄ngn

f̄ 2
n (x)

n−2
n∑

i=1

n∑
j=1
j6=i

|aij|
n∑

o=1
o6=i6=j

|ajo|

+ C

nf̄ 2
n (x)

n∑
l=1

gn
n∑
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k6=l

|ωlk(θ0)|

n−2
n∑

i=1

n∑
j=1
j6=i

|aij|
n∑

o=1
o6=i 6=j

|ajo|



s6 ≤
Cω̄ngn

nhn f̄ 2
n (x)

n−2
n∑

i=1

n∑
j=1
j6=i

|aij|
n∑

m=1
m6=i6=j

|amj|

+ C

nf̄ 2
n (x)

n∑
l=1

gn
n∑

k=1
k6=l

|ωlk(θ0)|

n−2
n∑

i=1

n∑
j=1
j6=i

|aij|
n∑

m=1
m6=i6=j

|amj|



s7 ≤
Cω̄ngn

f̄ 2
n (x)

n−2

 n∑
i=1

∑
j=1
j6=i

|aij|


2+ C

nf̄ 2
n (x)

n∑
l=1

gn
n∑

k=1
k6=l

|ωlk(θ0)|

n−2

 n∑
i=1

∑
j=1
j6=i

|aij|


2 .

By Assumptions A1.6 and A3 we have that 1
n

∑n
l=1 ωll(θ0) → ω̄(θ0) and infx∈G|f̄n(x)| > 0. Furthermore, we note that from

Theorem 1 gn
∑n

k=1,l6=k |ωlk(θ0)| = o(1) and consequently, provided that supi

∑
j=1,j6=i

|vij|

|vii|
= O(1) and supi

∑
j=1,j6=i

|vji|

|vjj|
= O(1)

the first term and second term in each case are o(1).

Therefore, Bn,42(x) = op((ngn)−1/2) and Bn,4(x) = Op(h2
n)+ op((ngn)−1/2)+ Op

((
hn
n

ln(n)
)1/2

)
. Now, provided that hn

gn
→ 0

and ng3
n

ln(n)
→∞we have that the last term is o(g2

n) and we obtain Bn,4(x) = Op(h2
n)+op((ngn)

−1/2)+op(g2
n). Now, if gn = O(n−1/5)

then (ngn)1/2Bn,3 = op(1) and consequently we have

4 See the note on indexes at the end of this Appendix A.
5 Bounds for all other cases described in Appendix A are available from the authors upon request.
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√
ngn

(
Bn(x)−

(
σ2
K

m(2)(x)

2
g2
n + op(g

2
n)

))
d
→N

(
0,
ω̄f (x, θ0)

f̄ 2(x)

∫
K2(φ)dφ

)
. (23)

Lastly, it follows from arguments similar to those in the proof of Theorem 2 that

√
ngn

(
m̂(x)− m(x)−

(
σ2
K

m(2)(x)

2
g2
n + op(g

2
n)

))
d
→N

(
0,
ω̄f (x, θ0)

f̄ 2(x)

∫
K2(φ)dφ

)
(24)

which proves the theorem. �

Proof of Theorem 4. √ngn(m̂(x)−ṁ(x)) = e′S−1
n

 1
√
ngn

∑n
i=1 K

(
Xi − x

gn

)
qi

1
√
ngn

∑n
i=1 K

(
Xi − x

gn

)(
Xi − x

gn

)
qi

where qi =
∑n

j=1,j6=i(aij(θ̇)−aij(θ0))(m̌(Xj)−

m(Xj)−Uj) and since S−1
n (x) = Op(1) and K has compact support, it suffices to show that 1

√
ngn

∑n
i=1 K

(
Xi−x
gn

)
qi = op(1). Hence,

we must show that

αn =
1
√
ngn

n∑
i=1

n∑
j=1,j6=i

K
(
Xi − x

gn

)
(aij(θ̇)− aij(θ0))Uj = op(1) (25)

and

βn =
1
√
ngn

n∑
i=1

n∑
j=1,j6=i

K
(
Xi − x

gn

)
(aij(θ̇)− aij(θ0))(m̌(Xj)− m(Xj)) = op(1). (26)

Let g0(θ) = 0 and Iiwn = {j = 1, 2, . . . , n : aij(θ) = gwn(θ)}. Then,

αn =
1
√
ngn

n∑
i=1

 W∑
w=1

n∑
j∈Iiwn
j6=i

K
(
Xi − x

gn

)
(aij(θ̇)− aij(θ0))Uj

+

n∑
j6∈∪Ww=1 Iiwn,j6=i

K
(
Xi − x

gn

)
(aij(θ̇)− aij(θ0))Uj


=

1
√
ngn

n∑
i=1

W∑
w=1

n∑
j∈Iiwn
j6=i

K
(
Xi − x

gn

)
(gwn(θ̇)− gwn(θ0))Uj

+
1
√
ngn

n∑
i=1

n∑
j6∈∪Ww=1 Iiwn,j6=i

K
(
Xi − x

gn

)
(g0(θ̇)− g0(θ0))Uj

=
1
√
ngn

n∑
i=1

W∑
w=1

n∑
j∈Iiwn
j6=i

K
(
Xi − x

gn

)
(gwn(θ̇)− gwn(θ0))Uj

=

W∑
w=1

(gwn(θ̇)− gwn(θ0))
1
√
ngn

n∑
i=1

n∑
j∈Iiwn
j6=i

K
(
Xi − x

gn

)
Uj.

But given TA 4.1, the consistency of θ̇ and the fact that W is finite and does not depend on n, it suffices to show that
αn1 =

1
√
ngn

∑n
i=1

∑n
j∈Iiwn,j6=i

K
(

Xi−x
gn

)
Uj = Op(1) for arbitrary w. Given the independence of {Xi} and {Ui} and taking expectation

of the square yields

E(α2
n1) =

1
ngn

n∑
i=1

E
(
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(
Xi − x

gn

))
E


 ∑
τ∈Iiwn
τ 6=i

Uτ


2

+
1
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n∑
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E
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K
(
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)
K
(
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C

n

n∑
i=1

E
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τ 6=i

Uτ


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n
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τ 6=i
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n
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τ 6=i
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t 6=i

|ωtτ| +
Cgn
n

n∑
i=1

∑
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τ 6=i

n∑
j=1
j6=i

∑
t∈Ijwn
t 6=j
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By TA 4.2 τ belongs to at mostℵ different index sets Iiwn (the same for t); hence given that |ωtτ| is bounded the first term on the
right hand side of the last inequality is bounded by Cℵ2. For the second term, note that

∑n
j=1
j6=i

∑
t∈Ijwn
t 6=j
|ωtτ| ≤ ℵ

∑n
t=1 |ωtτ| ≤ Cℵ

by assumptions TA 4.3; hence

Cgn
n

n∑
i=1

∑
τ∈Iiwn
τ 6=i

n∑
j=1
j6=i

∑
t∈Ijwn
t 6=j

|ωtτ| ≤ gnCℵ
2
= o(1).

The same manipulations as were used above show that

βn =

W∑
w=1

(gwn(θ̇)− gwn(θ0))
1
√
ngn

n∑
i=1

∑
j∈Iiwn
j6=i

K
(
Xi − x

gn

)
(m̌(Xj)− m(Xj))

and therefore we need only show that 1
√
ngn

∑n
i=1

∑
j∈Iiwn
j6=i

K
(

Xi−x
gn

)
(m̌(Xj) − m(Xj)) = Op(1). Let Ki and Klj be as defined in the

proof of Theorem 3; then we can write

1
√
ngn

n∑
i=1

∑
j∈Iiwn
j6=i

K
(
Xi − x

gn

)
(m̌(Xj)− m(Xj)) = β1n(x)+ β2n(x)+ β3n(x),

where

β1n(x) =
1
√
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n∑
i=1

∑
j∈Iiwn
j6=i

n∑
l=1

KiKlj

nhn f̄n(Xj)
(m(Xl)− m(Xj)− m(1)(Xj)(Xl − Xj)),

β2n(x) =
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√
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n∑
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Ul,

β3n(x) =
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√
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n∑
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∑
j∈Iiwn
j6=i

Ki

(
Op(h

3
n)+ Op

(
hn

(
nhn

ln(n)

)−1/2))
.

We show that βin(x) = Op(1) for i = 1, 2, 3. From Theorem 2,

|β1n(x)| ≤ h2
nOp(1)

1
√
ngn

n∑
i=1

∑
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j6=i
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≤ ℵh2
nOp(1)(ngn)

1/2 1
ngn
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Ki ≤ ℵ(ngn)
1/2h2

nOp(1) since
1
ngn

n∑
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Ki = Op(1)

= Op(1) provided gn = O(n−1/5), hn = O(n−1/5).

Also,

|β3n(x)| ≤ ℵh
3
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1/2Op(1)
1
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≤ ℵh3
n(ngn)

1/2Op(1)+ ℵ
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=
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= Op(1) provided gn = O(n−1/5), hn = O(n−1/5).

We now examine β2n(x). We write

β2n(x) =
√
ngn

1
n

n∑
l=1

Ul
1

nhngn

n∑
i=1

∑
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j6=i
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=
√
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1
n
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Ulcnl where cnl =
1

nhngn
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i=1

∑
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KiKlj

f̄n(Xj)
.

Since {Xi} and {Ui} are independent it is easy to verify E(β2n(x)) = 0 and
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V(β2n(x)) = ngn
1
n2

n∑
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n∑
k=1

E(UlUk)E(cnlcnk)

≤
gn
n
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l=1

n∑
k=1
|ωlk(θ0)||E(cnlcnk)| and since infx∈G|f̄n(x)| > 0,

≤ C
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1
n2h2

ng
2
n
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j6=i

n∑
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1

h2
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+ C
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o6=m
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1

h2
ng

2
n

= T1n + T2n.

We need to show that T1n, T2n = O(1). We adopt the same strategy as was used in Theorem 3, i.e., establish the order of
partial sums that emerge from considering all possible combinations of the indexes l, k, i, j,m, o in Tn1, Tn,2. Each of these
partial sums is bounded by establishing the order πn = E(KiKljKmKlo)

1
h2
ng

2
n

and ρn = E(KiKljKmKko)
1

h2
ng

2
n

.
We need to show that T1n, T2n = o(1). The strategy that we use is to establish the order of the partial sums that emerge

from considering all possible combinations of the indexes l, k, i, j,m, o in T1n, T2n.6 Each of these partial is are shown to be
op(1) by first establishing the order of πn =

1
h2
ng

2
n
E(KiKmKljKlo) and ρn =

1
h2
ng

2
n
E(KiKmKljKko). Here we show the cases in which

l and k are distinct from the indexes in the four inner sums, i.e., i, j,m, o.7 We need to consider seven cases, and given
Assumption A1 we have from calculating the expectations the following bounds: Case 1 (i = m and j = o): πn ≤

C
gnhn

,
ρn ≤

C
gn

; Case 2 (i = o and j = m) πn ≤
C
hn

, ρn ≤ C; Case 3 (i = m): πn ≤
C
gn

, ρn ≤
C
gn

; Case 4 (i = o), Case 5 (j = m), Case
7 (i 6= j 6= m 6= o): πn ≤ C, ρn ≤ C; Case 6 (j = o): πn ≤

C
hn

, ρn ≤ C. We now denote the partial sums associated with
V((ngn)1/2Bn,42(x)) in each of these cases by si, i = 1, . . . , 7. Hence, we have the following inequalities, where the first term
refers to the partial sums in T1n and the second term refers to the partial sums in T2n for each case:

s1 ≤
C

nhn
ω̄n +

ℵC

n2gn

n∑
l=1

gn
n∑

k=1
k6=l

|ωlk(θ0)|, s2 ≤
Cgn
nhn
ω̄n +

C

n2

n∑
l=1

gn
n∑

k=1
k6=l

|ωlk(θ0)|

s3 ≤
Cℵ2

n
ω̄n +

Cℵ2

n2gn

n∑
l=1

gn
n∑

k=1
k6=l

|ωlk(θ0)|, s4 ≤
Cℵ2gn

n
ω̄n +

Cℵ2

n2

n∑
l=1

gn
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k=1
k6=l

|ωlk(θ0)|.

Case 5 is identical to Case 4 and

s6 ≤
Cℵ2gn
nhn

ω̄n +
Cℵ2

n2

n∑
l=1

gn
n∑

k=1
k6=l

|ωlk(θ0)|, s7 ≤ Cω̄ngnℵ
2C +

Cgn
n

n∑
l=1

n∑
k=1
k6=l

|ωlk(θ0)|ℵ
2.

Hence, given Assumption A1 and the fact that from Theorem 1 gn
∑n

k=1,l6=k |ωlk(θ0)| = o(1) we conclude that in each case the
first and second terms are O(1). �

Note on indexes: To construct the set of all index combinations for the sixfold sums we first note that for the four inner sums
we need to consider seven different possible cases for i, j,m, o: Case 1 (i = m and j = o, i 6= j); Case 2 (i = o and j = m, i 6= j);
Case 3 (i = m, but i, j, o distinct); Case 4 (i = o, but i, j,m distinct); Case 5 (j = m, but i,m, o distinct); Case 6 (j = o, but i, j,m
distinct); Case 7 (i 6= j 6= m 6= o). In each of these cases we must then investigate all possible subcases where l and k are
equal or distinct from the indexes considered in T1n and T2n.
Case 1: For the term T1n there are 3 subcases: (1.1) l, i, j distinct; (1.2) l = i and i, j distinct; (1.3) l = j and i, j distinct. For
the term T2n there are 7 subcases: (1.1) l, k, i, j distinct; (1.2) k = i, l, k, j distinct; (1.3) k = j, l, k, i distinct; (1.4) l = i, l, k, j
distinct; (1.5) l = j, l, k, i distinct; (1.6) l = i, k = j, l, k distinct; (1.7) l = j, k = i, l, k distinct.
Case 2: The subcases are identical to those in Case 1.
Case 3: For the term T1n there are 4 subcases: (3.1) l, i, j, o distinct; (3.2) l = i and i, j, o distinct; (3.3) l = j and i, j, o distinct;
(3.4) l = o and i, j, o distinct. For the term T2n there are 13 subcases: (3.1) l, k, i, j, o distinct; (3.2) k = i, l, k, j, o distinct; (3.3)
l = i, i, k, j, o distinct; (3.4) k = j, i, l, j, o distinct; (3.5) l = j, l, k, i, o distinct; (3.6) l = o, l, k, i, j distinct; (3.7) k = o, l, i, j, k
distinct; (3.8) l = i, k = j, l, k, o distinct; (3.9) l = j, i = k, l, k, o distinct; (3.10) l = i, k = o, l, k, j distinct; (3.11) l = o, i = k,
l, k, j distinct; (3.12) l = j, k = o, i, l, k distinct; (3.13) l = o, k = j, l, k, i distinct.

6 See the note on indexes in the end of Appendix A.
7 Bounds for all other cases described in Appendix A are available from the authors upon request.
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Case 4: For the term T1n there are 4 subcases: (4.1) l, i, j,m distinct; (4.2) l = m and i, j, l distinct; (4.3) l = i and i, j,m distinct;
(4.4) l = j and i, j,m distinct. For the term T2n there are 13 subcases: (4.1) l, k, i, j,m distinct; (4.2) k = m, l, k, j, i distinct;
(4.3) l = m, l, i, k, j distinct; (4.4) k = i, l, k, j,m distinct; (4.5) l = i, l, k, j,m distinct; (4.6) k = j, l, k, i,m distinct; (4.7) l = j,
m, i, j, k distinct; (4.8) l = m, k = i, l, k, j distinct; (4.9) l = i, m = k, l, k, j distinct; (4.10) l = m, k = j, l, k, i distinct; (4.11)
l = j, m = k, l, k, i distinct; (4.12) l = i, k = j, m, l, k distinct; (4.13) l = j, k = i, l, k,m distinct.

Case 5: identical to Case 4 due to symmetry.

Case 6: For the term T1n there are 4 subcases: (6.1) l, i, j,m distinct; (6.2) l = i and l,m, j distinct; (6.3) l = m and i, j, l distinct;
(6.4) l = j and i, l,m distinct. For the term T2n there are 13 subcases: (6.1) l, k, i, j,m distinct; (6.2) k = i, l, k, j,m distinct;
(6.3) l = i, l, k,m, j distinct; (6.4) k = m, l, k, j, i distinct; (6.5) l = m, l, k, i, j distinct; (6.6) k = j, l, k, i,m distinct; (6.7) l = j,
m, i, l, k distinct; (6.8) l = i, k = m, l, k, j distinct; (6.9) k = i, m = l, l, k, j distinct; (6.10) l = i, k = j, l, k,m distinct; (6.11)
l = j, i = k, l, k,m distinct; (6.12) l = m, k = j, i, l, k distinct; (6.13) l = j, k = m, l, k, i distinct.

Case 7: For the term T1n there are 5 subcases: (7.1) l 6= i 6= j 6= m 6= o; (7.2) l = i and l, j,m, o are distinct; (7.3) l = j and
l, i,m, o are distinct; (7.4) l = m and i, j, l, o are distinct; (7.5) l = o and i, j,m, l are distinct. For the term T2n there are 21
subcases: (7.1) l 6= k 6= i 6= j 6= m 6= o; (7.2) l = i, j = k and l, j,m, o are distinct; (7.3) l = k, j = l and i, j,m, o are distinct;
(7.4) l = i,k = m and i, j,m, o are distinct; (7.5) i = k, l = m and i, j,m, o are distinct; (7.6) l = i, k = o and i, j,m, o are
distinct; (7.7) i = k, l = o and i, j,m, o are distinct; (7.8) l = j, k = m and i, j,m, o are distinct; (7.9) j = k, l = m and i, j,m, o
are distinct; (7.10) l = j, k = o and i, j,m, o are distinct; (7.11) j = k, l = o and i, j,m, o are distinct; (7.12) l = m, k = o and
i, j,m, o are distinct; (7.13) m = k, l = o and i, j,m, o are distinct; (7.14) i = k, l, k, j,m, o are distinct; (7.15) i = l, l, k, j,m, o
are distinct; (7.16) j = k, l, k, i,m, o are distinct; (7.17) l = j, l, k, i,m, o are distinct; (7.18) m = k, l, k, i, j, o are distinct; (7.19)
m = l, l, k, i, j, o are distinct; (7.20) o = k, l, k, i, j,m are distinct; (7.21) l = o, l, k, i, j,m are distinct.

Appendix B

See Tables 1 and 2.

Table 1
Average bias (× 10−2) (B), standard deviation (S) and root mean squared error (R) with panel data models and J = 2

Estimators m1(x) m2(x) m3(x)

B S R B S R B S R

N = 100

LLE .335 .336 .336 .392 .333 .335 1.078 .349 .356
HU1 −.709 .472 .474 .721 .467 .477 −10.294 .519 .569
HU2 .315 .338 .338 .175 .333 .335 .420 .352 .358
RWC .322 .284 .285 .318 .281 .285 1.449 .294 .306
2SLL .278 .277 .278 .268 .275 .278 1.042 .289 .298
FHU1 −.707 .463 .465 .755 .460 .470 −9.999 .506 .551
FHU2 .329 .337 .337 .163 .333 .335 .431 .351 .357
FRWC .327 .285 .286 .320 .282 .286 1.451 .296 .308
F2SLL .289 .280 .280 .271 .277 .280 1.056 .291 .300

N = 150

LLE −.020 .271 .272 −.118 .270 .274 1.371 .285 .295
HU1 −.496 .373 .375 −.416 .374 .385 −9.795 .423 .479
HU2 .093 .271 .272 .304 .273 .276 .906 .289 .297
RWC −.047 .228 .230 −.121 .229 .236 1.694 .242 .257
2SLL −.051 .223 .224 −.162 .225 .230 1.364 .238 .249
FHU1 −.502 .368 .370 −.409 .370 .381 −9.597 .419 .471
FHU2 .102 .271 .271 .297 .272 .276 .931 .289 .297
FRWC −.048 .229 .231 −.120 .230 .236 1.689 .243 .257
F2SLL −.054 .224 .225 −.158 .226 .231 1.365 .239 .250

N = 200

LLE −.348 .237 .237 −.638 .237 .240 .120 .249 .256
HU1 −.397 .330 .335 .203 .334 .348 −10.232 .376 .451
HU2 −.604 .237 .237 −.955 .239 .241 .062 .247 .253
RWC −.372 .198 .199 −.705 .201 .207 .364 .209 .221
2SLL −.387 .194 .194 −.652 .197 .201 .125 .204 .213
FHU1 −.393 .327 .331 .210 .331 .345 −10.050 .373 .443
FHU2 −.602 .236 .237 −.953 .238 .241 .061 .247 .253
FRWC −.371 .199 .200 −.706 .202 .207 .365 .210 .221
F2SLL −.383 .194 .195 −.652 .197 .201 .129 .205 .214
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Table 2
Average bias (×10−2) (B), standard deviation (S) and root mean squared error (R) with AR(2) model

Estimators m1(x) m2(x) m3(x)

B S R B S R B S R

n = 100

LLE .081 .227 .227 .149 .225 .229 .510 .245 .252
HU1 −.285 .207 .208 .415 .210 .213 −.623 .236 .241
HU2 .214 .221 .221 .419 .220 .223 .648 .239 .246
VFF .071 .202 .203 .243 .203 .207 .567 .220 .228
2SLL .089 .203 .203 .228 .203 .208 .554 .221 .228
FHU1 −.284 .212 .212 .357 .213 .216 −.838 .243 .248
FHU2 .198 .221 .222 .419 .220 .223 .662 .239 .246
FVFF .069 .203 .204 .225 .204 .209 .576 .222 .230
F2SLL .085 .204 .205 .212 .205 .209 .561 .222 .230

n = 200

LLE .384 .156 .157 .011 .162 .166 .452 .171 .179
HU1 .214 .146 .147 .273 .151 .155 −.649 .166 .171
HU2 .335 .153 .154 .038 .158 .162 .418 .170 .177
VFF .420 .141 .142 −.018 .145 .149 .422 .154 .162
2SLL .424 .142 .142 −.017 .146 .150 .419 .154 .162
FHU1 .230 .147 .148 .264 .152 .155 −.633 .169 .174
FHU2 .347 .153 .154 .015 .158 .162 .419 .170 .176
FVFF .412 .141 .142 −.029 .145 .150 .435 .154 .162
F2SLL .415 .142 .142 −.023 .146 .150 .435 .154 .163

n = 400

LLE −.174 .111 .112 −.102 .114 .119 .332 .128 .135
HU1 −.484 .103 .104 .089 .108 .113 −.513 .125 .128
HU2 −.181 .108 .109 .000 .112 .117 .332 .126 .132
VFF −.184 .099 .101 −.113 .102 .109 .297 .114 .121
2SLL −.188 .099 .101 −.115 .102 .109 .290 .114 .121
FHU1 −.488 .104 .105 .063 .109 .113 −.515 .127 .130
FHU2 −.193 .108 .109 −.009 .112 .117 .327 .126 .132
FVFF −.182 .099 .101 −.113 .103 .109 .295 .114 .122
F2SLL −.188 .099 .101 −.114 .103 .109 .289 .114 .122
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