
Abstract. We model a hedonic price function for housing as an additive
nonparametric regression. Estimation is done via a backfitting procedure in
combination with a local polynomial estimator. It avoids the pitfalls of an
unrestricted nonparametric estimator, such as slow convergence rates and the
curse of dimensionality. Bandwidths are chosen using a novel plug in method
that minimizes the asymptotic mean average squared error (AMASE) of the
regression. We compare our results to alternative parametric models and find
evidence of the superiority of our nonparametric model. From an empirical
perspective our study is interesting in that the effects on housing prices of a
series of environmental characteristics are modeled in the regression. We find
these characteristics to be important in the determination of housing prices.

Key words: Additive nonparametric regression, local polynomial estimation,
hedonic price models, housing markets

JEL classification: C14, R21

1. Introduction

Hedonic price models have been used extensively in applied economics since
the seminal work of Rosen (1974).1 A frequent concern in this literature is the
adequacy of commonly assumed parametric specifications as hedonic price
functions. This specification problem arises quite naturally from the inability
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of economic theory to provide guidance on how characteristics of similar
products relate functionally to their market prices. Recognizing the poten-
tially serious consequences of functional misspecification, researchers have
attempted to estimate hedonic price models by specifying more flexible
regression models. Most of these attempts have concentrated on parametric
specifications ranging from simple data transformations, including the model
introduced by Box and Cox (1964) and its variants and approximations based
on second order Taylor-expansions to flexible non-linear models such as
those introduced by Wooldridge (1992). A considerably smaller set of authors
have proposed semi and fully (unrestricted) nonparametric specifications for
hedonic price functions.

Nonparametric regression models are very flexible in that regressions are
allowed to belong to a vastly broader class of functions than that in para-
metric models. However, their use in applied economics has not been as
prevalent as one would expect, or comparable to their use in other disciplines,
such as Biostatistics.2 In fact, nonparametric estimation of hedonic price
functions has appeared in just a few articles and has concentrated almost
exclusively in housing markets. Among these papers are the important con-
tributions of Hartog and Bierens (1989), Stock (1991), Pace (1993,1995,1998),
Anglin and Gencay (1996), Gencay and Yang (1996), Iwata (2000) and Clapp
et al. (2002). Closer inspection of this literature, however, reveals the possi-
bility of a number of methodological improvements that can add to both the
ease of obtaining, and interpreting hedonic price nonparametric functional
estimates. These improvements fall into three broad categories: (a) specifi-
cation of the regression class; (b) choice of the smoother underlying the
estimation; and (c) choice of the bandwidths. In this paper we address each of
these categories.

Most of the applied nonparametric research specify a regression class that
requires the estimation of multivariate smoothers. There are a number of
practical, as well as theoretical problems that emerge when estimating mul-
tivariate smoothers. First, there is the curse of dimensionality identified by
Friedman and Stuetzle (1981). The problem can be especially acute in data
sets used by economists in hedonic price function estimation. Although these
data sets can have a large number of observations, there is normally a vast list
of product attributes or characteristics which contribute to slow convergence
rates of the estimators and diminished confidence on inference. Second, when
defining neighborhoods in two or more dimensions for local averaging, an
universal characteristic of multivariate nonparametric estimation, there is the
need to assume some type of metric that is hard to justify when the variables
are measured in different units or are highly correlated. Third, from a prac-
tical perspective, multivariate smoothers are extremely expensive to compute
and even with the use of sophisticated graphical analysis four or higher
dimensional smooths are virtually impossible to represent or interpret. Since
one of the objectives of hedonic price modeling is to easily interpret and
isolate the contributions of a given attribute to market price variability,
holding all other product characteristics fixed, we find the use of a fully
unrestricted nonparametric regression undesirable. We believe much better

2 Yatchew (1998) provides a list of potential reasons for this relative scarcity of applied
nonparametric economic modeling.
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results in hedonic price modeling can be obtained by estimating an additive
nonparametric regression model (ANRM), as in Hastie and Tibshirani
(1986). Estimation of these models involves only univariate smoothing, but
the models allow for multiple regressors, and due to their additive nature lend
themselves to easy interpretation and analysis.

Regarding the choice of estimator, we depart from the standard literature
in applied economics by using local polynomial estimators rather than the
popular Nadaraya-Watson (NW) estimator. Recent work by Fan (1992), Fan
et al. (1993) and Ruppert and Wand (1994) has shown that local polynomial
estimators possess a number of desirable theoretical and practical properties
relative to other smoothing methods, including the NW estimator. Lastly, we
believe we make significant improvements over previous applied work by
estimating bandwidths via a plug in method rather than the popular but much
criticized cross validation (Park and Marron 1990; Simonoff 1996). Although
plug in methods are relatively new in the statistical literature they have
consistently outperformed cross validation as a data driven bandwidth
selection method. They converge at faster rates, are less expensive to compute
and overcome the problem of undersmoothing that is characteristic of the
cross validation method (Sheather and Jones 1991; Ruppert et al. 1995).

In this paper we use data from the Portland-Oregon housing market to
estimate a hedonic price function using all of the improvements described
above. From an empirical perspective our model is of independent interest as
a series of environmental and locational housing characteristics such as
property elevation, distance to wetlands, parks and lakes are included in the
hedonic price function. We also compare our nonparametric regression
results to those that are obtained from two alternative parametric specifica-
tions. The rest of this paper is organized as follows: in Sect. 2 we give some
generalities on the additive nonparametric model and describe the estimation
strategy and its properties; Sect. 3 describes and summarizes the data that we
have used in this study; Sect. 4 specifies the empirical model, gives details on
the computational aspects of the estimation algorithm and introduces a viable
parametric alternative; Sect. 5 presents and analyzes the results and provides
an out-of-sample forecast exercise. Section 6 is the conclusion.

2. Model specification and estimation

2.1. Generalities

We model hedonic price functions as a multivariate regression model3 given
by,

EðY jX1 ¼ x1; . . . ;XD ¼ xDÞ ¼ aþ
XD

d¼1
mdðxdÞ: ð1Þ

3 We note that (1) can easily accomodate transformations of regressand and regressors. Thus, if
there is a priori knowledge that allows for the specification EðT ðY ÞjX1 ¼ x1; . . . ;XD ¼ xDÞ ¼ a
þ
PD

d¼1 mdðsdðxdÞÞ for known T ð%Þ; sdð%Þ and d ¼ 1; . . . ;D estimation can proceed as described
below using the transformed variables. See Hastie and Tibshirani (1990) and Opsomer and
Ruppert (1998).
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We assume that n independent observations fðyt; xt1; . . . ; xtDÞ0gn
t¼1 are taken

on the random vector ðY ;X1; . . . ;XDÞ and that V ðY jX1 ¼
x1; . . . ;XD ¼ xDÞ ¼ r2, an unknown parameter. The mdð%Þ are real valued
measurable functions with Eðmdð%ÞÞ ¼ 0, Eðm2

dð%ÞÞ <1. Under these
assumptions EðY Þ ¼ a and the optimal predictor for Y given X1; . . . ;XD can
be characterized by

mdðxdÞ ¼ E Y & a&
XD

d¼1;d 6¼d

mdð%ÞjXd ¼ xd

 !

ð2Þ

for d ¼ 1; . . . ;D (Buja et al. 1989). We estimate mdð%Þ using the backfitting
estimator (B-estimator) proposed by Friedman and Stuetzle (1981). Let
an ' ða; . . . ; aÞ0 be the n( 1 vector with the constant a as its components, In
be the identity matrix of size n, Dn ' In & n&11n10n

! "
, y ' ðy1; . . . ; ynÞ0,

xd ' ðx1d ; . . . ; xndÞ0, dðxdÞ ' ðmdðx1dÞ; . . . ;mdðxndÞÞ0, Sd be the n( n smoother
matrix associated with regressor d and S)d ' DnSd . The B-estimator for mdðxdÞ
is the solution for the following system of normal equations,

In S)1 . . . S)1
S)2 In . . . S)2
..
. ..

. . .
. ..

.

S)D S)D . . . In

0

BBB@

1

CCCA

m1ðx1Þ
m2ðx2Þ

..

.

mDðxDÞ

0

BBB@

1

CCCA ¼

S)1
S)2
..
.

S)D

0

BBB@

1

CCCAy; ð3Þ

which we denote by mb
1ðx1Þ; . . . ;mb

DðxDÞ
! "0

. A convenient procedure to obtain
a solution for (3) involves setting initial values a0 ' n&110ny and mb

dðxdÞ0 ' 0n
for all d. We then define the vth iteration (v ¼ 1; 2; . . .) estimator mb

dðxdÞv as the
smooth that results from a suitably chosen nonparametric univariate
regression estimator, where the observed regressands are given by

y & 1na0 &
Xd&1

d¼1
mb

dðxdÞv &
XD

d¼dþ1
mb

dðxdÞv&1

and the regressors are xd , for d ¼ 1; . . . ;D. Iterations continue until

jjy & 1na0 &
PD

d¼1 m
b
dðxdÞvjj22 & jjy & 1na0 &

PD
d¼1 m

b
dðxdÞvþ1jj22 ¼ 0 or is smal-

ler than a prespecified level of tolerance, where if h 2 <n, jjhjj2 ¼
Pn

i¼1 h2i
! "1=2

.
We construct S)d using a local polynomial estimator of order p ¼ 1 or 3, as
needed in our estimation algorithm, based on data driven bandwidths hdn.4

One of the practical conveniences of the local polynomial estimators is that
provided that p is large enough and that mdð%Þ is sufficiently smooth, the qth

derivative of mdð%Þ, denoted by mðqÞd ðxÞ can be easily estimated. We denote

such estimator by mbðqÞ
d ðxÞ and define mbðqÞ

d ðxdÞ ¼ ðmbðqÞ
d ðx1dÞ; . . . ;mbðqÞ

d ðxndÞÞ0.

2.2. Data driven selection of hdn

One of the most important steps in estimating any nonparametric regression
model is the choice of hdn. In essence, after a nonparametric estimation

4 For details see Opsomer and Ruppert (1997).
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procedure is chosen the selection of the bandwidths is tantamount to the
selection of the estimated regression. Here we follow the plug-in procedure
suggested by Opsomer and Ruppert(1998). Specifically, we choose hn '
ðh1n; . . . ; hDnÞ0 2 <D such that the conditional mean average squared error

MASEðhnÞ ¼ 1
n

Pn
t¼1 E ða0 & aÞ

!!
þ
PD

d¼1ðmb
dðxtdÞ & mdðxtdÞÞÞ2jx1; . . . ; xDÞ is

minimized. Given a local polynomial estimator, and under the assumption
that the regressors ðX1; . . . ;XDÞ are independent, it can be shown that for
p ¼ 1,

MASEðhnÞ ¼
l2ðKÞ

2

2

XD

d¼1
h4

dnhddð2; 2Þ þ r2
XD

d¼1

RðKÞ
nhdn

n&1
Xn

t¼1

1

fXd ðxtdÞ

þ Op

XD

d¼1

1

nhdn

# $ !

þ op

XD

d¼1

1

nhdn
þ h4

dn

# $ !

; ð4Þ

where l2ðKÞ ¼
R

x2KðxÞdx, RðKÞ ¼
R

KðxÞ2dx, fXd is the marginal density of

Xtd and hddð2; 2Þ ¼ 1
n jjm

ð2Þ
d ðxdÞ & Eðmð2Þd ðxdÞÞjj22. Ignoring the terms Op and op

in (4), as in Opsomer and Ruppert (1998), we have that the vector ĥn that
minimizes the conditional MASE has dth component given by,

ĥdn ¼ r2
RðKÞn&1

Pn
t¼1

1
fXd ðxtd Þ

nl2ðKÞ
2hddð2; 2Þ

 !1
5

: ð5Þ

The plug in strategy is to obtain ĥdn by directly estimating r2, hddð2; 2Þ and
fXd . The term n&1

Pn
t¼1

1
fXd ðxtd Þ is estimated by qd ¼ maxðxdÞ & minðxdÞ. The

estimation of hddð2; 2Þ requires the estimation of second derivatives of md
which in turn requires the selection of an auxiliary bandwidth vector
gn ¼ ðg1n; . . . ; gDnÞ0 that minimizes the conditional (asymptotic) mean squared

error of the estimator ĥddð2; 2Þ ¼ 1
n jjDnm

bð2Þ
d ðxdÞjj22. When the regressors are

independent, the vector ĝ has dth component given by

ĝdn ¼ Ca
4!RðK2;3Þr2qd

2njhddð2; 4Þjl4ðK2;3Þ

# $1=7

ð6Þ

for d ¼ 1; 2; . . . ;D, Ca ¼
1 if hddð2; 4Þ < 0
2:5 if hddð2; 4Þ > 0

%
, where K2;3 is obtained from

Kr;pðuÞ ¼ r!detðMr;pÞ
detðNpÞ

& '
KðuÞ with Np a ðp þ 1Þ ( ðp þ 1Þ matrix having ði; jÞ entry

given by
R

uiþj&2KðuÞdu, Mr;p is the same as Np except that the r þ 1 column is
substituted by ð1; u; u2; . . . ; upÞ0, and detðAÞ is the determinant of a square
matrix A.

The other component of (5) that needs to be estimated is r2. We define,
r̂2ðjnÞ ¼ n&1jjy & 1na0 &

PD
d¼1 m

b
dðxdÞjj22 as a generic estimator for r2 based

on jn 2 <D, the bandwidth used to obtain mb
dðxdÞ for d ¼ 1; . . . ;D. The jn

that minimizes the conditional (asymptotic) mean squared error of r̂2 has dth

component given by,

ĵdn ¼ Cb
4jRðK0;1Þ & 2K0;1ð0Þjr2qd

nhddð2; 2Þl2ðK0;1Þ2

 !1=5

; ð7Þ
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Cb ¼
1 if RðK0;1Þ & 2K0;1ð0Þ < 0

0:25 if RðK0;1Þ & 2K0;1ð0Þ > 0

%
. The expressions for the optimal

bandwidth vectors in (5), (6) and (7) depend on unknown functionals,
hddð2; 4Þ, hddð2; 2Þ and r2, which are estimated as follows. First, we obtain
pilot estimates for r2 and hddð2; 4Þ for d ¼ 1; . . . ;D based on a suitably de-
fined parametric model. These initial estimates are used to compute ĝdn
according to Eq. (6). We then use ĝdn as bandwidths to fit an additive model
using a polynomial smoother of degree p ¼ 3. We then use the fitted additive
model to estimate ĥddð2; 2Þ. This estimate together with the initial estimate of
r2 are then used to obtain ĵdn according to (7). ĵdn are then used to fit an
additive model using a local polynomial of order p ¼ 1 and to compute an
updated estimate of r2. Finally, the updated estimate of r2 together with the
estimate of ĥddð2; 2Þ are used to obtain estimates ĥdn according to (5). The ĥdn
are then used to obtain a final fit for the ANRM and r2.

3. The data

The housing market data that we use come from a portion of Multnomah
County, Oregon-USA that lies within Portland’s urban growth boundary.5

The regressand in our empirical model is the actual recorded sales price of a
dwelling. We use 1000 randomly selected recorded sales from data originally
collected by MetroScan which occured between June of 1992 and May of
1994 in the study area. All sales prices were adjusted to May 1994 levels using
a Multnomah County residential housing market price index. Figure 1 pro-
vides a histogram of housing prices with a bandwidth chosen by the method
proposed by Sheather and Jones (1991).

Direct inspection of the histogram reveals that the vast majority of the
observations falls within the (50000,250000) interval. There is however a great

Fig. 1. Estimated Density for Sales Prices

5 All data used is available from the first author.
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dispersion of sales prices and some observations are quite distanced within
this interval. Another clear conclusion from the histogram is the leptokurdic
nature of the distribution. Table 1 provides a list of all variables used in our
study as well as some sample statistics. The regressors can be grouped into
two main categories. The first contains a series of dwelling attributes com-
monly used in hedonic price studies, such as dwelling area, land area, the total
number of bedrooms and bathrooms, as well as the dwelling age in 1994. The
second contains a series of locational characteristics of the dwelling. They
include distances to the central business district, the nearest lake, improved
park, industrial sector, commercial district and wetland. Also included is a
measure dwelling elevation. All linear measurements are in kilometers, and all
area measurements are in squared meters.

The data come from two major sources; MetroScan, which compiles real
estate data from assessor’s records for numerous U.S. cities provided most of
the house’s structural attributes data; Metro Regional Services, a regional
government agency provided the locational characteristics. All distance cal-
culations were made using a raster system where all data are arranged in grid
cells. Each cell is a 15.6-meter square with distances measured using the
Euclidean norm from the center of the dwelling land parcel to the nearest
edge of the feature.

Wetland locations are based on the U.S. Fish and Wildlife Service’s
National Wetlands Inventory in Oregon. Wetlands vary from primarily open
water to forest and grassland that is wet only part of the year. Although the
area of urban wetlands has been declining in the U.S. the section of Mult-
nomah county included in our study has more than 4500 wetlands and deep
water habitats, varying in size from 1 to 358 acres (Mahan et al. 2000).

We have some a priori beliefs regarding the effects of these various
characteristics on housing prices. Specifically, we expect a positive association
between sales prices and the dwelling’s area, number of bathrooms, land area,
the dwelling’s elevation and the distance to the nearest industrial zone.
Conversely, we expect a negative association between sales prices and
distances to lakes, parks and the central business district as well as dwelling
age. We have no a priori expectations regarding the effects of wetland dis-

Table 1. Sample statistics

Variable Average Standard
deviation

Maximum Minimum

Y Sale price 126783.55 83676.47 857053.90 30308.63
X1 Number of bathrooms 1.43 0.63 6.00 1.00
X2 Number of bedrooms 2.86 0.93 14.00 0.00
X3 Dwelling area 134.02 56.86 584.55 40.13
X4 Land area 727.52 593.71 10117.14 100.33
X5 Dwelling age in 1994 44.29 27.29 106.00 0.00
X6 Distance to nearest lake 5.38 2.09 10.43 0.00
X7 Distance to the nearest wetland 1.09 0.75 3.46 0.01
X8 Distance to nearest improved park 0.39 0.27 1.68 0.00
X9 Dwelling elevation 0.08 0.04 0.27 0.00
X10 Distance to the nearest industrial zone 1.14 0.93 4.65 0.00
X11 Distance to the nearest commercial zone 0.38 0.32 2.33 0.00
X12 Distance to the central business district 9.54 5.34 23.71 1.28
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tance on sales prices. Although proximity to wetlands may be perceived as a
desirable location characteristic due to enhanced view quality or increased
pollution protection, it can also be undesirable due to development restric-
tions on nearby properties, bad odor and wildlife annoyances. We are also
unsure about the effects of proximity to commercial districts on house prices.
Although close proximity may be undesirable due to increased traffic and
noise, large distances maybe undesirable due to increased transportation
costs.

It is important to point out that our a priori expectations are from a
descriptive point of view rather crude. One of the advantages of departing
from a linear parametric model involves the possibility of unveiling much
richer patterns of association between regressand and regressors. Put differ-
ently, the standard practice in applied economic work of revealing expected
parameter signs is in itself evidence of how restricted linear regression para-
metric modeling can be.

4. Empirical modeling and computations

Since two of the variables used as regressors are categorical (number of
bathrooms and bedrooms), we estimate the following semiparametric version
of (1),

EðY jX1 ¼ xt1; . . . ;X12 ¼ xtDÞ ¼ aþ
X3

d¼1
adCtd þ

X4

d¼1
bdDtd þ

X12

d¼3
mdðxtdÞ ð8Þ

for t ¼ 1; . . . ; n, Y , X3; . . . ;X12 as indicated in Table 1,6 Ctd ¼
1; if xt1 ¼ d þ 1
0; otherwise

%
for d ¼ 1; 2, Ct3 ¼

1; if xt2 > 3
0; otherwise,

%
Dtd ¼

1; if xt2 ¼ d þ 1
0; otherwise

%
for d ¼ 1; 2; 3 and Dt4 ¼

1; if xt2 > 4
0; otherwise

%
.

The estimation procedure requires initial estimates for r2 and hddð2; 4Þ. The
latter requires estimates for mð4Þd ð%Þ and mð2Þd ð%Þ. To obtain these initial
values we first fit a linear parametric regression model that results from a
Taylor’s expansion of order 5 that explores the additivity of the condi-
tional expectation of Y including all continuous regressors that appear in
(8). This estimated regression provides initial estimates for the second and
fourth derivatives of md , which are then used to construct the first
estimates of hddð2; 4Þ. These, together with an estimate for the variance r2

are used in Eq. (6) to obtain ĝ, which is given in Table 2. ĝ is then used to
fit (8) using the B-estimator and a local polynomial estimator of order
p ¼ 3. From this fit of the additive model we obtain a new estimate for the
second derivatives of md . These new estimates of the second derivatives are
used to obtain an updated estimate for hddð2; 2Þ which together with the

6 The data, as well as the computer code for the implementation of the estimation procedure,
which was written in the GAUSS v.4.0 (2002) programming environment, are available from the
first author. A similar MATLAB code is described in Opsomer and Ruppert (1998) and is
available from www.iastate.edu/*jopsomer/research.html.
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variance estimate are used to obtain ĵdn according to (7). The ĵn reported
in Table 2 is then used to fit (8) once again, so that a new estimate for r2

is obtained. This new variance estimate is used with the updated estimate
of hddð2; 2Þ to obtain ĥn according to (5) and reported in Table 2.
Finally, ĥn is used to obtain a final fit of (8), which is then used to obtain
a final estimate for r2. We denote these final estimates by ab, ab

d , bb
d ,

mb
dðxdÞ and r̂2.
We have a series of observations to make regarding the estimation pro-

cedure. First, the fact that the estimated bandwidths depend on y produces
estimators that are not projectors and are nonlinear. However, as desired, the
cycles of the backfitting algorithm produced a decreasing sequence of
jjy & 1na0 &

PD
d¼1 m

b
dðxdÞvjj22. Convergence was obtained for the first fitting of

the ANRM after 9 cycles, for the second fitting after 7 cycles, and for the final
fitting convergence was attained after 11 cycles, all with a level of tolerance of
0.001. With n ¼ 1000 the computation time for the estimates was approxi-
mately 3 hours and 16 minutes on a 1 Ghz Pentium IV PC and for each of the
three ANRM that must be estimated, the computations are of order OðvDnÞ,
where v is the number of iterations necessary for the convergence of the B-
estimator. The estimated regressions are the solid lines that appear on Fig. 2.
In the next section we provide a detailed discussion of the results.

Second, one major difficulty in fitting an ANRM via backfitting with data
driven estimated bandwidths, is that we are unable to construct
asymptotically valid confidence intervals for the estimated regressions. It is
possible however to obtain an estimated covariance matrix for each mb

dðxdÞ
for d ¼ 3; . . . ; 12. This results from the fact that at convergence, mb

dðxdÞ can be
written as Rdy for some n( n matrix Rd . Hence, V ðmb

dðxdÞÞ can be estimated
by r̂2RdR0d . We obtain Rd by noting that at convergence it can be calculated by
the following numerical procedure. We define the identity matrix of size
n ¼ 1000 to be In and denote its ith column by I:i. Using ĥn we fit the ANRM
in (8) with regressand given by I:i. This produces n-dimensional vectors ~mb

dðxdÞ
that correspond to the ith column of Rd , for d ¼ 1; . . . ; n. Hence, we run 1000
new ANRM to obtain Rd . The dashed lines that appear in Fig. 2 are pointwise
lower and upper bounds on the estimated regressions constructed by multi-
plying by 2 the square root of the diagonals of r̂2RdR0d . In all of these 1000
auxiliary models, convergence was attained in less than 6 cycles. Although

Table 2. Estimated bandwidths

Variable ĝn ĵn ĥn

X3 48.34 40.77 26.27
X4 817.38 1205.26 776.44
X5 9.51 10.63 6.85
X6 0.90 0.87 0.57
X7 0.44 0.50 0.32
X8 0.14 0.22 0.14
X9 0.02 0.03 0.02
X10 0.51 0.54 0.34
X11 0.18 0.23 0.15
X12 1.58 1.29 0.83
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these confidence bands are not exact, they provide what we believe are very
suitable approximations.7

Third, our final variance estimator is obtained according to the following

expression r̂2 ¼ 1
n&trð2R&RR0Þ jjy &

P3
d¼1 ab

dCd &
P4

d¼1 bb
dDd &

P12
d¼3 m

b
dðxdÞjj22,

where R '
P12

d¼1 Rd and trð%Þ is the trace operator. The purpose is to account
for the degrees of freedom (df ) inherent in our estimation procedure. For our
data we obtained df ¼ 889. Although this is smaller than the degrees of
freedom of a quadratic parametric approximation (df ¼ 927), it is much
larger than what would result if an approximation of order 3 were used. Put
simply, our nonparametric estimator does not seem to require an unreason-
able amount of degrees of freedom. The final variance estimate for the
ANRM is r̂2 ¼ 1:08( 109.

It is instructive to compare our results to linear parametric specifications
for this hedonic price function. We guided our choice for the parametric
model by the following constraints: a) we consider only models for
EðY jX1; . . . ;XDÞ, ruling out specifications such as EðT ðY ÞjX1; . . . ;XDÞ, where
T ð%Þ is some transformation of Y . This rules out models that are well known
to be ill-specified, such as the models proposed by Box and Cox (1964), as
well as popular semi-log (T ðY Þ ¼ logðY Þ) models. We do so because we
concur with Wooldridge(1992) in that our interest is on the conditional
expectation of Y not a transformation of Y . Such transformations produce
ambiguities on the analysis and interpretations of the regression results; b) we
assume that the researcher has no a priori knowledge about the specific nature
of EðY jX1; . . . ;XDÞ as to permit the estimation of a well defined nonlinear
regression model. Within these constraints, we specified and estimated two
alternative parametric regression models given by

EðY jX1 ¼ xt1; . . . ;X12 ¼ xtDÞ ¼ aþ
X3

d¼1
adCtd þ

X4

d¼1
bdDtd þ

X12

d¼3
hdxtd ð9Þ

and

EðY jX1 ¼ xt1; . . . ;XD ¼ xtDÞ ¼ aþ
X3

d¼1
adCtd þ

X4

d¼1
bdDtd þ

X12

d¼3
hdxtd

þ 1

2

X12

d¼3

X12

d¼3
hddxtdxtd; ð10Þ

where hdd ¼ hdd . Model (9) is convenient for comparison purposes because it
is a linear restriction (mdðxtdÞ ¼ hdxtd for d ¼ 3; . . . ; 12) of (8). Model (10) is
instructive because similar parametric second order approximations have
been extensively used in applied econometrics. Tables 3 and 4 provide or-
dinary least squares estimates for the parameters in (9) and (10), as well as
some other commonly reported regression statistics.

Since (9) is a restriction of (8) we follow Hastie and Tibshirani (1990) and
perform a test for linearity based on the statistic,

7 See Hastie and Tibshirani (1990). We remind the reader that even if the asymptotic distribution
of the B-estimator were available, the confidence bands would still be approximations.
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f ¼
ðRSSð9Þ & RSSð8ÞÞ=c2 & c1

RSSð8Þ=n& c2

which is approximately distributed as an Fc2&c1;n&c2 , where c1 ¼ 17,
c2 ¼ trð2R& RR0Þ, and RSSðiÞ is the residual sum of squares of model ðiÞ. In
our case f ¼ 8:39 leading to a rejection of model (9).

A comparison of (8) and (10) is more difficult since these models are
nonnested due to the presence of interaction and squared terms in the
parametric alternative. We observe that in parametric models such as (10),
any nonlinearities on the conditional mean are captured by the terms of
second order, i.e., interaction and squared terms. Hence, if one is interested
on the relationship between Y and Xd , ceteris paribus, it is necessary to
arbitrarily choose values for all Xd where d 6¼ d to characterize such rela-
tionship. Choosing average sample values for other regressors is common
practice in the empirical literature. We observe, however, that this procedure
generates simply one of (uncountably) many potential estimated regressions.
The same can be said about first derivatives and elasticities that derive from
these models. In contrast, the ANRM captures these nonlinearities directly
through the flexible specification of md . For comparison with the ANRM we
have estimated each regression direction based on (10) with all other
regressors evaluated at their averages. Their estimated price effects are the
large dash lines that appear on Fig. 2.8 In addition, we performed a test for
the presence of interaction terms proposed by Hastie and Tibshirani(1990).
The test involves estimating the following artificial regression,

rt ¼
X12

d¼3

X

j>d

wdjm
b
dðxtdÞmb

j ðxtjÞ; ð11Þ

where rt ¼ yt & ab &
P3

d¼1 Ctdab
d &

P4
d¼1 Dtdb

b
d &

P12
d¼3 mb

dðxtdÞ are the resid-
uals from the estimated additive model. A conventional Student’s-t statistic
for H0 : wdj ¼ 0 against HA : wdj 6¼ 0 is calculated. We interpret rejection of H0

Table 3. Parametric models estimates and t-statistics

Model(9)

Parameter Estimate t-Stat. Parameter Estimate t-Stat.

a 13392.08 1.38 h4 15.45 6.00
a1 3135.73 0.81 h5 )146.79 )1.90
a2 10078.53 1.41 h6 )5311.94 )7.27
a3 109361.11 5.29 h7 )3722.75 )1.76
b1 10257.12 1.31 h8 )7540.62 )1.45
b2 1979.26 0.25 h9 530035.51 )11.39
b3 2277.09 0.26 h10 )10480.36 )4.87
b4 )5726.73 )0.52 h11 27868.52 5.46
h3 931.19 26.31 h12 )2954.24 )8.18

r̂2 ¼ 1:84( 109, df ¼ 982, R2 ¼ 0:74

8 Similar graphs that include plots of partial residuals etd ¼ yt & ab &
P3

d¼1 ab
d Ctd &

P4
d¼1

bb
d Dtd &

P12
d¼3;d6¼d mb

dðxtdÞ are available upon request.
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as evidence that the interaction of regressors is strong enough to reject
additivity. Conversely, failing to reject H0 lends support to the additivity
assumption. Our test supports the additive specification in (8).9 Models (8)

Table 4. Parametric models estimates and t-statistics

Model(10)

Parameter Estimate t-Stat. Parameter Estimate t-Stat.

a )94151.02 )2.82 h4;5 0.49 2.79
a1 2866.82 0.88 h4;6 1.25 0.74
a2 13992.89 2.46 h4;7 )2.67 )0.43
a3 )113035.24 )4.21 h4;8 )23.39 )2.01
b1 10831.95 1.72 h4;9 )80.66 )0.97
b2 4529.74 0.70 h4;10 )0.97 )0.20
b3 8753.98 1.24 h4;11 )8.33 )0.83
b4 )5617.42 )0.62 h4;12 0.69 0.95
h3 1476.96 8.22 h5;6 )71.83 )2.37
h4 )26.46 )1.29 h5;7 7.34 0.08
h5 1417.19 3.52 h5;8 )13.77 )0.06
h6 )2480.69 )0.53 h5;9 )1201.10 )0.61
h7 )17556.15 )1.23 h5;10 )39.42 )0.45
h8 )49032.11 )1.56 h5;11 447.51 1.85
h9 560523.27 1.80 h5;12 )54.56 )2.94
h10 48926.78 3.44 h6;7 )136.76 )0.10
h11 37124.87 1.13 h6;8 4657.10 1.87
h12 3893.15 1.50 h6;9 )4577.28 )0.17
h3;3 0.68 1.34 h6;10 3636.65 2.64
h4;4 )0.00 )0.22 h6;11 )9860.05 )4.01
h5;5 )10.22 )2.35 h6;12 138.53 0.72
h6;6 1338.15 2.28 h7;8 3935.11 0.53
h7;7 5346.76 1.11 h7;9 62305.17 0.63
h8;8 35302.09 1.63 h7;10 )1890.65 )0.58
h9;9 13851045.00 8.50 h7;11 )6117.40 )0.70
h10;10 9772.72 2.27 h7;12 )841.78 )1.32
h11;11 69751.38 3.39 h8;9 104457.00 0.68
h12;12 385.55 3.02 h8;10 6751.46 0.86
h3;4 0.25 4.08 h8;11 )1863.69 )0.11
h3;5 )5.95 )4.65 h8;12 1296.44 1.07
h3;6 )53.23 )3.89 h9;10 )654516.47 )8.63
h3;7 75.07 2.06 h9;11 )581740.62 )4.37
h3;8 )51.75 )0.49 h9;12 )56728.18 )5.35
h3;9 1010.16 1.60 h10;11 1265.49 0.17
h3;10 )155.93 )4.48 h10;12 )116.19 )0.19
h3;11 228.66 2.76 h11;12 1519.61 1.23
h3;12 )55.13 )7.74

r̂2 ¼ 1:09( 109, df ¼ 927, R2 ¼ 0:85

9 Results are available upon request. Significant interaction terms can be easily incorporated into
the ANRM by specifying EðY jX1 ¼ xt1; . . . ;X12 ¼ xtDÞ ¼ aþ

P3
d¼1 ad Ctd þ

P4
d¼1 bd DtdþP12

d¼3 mdðxtdÞ þ
PK

k¼1 ckztk , where ztk ' xtd xtd for some d; d ¼ 3; . . . ; 12. We estimated this model
and compared to estimates of EðY jX1 ¼ xt1; . . . ;X12 ¼ xtDÞ ¼ a þ

P3
d¼1 ad Ctd þ

P4
d¼1

bd Dtd þ
P12

d¼3 hd xtd þ
PK

k¼1 ckztk using the approximate F-test described above. Once again the
parametric specification is rejected in favor of the ANRM.
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Fig. 2. Parametric and
Nonparametric Regres-
sion Estimates Distance
to the nearest improved
park Distance to the
nearest industrial zone
Distance to the nearest
business district

Estimation of hedonic price functions 105



Fig. 2. (Contd.)

106 C. Martins-Filho, O. Bin



Fig. 2. (Contd.)
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and (10) are also compared in subsection 5.3 by performing an out-of-sample
forecast exercise.

5. Estimation results and analysis

5.1. Parametric estimates

The parametric models we estimate are simple and for the casual observer
may seem rather inappropriate, especially given the availability of much ri-
cher parametric specifications. However, after informal experimentation with
several alternative parametric specifications that do not expand the set of
regressors, we were surprised to learn that the best overall fit resulted from
model (10). Our informal search is by no means evidence that one cannot fit a
better parametric model, but it is indicative that (10) does reasonably well
against some obvious parametric alternatives.

The results in Tables 3 and 4 suggest that the most important attributes in
determining sales prices are the dwelling area, the lot square footage and
dwelling age. Among the locational attributes the most significant determi-
nants of sales prices are the dwelling’s elevation, its distance to the central
business district, nearest wetland and nearest commercial district. The results
are reasonable and generally in line with comparable previous studies, e.g.,
Iwata et al. (2000). We will make more specific comments regarding the
estimated parametric model as we contrast its results with that of the ANRM.
All of the variables used in the estimation of (10) are in deviation form.
Hence, the parametric model can be interpreted as a second order Taylor’s
approximation around the sample average of the regressors.

5.2. Nonparametric estimates

We start our analysis by observing that the estimated regressions have very
reasonable shapes. No clear instance of over or under smoothing is apparent

Fig. 2. (Contd.)
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and the fact that a common bandwidth was used in each regression direction
did not create problems for most of the regressors’ data range. The estimated
parameters associated with the dummy variables in (8) are given by
â1 ¼ 9700:53, â2 ¼ 8309:05, â3 ¼ 51628:19, b̂1 ¼ 10371:50, b̂2 ¼ 8108:13,
b̂3 ¼ 10728:55 and b̂4 ¼ &21364:61, which are with the exception of b̂1 dif-
ferent from those in the parametric models. There seem to be some similarities
between the regression estimates produced by parametric model (10) and the
ANRM for some regressors, e.g., dwelling area and land area, however for
most regressors the two models reveal significantly different impact on sales
price. These are more pronounced for the impact of distance to the nearest
lake, industrial zone, central business district and dwelling elevation. Before
turning to a more specific analysis of our results we point out that estimated
regression behavior close to the boundaries should be interpreted with cau-
tion due to the scarcity of observations in these data ranges.

The estimated regressions for the influence of a dwelling’s area and land
area on price have very reasonable shape. In the range ð60; 230Þ, where most
of the data are concentrated, mb

3 is increasing and nearly linear, with a first
derivative that oscillates between 300 and 1,000 dollars. The estimated
regression is slightly convex for dwellings with area larger than 230, indicating
a larger impact of size on prices for larger dwellings. It is not surprising, given
the near linearity of mb

3, that the parametric model produces results that are
very similar to those suggested by mb

3.
In general, as we expected, mb

4 suggests a positive association between sales
price and land area. The impact on sales prices of land area is much less
pronounced than that of dwelling area. Within +1 standard deviation
ð134; 1; 320Þ from the average land size (727) sales prices vary by less than 60
dollars for a marginal increase in land area. The marginal impact decreases
with land area. The results from the parametric model are similar in that the
estimated regression has positive slope, but the impact of land area on sales
prices is even smaller than that suggested by the nonparametric model. We
believe that in this case, even though m4 is nearly linear, the parametric model
underestimates the impact of land area on prices.

The impact of dwelling age on sales prices is difficult to intepret. The
data seems to indicate that housing developments has occured in fairly well
defined phases. We were able to identify four data clusters corresponding to
the periods 1920& 1930, 1945& 1956, 1970& 1981, and 1991& 1994. The
fact that the data is clustered has produced a bandwidth that seems to
slightly undersmooth mb

5, hence the wiggly appearence of the estimated
regression. Another potential explanation for the shape of mb

5 is the exis-
tence of vintage effects. We are able, however to discern some patterns.
Dwelling age impacts prices negatively in the ð1975; 1990Þ, i.e., for house
with age between 4 and 18 years. Ceteris paribus a house built in 1990 will
cost about 10; 000 dollars more than one built in 1975. However, for
dwellings that are between 20 and 50 years old the impact of age on sales
prices seems to be much less pronounced. In fact, not counting the 1935-
1945 period, for dwellings between 20 and 80 years old, the impact of age
on sales prices is smaller than +10; 000 dollars. The sharp increase in mb

5
from 1935& 1945 seems to be caused by a combination of sample vari-
ability and undersmoothing. After 80 years of age sales price continuously
fall with age. The results that derive from the parametric model are quite
different and somewhat implausible. Age, according to model (10) has a
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positive impact on price for dwellings up to approximately 40 years old.
After that there is a very small negative impact.

Close proximity to a lake has a substantial positive impact on sales prices.
However, this impact is restricted to dwellings that are less than 4 kilometers
away from a lake. Here, the impact on prices from moving away from a lake
is substantial. Ceteris paribus, moving a house from 2 to 4.5 kilometers away
from a lake produces a drop in sales price of approximately 30; 000 dollars.
The influence of proximity to a lake on sales price falls dramatically after a
dwelling is more than 4 kilometers away. In fact, m5ð%Þ ' 0 falls within the
confidence band around mb

5 for almost every point in the data range. These
results are very intutitive. After a certain distance, use of a lake for recrea-
tional purposes is limited and even prohibited by some neighborhood asso-
ciations (in the case of private lakes) and transportation costs start to
outweight the benefits of lake use. The parametric model produces a some-
what different interpretation of the data. The drop in sales prices as one
moves away from a lake is gradual and decreasing. In contrast with the
nonparametric model, the distance to a lake remains important up until
approximately 7.5 kilometers. Somewhat disturbing is the fact that the
parametric model seems to predict a slight increase in sales prices for dwell-
ings that are more than 9 kilometers away from a lake.

There is a negative relationship between sales prices and distance to the
nearest wetland for most of the data range. This negative impact is more
pronounced within +1 standard deviation of the average distance (1.09
kilometers). Moving a dwelling adjacent to a wetland 2 kilometers away
produces a decrease in price of about 20; 000 dollars. Although this effect is
smaller than the lake effect, it is significant and suggests a market that
incorporates quite well the value of environmental amenities. As in the case
with distance to a lake, dwellings that are farther away from a wetland (in this
case more than 2 kilometers) have prices that are impacted little by wetland
distance. Note that the impact of wetland distance on sales prices dies out
more rapidly than the impact of distance to a lake. The parametric model
seems to do a fairly good job in estimating the impact of wetland proximity
on price. There seems however to be overestimation of this impact for
dwellings that are within 2 kilometers of wetlands.

Proximity to an improved park has little impact on sales prices. In fact,
m8ð%Þ ' 0 falls within the confidence band we constructed for virtually all
points in the data range. Price variations where most of the data lies ð:1; :6Þ
kilometers are all within +3; 000 dollars. Once again, the parametric model
overestimates this regression direction in the proximity of the origin. Rather
unappealing and couterintuive is the positive slope of the estimated regression
for distances greater than 0:8 kilometers.

The regression estimate mb
9 predicts a positive impact of dwelling elevation

on sales prices for the interval ð20; 130Þ meters. The gain in price for this data
range is 40; 000 dollars. After 130 meters mb

9 levels out with a derivative that is
very close to zero. For elevations above 170 meters the impact on sales prices
increases sharply, however as in previous cases there are scarcely any
observations on this data range. It seems reasonable to expect a positive
association between elevation and prices, due to the possibility of views and
quieter streets. However, higher elevations may also be associated with higher
transportation costs. Hence, the fact that mb

9 levels off is expected and intu-
itively appealing. The parametric model produces quite different predictions.
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Dwelling prices first drop (until about 110 meters) with elevation then rise
continuously at an increasing rate. Clearly, there is no cost associated with
elevation gain. According to the parametric model, a house at average ele-
vation (81 meters) has a price increase of almost 80; 000 dollars when it gains
100 meters in elevation.

The regression estimate mb
10 clearly captures the negative impact on sales

prices of dwellings that are close to industrial zones. Furthermore, it indicates
that this negative effect is specially intense very close to the industrial zone.
For example, moving a dwelling that is adjacent to an industrial zone 400
meters away, increases its value ceteris paribus by approximately 20; 000
dollars. The benefits from moving away from industrial zones diminish at an
increasing rate. Interestingly, there seems to be a negative impact on sales
prices after about 2 kilometers, but once again there are a small number of
observations in this range of data. It is likely that this results from increased
transportation costs to the work place. Once again the predictions of the
parametric model are quite different. Prices are predicted to fall as we move
away from industrial zones (until about 1.1 kilometers). For distances above
1.1 kilometers, prices increase continuously at an increasing rate. The fall in
prices due to increased transportation costs captured by the nonparametric
model is not revealed by the parametric model.

The regression estimate mb
11 suggests a positive relationship between sales

prices and distances to the nearest commercial zone. The impact however is
much smaller than that of X10. That is, the problems of congestion, pollution,
etc. associated with proximity to a commercial zone do not seem as intense as
those related to proximity to industrial zones. As in the case of mb

10 we observe
that after a certain distance, there is a reversal of the first derivative sign, and
distance begins to have a negative impact on sales prices. Once again, we
attribute this effect to a predominance of transportation costs over congestion
costs. Here, the parametric model performs poorly once again reproducing
the same prediction patterns observed for the case of X10.

Proximity to the central business district (CBD) has a very strong positive
impact on sales prices for the first 3 kilometers. Ceteris paribus moving a
dwelling that is adjacent to the CBD to a location 3 kilometers away may
reduce its price by as much as 100; 000 dollars. However, while still negative
this effect is reduced dramatically after 3 kilometers. For example, moving
from 3 kilometers to 9 kilometers away from the CBD impacts price by only
20; 000. This is in line with our general expectation. The effect of distance to
the CBD for the parametric and nonparametric models are quite different.
Once again, the very sharp initial decline on prices as a typical dwelling is
moved away from the CBD is largely unaccounted by the parametric model.

Overall, we believe that the nonparametric results are more appealing than
those suggested by the parametric model. It comes as no surprise that
whenever the estimated regressions are close to linear the parametric model
provides very adequate responses. However, even in this case estimated slopes
can be over or under estimated depending on the pattern of dispersion of the
data, as in the case of land area.

5.3. Out-of-sample forecast exercise

One of the characteristics of hedonic price models is that they can be used to
forecast prices, given a set of product characteristics. We were able to perform
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a simple out-of-sample forecast evaluation of both the parametric and non-
parametric models based on a new sample of 1000 observations, which we
denote by fðyN

t ; x
N
t1; . . . ; xN

t12Þg
n
t¼1.

10 The new sample comes from the same
housing market and corresponds to the same regressors and regressand. The
exercise is particularly useful for comparison purposes, since as mentioned
above, models (8) and (10) are nonnested. Using the new data, we obtained
forecasted sales prices for the parametric models (9) and (10),

ŷp
t ¼ âþ

X3

d¼1
âdCN

td þ
X4

d¼1
b̂dDN

td þ
X12

d¼3
ĥdxN

td ; ŷp
t ¼ âþ

X3

d¼1
âdCN

td þ
X4

d¼1
b̂dDN

td

þ
X12

d¼3
ĥdxN

td þ
1

2

X12

d¼3

X12

d¼3
ĥddxN

tdxN
td;

where â; âd ; b̂d ; ĥd ; ĥdd are the least squares estimators, and for the ANRM,

ŷb
t ¼ ab þ

X3

d¼1
ab

dCN
td þ

X4

d¼1
bb

dDN
td þ

X12

d¼3
mb

dðx
N
tdÞ:

We obtained new values for the bandwidth vector ĥn, based on the new set of
observed regressors, in the estimation of the ANRM but we did not update
ab. Using fyN

t g
n
t¼1 we calculate the square root of the average squared forecast

error for the parametric models (F Eð9Þ,F Eð10Þ) and ANRM (F Eb) estimators
to be F Eð9Þ ¼ 42; 073, F Eð10Þ ¼ 40; 503 and F Eb ¼ 27; 853. Hence, the fore-
cast error of the ANRM is about .69 of that corresponding to parametric
model (10). This forecast difference can have a substantial effect where prices
need to be forecasted. For example, assuming a property tax rate of 0:014 of
dwelling market value, this represents an average 177 dollars tax adjustment
per dwelling per year. Assuming 200; 000 tax units, this represents about 35:4
million dollars in property tax adjustments.

6. Conclusions

In this paper we have argued that the functional form specification problem
common in hedonic price models can be conveniently addressed by modeling
the conditional mean of prices as an additive nonparametric regression
model. The approach is in our view vastly superior to a fully nonparametric
design for several reasons. First, from a practical perspective, the smooths are
very easy to interpret and visualize permitting therefore an analysis of the
contribution of characteristics and attributes to prices in much the same way
that is obtained in classical separable parametric models. Second, from a
statistical perspective, a series of well known difficulties of an unrestricted
fully nonparametric design are avoided.

Our bandwidth selection method is novel in economics, entirely data
driven, and has performed well in pactice vis a vis the popular cross validation
selection method. To facilitate the implementation of the method among
applied economists we have written a GAUSS program that permits relatively

10 We have re-estimated the ANRM based on n ¼ 2000 and the results are virtually identical to
those reported here for n ¼ 1000. Results are available from the first author upon request.
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fast implementation of the procedure. Most importantly, after implementing
the procedure using data for Multnomah County, Oregon, we verify that the
nonparametric additive model is able to identify associations and patterns of
dependencies among the data that a reasonably adequate parametric model
fails to unveil. Besides, an out-of-sample evaluation of the forecast errors of
both the parametric and nonparametric models reveals a superior perfor-
mance of the ANRM. We are optimistic that the econometric modeling
strategy used in this study can be successfully used in a variety of settings.

Despite our optimism, we find that the estimation procedure used in this
paper needs to be understood better. We note that although the tests we
perform and the confidence bands we construct have been shown to have
reasonable properties in simulation studies (Hastie and Tibshirani 1990), we
are concerned with our inability to construct asymptotically valid confidence
intervals and test of hypotheses.
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