
A new estimator of a jump discontinuity in regression

Carlos Martins-Filho1

Department of Economics
University of Colorado

Boulder, CO 80309-0256, USA
email: carlos.martins@colorado.edu

Sihong Xie

Department of Economics
Seattle University

Seattle, WA , 98122 USA
email: sxie@seattleu.edu

and

Feng Yao

Department of Economics
West Virginia University

Morgantown, WV 26505-6025, USA
email: feng.yao@mail.wvu.edu

and

China Center for Special Economic Zone Research
Shenzhen University

Shenzhen, Guangdong 518060, China

May, 2022

Abstract. We propose a new class of estimators for a jump discontinuity on nonparametric regression. While
there is a vast literature in econometrics that addresses this issue (e.g., Hahn et al., 2001; Porter, 2003; Imbens
and Lemieux, 2008; Cattaneo and Escanciano, 2017), the main approach in these studies is to use local polynomial
(linear) estimators on both sides of the discontinuity to produce an estimator for the jump that has desirable
boundary properties. Our approach extends the regression from both sides of the discontinuity using a theorem of
Hestenes (1941). The extended regressions are then estimated and used to construct an estimator for the jump dis-
continuity that solves the boundary problems normally associated with classical Nadaraya-Watson estimators. We
provide asymptotic characterizations for the jump estimators, including bias and variance orders, and asymptotic
distributions after suitable centering and normalization. Monte Carlo simulations show that our jump estimators
can outperform those based on local polynomial (linear) regression.
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1 Introduction

Regression discontinuity (RD) designs have been widely used in economics and other social and behavioral sciences.

See Imbens and Lemieux (2008), Lee and Lemieux (2010) and Cattaneo and Escanciano (2017) for an overview of

the literature. From a statistical perspective, the estimation of a jump discontinuity in regression is made difficult

by the fact that traditional nonparametric kernel regression estimators, such as Nadaraya-Watson (NW), suffer

from boundary problems (see, Gasser et al., 1979, Gasser and Muller, 1984, Fan, 1992, Härdle and Linton, 1994).

Specifically, these estimators have slower rates of convergence for bias at boundary points than at interior points in

the regression domain. Under typical assumptions on the regression and regressor density (e.g., twice continuous

differentiability), the NW estimator constructed with bandwidth h > 0 has bias of order O(h) at boundary points,

compared to O(h2) at interior points. Porter (2003) observes that the problem can be aggravated in RD designs

as an estimator for a jump discontinuity may compound the poor bias behavior of nonparametric estimators of

the regression to the right and to left of the point of discontinuity.

While there is a vast literature in econometrics and statistics that attempts to address this issue, (see, Fan, 1992,

Hahn et al., 2001, Porter, 2003, Imbens and Lemieux, 2008, Lee and Lemieux, 2010, Imbens and Kalyanaraman,

2012) the main approach in RD designs is to estimate local polynomial (mostly linear) approximations for the

regression on both sides of the discontinuity and use these to produce an estimate for the jump at the point

of discontinuity. This approach is justified by Fan (1992) where it is shown that local linear estimators, under

standard smoothness assumptions, have bias of order O(h2) at interior and boundary points.

In this paper, we adopt a novel approach. The idea behind our estimation procedure is to extend regression

segments from the left and from the right of the point of discontinuity to the entire real line using an extension

proposed by Hestenes (1941). These extended regressions are then estimated and used to estimate the jump at

the point of discontinuity. Regression segments can be different and, in particular, can have different degrees

of smoothness. We are inspired by Mynbaev and Martins-Filho (2019), where a simple and elegant solution to

boundary problems in density estimation is obtained using the same extension principle.

Our estimation strategy produces a class of jump discontinuity estimators indexed by the type of Hestenes’

extension. Our estimators are simple to construct, retaining an algebraic structure that mimics that of the classical

NW estimator. However, contrary to the NW estimator, our estimators have boundary behavior that is completely

analogous to that at interior points of the regression domain.

This paper is organized as follows: section 2 discusses Hestenes’ extension and introduces the new class of

estimators; section 3 provides their asymptotic distribution and compares it to that of estimators for a jump

discontinuity based on local linear regression estimators; section 4 contains Monte Carlo simulations; section 5 is

a conclusion. The main theorem’s proof is given in an appendix.

Throughout the paper, for S ⊆ R we define the class of bounded continuous functions g : S → R by C0b (S).

The derivative of order s ∈ N of g at x ∈ S is denoted by g(s)(x) and Csb (S) := {g : S → R : g(s) ∈ C0b (S)} with

g(0) := g. The righthand derivative of order s of g at x is denoted by g(s)(x+) and its lefthand derivative of order

s at x by g(s)(x−). IS is the indicator function for the set S. The letter C represents a positive real constant that

varies with the context.
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2 Hestenes’ extension and a new class of estimators

Let Y and X be random variables defined on the probability space (Ω,F , P ) with E(Y 2) < ∞ and consider the

regression E(Y |X) = µ(X) for some µ : R→ R measurable. We assume that lim
x↓0

µ(x) = µ(0), lim
x↑0

µ(x) = µ(0−) ∈

R and define a jump discontinuity at 0 by

J0 := µ(0)− µ(0−). (2.1)

Our objective is to estimate J0 given a random sample {(Yi, Xi)}ni=1 of size n ∈ N.1

Based on equation (2.1), most of the existing literature, e.g. Porter (2003), Hahn et al. (2001), Imbens and

Lemieux (2008), Imbens and Kalyanaraman (2012), constructs estimators for J0 by taking the difference between

two nonparametric regression estimators at x = 0. For example, Hahn et al. (2001) propose

J̌0 = µ̌(0)− µ̌(0−)

where µ̌(0) and µ̌(0−) are local linear estimators constructed using {(Yi, Xi)}{i:Xi≥0} and {(Yi, Xi)}{i:Xi<0}, re-

spectively. The widespread use of J̌0 derives from the desirable boundary properties of local linear estimators

such as µ̌(0) and µ̌(0−). In what follows we propose new estimators for J0 based on extensions of continuously

differentiable functions from bounded to unbounded domains first introduced by Hestenes (1941).

2.1 Hestenes’ extension

Consider g ∈ Csb ([0,∞)) for s ∈ {0}∪N. Hestenes (1941) showed that g can be extended from [0,∞) to R and that

the extensions are elements of Csb (R). Formally, let {wi}s+1
i=1 be a sequence of positive, pairwise distinct numbers,

e.g., wi = 1/i used by Hestenes (1941) or wi = i. Let {ki}s+1
i=1 be defined by the system of equations

s+1∑
i=1

(−wi)jki = 1, for j = 0, · · · , s. (2.2)

Since this system has the Vandermonde determinant

det


1 1 ... 1
−w1 −w2 ... −ws+1

... ... ...
(−w1)s (−w2)s ... (−ws+1)s

 6= 0,

{ki}s+1
i=1 is uniquely determined by {wi}s+1

i=1 . The Hestenes extension of g to (−∞, 0) is given by

φs(x) =

s+1∑
j=1

kjg(−wjx) for x < 0. (2.3)

Due to equation (2.2) we have the following “sewing” conditions

φ(m)
s (0−) =

s+1∑
j=1

(−wj)mkjg(m)(0+) = g(m)(0+) for m = 0, 1, · · · , s.

We define gs on R by

gs(x) =

{
g(x) for x ≥ 0
φs(x) for x < 0

, (2.4)

1The assumption that the discontinuity occurs at 0 is made without loss of generality. If it occurs at xd 6= 0, it suffices to shift µ
by defining µ̄(z) := µ(z + xd) where z = x− xd with discontinuity at z = 0.
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and note that gs is s times differentiable at all x ∈ R.2

Now, let µ(X) be a regression where the density f of X exists and has support [0,∞), i.e. X ≥ 0, with f(0) > 0.

For motivation, consider the infeasible – in that f(0) is assumed to be known – NW estimator for µ(0) given by

µ̂(0) =
1

f(0)

1

nh

n∑
i=1

K

(
Xi

h

)
Yi,

based on a random sample {(Yi, Xi)}ni=1, a kernel K and bandwidth 0 < h ↓ 0 as n→∞. For K even, we have

E(µ̂(0)) =
1

f(0)

∫ ∞
0

µ(uh)f(uh)K(u)du

and, in general, lim
n→∞

E(µ̂(0)) 6= µ(0). This asymptotic bias at 0 is a manifestation of the well known boundary bias

problem associated with NW type estimators. In our context, the main idea is to construct an estimator µ̃(0) that

does not carry this bias and whose expectation admits an integral representation that uses a Hestenes’ extension

of µf from [0,∞) to R. For this purpose, consider

µ̃(0) =
1

f(0)

1

nh

n∑
i=1

KH

(
Xi

h

)
Yi, (2.5)

where KH(x) = K (x) +
∑s+1
j=1

kj
wj
K
(
x
wj

)
, and wj , kj and s are as in equation (2.2). For K even, we obtain

E(µ̃(0)) =
1

f(0)

∫ ∞
0

µ(uh)f(uh)K(u)du+

∫ 0

−∞

s+1∑
j=1

kjµ(−wjuh)f(−wjuh)K(u)du


=

1

f(0)

∫
R

gs(uh)K(u)du

where

gs(x) =

{
µ(x)f(x) for x ≥ 0∑s+1
j=1 kjµ(−wjx)f(−wjx) for x < 0

(2.6)

is constructed using a Hestenes’ extension of µf from from [0,∞) to R. Then, the bias of µ̃(0) has integral

representation

E(µ̃(0))− µ(0) =
1

f(0)

∫
R

(gs(uh)− gs(0))K(u)du. (2.7)

The smoothness properties that gs inherits from those of f and µ can be explored to establish asymptotic unbi-

asedness at 0 and the order of bias decay as a function of h. For example, if µf ∈ Csb ([0,∞)), K is such that∫
R
ujK(u)du = 0 for j = 1, · · · , s− 1 and

∫
R
|u|s|g(s)s (τuh)|du < C for some τ ∈ (0, 1) and C <∞ we have

|E(µ̃(0))− µ(0)| ≤ hs

s!

1

f(0)

∫
R

|u|s|g(s)s (τuh)|du ≤ hsC → 0 as n→∞.

The asymptotic bias at 0 is eliminated and its order of decay, viz., hs is easily obtained. We use the insight gained

from using Hestenes’ extension to define a class of estimators for the jump J0.

2.2 A class of estimators for J0

We propose the following Hestenes’ based estimator for J0:

J̃0 := µ̃(0)− µ̃(0−) =
1

f̃+(0)

1

nh

n∑
i=1

KH

(
Xi

h

)
I{Xi≥0}Yi −

1

f̃−(0)

1

nh

n∑
i=1

KH

(
Xi

h

)
I{Xi<0}Yi,

2Note that since gs depends on {wj}s+1
j=1 a more explicit notation would be gs

(
x; {wj}s+1

j=1

)
. However, for simplicity we write gs(x)

and leave implicit its dependence on {wj}s+1
j=1.
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where f̃+(0) = 1
nh

∑n
i=1KH

(
Xi

h

)
I{Xi≥0} and f̃−(0) = 1

nh

∑n
i=1KH

(
Xi

h

)
I{Xi<0}. We note that J̃0 belongs to a

class of estimators whose elements are indexed by {wj}s+1
j=1. Hence, for an assumed s, the choice of {wj}s+1

j=1 indexes

an element of the class. The estimators µ̃(0) and µ̃(0−) retain the simple algebraic structure of NW estimators

but with a new “Hestenes kernel” KH which depends on {wj}s+1
j=1. Also, note that when s = 0, KH is the reflection

kernel used by Schuster (1985) in density estimation in domains with boundaries.

3 Asymptotic properties of J̃0

We make the following assumptions to establish convergence in distribution of J̃0. We start with typical restrictions

on the kernel.

Assumption 3.1. The kernel K : R → R is an even function satisfying: 1. |K(x)| < C for any x ∈ R; 2.∫
R
K(u)du = 1; 3.

∫
R
umK(u)du = 0 for m = 1, · · · , s− 1,

∫
R
|u|s|K(u)|du < C and |u|s+1|K(u)| → 0 as u→∞

for s ∈ {2, 4, · · · }; 4.
∫
R
|K(u)|2+δdu < C for some δ > 0.

In the existing literature, it is frequently assumed that s = 2. Different form Porter (2003) or Imbens and

Kalyanaraman (2012) we do not restrict the kernels to be compactly supported, nor is there any requirement that

they satisfy a Lipschitz condition. However, we retain the assumption that the kernels be uniformly bounded and

even functions.

Assumption 3.2. 1. The sequence {(Yi, Xi)}i∈N is independently and identically distributed (IID) as (Y,X).

2. The marginal density f : R→ [0,∞) of X exists and f(0) > 0, f ∈ Csb (R),
∫
R
|f (`)(x)|dx < C for ` = 1, · · · , s

and some s ∈ N.

3. E(Y 2) < C and E(Y |X) = µ(X) has a jump discontinuity J0 at x = 0. We let µ(x) = µu(x) + µl(x) for

x ∈ R where µu(x) =

{
µ(x) if x ≥ 0

0 if x < 0
, µl(x) =

{
0 if x ≥ 0

µ(x) if x < 0
and assume that µu ∈ Csb ([0,∞)) and

µl ∈ Csb ((−∞, 0)).

4. E((Y − µ(X))2|X) = V(X) > 0 with V ∈ C0b (R) and E((Y − µ(X))2+δ|X) < C for some δ > 0.

The assumption of integrability f (`) for ` = 1, · · · , s is new relative to the extant literature. It emerges because

of the structure of the Hestenes’ based estimator. Although theoretically restrictive, it is in many empirical settings

not necessarily binding.

The assumption that V ∈ C0b (R) is not necessary to prove the following Theorems 3.1. The conditional

variance, as in Porter (2003) or Imbens and Kalyanaraman (2012), could also exhibit a discontinuity at 0 without

fundamentally changing our theorem. We assume continuity of V for simplicity and because discontinuity of the

skedastic function does not materially impact the estimation of J0. The other restrictions on Assumption 3.2 are

standard in the RD design literature.

Theorem 3.1. Suppose 0 < h→ 0, nh→∞ and nh2s+1 = O(1). Then, under assumptions 3.1 and 3.2,

√
nh

(
J̃0 − J0 −

(
hs

s!
BsµK,s + op(h

s)

))
d→ N

(
0, 2
V(0)

f(0)

∫ ∞
0

K2
H(u)du

)
,

where Bs = 1
f(0)

(∑s
q=1

(
s
q

)
[µ(q)(0+)− µ(q)(0−)]f (s−q)(0)

)
and µK,s =

∫
R
usK(u)du.
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We note that the approximation for the bias of J̃0, i.e., hs

s! BsµK,s depends on the density f . Hence, our

estimators lack design-adaptability, in contrast with the approximation for the bias of J̌0 which depends only on µ

(see Porter, 2003). However, it is not possible to directly compare the magnitude of the absolute value of the biases

of J̃0 and J̌0 without considering specific µ and f . The use of higher order kernels provides automatic increase in

the rate of bias decay for J̃0.

It is possible to compare the magnitude of the variance of the asymptotic distribution in Theorem 3.1 with

that of J̌0 in Theorem 3 (a) in Porter (2003) when p = 1 (local linear estimator) and s = 2. Note that under

continuity of V we need only compare IK

(
s, {wj}s+1

j=1

)
:=
∫∞
0
K2
H (u) du when s = 2 to Porter’s constant PK =(

1 0
)

Γ−1∆Γ−1
(

1 0
)T

, where Γ =

(
γ0 γ1
γ1 γ2

)
, ∆ =

(
δ0 δ1
δ1 δ2

)
with γj =

∫∞
0
ujK(u)du and δj =∫∞

0
ujK2(u)du for j = 0, 1, 2. Table 1 gives the values of IK when wj = j and PK for the Gaussian, Epanechnikov

and Triangular/Edge kernels. We note that for the Triangular/Edge kernel, shown by Cheng et al. (1997) to have

Table 1: IK

(
2, {wj}3j=1

)
and PK for Gaussian, Epanechnikov, Triangular/Edge kernels.

Gaussian Epanechnikov Triangular/Edge

IK

(
2, {wj}3j=1

)
1.8507 4.9167 4.6667

PK 1.7860 4.4980 4.8000

optimal properties for boundary estimation problems, IK

(
2, {wj}3j=1

)
< PK , leading to a smaller variance for the

asymptotic distribution of our proposed J̃0 relative to the widely used J̌0.

It follows directly from the theorem that the mean squared error (MSE) of J̃0, denoted byMSE
(
J̃0;K,h, {wi}s+1

i=1

)
,

is given by

MSE
(
J̃0;K,h, {wj}s+1

j=1

)
=

h2s

(s!)2
B2
sµ

2
K,s +

1

nh
2
V(0)

f(0)
IK

(
s, {wj}s+1

j=1

)
+ op

(
h2s + (nh)−1

)
= AMSE

(
J̃0;K,h, {wj}s+1

j=1

)
+ op

(
h2s + (nh)−1

)
.

For given s, K, and {wj}s+1
j=1 we define

h∗ := argmin
h

AMSE
(
J̃0;K,h, {wj}s+1

j=1

)
and by routine optimization we obtain

h∗ = n−
1

2s+1

(
s!(s− 1)!

2

) 1
2s+1

(BsµK,s)
− 2

2s+1

(
2
V(0)

f(0)
IK

(
s, {wj}s+1

j=1

)) 1
2s+1

. (3.1)

In practice, the use of h∗ depends on obtaining estimates of V(0), f(0), µ(q)(0+), µ(q)(0−) and f (s−q)(0) for

q = 1, · · · , s that can be used in equation (3.1) to produce a “plug in” bandwidth. Since f ∈ Csb (R), several

consistent estimators for f(0) and f (s−q)(0) can be obtained. See, e.g., Härdle et al. (1990), Park and Marron

(1990), Sheather and Jones (1991) and Wand and Jones (1995). Consistent estimators for V(0), µ(q)(0+) and

µ(q)(0−) when s = 2 and q = 1, 2 can be obtained as in section 4.2 of Imbens and Kalyanaraman (2012).

Lastly, we note that Theorem 3.1 makes clear that the asymptotic distribution of the estimators J̃0 depends

on {wj}s+1
j=1. Conceptually, a suitably defined loss function can be defined to guide the choice of {wj}s+1

j=1 and,
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Figure 1: Regressions µ1, µ2, µ3, µ4 with a discontinuity at x = 0

by consequence, J̃0. We leave this optimal theoretical choice of {wj}s+1
j=1 for future work. However, as shown by

the Monte Carlo simulations in the next section, even a simple choice of wj = j can lead to an estimator J̃0 that

outperforms the widely used J̌0 in terms of root mean squared error.

4 Monte Carlo study

We investigate some of the finite sample properties of our jump estimator J̃0 and compare them to those of the

widely used local linear regression jump estimator J̌0. We consider four different regressions µj(x) = µju(x)+µjl(x)

for j = 1, · · · , 4. The jump discontinuity occurs at x = 0 with µju(x) = 0 for x < 0 and µjl(x) = 0 for x ≥ 0.

Specifically,
µ1(x) : µ1l(x) = ((x+ 1)2 − 1)I{x<0}, µ1u(x) = (−(x− 1)2 + 2)I{x≥0}
µ2(x) : µ2l(x) = ((x− 1)2 − 1)I{x<0}, µ2u(x) = (−(x− 1)2)I{x≥0}
µ3(x) : µ3l(x) = (−(x+ 1)2 + 1)I{x<0}, µ3u(x) = ((x− 1)2)I{x≥0}
µ4(x) : µ4l(x) = (−(x− 1)2 + 1)I{x<0}, µ4u(x) = ((x− 1)2 − 2)I{x≥0}.

Figure 1 contains the graphs of each of these regressions.

The data generating processes (DGP) use Yi = µj(Xi) + εi for i = 1, · · · , n. We set the conditional vari-

ance V(X) = 4 and choose εi ∼ NID(0, 4). The regressor Xi is generated from two distributions: (a) Xi ∼

NID(0.1, 1/16), (b) Xi = −1 + 2ξi, where ξi ∼ BetaID(3, 2). The Xi generated using the Beta distribution takes

values in [−1, 1] as do most of the Xi generated by our choice of Normal. We note that our choice of distribu-

tions for Xi gives density derivatives different from zero at the point of discontinuity, allowing for a meaningful

comparison of the estimators’ biases.
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Table 2: Bias (B), standard error (S), root mean squared error (R) for J̃0 and J̌0 and optimal bandwidth h using
the Triangular/Edge kernel

µ X n Estimator B S R h

µ1 Beta
1000

J̃0 0.221 0.235 0.322 0.630
J̌0 0.110 0.267 0.289 0.796

2000
J̃0 0.026 0.198 0.200 0.549
J̌0 0.086 0.202 0.220 0.693

µ2 Normal
1000

J̃0 -0.050 0.201 0.207 0.402
J̌0 0.051 0.247 0.252 0.696

2000
J̃0 -0.053 0.152 0.161 0.350
J̌0 0.053 0.172 0.180 0.606

µ3 Beta
1000

J̃0 -0.215 0.232 0.316 0.630
J̌0 -0.104 0.270 0.290 0.796

2000
J̃0 -0.034 0.200 0.203 0.549
J̌0 -0.098 0.202 0.225 0.693

µ4 Normal
1000

J̃0 0.046 0.192 0.197 0.402
J̌0 -0.055 0.234 0.240 0.696

2000
J̃0 0.058 0.149 0.159 0.350
J̌0 -0.049 0.168 0.175 0.606

We implement J̃0 with s = 2 and use the Gaussian, Epanechnikov and Triangular/Edge kernels, the latter being

frequently used in nonparametric regression discontinuity estimation (see, Imbens and Lemieux, 2008; Imbens and

Kalyanaraman, 2012). We report results from using the the Triangular/Edge kernel. Results using the other

kernels are qualitatively similar and are available upon request. We choose wj = j for j = 1, 2, 3 and use the

optimal bandwidth h∗ given in equation (3.1) in the implementation of J̃0.

To implement J̌0 we use the optimal bandwidth hopt given in equation (7) of Imbens and Kalyanaraman (2012).

For both J̃0 and J̌0 the optimal bandwidths are calculated using the true values for f(0), f (1)(0), V(0), µ(q)(0+),

µ(q)(0−) for q = 1, 2. Our goal is to compare the performance of these estimators without the potential noise that

will be introduced by the estimation of the functionals that appear in the expressions for the optimal bandwidths.

As mentioned above, an entirely data-driven procedure to calculate J̃0 and J̌0 can be easily implemented.

We generate 2000 samples of size n = 1000, 2000 and summarize in Table 2 the performance of the jump

estimators at x = 0 by calculating their experimental bias (B), standard deviation (S) and root mean squared

error (R). We also report the optimal bandwidth h for J̌0 and J̃0.

For both estimators, and all DGPs, as the sample size increases, performance improves in terms of smaller biases

(with exceptions), variances, and root mean squared errors. Thus, unsurprisingly, the simulations support the

consistency of both jump discontinuity estimators. Except for the design where n = 1000 and Xi ∼ BetaID(3, 2),

J̃0 has root mean squared error (R) which is smaller than that of J̌0. This improved performance derives mostly

from a smaller variance, as the absolute value for the magnitude of the bias for both estimators is quite small,

relative to the variance. Once again, the simulations confirm the asymptotic results that indicate small leading

terms for the bias.

As mentioned in the previous section, a theoretically guided (optimal) choice of {wj}s+1
j=1 may lead to even

stronger improvements on finite sample experimental properties of J̃0 over J̌0, but our simulations already indicate

7



that our estimator can outperform the popular J̌0.3

5 Conclusion

This paper shows that Hestenes’ extensions can be used to define estimators for a jump discontinuity in regression

that has desirable asymptotic properties, is easy to calculate and can outperform the jump discontinuity estimators

based on local polynomial (linear) estimators that are widely used in RD designs in Economics and other fields.

Future work on this new class of estimators should devise a criterion for selecting an optimal element of the class.
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A Appendix. Proof of theorem 3.1

Theorem 3.1 Proof. Since µu(0) = µ(0) and lim
x↑0

µl(x) = µl(0−) = µ(0−), we write

J̃0 − J0 =
f(0)

f̃+(0)

1

nh

1

f(0)

n∑
i=1

KH

(
Xi

h

)
I{Xi≥0}(Yi − µu(0))

− f(0)

f̃−(0)

1

nh

1

f(0)

n∑
i=1

KH

(
Xi

h

)
I{Xi<0}(Yi − µl(0−)).

From Theorems 2 and 3 in Mynbaev and Martins-Filho (2019), f(0)

f̃+(0)
= 1 + op(1) and f(0)

f̃−(0)
= 1 + op(1).

Then, letting εi = Yi − µ(Xi)

J̃0 − J0 = Zn

{
1

nh

1

f(0)

n∑
i=1

KH

(
Xi

h

)[
(µ(Xi)− µu(0))I{Xi≥0} − (µ(Xi)− µl(0−))I{Xi<0}

]
+

1

nh

1

f(0)

n∑
i=1

KH

(
Xi

h

)(
I{Xi≥0} − I{Xi<0}

)
εi

}
= Zn {Tn,1 + Tn,2} = ZnTn (A.1)

where Zn = 1 + op(1). Since the sequence {(Yi, Xi)}i∈N is IID by assumption

E(Tn,1) =
1

h

1

f(0)

(∫ ∞
0

KH

(x
h

)
(µu(x)− µu(0))f(x)dx−

∫ 0

−∞
KH

(x
h

)
(µl(x)− µl(0−))f(x)dx

)
=

1

h

1

f(0)
(In,1 − In,2) .

Given that K is even, by changing variables in both integrals we obtain In,1 = h
∫
R
gs,u(uh)K(u)du and

In,2 = h
∫
R
gs,l(uh)K(u)du, where

gs,u(x) =

{
(µu(x)− µu(0))f(x) if x ≥ 0∑s+1

j=1 kj(µu(−wjx)− µu(0))f(−wjx) if x < 0

and

gs,l(x) =


(µl(x)− µl(0−))f(x) if x < 0∑s+1

j=1 kj(µl(−wjx)− µl(0−))f(−wjx) if x > 0

0 if x = 0

.

Consequently, E(Tn,1) = 1
f(0)

(∫
R

[gs,u(uh)− gs,l(uh)]K(u)du
)
. Since E(ε|X) = 0, E(Tn,2) = 0 and

E(Tn) = E(Tn,1). Given that gs,u(0) = gs,l(0) = 0, µu ∈ Csb ([0,∞)) and µl ∈ Csb ((−∞, 0)), by Taylor’s

Theorem, for some λu, λl ∈ (0, 1),

gs,u(uh) = g(1)s,u(0)uh+
1

2!
g(2)s,u(0)(uh)2 + · · ·+ 1

s!
g(s)s,u(λuhu)(uh)s

and

gs,l(uh) = g
(1)
s,l (0)uh+

1

2!
g
(2)
s,l (0)(uh)2 + · · ·+ 1

s!
g
(s)
s,l (λlhu)(uh)s

1



where

g(`)s,u(x) =


∑`

q=0

(
`
q

)
[µu(x)− µu(0)](q)f (`−q)(x) if x ≥ 0∑s+1

j=1 kj(−wj)`
∑`

q=0

(
`
q

)
[µu(−wjx)− µu(0)](q)f (`−q)(−wjx) if x < 0

g
(`)
s,l (x) =



∑`
q=0

(
`
q

)
[µl(x)− µl(0−)](q)f (`−q)(x) if x < 0∑s+1

j=1 kj(−wj)`
∑`

q=0

(
`
q

)
[µl(−wjx)− µl(0−)](q)f (`−q)(−wjx) if x > 0∑`

q=1

(
`
q

)
µ(q)(0−)f (`−q)(0) if x = 0

for ` = 1, · · · , s. Given that
∫
R
umK(u)du = 0 for m = 1, · · · , s− 1,

E(Tn) =
hs

f(0)

1

s!

(∫
R

[g(s)s,u(λuhu)− g(s)s,l (λlhu)]usK(u)du

)
.

Since gs,u, gs,l ∈ Csb (R),
∫
R
|u|s|K(u)|du < C, |u|s+1|K(u)| → 0 as u → ∞,

∫
R
|f (`)X (x)|dx < C for

` = 1, · · · , s and h→ 0 as n→∞,∫
R

[g(s)s,u(λuhu)− g(s)s,l (λlhu)]usK(u)du→
(
g(s)s,u(0)− g(s)s,l (0)

)∫
R

usK(u)du as n→∞,

where g
(s)
s,u(0) =

∑s
q=1

(
s
q

)
µ
(q)
u (0+)f (s−q)(0) and g

(s)
s,l (0) =

∑s
q=1

(
s
q

)
µ
(q)
l (0−)f (s−q)(0). Hence,

E(Tn) =
hs

s!

1

f(0)

 s∑
q=1

(
s
q

)
[µ(q)(0+)− µ(q)(0−)]f (s−q)(0)

∫
R

usK(u)du+ o(hs)

=
hs

s!
BsµK,s + o(hs). (A.2)

Now, nhV (Tn) = nhV (Tn,1)+nhE(T 2
n,2)+2nhCov(Tn,1, Tn,2). By the assumption that {(Yi, Xi)}i∈N

is an IID sequence

V (Tn,1) =
1

f(0)2
1

nh2
V

(
KH

(
X

h

)[
(µ(X)− µu(0))I{X≥0} − (µ(X)− µl(0−))I{X<0}

])
≤ 1

f(0)2
1

nh2
E

(
K2
H

(
X

h

)[
(µ(X)− µu(0))I{X≥0} − (µ(X)− µl(0−))I{X<0}

]2)

=
1

f(0)2
1

nh

∫ ∞
0

K(u) +
s+1∑
j=1

kj
wj
K

(
u

wj

)2 [
(µu(uh)− µu(0))2 f(uh)

+ (µl(−uh)− µl(0−))2 f(−uh)
]
du =

1

f(0)2
1

nh
Tn,1,

and nhV (Tn,1) ≤ 1
f(0)2
Tn,1. Since µu ∈ Csb ([0,∞)) ⊂ C1b ([0,∞)), by the mean value Theorem there exists

λu ∈ (0, 1) such that µu(uh) − µu(0) = µ
(1)
u (uhλu)uh. Similarly, since µl ∈ C1b ((−∞, 0)), there exists

2



λl ∈ (0, 1) such that µl(0−)− µl(−uh) = µ
(1)
l (−uhλl)uh. Hence,

|Tn,1| = h2
∣∣∣∣∫ ∞

0
u2K2

H(u)(µ(1)u (uhλu))2f(uh)du+

∫ ∞
0

u2K2
H(u)(µ

(1)
l (−uhλl))2f(−uh)du

∣∣∣∣
≤ Ch2

(∫ ∞
0

u2K2
H(u)f(uh)du+

∫ ∞
0

u2K2
H(u)f(−uh)du

)
= Ch2 (Tn,11 + Tn,12) .

Since f is continuous at 0,
∫∞
0 u2|K(u)|du < C and |u|3|K(u)| → 0 as u→∞,∫ ∞

0
u2K2

H(u)f(uh)du,

∫ ∞
0

u2K2
H(u)f(−uh)du→ f(0)

∫ ∞
0

u2K2
H(u)du.

Hence, Tn,1 = O(h2) and nhV (Tn,1) = O(h2).

Now, note that

T 2
n,2 =

1

f(0)2
1

n2h2

(
n∑
i=1

K2
H

(
Xi

h

)
ε2i (I{Xi≥0} − I{Xi<0})

2

+
∑∑
i 6=j

KH

(
Xi

h

)
KH

(
Xj

h

)
(I{Xi≥0} − I{Xi<0})(I{Xj≥0} − I{Xj<0})εiεj

 and

E(T 2
n,2) =

1

f(0)2
1

n2h2
(E(Tn,21) + E(Tn,22)) .

Since V(X) = E(ε2|X),

E(Tn,21) = nE

(
K2
H

(
X

h

)
ε2(I{X≥0} − I{X<0})

2

)
= nE

(
K2
H

(
X

h

)
(I{X≥0} − I{X<0})

2E(ε2|X)

)
= nE

(
K2
H

(
X

h

)
(I{X≥0} − I{X<0})

2V(X)

)
= n

∫
R

K2
H

(x
h

)
(I{x≥0} − I{x<0})

2V(x)f(x)dx

= nh

∫ ∞
0

K2
H(u)(V(hu)f(hu) + V(−hu)f(−hu))du.

By the independence assumption and the fact that E(ε|X) = 0, we have E(Tn,22) = 0. Hence,

E(T 2
n,2) =

1

f(0)2
1

nh

∫ ∞
0

K2
H(u)(V(hu)f(hu) + V(−hu)f(−hu))du =

1

f(0)2
1

nh
Tn,2

and nhE(T 2
n,2) = 1

f(0)2
Tn,2. Now, since 0 ≤ Vf is continuous at 0, E(Y 2) < 0,

∫∞
0 |K(u)|du < C and

|u||K(u)| → 0 as u→∞,

Tn,2 → 2V(0)f(0)

∫ ∞
0

K2
H(u)du as n→∞, (A.3)

and nhE(T 2
n,2) = O(1). Then, by the Cauchy-Schwarz Inequality

nh|Cov(Tn,1, Tn,2)| ≤
(
nhV (Tn,1)nhE(T 2

n,2)
)1/2 ≤ 1

f(0)2
O(h). (A.4)

Hence, given nhV (Tn,1) = O(h2), nhE(T 2
n,2) = O(1) and equations (A.2) and (A.4),∣∣∣∣nhV (Tn)− 2

V(0)

f(0)

∫ ∞
0

K2
H(u)du

∣∣∣∣ ≤ |nhV (Tn,1)|+
∣∣∣∣nhE(T 2

n,2)− 2
V(0)

f(0)

∫ ∞
0

K2
H(u)du

∣∣∣∣
+ 2nh|Cov(Tn,1, Tn,2)| = o(1).
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Note that
√
nh(Tn − E(Tn)) =

√
nh(Tn,1 − E(Tn,1)) +

√
nhTn,2, and since V (

√
nh(Tn,1 − E(Tn,1))) =

nhV (Tn,1) = O(h2) we have
√
nh(Tn,1 − E(Tn,1)) = Op(h). Hence,

√
nh(Tn − E(Tn)) =

√
nhTn,2 + op(1). (A.5)

Now, write Tn,2 = 1
f(0)

∑n
i=1 Zn,i where Zn,i = 1

nhKH

(
Xi
h

)
(IXi≥0 − IXi<0)εi and note that E(Zn,i) = 0

and V (Zn,i) = 1
(nh)2

∫
R
K2
H(x/h)(I{x≥0} − I{x<0})

2V(x)f(x)dx. Letting s2n =
∑n

i=1 V (Zn,i) and defining

Wn,i =
Zn,i
sn

, by Liapounov’s central limit theorem

n∑
i=1

Wn,i
d→ N (0, 1) (A.6)

provided lim
n→∞

∑n
i=1E|Wn,i|2+δ = 0 for some δ > 0. Now,

E|Wn,i|2+δ = (nhcn)−1−
δ
2E

(∣∣∣∣KH

(
X

h

)∣∣∣∣2+δ |I{X≥0} − I{X<0}|2+δ|ε|2+δ
)

where cn =
∫
R
K2
H(u)(I{u≥0} − I{u<0})

2V(hu)f(hu)du. Given that E(|ε|2+δ|X) < C,

E|Wn,i|2+δ ≤ (nhcn)−1−
δ
2C

∫
R

|KH(x/h)|2+δ
∣∣I{x≥0} − I{x<0}

∣∣2+δ f(x)dx

= (nhcn)−1−
δ
2C

∫
R

|KH(x/h)|2+δ f(x)dx.

Hence,

n∑
i=1

E|Wn,i|2+δ ≤ C(nh)−
δ
2 c
−1− δ

2
n

∫
R

|KH(u)|2+δ f(hu)du.

Since, nh→∞ and cn → 2V(0)f(0)
∫∞
0 K2

H(u)du, we need only show that
∫
R
|KH(u)|2+δ f(hu)du = O(1)

as n→∞. By defining w0 = k0 = −1 we have |KH(u)|2+δ ≤
∑s+1

j=0 2(j+1)(2+δ)
∣∣∣ kjwj ∣∣∣2+δ ∣∣∣K ( u

wj

)∣∣∣2+δ and∫
R

|KH(u)|2+δf(hu)du ≤
s+1∑
j=0

2(j+1)(2+δ)

∣∣∣∣ kjwj
∣∣∣∣2+δ wj ∫

R

|K(u)|2+δf(huwj)du.

Hence, if
∫
R
|K(u)|2+δdu < C

lim
n→∞

∫
R

|KH(u)|2+δf(hu)du ≤
s+1∑
j=0

2(j+1)(2+δ)

∣∣∣∣ kjwj
∣∣∣∣2+δ wjf(0)

∫
R

|K(u)|2+δdu < C.

Thus, equations (A.5) and(A.6) give

√
nh(Tn − E(Tn))

d→ N
(

0, 2
V(0)

f(0)

∫ ∞
0

K2
H(u)du

)
. (A.7)

From equation (A.1)
√
nh
(
J̃0 − J0 − ZnE(Tn)

)
= Zn

√
nh (Tn − E(Tn)) . Given that Zn = 1 + op(1),

equations (A.2), (A.7) and nh2s+1 = O(1),

√
nh

(
J̃0 − J0 −

(
hs

s!
Bs + op(h

s)

))
d→ N

(
0, 2
V(0)

f(0)

∫ ∞
0

K2
H(u)du

)
.
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