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Abstract

Traditional estimators for nonparametric frontier models (DEA, FDH) are very sensitive to extreme values/outliers.
Recently, Aragon et al. [2005. Nonparametric frontier estimation: a conditional quantile-based approach. Econometric
Theory 21, 358–389] proposed a nonparametric a-frontier model and estimator based on a suitably defined conditional
quantile which is more robust to extreme values/outliers. Their estimator is based on a nonsmooth empirical conditional
distribution. In this paper, we propose a new smooth nonparametric conditional quantile estimator for the a-frontier
model. Our estimator is a kernel based conditional quantile estimator that builds on early work of Azzalini [1981. A note
on the estimation of a distribution function and quantiles by a kernel method. Biometrika 68, 326–328]. It is
computationally simple, resistant to outliers and extreme values, and smooth. In addition, the estimator is shown to be
consistent and

ffiffiffi
n
p

asymptotically normal under mild regularity conditions. We also show that our estimator’s variance is
smaller than that of the estimator proposed by Aragon et al. A simulation study confirms the asymptotic theory
predictions and contrasts our estimator with that of Aragon et al.
r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The specification and estimation of production frontiers, and the measurement of the associated efficiency
level of production units has been the subject of a vast and expanding literature since the seminal work of
Farrell (1957). The main objective of this literature can be stated simply. Consider ðX ;Y Þ 2 Rd

þ $Rþ where Y
describes the output of a production unit and X describes the d inputs used in production. The output set is
given by C ¼ fðx; yÞ 2 Rd

þ $Rþ : x can produce yg and the production function or frontier associated with C
is gðxÞ ¼ supfy 2 Rþ : ðx; yÞ 2 Cg for all x 2 Rd

þ. Let ðx0; y0Þ 2 C characterize the performance of a
production unit and define 0pR0 &

y0
gðx0Þ

p1 to be this unit’s (inverse) Farrell output efficiency measure.
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The main objective in production and efficiency analysis is, given a random sample of production units
wn & fðX i;Y iÞgni¼1 that share the set C, to obtain estimates of gð'Þ and by extension Ri ¼ Y i

gðX iÞ
for i ¼ 1; . . . ; n.

Deterministic frontier models and estimators, largely represented by data envelopment analysis (DEA) and
full disposal hull (FDH), have gained popularity among applied researchers because their construction relies
on very mild assumptions on C.1 These models are based on the assumption that wn lie in C, i.e.,
PððX ;Y Þ 2 CÞ ¼ 1, where P is the probability measure associated with the random vector ðX ;Y Þ. The most
appealing characteristic of such models is that there is no need to assume any restrictive parametric structure
on gð'Þ or the probability measure P to perform estimation. In addition to accommodating a flexible
nonparametric structure, the appeal of DEA and FDH estimators has increased since Gijbels et al. (1999) and
Park et al. (2000) obtained their asymptotic distributions under some fairly reasonable assumptions.

DEA and FDH type estimators have two serious deficiencies. First, since they are based on the idea of
enveloping the observed data, these estimators are very sensitive to outliers or extreme observations and are
inherently biased. Second, even in cases where the production technology induces a smooth production
frontier, estimated frontiers based on FDH and DEA are discontinuous or piecewise linear function,
respectively. Efforts to remedy such deficiencies have appeared in different nonparametric frontier modeling
contexts (Girard and Jacob, 2004; Hall et al., 1998; Knight, 2001; Martins-Filho and Yao, 2007a). Prominent
among these recent developments is the contribution of Aragon et al. (2005). They propose an alternative
definition for the production function,

hðxÞ ¼ supfy 2 Rþ : F ðy=xÞo1g & inffy 2 Rþ : F ðy=xÞ ¼ 1g, (1)

where F ðy=xÞ ¼ F ðx;yÞ
FX ðxÞ

, F ðx; yÞ ¼ PðfðX ;Y Þ : Xpx;YpygÞ and F X ðxÞ is the associated marginal distribution of
X. Since FX ðxÞ40, they restrict attention to C( ¼ fðx; yÞ 2 C : FX ðxÞ40g. If the frontier gðxÞ is monotone
nondecreasing, a typical assumption in economic theory, then hðxÞ ¼ gðxÞ for all x such that ðx; yÞ 2 C(.
Note that the assumption that gðxÞ is monotone nondecreasing is equivalent to F ðy=xÞ being monotone
nonincreasing on the set fx 2 Rd

þ : F X ðxÞ40g.2 Aragon et al. observed that gðxÞ is the order one quantile for
the conditional distribution of Y given that Xpx, where the inequality should be understood componentwise,
and therefore gðxÞ & q1ðxÞ ¼ inffy 2 Rþ : F ðy=xÞ ¼ 1g. As a natural extension, they suggest the concept of a
production function of continuous order a 2 ½0; 1* given by

qaðxÞ ¼ inffy 2 Rþ : F ðy=xÞXag. (2)

The usefulness of this concept rests in the fact that if F ð'=xÞ is strictly increasing on the support ½0; gðxÞ*, then
qaðxÞ ¼ F+1ða=xÞ where F+1ð'=xÞ is the inverse of F ð'=xÞ. In this context, any production plan ðx; yÞ 2 C(

belongs to some a-order conditional quantile curve, and is such that y represents an output level that is greater
than 100a percent of the output of all production plans using inputs X such that Xpx. Thus, rather than
relying on gðX iÞ to define production efficiency of firm i, the conditional quantile function qaðX iÞ compares the
production plan ðX i;Y iÞ of firm i to all other fðX j ;Y jÞgjai such that X jpX i.

Aragon et al. propose an estimator for qaðxÞ that is based on a conditional empirical quantile obtained from
inverting the empirical conditional distribution function F nðy=xÞ. Although their estimator has desirable
properties of consistency and

ffiffiffi
n
p

asymptotic normality, it is well known from the unconditional distribution
and quantile estimation literature (Azzalini, 1981; Falk, 1985; Yang, 1985; Bowman et al., 1998) that
smoothing beyond that given by the empirical distribution can produce significant gains in finite samples. Li
and Racine (2005) have proposed a kernel based nonparametric conditional distribution estimator and an
associated conditional quantile estimator; however, their conditioning set is X ¼ x rather than Xpx. In this
paper, we propose a smooth nonparametric kernel estimator for the a-frontier (qaðxÞ). Our estimator is an
extension of the seminal idea of Nadaraya (1964) and is based on a smooth estimator of the conditional
distribution F ðy=xÞ. Besides having the properties of consistency and

ffiffiffi
n
p

-asymptotic normality, the variance
of our estimator is smaller than that of the estimator proposed by Aragon et al., confirming that the gains first
identified by Azzalini in unconditional quantile estimation extend to conditional quantile estimation. Our
simulations also confirm the superior performance of our proposed estimator.
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Besides this introduction, this paper has five additional sections. Section 2 describes the stochastic model in
detail, contrasts its assumptions with those in the past literature and describes the estimation procedure.
Section 3 provides the main theorems establishing the asymptotic behavior of our estimator and discusses
bandwidth selection. Section 4 contains a Monte Carlo study that implements the estimator, sheds some light
on its finite sample properties and compares its performance with that of the estimator proposed by Aragon
et al. Section 5 provides an empirical illustration of our estimation procedure using data on electric utilities
from the United States. Lastly, section 6 provides a summary and some directions for future work.

2. Stochastic model and estimation

2.1. a frontier estimator

Consider wn ¼ fðX i;Y iÞgni¼1 a sequence of independent random vectors taking values in C( and having the
same distribution F as the vector ðX ;Y Þ. Throughout the paper, X will represent a d-vector of inputs used in
the production process and Y will represent a scalar measure of output. F is taken to be absolutely continuous
with associated density function given by f. The marginal distribution and density functions of X are denoted
by FX and f X , respectively. Given that our interest is on the estimation of the a-frontier, which coincides with
conditional quantile qaðxÞ for a 2 ½0; 1*, we define an estimator F̂ ðy=xÞ for F ðy=xÞ as

F̂ ðy=xÞ ¼

0 if y ¼ 0;

F̂ ðx; yÞ
F̂ ðxÞ

if y40;

8
><

>:
(3)

where F̂ ðx; yÞ ¼ ðnhnÞ+1
Pn

i¼1
R y
0 KðY i+g

hn
ÞdgIðX ipxÞ and F̂ ðxÞ ¼ n+1

Pn
i¼1IðX ipxÞ, IðAÞ is the indicator

function for the set A, Kð'Þ is a suitably defined kernel function and hn is a nonstochastic sequence of
bandwidths such that 0ohn ! 0 as n!1. The estimator is different from that proposed by Aragon et al. in
that their estimator for F ðx; yÞ is given by F nðx; yÞ ¼ n+1

P
i¼1IðX ipx;Y ipyÞ. In essence, rather than

estimating F ðy=xÞ by the empirical distribution of the data such that X ipx for i ¼ 1; . . . ; n, we estimate F ðy=xÞ
by integrating a smooth Rosenblatt density estimator constructed using the observations fðX i;Y iÞgi2fi:X ipxg. It
is easy to demonstrate that F̂ ðy=xÞ is asymptotically a distribution function, i.e., for suitably defined kernels:
(a) F̂ ðy=xÞ is nondecreasing in y; (b) F̂ ðy=xÞ is right continuous in Rþ; (c) limy!0F̂ ðy=xÞ ¼ 0; and (d) there
exists NðxÞ such that for all n4NðxÞ we have limy!1F̂ ðy=xÞ ¼ 1.

Assuming that qaðxÞ is the unique a order quantile for the conditional distribution F ðy=xÞ, we define the
estimator qa;nðxÞ as the root of

F̂ ðqa;nðxÞ=xÞ ¼ a for a 2 ð0; 1* and x 2 Rd
þ. (4)

Using the mean value theorem, absolute continuity of F and smoothness of the kernel function we can write

qa;nðxÞ + qaðxÞ ¼
F ðqaðxÞ=xÞ+F̂ ðqaðxÞ=xÞ

f̂ ðq̄a;nðxÞ=xÞ
where f̂ ðy=xÞ ¼ qF̂ ðy=xÞ

qy ¼
ðnhnÞ+1

Pn

i¼1
KðYi+y

hn
ÞIðX ipxÞ

F̂ ðxÞ
for yX0 (f̂ ðy=xÞ ¼ 0 for

yo0) and q̄a;nðxÞ ¼ lqa;nðxÞ þ ð1+ lÞqaðxÞ for l 2 ð0; 1Þ.

2.2. Assumptions

The stochastic properties of the estimator defined in (4) are obtained under the following regularity
conditions:

Assumption A1. (a) wn ¼ fðX i;Y iÞgni¼1 is a sequence of independent random vectors taking values in C( and
having the same distribution F as the vector ðX ;Y Þ, with support in C(; (b) C( is compact and 0of ðx; yÞoBf

for all ðx; yÞ 2 C(.

The assumption that wn is an independent and identically distributed sequence, and the existence of the
density f as a bounded function in C is standard in the deterministic frontier literature (Aragon et al., 2005;
Cazals et al., 2002; Gijbels et al., 1999; Martins-Filho and Yao, 2007a; Park et al., 2000).
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Assumption A2. (a) KðgÞ : SK ! R is a symmetric bounded function with compact support SK ¼ ½+BK ;BK *
such that: (b)

R BK

+BK
KðgÞdg ¼ 1; (c)

R BK

+BK
gKðgÞdg ¼ 0,

R BK

+BK
g2KðgÞdg ¼ s2K ; (d) for all g; g0 2 SK we have

jKðgÞ + Kðg0ÞjpmK jg+ g0j for some 0omKo1; (e) for all g; g0 2 R we have jkðgÞ + kðg0Þjpmkjg+ g0j for some
0omko1, where kðlÞ ¼

R l
+BK

KðgÞdg.

Assumption A2 is standard in nonparametric estimation and is satisfied by commonly used kernels such as
Biweight, Epanechnikov and others.

Assumption A3. (a) f is continuous in C(; (b) for all x such that F X ðxÞ40 and for all a 2 ð0; 1*, f ðqaðxÞ=xÞ40,
where f ð'=xÞ is the derivative of F ð'=xÞ; (c) for all ðx; yÞ; ðx; y0Þ 2 C(, jf ðx; y0Þ + f ðx; yÞjpmf jy+ y0j for some
0omf o1; (d) F is twice continuously differentiable in the interior of C(.

A3(b) is assumed by Aragon et al. (2005), and the Lipschitz condition in A3(c) is also assumed by Park et al.
(2000).

Assumption A4. For all y; y0 2 G, where G is a compact subset of ð0;1Þ, we have j
R

g+1ð½y;y0*Þ dX jpmg+1 jy+ y0j
for some 0omg+1o1. Here, let x ¼ ðx1; . . . ; xdÞ0, then for any two sets A , Cx ¼ $d

i¼1½0;xi* and B , ½0; gðxÞ*,
gðAÞ ¼ fgðxÞ : x 2 Ag and g+1ðBÞ ¼ fx : x 2 Cx; gðxÞ 2 Bg.

Assumption A4 imposes a Lipschitz type condition on the inverse image g+1 of g. Note, for example, that if
g : Rþ! Rþ is bijective with inverse g+1, Assumption A4 is equivalent to jg+1ðyÞ + g+1ðy0Þjpmg+1 jy+ y0j for
some 0omg+1o1.

3. Asymptotic characterization of the estimator

3.1. Asymptotic properties

Theorems 1 and 2 establish consistency and asymptotic normality of qa;nðxÞ. The theorems depend on two
auxiliary lemmas provided in the Appendix. Lemma 1 is an extension to the multivariate case of the second
order results of Azzalini (1981), where the nonparametric distribution function estimator for F ðx; yÞ is given
by F̂ ðx; yÞ. Asymptotically, the difference between F̂ ðx; yÞ and the multivariate empirical distribution function
estimator is the order at which the bias and variance converge to zero. Lemma 2 establishes conditions under
which F̂ ðx; yÞ converges uniformly to F ðx; yÞ, a necessary condition for Theorem 1. In Lemma 2 the
assumption that minfi:X ipxgY iXhnBK implies that even as the number of observations that satisfy fi : X ipxg
grows to infinity, the associated output levels Y i are bounded away from zero. Although reasonable in most
contexts, it is certainly an assumption that could be violated by certain data generating processes (DGPs). The
lemmas, Theorems 1 and 2 and proofs can be found in Appendix A.3 We now state.

Theorem 1. Let 0ohn ! 0 be a nonstochastic sequence of bandwidths with nhn !1 as n!1.
Assume A1–A4 and that for given x 2 Rd

þ and some NðxÞ we have that for all n4NðxÞ minfi:X ipxgY iXhnBK .
Then,

qa;nðxÞ + qaðxÞ ¼ opð1Þ. (5)

Asymptotic normality of qa;nðxÞ under suitable normalization is obtained in Theorem 2.

Theorem 2. Let 0ohn ! 0 be a nonstochastic sequence of bandwidths with nh2
n !1 and nh4

n ¼ Oð1Þ as n!1.
Assume A1–A4 and that for given x 2 Rd

þ and some NðxÞ we have that for all n4NðxÞminfi:X ipxgY iXhnBK .
Then, for all a 2 ð0; 1Þ we have

vnðxÞ+1
ffiffiffi
n
p
ðqa;nðxÞ + qaðxÞ + BnðxÞÞ!

d
Nð0; 1Þ, (6)
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where BnðxÞ ¼ + 1
2 h2

ns
2
K

R
g+1ð½qaðxÞ;gðxÞ*Þ

f ð1Þðg;qaðxÞÞ dg

FX ðxÞf ðqaðxÞ=xÞ þ oðh2
nÞ and v2nðxÞ ¼

1
ðFX ðxÞf ðqaðxÞ=xÞÞ2

ðF ðx; qaðxÞÞ +
F 2ðx;qaðxÞÞ

FX ðxÞ
+ 2hnsk

R
g+1ð½qaðxÞ;gðxÞ*Þ

f ðg; qaðxÞÞdgÞ þ oðhnÞ with kðxÞ ¼
R x
+BK

KðgÞdg, 0osk ¼
R BK

+BK
gkðgÞ KðgÞdg, and f ð1ÞðX ; yÞ denotes

the first derivative of f with respect to Y.

The conditional quantile estimator proposed by Aragon et al. (2005) is also consistent and
ffiffiffi
n
p

asymptotically normal under similar assumptions; however, there are some important differences between
the estimators. First, we observe that although our estimator depends on kernel smoothing, and therefore a
bandwidth hn is necessary in constructing the estimator, there is no asymptotic cost as the rate of convergence
to normality occurs at the parametric rate

ffiffiffi
n
p

. Hence, the number of inputs d has no impact on the
convergence rate of the estimator. Most importantly, even though there is smoothing in F̂ ðy=xÞ, it produces no
slowing on the convergence in distribution, a result obtained by Falk (1985) and Hansen (2004a) in the context
of unconditional distribution functions. Second, although the extra smoothing we propose might impose
modest computational costs compared to the estimator proposed by Aragon et al., Theorem 2 reveals that
the extra smoothness produces a smaller variance due to the higher order terms. Note that the variance of the
asymptotic distribution of their estimator is given by

að1+ aÞ
f 2ðqaðxÞ=xÞF X ðxÞ

&
1

ðFX ðxÞf ðqaðxÞ=xÞÞ2
F ðx; qaðxÞÞ +

F2ðx; qaðxÞÞ
FX ðxÞ

" #
,

and given that the extra term that appears in v2n is nonnegative, the variance of our estimator is smaller for all n
finite. Third, the extra smoothing we propose does introduce a bias term BnðxÞ ¼ Oðh2

nÞ, but provided that
nh4

n ¼ oð1Þ the bias vanishes asymptotically. We note that this condition is consistent with the conditions on hn

necessary to obtain Theorem 2. Finally, we observe that given that BnðxÞ ¼ Oðh2
nÞ and that the variance is of

order Oðn+1 þ hnn+1Þ the optimal bandwidth rate for minimization of the asymptotic mean integrated squared
error is hn / n+1=3.

The next theorem provides the joint asymptotic distribution of qa;nðx1Þ; qa;nðx2Þ; . . . ; qa;nðxrÞ which can be
used to construct joint asymptotic confidence sets for the a-frontier for various levels of input usage. The result
is similar to that in Theorem 4.2. in Aragon et al. (2005).

Theorem 3. Let x1;x2; . . . ;xr be r levels of input X and let all assumptions in Theorem 2 hold. Then, for a 2 ð0; 1Þ
we have

ffiffiffi
n
p
ðqa;nðx

1Þ + qaðx
1Þ + Bðx1Þ; qa;nðx

2Þ + qaðx
2Þ + Bðx2Þ; . . . ; qa;nðx

rÞ + qaðx
rÞ + BðxrÞÞ0 !

d
Nð0;QÞ,

where BðxlÞ ¼ + 1
f ðqaðxl Þ=xl ÞFX ðxl Þs

2
K

h2n
2

R
g+1ð½qaðxl Þ;gðxl Þ*Þ f

ð1ÞðX ; qaðxlÞÞdX þ oðh2
nÞ, l 2 f1; 2; . . . ; rg and Q is an r$ r

matrix with ðl;mÞth element Ql;m given by

(1) Ql;l ¼
að1+aÞ

f 2ðqaðxl Þ=xl ÞFX ðxl Þ
if l ¼ m,

(2) Ql;m ¼ 1
f ðqaðxl Þ=xl ÞF X ðxl Þf ðqaðxmÞ=xmÞFX ðxmÞ ½F ðx

lm; qaðxlÞÞð1+ aÞ + aF ðxlm; qaðxmÞÞ þ a2F X ðxlmÞ* if lam, and

qaðxlÞpqaðxm),

(3) Ql;m ¼ 1
f ðqaðxl Þ=xl ÞF X ðxl Þf ðqaðxmÞ=xmÞFX ðxmÞ ½F ðx

lm; qaðxmÞÞð1+ aÞ + aF ðxlm; qaðxlÞÞ þ a2F X ðxlmÞ* if lam, and

qaðxlÞXqaðxm), where xlm ¼ fminðxl
1;x

m
1 Þ;minðxl

2;x
m
2 Þ . . . ;minðxl

d ; x
m
d Þg
0.

As is typical in applied work, for inference purposes, the unknown higher order components of the variance
terms in Theorems 2 and 3 must be estimated via consistent nonparametric estimators. f ðqaðxÞ=xÞ can be
estimated by f̂ ðqa;nðxÞ=xÞ the conditional Rosenblatt density estimator, using the rule-of-thumb bandwidth of
Silverman (1986). Note the consistency of f̂ ðqa;nðxÞ=xÞ has been established in the proof of Theorem 2.
Furthermore, F X ðxÞ can be consistently estimated by F̂ ðxÞ ¼ n+1

Pn
i¼1IðX ipxÞ, and F ðx; qaðxÞÞ can be

consistently estimated by F̂ ðx; qa;nðxÞÞ.
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In the following theorem we turn our attention to the estimation of the true frontier q1ðxÞ.

Theorem 4. Assume that minfi:X ipxgY iXhnBK , and that A1, A2 hold with C( compact. In addition, assume that
the density f is strictly positive on the frontier fðx; gðxÞÞ : FX ðxÞ40g, and that gðxÞ is continuously differentiable.
Then for any x in the interior of the support of X we have that

(a) There exists NðxÞ40 such that for all n4NðxÞ, q1;nðxÞ ¼ maxfi:X ipxgY i þ hnBK .
(b) n1=ðdþ1Þðq1ðxÞ + q1;nðxÞ þ hnBK Þ!

d
Weibullðmdþ1

x ; d þ 1Þ.

mx is a constant depending on the slope of gð'Þ and the value of f at the frontier. Park et al. (2000) provide the
exact expression for mx as well as a consistent estimator for mx. We note that by their Theorem 3.3, it is a direct
consequence of the assumptions in Theorem 4 that

Eðq1ðxÞ + q1;nðxÞÞ ¼ G
d þ 2

d þ 1

" #
m+1x n+1=ðdþ1Þ + hnBK þ oðn+1=ðdþ1ÞÞ

which suggests that the bias associated with the estimation of the true frontier q1ðxÞ via q1;nðxÞ could be smaller
than that associated with the FDH estimator. We now turn our attention to bandwidth selection.

3.2. Bandwidth selection

Implementation of our a-frontier estimator requires the selection of a bandwidth. Following standard
practice (Fan and Gijbels, 1995; Ruppert et al., 1995) we select the bandwidth by minimizing an asymptotic
approximation of the estimator’s mean integrated squared error (AMISE) over all a. Disregarding terms of
order oðh4

nÞ and oðhn=nÞ and defining I1ðx; aÞ ¼
R

g+1ð½qaðxÞ;gðxÞ*Þ
f ð1Þðg; qaðxÞÞdg, and I2ðx; aÞ ¼

R
g+1ð½qaðxÞ;gðxÞ*Þ

f ðg; qaðxÞÞdg we have

AMISEðqa;nðxÞ; hnÞ ¼
h4

nðs
2
K Þ

2

4F 2
X ðxÞ

Z 1

0

I21ðx; aÞ
f 2ðqaðxÞ=xÞ

daþ
1

nFX ðxÞ

Z 1

0

að1+ aÞ
f 2ðqaðxÞ=xÞ

da

+
hn2sk

nF 2
X ðxÞ

Z 1

0

I2ðx; aÞ
f 2ðqaðxÞ=xÞ

da

a function of hn. The bandwidth that minimizes AMISEðqa;nðxÞ; hnÞ is given by

h(n ¼
2sk

R 1
0

I2ðx; aÞ
f 2ðqaðxÞ=xÞ

da

ðs2K Þ
2
R 1
0

I21ðx; aÞ
f 2ðqaðxÞ=xÞ

da

0

BBB@

1

CCCA

1=3

n+1=3 ¼ Cn+1=3.

Since our expression for AMISE accounts for all possible values of a, h(n can be interpreted as a global optimal
bandwidth with respect to a for given input level x. Since our a-frontier estimator is constructed as a quantile
estimator which smooths only the output for the underlying conditional distribution, it is not surprising that
the optimal bandwidth is of order Oðn+1=3Þ. This is the same order obtained in Azzalini (1981), Bowman et al.
(1998) and Hansen (2004a) where a kernel estimator is used to estimate an unconditional distribution.
However, our constant C is different from theirs. Compared with other conditional quantile estimators, both
the order and the constant C in the expression for h(n are different from those in Hansen (2004b) and Li and
Racine (2005) since the conditioning set we consider fXpxg is different.

The practical use of h(n requires the estimation of the unknowns appearing in its expression, as in the
traditional plug-in bandwidth selection methods. In the next section, we provide an easily implementable
estimation procedure for these unknowns and shed light on the finite sample performance of our estimator via
a small Monte Carlo study.
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4. Monte Carlo study

In this section, we perform a Monte Carlo study which implements our smooth a-frontier estimator (S) and
provides evidence on its finite sample performance. For comparison purpose we also include in the study two
alternative estimators, the empirical a-frontier estimator of Aragon et al. (2005) (E) and a conditional
a-quantile estimator based on a linearly interpolated empirical conditional distribution (Kincaid and Cheney,
1996)(I). The interpolated estimator is interesting in that extra smoothness is obtained without the need for
bandwidth estimation.

The data are simulated according to the model Y i ¼ gðX iÞRi, i ¼ 1; 2; . . . ; n where Y i represents output, the
univariate input X i are pseudorandom variables generated from a uniform distribution with support given by
½bl ; bu*. Ri ¼ expð+ZiÞ and Zi are independently generated pseudorandom variables from an exponential
distribution with parameter b ¼ 1

3, therefore the efficiency Ri has support ð0; 1* with global average level of
efficiency EðRiÞ ¼ 0:75. We consider two specifications for gð'Þ, g1ðxÞ ¼

ffiffiffi
x
p

with ½bl ; bu* ¼ ½4; 25* and g2ðxÞ ¼
x3 with ½bl ; bu* ¼ ½1; 2* which are associated with convex and nonconvex production technologies, respectively.
This DGP has been considered in Aragon et al. (2005), Gijbels et al. (1999), Martins-Filho and Yao (2007a,b),
Park et al. (2000) and is regarded as reasonable with respect to many applications found in the econometric
literature (Gijbels et al., 1999, p. 224).

For each specification of gðxÞ we consider three sample sizes n ¼ 100; 200 and 400 and perform 1000
repetitions at each experiment design. We estimate the a-frontiers for a+ 0:25; 0:5; 0:75 and 0:99. Since the
estimators for qaðxÞ are constructed using data points with input levels which are less than or equal to x, we
avoid estimation with extremely small samples by evaluating the performance of the estimators over the input
interval starting from the 33rd percentile to the upper bound of the support. Using 30 equally spaced points in
the support interval, we obtain the averaged bias, standard deviation and root mean squared error of each
estimator. We also construct 95% asymptotic confidence intervals for the a-frontiers at different a levels using
the asymptotic distributions available for our estimator and the estimator proposed by Aragon et al.

4.1. Estimator implementation

The empirical a-frontier estimator is implemented as described in Aragon et al. We implement the
interpolated a-frontier estimator as

q̂a;nI ðxÞ ¼

Y ði1Þ if 0pao 1

Nx
;

Y ðikÞ þ a+
k

Nx

" #
NxðY ðikþ1Þ + Y ðikÞÞ if

k

Nx
paok þ 1

Nx
; 1pkpNx + 1;

1 if yXY ðiNx Þ;

8
>>>>><

>>>>>:

where Nx ¼
Pn

i¼1IðX ipxÞ and Y ðijÞ is the jth order statistic for the observations Y i such that X ipx. We note
that q̂a;nI ðxÞ produces estimates that are identical to those given by the empirical a-frontier estimator when a
coincides with the nodes k

Nx
. Our estimator is implemented using the Epanechnikov kernel and the following

plug-in bandwidth

ĥPI ¼
2sk

R 1
0

Î2ðx; aÞ
f̂ 2ðqaðxÞ=xÞ

da

ðs2K Þ
2 R 1

0
Î
2

1ðx;aÞ
f̂ 2ðqaðxÞ=xÞ

da

0

BBB@

1

CCCA

1=3

n+1=3,

where Î1ðx; aÞ, Î2ðx; aÞ, f̂ ðqaðxÞ=xÞ are estimators for I1ðx; aÞ, I2ðx; aÞ and f ðqaðxÞ=xÞ appearing in h(n.

Specifically, f̂ ðqa;nðxÞ=xÞ ¼
1

ngn

Pn

i¼1
KðYi+qa;n ðxÞ

gn
ÞIðX ipxÞ

F̂ ðxÞ
where F̂ ðxÞ is the empirical distribution function. Since

f̂ ðqa;nðxÞ=xÞ is a suitably defined Rosenblatt density estimator, we utilize the rule-of-thumb bandwidth of

Silverman (1986) for gn. In I1ðx; aÞ and I2ðx; aÞ the area of integration g+1ð½qa;nðxÞ; gðxÞ*Þ needs to be estimated.

ARTICLE IN PRESS
C. Martins-Filho, F. Yao / Journal of Econometrics 143 (2008) 317–333 323



In the case of an univariate input (d ¼ 1) g+1ð½qa;nðxÞ; gðxÞ*Þ ¼ ½g+1ðqa;nðxÞÞ;x*. To estimate I1ðx; aÞ considerR b2
b1

f ð1Þðx; yÞdx ¼
R b2
0 f ð1Þðx; yÞdx+

R b1
0 f ð1Þðx; yÞdx for some positive bounds b1 and b2. Given our estimator

for the conditional distribution and an arbitrary b40, a natural estimator for yðyÞ ¼
R b
0 f ð1Þðx; yÞdx is given by

ŷðyÞ ¼ 1
ngn1

Pn
i¼1K

ð1Þðy+Y i

gn1
ÞIðX ipbÞ, where K ð1ÞðxÞ ¼ dKðxÞ

dx for a bandwidth gn1. The estimation of yðyÞ requires a
bandwidth selection procedure for gn1. Based on the bias and variance expressions in Lemma 3 (Appendix A)

we obtain the optimal bandwidth that minimizes the AMISE of ŷðyÞ as

g(n1 ¼
3CK1

R R b
0 f ðx; yÞdxdy

4

36
C2

K

R
ð
R b
0 f ð3Þðx; yÞdxÞ2 dy

0

B@

1

CA

1=7

n+1=7,

where CK and CK1 are constants given in Lemma 3 which depend only on the kernel, and f ð3Þðx; yÞ is the third
order partial derivative of f ðx; yÞ with respect to y. It is straightforward to verify that the Epanechnikov kernel

satisfies all conditions in Lemma 3, and since EðŷðyÞ + yðyÞÞ ¼ Oðg2
n1Þ, V ðŷðyÞÞ ¼ Oððng3

n1Þ
+1Þ and

g(n1 ¼ Oðn+1=7Þ, we have that ŷðyÞ + yðyÞ ¼ opð1Þ. We note that g(n1 / n+1=7 is similar to the order obtained
for optimal bandwidth for kernel density derivative estimation (Jones, 1994). The bandwidth g(n1 depends on
additional unknowns, but at this stage we follow standard practice and utilize the standard joint normal

distribution as a reference. For I2ðx; aÞ we consider an estimator for HðyÞ ¼
R b
0 f ðx; yÞdx for some constant

b40. We define the estimator ĤðyÞ ¼ 1
ngn2

Pn
i¼1Kð

y+Y i

gn2
ÞIðX ipbÞ for a bandwidth gn2. Since ĤðyÞ is a suitably

defined Rosenblatt density estimator, we utilize the rule-of-thumb bandwidth of Silverman (1986) forgn2.

Finally, estimation of I1ðx; aÞ and I2ðx; aÞ requires estimators for g+1ð'Þ and qa;nðxÞ. Here, we utilize the FDH

estimator for ĝ+1ð'Þ and provide an initial estimator for qa;nðxÞ by using our a-quantile frontier estimator

implemented with the h(n derived above based on a standard joint normal distribution for ðx; yÞ and constant
returns to scale production function gðxÞ ¼ 3x.

The asymptotic properties of the proposed bandwidth selection rule ĥPI are unknown. To shed some light
on its finite sample performance and also to illustrate the relative performance of smooth and empirical
frontier estimators without the noise introduced by bandwidth estimation, we implement the smooth frontier
estimator with both the estimated bandwidth ĥPI and the true optimal bandwidth h(n, which is available from
the DGP. As will be discussed later, simulation results reveal that the performance of the smooth estimator
with both bandwidths are similar for large sample sizes, suggesting that ĥPI is ‘‘close’’ to h(n in probability.

Theorem 2 supports asymptotic confidence intervals for the smooth a-frontier estimator. Given that the

asymptotic bias is Oðh2
nÞ and h(n / n+1=3 we have that Oð

ffiffiffi
n
p

h2
nÞ ¼ Oðn+1=6Þ ¼ oð1Þ. Hence, the normalized bias

vanishes asymptotically and for 97.5% quantile Z0:975 of a standard normal distribution, we obtain

limn!1 Pðqa;nðxÞ + n+1=2ðŜ2
2Þ

1=2Z0:975pqaðxÞpqa;nðxÞ þ n+1=2ðŜ2
2Þ

1=2Z0:975Þ ¼ 0:95 where Ŝ2
2 ¼

að1+aÞ
F̂ ðxÞðf̂ ðqa;nðxÞ=xÞÞ2

.

F̂ ðxÞ and f̂ ðqa;nðxÞ=xÞ are estimated as described in the bandwidth selection procedure. The asymptotic

confidence interval for the empirical a-frontier estimator is constructed in a similar manner.

4.2. Results and analysis

Fig. 1 depicts the true a-frontier with estimated smooth and empirical frontiers for a ranging over
0:02; 0:04; . . . ; 1 for a simulated data set of size n ¼ 50 with g1ðxÞ ¼ g1ð25Þ. As expected, our a-frontier estimate
is a smooth function of a and the empirical a-frontier is not. Table 1 provides the average root mean squared
error of a-frontier estimators for a ¼ 0:25; 0:5; 0:75; 0:99. Also included are results for the smooth a-frontier
estimator implemented with the true optimal bandwidth h(n.

4

First, we compare the performance of the empirical estimator with that of the smooth estimator using h(n. In
terms of root mean squared error, when g1ðxÞ is considered, the smooth estimator outperforms the empirical

ARTICLE IN PRESS

4Results for other values of a, averaged bias and standard deviation of the estimators are provided in Martins-Filho and Yao (2007b).
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estimator when a assumes values of 0:25; 0:5; 0:75, with empirical estimator performing better when a is close
to 1. When g2ðxÞ is considered, the smooth estimator is superior for most experiments, where the only
exception occurs in small samples when a is close to 1. When the smooth estimator is implemented with ĥPI , as
we expect, the performance of the smooth estimator is slightly worse than that with h(n in terms of root mean
squared error. However, the conclusions regarding the relative performance of the empirical and smooth
estimators is largely maintained, suggesting that ĥPI is estimating h(n quite well. These results are driven by the
significantly smaller standard deviation of the smooth estimator, which compensates for slightly larger bias,
confirming the asymptotic result in Theorem 2.

ARTICLE IN PRESS

Fig. 1. Plot of true a-frontiers with estimated smooth and empirical a-frontiers, for n ¼ 50, g1ðxÞ ¼ g1ð25Þ and a ranging over
0:02; 0:04; . . . ; 1.

Table 1
Root mean squared error for a-frontier estimators

a gðxÞ ¼
ffiffiffi
x
p

gðxÞ ¼ x3

S E I S E I

h(n ĥPI
h(n ĥPI

n ¼ 100
0:25 0.126 0.128 0.136 0.137 0.102 0.103 0.110 0.109
0:5 0.118 0.120 0.137 0.137 0.159 0.162 0.174 0.173
0:75 0.121 0.124 0.142 0.143 0.211 0.215 0.229 0.228
0:99 0.248 0.303 0.133 0.161 0.266 1.037 0.257 0.307

n ¼ 200
0:25 0.095 0.096 0.101 0.101 0.074 0.075 0.079 0.078
0:5 0.089 0.089 0.099 0.099 0.111 0.113 0.120 0.119
0:75 0.091 0.093 0.103 0.104 0.150 0.151 0.161 0.161
0:99 0.159 0.177 0.096 0.107 0.165 0.295 0.187 0.205

n ¼ 400
0:25 0.065 0.066 0.069 0.069 0.051 0.051 0.054 0.054
0:5 0.065 0.064 0.071 0.071 0.079 0.079 0.084 0.084
0:75 0.066 0.066 0.073 0.073 0.106 0.106 0.132 0.113
0:99 0.105 0.123 0.069 0.073 0.116 0.131 0.132 0.139
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A comparison between our smooth estimator and the interpolated estimator resembles that between our
estimator and the empirical estimator. We also observe that interpolated estimator has larger bias, slightly
smaller standard deviation, but slightly larger root mean squared error than the empirical estimator.

We find that as n increases the root mean squared error of all estimators decreases confirming the
asymptotic results in the previous section.5 This indicates that q̂a;nI ðxÞ may be a consistent estimator of the
a-frontier and that ĥPI is likely a consistent estimator for h(n. We observe that for both g1ðxÞ and g2ðxÞ the root
mean squared error for all estimators is generally larger when evaluating a-frontier with a closer to 1 than
when evaluating frontiers with a ¼ 0:25; 0:5; 0:75. The fact that it is more difficult to estimate a-frontiers in this
case is intuitively understood as there are relatively less representative data available when a is closer to 1.

The empirical coverage probability (the frequency that the estimated confidence interval contains the true
a-frontier in 1000 repetitions) is given in Table 2 for the 33rdðx10Þ, 66thðx20Þ; and 100thðx30Þ percentile of the
input evaluation interval for empirical and smooth a-frontier estimators based on ĥPI . For most experiments
we observe that the smooth estimator is superior to empirical estimator, i.e., the empirical coverage
probability with the smooth estimator is closer to the target value 95% than that with the empirical estimator,
where exceptions occur mostly for a ¼ 0:25. As n increases the empirical coverage probabilities from both
estimators tend to get closer to 95% with some exceptions. There is also weak evidence that for the empirical
estimator the coverage gets closer to 95% as a decreases. Fig. 2 provides 95% empirical coverage probability
for the estimators for the a ¼ 0:99 frontier and a sample size n ¼ 100 for 30 points across the input support. As
indicated in the graph, for both g1ðxÞ and g2ðxÞ, the smooth a-frontier estimator’s empirical coverage
probability slightly overestimates the 95% target. Coverage for empirical estimator is largely below the 95%
target with large deviations close to the boundary of the input support.

To provide further evidence on the finite sample distribution of the two estimators, we provide kernel
density estimates for the smooth and empirical a-frontier estimators centered around the true value
(for a ¼ 0:98) q0:98ðx0Þ based on 1000 simulations of sample sizes n ¼ 100 and 400 for g1ðxÞ with x0 ¼ 25 in
Fig. 3 and for g2ðxÞ with x0 ¼ 2 in Fig. 4.
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Table 2
Empirical coverage probability for a-frontier estimators smooth (s) and empirical (E)

a gðxÞ ¼
ffiffiffi
x
p

gðxÞ ¼ x3

x10 x20 x30 x10 x20 x30

S E S E S E S E S E S E

n ¼ 100
0:25 0.961 0.929 0.970 0.946 0.964 0.944 0.973 0.963 0.985 0.960 0.978 0.957
0:5 0.957 0.916 0.960 0.932 0.968 0.940 0.954 0.899 0.950 0.919 0.942 0.914
0:75 0.963 0.921 0.958 0.927 0.976 0.938 0.940 0.903 0.943 0.913 0.926 0.910
0:99 0.995 0.879 0.992 0.903 0.988 0.772 0.981 0.832 0.958 0.892 0.979 0.754

n ¼ 200
0:25 0.954 0.927 0.956 0.944 0.958 0.942 0.964 0.956 0.973 0.955 0.975 0.964
0:5 0.967 0.927 0.954 0.933 0.964 0.925 0.964 0.916 0.961 0.936 0.952 0.936
0:75 0.956 0.928 0.966 0.933 0.962 0.941 0.959 0.927 0.947 0.928 0.949 0.924
0:99 0.998 0.817 0.994 0.905 0.993 0.826 0.975 0.810 0.972 0.879 0.984 0.826

n ¼ 400
0:25 0.961 0.941 0.960 0.945 0.961 0.950 0.969 0.959 0.969 0.952 0.972 0.954
0:5 0.960 0.933 0.956 0.930 0.954 0.932 0.954 0.937 0.966 0.958 0.952 0.931
0:75 0.964 0.940 0.958 0.928 0.955 0.938 0.956 0.937 0.952 0.937 0.952 0.934
0:99 0.997 0.879 0.986 0.891 0.963 0.891 0.972 0.876 0.973 0.884 0.968 0.890

5This is also true for bias (with exceptions) and variance.
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Fig. 3 shows that the kernel density for the smooth estimator is shifted to the right and more tightly
centered, implying smaller variance, but larger bias compared to the empirical estimator. Fig. 4 shows a
similar pattern, but here the smooth estimator exhibits significantly smaller bias, suggesting an improved
performance when estimating nonconvex technologies. We note that the estimated densities have taller and
more pronounced peaks as the sample size increases, confirming the asymptotic results.

Overall our simulations seem to indicate that the proposed smooth a-frontier estimator can outperform the
empirical a-frontier estimator in terms of root mean squared error when n is large. This is particularly true
when estimating production frontiers associated with nonconvex technologies. The simulations also reveal
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Fig. 2. Empirical 95% coverage probability for a-frontier smooth (S) and empirical (E) estimators for 30 grid points of X when a ¼ 0:99,
n ¼ 100.

Fig. 3. Kernel density estimates for the smooth (S) and empirical (E) a-frontier estimators evaluated at x0 ¼ 25 centered around the true
value q0:98ð25Þ, the a ¼ 0:98 frontier function. The kernel density estimates are based on 1000 simulations from g1ðxÞ of sample sizes
n ¼ 100 and 400.
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that although computationally demanding, bandwidth estimation does not significantly impact estimator
performance if compared to implementation with a true bandwidth, indicating that bandwidth selection is not
a significant burden in terms of estimator properties and relative performance.

5. Empirical illustration

To illustrate our methodology, we employ data on 123 utility companies from the United States reported in
Greene (1990). These data consist of variables on production cost, output, input prices, and has been analyzed
by Christensen and Greene (1976), Greene (1990) and Gijbels et al. (1999). Following Gijbels et al. (1999), we
utilize only the measurements on the output variable with Y ¼ LnðQÞ and input or cost variable defined as
X ¼ LnðCÞ, where Q is the production output for a firm, and C is the total cost involved in the production.
For detailed description of the data set and analysis, see Christensen and Greene (1976) and Greene (1990).

In Fig. 5, we provide a scatterplot of the data and construct 95% confidence intervals for the a ¼ 0:90
frontiers using the smooth estimator following the steps outlined in the simulation section. For illustration
purpose, we restrict the estimation region to be x 2 ½0; 6*, where 109 out of the 123 observations are located.
The bandwidth for our smooth estimator is selected according to the plug-in rule ĥPI as described in the
simulation section. We note that the confidence bands are wider in regions of the input space where there are a
smaller number of observations. This follows from our definition for asymptotic confidence intervals and
Theorem 4.1 of Aragon et al. Indeed the width of the confidence interval depends on the density f ðqaðxÞ=xÞ
and marginal probability F X ðxÞ. In regions of the input space where there are more data, both the density and
marginal probability will be larger, and hence it is natural to observe narrower confidence intervals. Given the
comments in Aragon et al. (2005) regarding the robustness of the empirical frontier to extreme observations,
we conjecture that for a 2 ð0; 1Þ our smooth estimator should also be reasonably robust to extreme values and
outliers.

6. Summary

In this paper we proposed a nonparametric a-frontier estimator based on a smooth kernel estimator of a
conditional quantile of order a. Our estimator is an alternative to the conditional quantile estimator proposed
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Fig. 4. Kernel density estimates for the smooth(S) and empirical(E) a-frontier estimators evaluated at x0 ¼ 2 centered around the true
value q0:98ð25Þ, the a ¼ 0:98 frontier function. The kernel density estimates are based on 1000 simulations from g2ðxÞ of sample sizes
n ¼ 100 and 400.
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by Aragon et al. (2005), which is based on empirical distribution functions. The estimator is easily
implementable and we show that it is consistent and

ffiffiffi
n
p

asymptotically normal. In addition, the extra
smoothness pays off in that our estimator’s variance is smaller due to higher order terms than that of the
estimator proposed by Aragon et al. (2005). Our simulation study confirms the asymptotic theory predictions
and contrasts our estimator with that of Aragon et al. In most of the experiment designs in the simulations,
our smooth estimator outperforms the empirical distribution based estimator of Aragon et al. (2005). Future
work is needed in the context of a-frontiers, specifically estimators that can produce smooth boundaries over
the input set are desirable in the applied economics literature.
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Appendix A. Proofs

Lemma 1. For all x 2 Rd
þ and y 2 Rþ and under Assumptions A1, A2(a), A2(b), A2(c), and A3, we have:

(a)

EðF̂ ðx; yÞÞ ¼

F ðx; yÞ þ
1

2
h2

ns
2
K

R
g+1ð½y;gðxÞ*Þ f

ð1ÞðX ; yÞdX þ oðh2
nÞ if 0oyogðxÞ;

F ðx; yÞ þ oðh2
nÞ if y4gðxÞ;

F ðx; yÞ þ oðhnÞ if y ¼ gðxÞ:

8
>>><

>>>:

(b)
V ðF̂ ðx; yÞÞ ¼

n+1F ðx; yÞð1+ F ðx; yÞÞ + 2n+1hnsk
R

g+1ð½y;gðxÞ*Þ f ðX ; yÞdX þ oðhn=nÞ if 0oyogðxÞ;

n+1F ðx; yÞð1+ F ðx; yÞÞ þ oðhn=nÞ if yXgðxÞ;

(

where kðxÞ ¼
R x
+BK

KðgÞdg, sk ¼
R BK

+BK
gkðgÞKðgÞdg, f ð1ÞðX ; yÞ denotes the first derivative of f with respect to

Y, and 0ohn ! 0 is a nonstochastic sequence of bandwidths.
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Fig. 5. 95% confidence intervals for a ¼ 0:90 frontiers with smooth estimate using American Electric Utility data.
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Proof. (a) Let Cx ¼ $d
i¼1½0;xi* where xi is the ith component of x. Since hn ! 0 as n!1, there exists

NðxÞ 2 Rþ such that for all n4NðxÞ, EðF̂ ðx; yÞÞ ¼
R

Cx

R
½0;gðX Þ* kð

y+Y
hn
Þ qFf ðX ;Y Þ

qY dY dX where Ff ðx; yÞ ¼R
½0;y* f ðx; gÞdg. Using integration by parts

Z

½0;gðX Þ*
k

y+ Y

hn

" #
dFf ðX ;Y Þ ¼ k

y+ gðX Þ
hn

" #
Ff ðX ; gðX ÞÞ þ

Z y=hn

y+gðX Þ=hn

Ff ðX ; y+ hngÞKðgÞdg.

By A3(d) and Taylor’s theorem Ff ðX ; y+ hngÞ ¼ Ff ðX ; yÞ + hngf ðX ; yÞ þ 1
2 h2

ng
2f ð1ÞðX ; yÞ þ oðh2

nÞ. Hence,

EðF̂ ðx; yÞÞ ¼ E1n þ E2n + E3n þ E4n þ oðh2
nÞ, where E1n ¼

R
Cx

kðy+gðX Þ
hn
ÞFf ðX ; gðX ÞÞdX , E2n ¼

R
Cx

Ff ðX ; yÞ
R y=hn

ðy+gðX ÞÞ=hn
KðgÞdg dX , E3n ¼ hn

R
Cx

f ðX ; yÞ
R y=hn

ðy+gðX ÞÞ=hn
gKðgÞdgdX , E4n ¼

h2n
2

R
Cx

f ð1ÞðX ; yÞ
R y=hn

ðy+gðX ÞÞ=hn
g2KðgÞ

dgdX . For ðx; yÞ 2 C(, if yp0 then F̂ ðx; yÞ ¼ 0. We now consider the limiting behavior of each term when:
(1) 0oyogðxÞ; (2)y4gðxÞ; (3) y ¼ gðxÞ.

(1) For any A , Cx and B , ½0; gðxÞ*, let gðAÞ ¼ fgðxÞ : x 2 Ag and g+1ðBÞ ¼ fx : x 2 Cx; gðxÞ 2 Bg. Then,
E1n ¼

R
g+1ð½0;y*Þ kð

y+gðX Þ
hn
ÞFf ðX ; gðX ÞÞdX þ

R
g+1ð½y;gðxÞ*Þ kð

y+gðX Þ
hn
ÞFf ðX ; gðX ÞÞdX ¼ E11;n þ E12;n. By A1, jkðy+gðX Þ

hn
Þjj

Ff ðX ; gðX Þjo1 and by Lebesgue’s dominated convergence (LDC) theorem E11;n !
R

g+1ð½0;y*Þ

R
½0;gðX Þ*

f ðX ;Y ÞdX dY since X 2 g+1ð½0; y*Þ and kðy+gðX Þ
hn
Þ! 1. Similarly, E12;n ! 0 since X 2 g+1ð½y; gðxÞ*Þ and

kðy+gðX Þ
hn
Þ! 0. E2n !

R
g+1ð½y;gðxÞ*Þ

R
½0;y* f ðX ;Y ÞdY dX since for X 2 g+1ð½0; y*Þ, we have

R y=hn

ðy+gðX ÞÞ=hn
KðgÞdg! 0,

and for X 2 g+1ð½y; gðxÞ*Þ we have
R y=hn

ðy+gðX ÞÞ=hn
KðgÞdg! 1. h+1n E3n ! 0 since for X 2 g+1ð½0; y*Þ we have

R y=hn

ðy+gðX ÞÞ=hn
gKðgÞdg! 0 and by A2(c), for X 2 g+1ð½y; gðxÞ*Þ we have

R y=hn

ðy+gðX ÞÞ=hn
gKðgÞdg! 0. Now, h+2n E4n !

1
2 s

2
K

R
g+1ð½y;gðX Þ*Þ f

ð1ÞðX ; yÞdX since for X 2 g+1ð½0; y*Þ we have
R y=hn

ðy+gðX ÞÞ=hn
g2KðgÞdg! 0 and by A2(c), for X 2

g+1ð½y; gðxÞ*Þ we have
R y=hn

ðy+gðX ÞÞ=hn
g2KðgÞdg! s2K . Hence, for 0oyogðxÞ we have EðF̂ ðx; yÞÞ ¼

F ðx; yÞ þ h2n
2 s

2
K

R
g+1ð½y;gðxÞ*Þ f

ð1ÞðX ; yÞdX þ oðh2
nÞ. For cases (2) and (3) results are obtained in a similar manner.

(b) Note that V ðF̂ ðx; yÞÞ ¼ 1
n ðV1n + V 2nÞ where V 1n ¼ Eðð 1hn

R y
0 Kðg+Y

hn
ÞdgÞ2IðX ipxÞÞ and V 2n ¼

ðEð 1hn

R y
0 Kðg+Y

hn
ÞdgIðX ipxÞÞÞ2. The results are obtained following arguments similar to those in (a). &

Lemma 2. Let 0ohn ! 0 be a nonstochastic sequence of bandwidths with nhn !1 as n!1. Assume that for
a given x 2 Rd

þ and some NðxÞ we have that for all n4NðxÞminfi:X ipxgY iXhnBK and A1–A4. Then, (a)
supy2½0;gðxÞ*jF̂ ðx; yÞ + EðF̂ ðx; yÞÞj ¼ opð1Þ and (b) supy2½0;gðxÞ*jEðF̂ ðx; yÞÞ + F ðx; yÞÞj ¼ oð1Þ.

Proof. (a) Given minfi:X ipxgY iXhnBK , F̂ ðx; yÞ ¼ 1
n

Pn
i¼1kð

y+Y i

hn
ÞIðX ipxÞ. Since GðxÞ ¼ ½0; gðxÞ* is compact,

there exists y0 2 GðxÞ such that GðxÞ , Bðy0; rxÞ where Bðy0; rxÞ ¼ fy 2 R : jy+ y0jorxg whererx 2 Rþ. By the

Heine–Borel theorem there exists fBðyk; ðn=ha
nÞ
+1=2Þgln

k¼1, a40 such that GðxÞ - [ln

k¼1Bðyk; ðn=ha
nÞ
+1=2Þ for yk 2

GðxÞ with lnorxðn=ha
nÞ

1=2. For y 2 Bðyk; ðn=ha
nÞ
+1=2Þ we have

jF̂ ðx; yÞ + F̂ ðx; ykÞjp
1

n

Xn

i¼1
k

y+ Y i

hn

" #
+ k

yk + Y i

hn

" #$$$$

$$$$IðX ipxÞ

pmkh+1n jy+ ykjpmkðnh2+a
n Þ

+1=2 by A2(e) and the fact that IðX ipxÞp1.

Also, jEðF̂ ðx; yÞÞ + EðF̂ ðx; ykÞÞjp
R

Cx

R
½0;gðX Þ* jkð

y+Y
hn
Þ + kðyk+Y

hn
Þjf ðX ;Y ÞdY dXpmkFX ðxÞðnh2+a

n Þ
+1=2 by A2(e).

Hence, jF̂ ðx; yÞ + EðF̂ ðx; yÞÞjpjF̂ ðx; ykÞ + EðF̂ ðx; ykÞÞjþmkðnh2+a
n Þ

+1=2ð1þ F X ðxÞÞ and supy2GðxÞjF̂ ðx; yÞ+
EðF̂ ðx; yÞÞjpmax1pkpln

jF̂ ðx; ykÞ + EðF̂ ðx; ykÞÞjþmkðnh2+a
n Þ

+1=2ð1þ FX ðxÞÞ. Taking a ¼ 1 and given that

nhn !1, we have mkðnh2+a
n Þ

+1=2 ! 0. Hence, we need only show that for all en40,

limn!1 Pðmax1pkpln
jF̂ ðx; ykÞ + EðF̂ ðx; ykÞÞjXenÞ ¼ 0. It suffices to establish that limn!1

Pln

l¼1PðjF̂ ðx; ykÞ+
EðF̂ ðx; ykÞÞjXenÞ ¼ 0. Note that, jF̂ ðx; ykÞ + EðF̂ ðx; ykÞÞj ¼ jn+1

Pn
i¼1W inj where W in ¼ kðyk+Y i

hn
ÞIðX ipxÞ+
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Eðk yk+Y i

hn

% &
IðX ipxÞÞ, with EðW inÞ ¼ 0 and jW injp2 given that Ið'Þ;kð'Þp1. Given A1, by Bernstein’s

inequality we have PðjF̂ ðx; ykÞ + EðF̂ ðx; ykÞÞjXeÞo2 expð +ne2n
2s̄2þ4

3en
Þ, with s̄2 ¼ n+1

Pn
i¼1V ðW inÞ ¼ V 1nðx; ykÞ +

V 2nðx; ykÞ! F ðx; ykÞð1+ F ðx; ykÞÞ for yk 2 GðxÞ. Let cn ¼ 2s̄2 þ 4
3 en and en ¼ lnðnÞ

n

% &1=2
D for some D40.

Then, PðjF̂ ðx; ykÞ + EðF̂ ðx; ykÞÞjXeÞp2rxð nhn
Þ1=2n+D=cnprxðnhnÞ+1=2 for D sufficiently large. Hence,

limn!1 Pðð n
lnðnÞ Þ

1=2supy2GðxÞjF̂ ðx; yÞ + EðF̂ ðx; yÞÞjXDÞ ¼ 0 and consequently supy2GðxÞjF̂ ðx; yÞ + EðF̂ ðx; yÞÞj ¼
opð1Þ. (b) Note that

sup
y2½0;gðxÞ*

jEðF̂ ðx; yÞÞ + F ðx; yÞÞjp sup
y2½0;gðxÞ*

E1nðyÞ +
Z

g+1ð½0;y*Þ

Z

½0;gðX Þ*
f ðX ;Y ÞdY dX

$$$$

$$$$

þ sup
y2½0;gðxÞ*

E2nðx; yÞ +
Z

g+1ð½y;gðxÞ*Þ

Z

½0;y*
f ðX ;Y ÞdY dX

$$$$

$$$$þ sup
y2½0;gðxÞ*

jE3nðx; yÞj,

where E1nðyÞ ¼
R

g+1ð½0;y*Þ

R
½0;gðX Þ* kð

y+Y
hn
Þf ðX ;Y ÞdY dX , E2nðx; yÞ ¼

R
g+1ð½y;gðxÞ*Þ

R
½0;y* kð

y+Y
hn
Þf ðX ;Y ÞdY dX and

E3nðx; yÞ ¼
R

g+1ð½y;gðxÞ*Þ

R
½y;gðX Þ* kð

y+Y
hn
Þf ðX ;Y ÞdY dX . To complete the proof we show that each supremum on

the r.h.s. is oð1Þ. For the first term we have: (a) X 2 g+1ð½0; y*Þ which implies that gðX Þpy and as n!1,
y+Y

hn
4BK and kðy+Y

hn
Þ! 1, hence by LDC theorem E1nðyÞ!

R
g+1ð½0;y*Þ

R
½0;gðX Þ* f ðX ;Y ÞdY dX for every

y 2 ½0; gðxÞ*; (b) For all y 2 ½0; gðxÞ*E1nðyÞpE1;nþ1ðyÞ, hence given A1(b), k satisfies a Lipschitz condition,
which together with A4 shows that E1nðyÞ is continuous. Since

R
g+1ð½0;y*Þ

R
½0;gðX Þ* f ðX ;Y ÞdY dX is continuous in

y, supy2½0;gðxÞ*jE1nðyÞ +
R

g+1ð½0;y*Þ

R
½0;gðX Þ* f ðX ;Y ÞdY dX j ¼ oð1Þ. Following a similar argument supy2½0;gðxÞ*j

E2nðx; yÞ +
R

g+1ð½y;gðxÞ*Þ

R
½0;y* f ðX ;Y ÞdY dX j ¼ oð1Þ. &

Proof of Theorem 1. From Nadaraya (1964), for all !40, we have F ðqaðxÞ þ !=xÞ4F ðqaðxÞ=xÞ4
F ðqaðxÞ + !=xÞ. If o 2 A & fo : jqa;nðxÞ + qaðxÞj4!g we have that either F ðqa;nðxÞ=xÞXF ðqaðxÞ þ !=xÞ or

F ðqa;nðxÞ=xÞpF ðqaðxÞ + !=xÞ. Hence, there exists 0odð!; xÞ where dð!; xÞ ¼ min fF ðqaðxÞ þ !=xÞ +
F ðqaðxÞ=xÞ;F ðqaðxÞ=xÞ + F ðqaðxÞ + !=xÞg such that o 2 B ¼ fo : jF ðqa;nðxÞ=xÞ + F ðqaðxÞ=xÞj4dð!; xÞg so A ,
B and P jqa;nðxÞ + qaðxÞj4!

' (pP jF ðqa;nðxÞ=xÞ + F ðqaðxÞ=xÞj4dð!; xÞ
' (

: Since, jF ðqa;nðxÞ=xÞ + F ðqaðxÞ=xÞj ¼
jF ðqa;nðxÞ=xÞ + F̂ ðqa;nðxÞ=xÞjp sup y2Rþ jF̂ ðy=xÞ + F ðy=xÞj and we write supy2Rþ jF̂ ðy=xÞ + F ðy=xÞjp 1

F̂ ðxÞ

supy2Rþ jF̂ ðx; yÞ + F ðx; yÞjþ j 1
F X ðxÞ
+ 1

F̂ ðxÞ
jF X ðxÞ since F ðx; yÞpF X ðxÞ. Now, we have supy2Rþ jF̂ ðx; yÞ+F ðx; yÞj

psupy2½0;gðxÞ*jF̂ ðx; yÞ + F ðx; yÞjþ supðgðxÞ;1ÞjF̂ ðx; yÞ + F ðx; yÞj. From Lemma 2, supy2½0;gðxÞ*jF̂ ðx; yÞ + F ðx; yÞj ¼
opð1Þ. For all y 2 ðgðxÞ;1Þ we have that F ðx; yÞ ¼ F ðx; gðxÞÞ ¼

R
Cx

R
½0;gðX Þ* f ðX ;Y ÞdY dX ¼ FX ðxÞ. In

addition, given minfi:X ipxgY iXhnBK and 0oYpgðxÞ, we have that for all y 2 ðgðxÞ;1Þ, y+ Y40. Hence,

there exists NðxÞ such that for all n4NðxÞ we have that F̂ ðx; yÞ ¼ n+1
Pn

i¼1
R BK

+BK
KðgÞdgIðX ipxÞ ¼

n+1
Pn

i¼1IðX ipxÞ ¼ F̂ ðxÞ. Therefore, supðgðxÞ;1ÞjF̂ ðx; yÞ + F ðx; yÞj ¼ supðgðxÞ;1ÞjF̂ ðxÞ + FX ðxÞj ¼ opð1Þ given

Chebyshev’s inequality and F̂ ðxÞ + FX ðxÞ ¼ opð1Þ. To complete the proof, note that F̂ ðxÞ ¼ Opð1Þ, and

FX ðxÞ40, hence by Slutsky theorem F̂ ðxÞ+1+ F X ðxÞ+1 ¼ opð1Þ. &

Proof of Theorem 2. qa;nðxÞ + qaðxÞ ¼ ðAn þ CnÞð 1
f ðqaðxÞ=xÞ þ bnÞ, where An ¼ F ðqaðxÞ=xÞ + EðF̂ ðx;qaðxÞÞÞ

EðF̂ ðxÞÞ
, bn ¼

f̂ +1ðq̄a;nðxÞ=xÞ + f +1ðqaðxÞ=xÞ and Cn ¼
EðF̂ ðx;qaðxÞÞÞ

EðF̂ ðxÞÞ
+ F̂ ðqaðxÞ=xÞ. The theorem follows if: (a) bn ¼ opð1Þ; (b)

An ¼ + 1
2 h2

ns
2
K

R
g+1ð½qaðxÞ;gðxÞ*Þ

f ð1Þðg;qaðxÞÞ dg

FX ðxÞ
þ oðh2

nÞ; (c) ð
snðxÞ
F̂ ðxÞ
Þ+1

ffiffiffi
n
p

Cn!
d
Nð0; 1Þ where s2nðxÞ ¼ F ðx; qaðxÞÞ +

F ðx;qaðxÞÞ
2

FX ðxÞ
+

2hnsk
R

g+1ð½qaðxÞ;gðxÞ*Þ
f ðX ; qaðxÞÞdX þ oðhnÞ. (a) It suffices to show that f̂ ðq̄a;nðxÞ=xÞ + f ðqaðxÞ=xÞ ¼ opð1Þ for all

a 2 ð0; 1Þ. Since qa;nðxÞ + qaðxÞ ¼ opð1Þ it suffices to show that supy2Gjf̂ ðy=xÞ + f ðy=xÞj ¼ opð1Þ, where
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G - ð0; gðxÞÞ, G compact. Note that

sup
y2G
jf̂ ðy=xÞ + f ðy=xÞjp 1

F̂ ðxÞ
sup
y2G

1

nhn

Xn

i¼1
K

Y i + y

hn

" #
IðX ipxÞ +

Z

g+1ð½y;gðxÞ*Þ
f ðX ; yÞdX

$$$$$

$$$$$

þ
1

FX ðxÞ
+

1

F̂ ðxÞ

$$$$

$$$$ sup
y2G

Z

g+1ð½y;gðxÞ*Þ
f ðX ; yÞdX .

By A1, supy2G

R
g+1ð½y;gðxÞ*Þ f ðX ; yÞdXpBf

R
g+1ð½y;gðxÞ*Þ dX ¼ Oð1Þ for all finite x, and since F̂ ðxÞ+1 + FX ðxÞ+1 ¼

opð1Þ the second term on the r.h.s. is opð1Þ. We now establish that the first term on the r.h.s. is opð1Þ. From
Lemma 1 in Martins-Filho and Yao (2007a), if nh2

n !1, supy2Gjs0;xðyÞ + Eðs0;xðyÞÞj ¼ OpððlnðnÞnhn
Þ1=2Þ where

s0;xðyÞ ¼ 1
nhn

Pn
i¼1Kð

Y i+y
hn
ÞIðX ipxÞ. Now, Eðs0;xðyÞÞ ¼

R
Cx

R
½+y=hn;ðgðX Þ+yÞ=hn*

KðgÞf ðX ; yþ hngÞdgdX and by

A3(c) jEðs0;xðyÞÞ +
R

Cx

R
½+y=hn;ðgðX Þ+yÞ=hn*

KðgÞf ðX ; yÞdgdX jpmf hn

R
Cx

R
½+BK ;BK *

jgjKðgÞdgdX ¼ OðhnÞ. Given that

y 2 G - ð0; gðxÞÞ, there exists NðxÞ such that for all n4NðxÞ we have
R

Cx

R
½+y=hn;ðgðX Þ+yÞ=hn*

KðgÞf ðX ; yÞdgdX ¼

H1nðx; yÞ þH2nðx; yÞ where H1nðx; yÞ ¼
R

g+1ð½0;y*Þ kð
gðX Þ+y

hn
Þf ðX ; yÞdX and H2nðx; yÞ ¼

R
g+1ð½y;gðxÞ*Þ kð

gðX Þ+y
hn
Þ

f ðX ; yÞdX . Following the proof for Lemma 2, we obtain supy2GjH1nðx; yÞj ¼ oð1Þ and supy2G

jH2nðx; yÞ +
R

g+1ð½y;gðxÞ*Þ f ðX ; yÞdX j ¼ oð1Þ. Consequently, we have supy2Gj
R

Cx
kðgðX Þ+y

hn
Þf ðX ; yÞdX +

R
g+1ð½y;gðxÞÞ

f ðX ; yÞdX j ¼ oð1Þ and also supy2Gj 1
nhn

Pn
i¼1Kð

Y i+y
hn
ÞIðX ipxÞ +

R
g+1ð½y;gðxÞ*Þ f ðX ; yÞdX j ¼ opð1Þ. (b) An ¼

ðEðF̂ ðxÞÞÞ+1ðA1nðxÞ þ A2nðxÞÞ where A1nðxÞ ¼ F ðqaðxÞ=xÞEðF̂ ðxÞÞ + F ðx; qaðxÞÞ and A2nðxÞ ¼ F ðx; qaðxÞÞ+
EðF̂ ðx; qaðxÞÞÞ. Since EðF̂ ðxÞÞ ¼ F X ðxÞ, A1nðxÞ ¼ 0. Given that 0oao1, we have 0oqaðxÞogðxÞ and from

Lemma 1, A2nðxÞ ¼ + 1
2 h2

ns
2
K

R
g+1ð½qaðxÞ;gðxÞ*Þ

f ð1ÞðX ; qaðxÞÞdX þ oðh2
nÞ. Thus, An ¼ + 1

FX ðxÞ
h2n
2 s

2
K

R
g+1ð½qaðxÞ;gðxÞ*Þ

f ð1Þ

ðX ; qaðxÞÞdX þ oðh2
nÞ. (c)

ffiffiffi
n
p

Cn ¼ + 1
F̂ ðxÞ

Pn
i¼1Zin where Zin ¼ 1ffiffi

n
p ð 1hn

R
½0;qaðxÞ*

KðY i+g
hn
ÞIðX ipxÞdg+ IðX ipxÞ

EðF̂ ðx;qaðxÞÞÞ
FX ðxÞ

Þ with EðZinÞ ¼ 0, s2n ¼
Pn

i¼1EðZ
2
inÞ. By A1, s2n ¼ s1n þ s2n þ s3n where s1n ¼ Eð 1hn

R
½0;qaðxÞ*

KðY i+g
hn
Þ

IðX ipxÞdgÞ2, s2n ¼ EðIðX ipxÞÞ ðEðF̂ ðx;qaðxÞÞÞ
2

FX ðxÞ2
and s3n ¼ +2

EðF̂ ðx;qaðxÞÞ
FX ðxÞ

Eð 1hn

R
½0;qaðxÞ*

KðY i+g
hn
ÞIðX ipxÞdgÞ. From

Lemma 1, s1n ¼ F ðx; qaðxÞÞ + 2hnsk
R

g+1ð½qaðxÞ;qðxÞ*Þ
f ðX ; qaðxÞÞdX þ oðhnÞ, and s2n ¼ F X ðxÞ+1ðF ðx; qaðxÞÞþ

s2K
h2n
2

R
g+1ð½qaðxÞ;qðxÞ*Þ

f ð1ÞðX ; qaðxÞÞdX þ oðh2
nÞÞ

2. Hence, s2n ¼ FX ðxÞ+1F ðx; qaðxÞÞ
2 þ oðhnÞ and s3n ¼ +2s2n ¼

+2 ðF ðx;qaðxÞÞÞ
2

FX ðxÞ
þ oðhnÞ which gives s2nðxÞ ¼ F ðx; qaðxÞÞ +

F ðx;qaðxÞÞ
2

FX ðxÞ
+ 2hnsk

R
g+1ð½qaðxÞ;gðxÞ*Þ

f ðX ; qaðxÞÞdX þ oðhnÞ.

By Liapounov’s CLT
Pn

i¼1
Zin

snðxÞ
!
d
Nð0; 1Þ provided that limn!1

Pn
i¼1Eðj

Zin

snðxÞ
j2þdÞ ¼ 0 for some d40. By the cr

inequality and given the order of s2nðxÞ, it suffices to show that an ¼ n+d=2Eðj 1hn

R
½0;qaðxÞ*

KðY i+g
hn
Þ

IðX ipxÞdgj2þdÞ ¼ oð1Þ and bn ¼ n+d=2EðjIðX ipxÞ EðF̂ ðx;qaðxÞÞÞF X ðxÞÞ
j2þdÞ ¼ oð1Þ. First, note that an ¼ n+d=2

R
CxR

½0;gðX Þ* f ðX ;Y Þ ð
R ðqaðxÞ+Y Þ=hn

+Y=hn
KðgÞdgÞ2þd dY dXpn+d=2

R
Cx

R
½0;gðX Þ* f ðX ;Y ÞdY dX ! 0 as n!1. Second,

note that bn ¼ n+d=2EðIðX ipxÞÞ ðEðF̂ ðx;qaðxÞÞÞ
2þdÞ

FX ðxÞ2þd
! 0 since EðIðX ipxÞÞ ¼ FX ðxÞ40, and by Lemma 1

EðF̂ ðx; qaðxÞÞÞ! F ðx; qaðxÞÞ. Hence, ð snðxÞ
F̂X ðxÞ
Þ+1

ffiffiffi
n
p

Cn!
d
Nð0; 1Þ since F̂ ðxÞ!

p
F X ðxÞ. &

Proof of Theorem 3. The proof is similar to that of Theorem 2 by using the Cramer–Wold device. &

Proof Theorem 4. (a) q1;nðxÞ & inffy 2 Rþ : ðnhnÞ+1
Pn

i¼1
R y
0 KðY i+g

hn
ÞdgIðX ipxÞ ¼ n+1

Pn
i¼1IðX ipxÞg. Given

minfi:X ipxgY iXhnBK , there exists NðxÞ 2 Rþ such that for all n4NðxÞ, we have that the equality (in the set)
holds for all yXmaxfi:X ipxgY i þ hnBK , and it is false for all yomaxfi:X ipxgY i þ hnBK . Hence, q1;nðxÞ ¼
maxfi:X ipxgY i þ hnBK for all n4NðxÞ. (b) The FDH estimator is defined as yFDHðxÞ ¼ maxfi:X ipxgY i and from

Park et al. (2000) n1=ðdþ1Þðq1ðxÞ + yFDHðxÞÞ!
d

Weibullðmdþ1
x ; d þ 1Þ. Hence, if nhdþ1

n ¼ Oð1Þ, n1=ðdþ1Þðq1ðxÞ+

q1;nðxÞ þ hnBKyFDHðxÞÞ!
d

Weibullðmdþ1
x ; d þ 1Þ. &
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Lemma 3. Let yðyÞ ¼
R b
0 f ð1Þðx; yÞdx and ŷðyÞ ¼ 1

ngn1

Pn
i¼1K

ð1Þðy+Y i

gn1
ÞIðX ipbÞ. Suppose third order partial

derivatives of f ðx; yÞ with respect to y-f ð3Þðx; yÞ exists around ðx; yÞ and the first order derivative of Kð'Þ +
K ð1Þð'Þ satisfies the following conditions: (K1)

R BK

+BK
K ð1ÞðcÞdc ¼ 0; (K2)

R BK

+BK
cK ð1ÞðcÞdc ¼ +1; (K3)

R BK

+BK
c2K ð1ÞðcÞdc ¼ 0; (K4)

R BK

+BK
c3K ð1ÞðcÞdc ¼ CK ; (K5)

R BK

+BK
K2ð1ÞðcÞdc ¼ CK1. Then, (a) EðŷðyÞ+

yðyÞÞ ¼ +CK
g2n
6

R b
0 f ð3Þðx; yÞdxþ oðg2

nÞ, (b) V ðŷðyÞÞ ¼ CK1
1

ng3
n1

R b
0 f ðx; yÞdxþ oððng3

nÞ
+1Þ, and (c) AMISEðŷðyÞ;

gnÞ ¼ C2
K

g4n
36

R
ð
R b
0 f ð3Þðx; yÞdxÞ2 dyþ CK1

1
ng3n

R R b
0 f ðx; yÞdxdy.

Proof. By considering a third order Taylor expansion of f ðx; yÞ around y in the expression for EðŷðyÞÞ, we
obtain (a) in a straightforward manner given (K1)–(K4). (b) results from applying the LDC theorem to
V ðŷðyÞÞ together with (K5). (c) follows directly from (a) and (b). &
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