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1 Sets and basic operations

A set is a collection of arbitrary objects. These objects are called the elements of the set.
A set is described by listing its elements or by enunciating the properties its elements must
satisfy. It is common practice to represent a set by including its elements, or the properties
satisfied by its elements, within curly brackets. For example, the set of all outcomes from

rolling a 6-sided die, where the sides are numbered from 1 to 6, can be represented by
A=1{1,2,3,4,5,6} or by A= {x: z is a natural number and 1 < z < 6}.

In the second case, we read “A is the set with typical element x such that x is a natural
number and 1 < x < 6.” Sets are commonly denoted by uppercase roman letters, such as A
in this example.

In mathematics, some of the most fundamental sets contain numbers. The set of natural
numbers is denoted by IN with IN = {1,2,---}, the set of non-negative integers by Ny =
{0,1,2,---}, the set of integers by Z = {0,4+1,£2,---} and the set of rational numbers by
Q = {z : © = a/bwhere b # 0 and a,b € Z}. The set of real numbers, denoted by R, is
the set of rational numbers together with the set of irrational numbers, i.e., the numbers
that are not rationalm Another important set contains the complex numbers and is denoted
by C. The set is formed by all real numbers together with what are known as “imaginary”
numbers 4

If  is an element of a set A we write z € A, and when it is not, we write x ¢ A. If A and
B are sets such that t € A = = € B, we write A C B and say that A is a subset of B. If

AC B and B C A, we write A = B and say that the two sets are equal, otherwise we write

!Showing that a particular number is irrational can be difficult, but the existence of irrational numbers is
easy to establish. For example, /2 is an irrational number. To see this, suppose that it is not, such that we
can writev/2 = a/b where a and b have no common prime factors. Then a? = 2b? and a? is a multiple of 2.
But since 2 is a prime number it divides a, so that there exists an integer ¢ such that a = 2¢ and 4¢? = 202,
which implies b> = 2¢2. Hence, b is a multiple of 2 which contradicts the assumption that a and b have no
common factors. Thus, V/2 cannot be a rational number.

2Complex numbers will be formally introduced and discussed later in these notes.



A+# B. If AC B and A # B we say that A is a proper subset of B and when this needs
to be emphasized we write A C B. The set that contains no elements is called the empty
set and is denoted by (). The empty set is a subset of all sets, i.e., ) C A for any nonempty
A. This is true because if the empty set is not a subset of A, then there exists an element
of () that is not in A. But this is impossible since () has no elements. The set containing all
subsets of a set A is called the power set of A and is denoted by 24 or P(A). Sets whose

elements are sets are often called systems.

Example 1. Intervals are important subsets of R. An open interval of R, denoted by (a,b), is
the set {x € R : a < x < b}, a closed interval, denoted by [a,b] is the set {z € R:a <z < b}
and a half-open interval is a set [a,b) = {r € R:a <x <b} or(a,b] ={r € R:a <z <b}.
Intervals are said to be finite if a, b € R and infinite if a = —o0 or b = co. The meaning
of the qualifiers ‘open’, ‘closed’ or ‘half-open’ as well as the meaning of the symbols —oo and

oo will be discussed later in these notes.

The union of sets A and B is denoted by AUB and AUB ={x:2 € Aor x € B}. The
intersection of sets A and B is denoted by AN B and ANB ={x:x € Aand x € B}. The
sets A and B are disjoint if AN B = (). The difference of sets A and B is denoted by A — B
and A— B = {z:x € A and x ¢ B}. The set that contains the elements that are not in A is
called the complement of A and is denoted by A¢. The set U = AU A€ is called the universal
set and contains all elements that are under consideration. The symmetric difference of sets
A and B is denoted by AAB and AAB = (A— B)U (B — A).

The next theorem shows that unions and intersections have commutative, associative and
distributive properties. For a visual understanding of these properties it is useful to use of

Venn diagrams.

Theorem 1. 1. (Commutative property) ANB=BNAand AUB = BUA;



2. (Associative property) (AUB)UC = AU (BUC)=AUBUC and (ANB)NC =
AN(BNC)=ANBNC;

3. (Distributive property) (AUB)NC = (ANC)U(BNC) and (ANB)UC = (AUC)N
(BUC().

Proof. Left as an exercise. Note that if A = B it must be that A C B and B C A. O

Remark 1. The results in these notes are normally enunciated as ‘If statement A is true
then statement B is true’ or A = B, that should be read as “A implies B.” If it is also
true that B = A, we say that A and B are equivalent, and we write A <= B. The
contrapositive of A = B is mot B = not A’ and these implications are equivalent.
Hence, the veracity of a result is established either directly or by its contrapositive. In certain
occasions, the veracity of a statement is established by assuming that A and ‘not B’ hold and
then arriving at a statement known to be false or absurd, leading to the conclusion that A
must imply B (see footnote 1 as an example). This method of establishing a result is known

as ‘proof by contradiction.’

In some instances ‘mathematical induction’ can be used to establish the general veracity
of propositions that we know to be true in special cases. This method of proof is justified

by the following theorem.

Theorem 2. Given a statement P(n) formulated for n € IN, suppose that:
1. P(1) is true,
2. P(k) true for all k < n implies P(n + 1) is true.

Then, P(n) is true for all n € IN.

Proof. Suppose P(n) is not true for some n and let n; be the smallest natural number for
which the statement P is not true. Clearly, ny > 1, since P(1) is true and n; — 1 € N. P(n)

is valid for all £ < n; — 1 but not n;, contradicting 2. O
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It is often possible and useful to numerically index the elements of a set. For example, if
a set S = {apple, orange, banana} we can write S = {s;};c; where I = {1,2,3}, s; = apple,
s9 = orange and s3 = banana. In this case, the set has a finite number of elements and the
associated index set is correspondingly finite. In other cases it may be necessary to consider
larger index sets such as I = N or I = R.

Using an arbitrary index set I, we can represent a system J associated with an arbitrary

set Aas F={A; C A:ie€ I}. The next theorem is useful when manipulating sets.

Theorem 3. (De Morgan’s laws) Let I be an index set and F = {A; :i € I}. Then,

1 (ua) =nas

i€l el

. (ﬂAi>C: A

el el

Proof. 1. z € (UAZ> — 1= ¢ |JA;. But this implies that x ¢ A; for all i € I.

il iel
Consequently, x € A§ for all i. That is, z € [ AS. Conversely, z € [A¢ implies x € A¢
iel iel
for all i € I. Consequently, z ¢ A; for all i and therefore = ¢ |JA;, which implies that
i€l
(UAZ> . The proof of 2. is left as an exercise. [
i€l

We now define the cartesian product of a finite collection of sets. The cartesian product

will be used to define relations and functions.

Definition 1. The cartesian product of sets A1 and As, denoted by A1 x As, is the set of

all elements given by (ay,as) where a; € Ay and as € Ay. That is,
A1 X A2 = {(al, 0,2) ay € A1 and o € AQ}

The element (ay,as) is called an ordered pair. For a finite collection of sets {Ay,---, An}

where n € N, the cartesian product is given by

xit Ai=A{(ar, - ,a,) ra; € A; fori=1,--- n withn € N},
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and (ay,- -+ ,a,) is called an ordered n-tuple.
Example 2. Leti=1,2,--- ;n, n € N and A; = R. Then,
Xt A= %2 R:=R"={(a, - ,a,) :a; €ER fori=1,--- ,n withn € N}.

What matters in identifying an n-tuple is that it is an ordered collection of elements, each
coming from a specific set. The exact notation adopted to represent the ordered n-tuple is

a matter of convenience. As such, the following representations will generally be taken as

equivalent
a1 a1
(ar,asg, -+ ,a,), a:Q ,(a1 ag - an), a,Q ,[al as an]
an a

In some instances, it will be convenient or necessary to emphasize that the n-tuple is a
vertical or horizontal array. In this context, if we set
a1
a— a:2 thenaT:(a1 Qg - an).

Qn

a’ is called the transpose of a and we set (a”)” = a.

2 Relations and functions

Definition 2. 1. A relation R between A and B is a subset of A x B. 2. The inverse

relation, denoted by R™', is the set with elements (b,a) € B x A such that (a,b) € R.

For a € A, we define the image of a under R as the set R(a) = {b: (a,b) € R}. Note
that R(a) can be the empty set and that R(a) C B. The image of X C A under R is the
set {b:a € X and (a,b) € R} = |J R(a). For any b € B, we define the inverse image of b

aceX

under R as R71(b) = {a : (a,b) € R}, which can be the empty set and R~'(b) C A . The
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inverse image of Y C B under R is the set {a : b € Y and (a,b) € R} = |J R"'(b). The
image of A under R is called the range of R, and the inverse image of B ui)ledyer R is called
the domain of R.

When R is a relation between A and B we often write R : A — B, and when (a,b) € R

we sometimes write a2 and say that a is related to b by R or that a and b are related by R.

Definition 3. [f R: A— B and S : B — C, the composition of R and S, denoted by Ro S,
is the set Ro S = {(a,c) : there ezists b € B with (a,b) € R and (b,c) € S}. In this case we
write RoS: A — C.

Definition 4. A function f between A and B, or from A to B, is a relation between A and

B such that for every a € A, (a,b) € f and (a,c) € f = b=c.

When f is a function from A to B we write f : A — B. Usually A = f~}(B) and in this
case A is the domain of f. When afb we write b = f(a). The set B is called the co-domain
of f. Gy = {(z,y) : such that z € A and y = f(z)} C A x B is usually called the graph of
f.

For X C A, f(X) ={y € B:y = f(x)forz e X} C B is called the image of X
under f and f(A) is called the range of f. For Y C B, the inverse image of Y under f is
JNY) = {ac A: fa) € YY),

It should be clear that f~! may not be a function on B. If it is a function, i.e., if for
every y € B we have that f~!(y) contains one, and only one element, it is called the inverse

function of f. We say that f = g if f and g have the same domain A and for every a € A,

Example 3. Let A = [-1,1] C R and f = {(z,y) : € Aandy = x}. f is clearly a
function, since for every x € A there is one, and only one y satisfying the relation. The

relation R = {(z,y) : © € A and y* = 1 — 2%} is not a function, since for x € A both y and



f (black) ai blue)

Figure 1: The function y = x, in black, and the relation ? = 1 — 22, in blue

—y satisfy the relation, that is (x,y), (r,—y) € R. Figure 1 gives a geometric representation

of these relations.

Example 4. The indicator function of a set A C § is denoted by I4 : Q0 — R and given by

La(w) = 1, ifweA
A 0, ifwe A’

where w € Q. It is easily shown that A C B = Ix(w) < Ig(w) for all w € Q. Also,

Iy(w) < Ig(w) for allw e Q = A C B. Hence,
ACB — I (w) < Ip(w).

Also, sincew ¢ A = weAandw e A° = w ¢ A, Ine(w) =1—14(w) for all w € .

Definition 5. Let f : A — B.

1. f is surjective or ‘onto B’ if f(A) = B,



2. f is injective or ‘one-to-one’ if for all a,o0 € A with a # «, f(a) # f(«),
3. f is byective if f is onto B and one-to-one.

The next theorem shows that inverse images, unions, intersections and differences of sets

are interchangeable.

Theorem 4. Let f: A — B, I an index set and F = {B; : i € I} a collection of subsets of
B. Then,

1. f <UBz’) = U (B,

el el

2 1 (nB) =),

il il

8. f7H(Bi = By) = fH(B;) — f~1(By).

Proof. 1. xz € f~1 (UBZ) = f(x) € .UBi — f(z) € B; for some i. Hence, for some i
we have f(z) € B; a:rel(li re f[~YB;). Herllecle, T € Uffl(Bi). It is clear that all implications
can be reversed, which establishes the equality sz etlhe two sets.

2. Left as an exercise, following the steps in 1.

3. z € f7Y(B;,— Bj) = f(z) € B; — B;. Consequently, f(z) € B; and f(x) ¢ B;. Thus,
z € f7YB;) and x ¢ f~1(B;). Hence, z € f~1(B;) — f~1(B;). It can be easily verified that

all reverse implications hold. ]

The next two theorems address conditions under which images, unions, intersections and

differences of sets are interchangeable.

Theorem 5. Let f : A — B, I be an index set and {A; : i € I} a collection of subsets of A.

Then,

1. f <1L€JIA1> = iLgJIf(Az');



o f (mAi) C N,

il el

Proof. 1. y € f (UAZ) implies that there exists « € | J A; such that (z,y) € f. This implies
i€l iel
that z € A; for some i. Hence, for some i we have (x,y) € f and y € f(A;). Consequently,

y € |Jf(A;). Tt is clear that all implications can be reversed, which establishes the equality
icl
of the two sets. 2. y € f <ﬂAz> implies that there exists z € () A; such that (z,y) € f.
iel iel
This implies that for all A;, there exists an x such that (x,y) € f, and consequently y € f(A4;)

for all 7. This implies that y € [ f(A;). The reverse is not true because y € () f(4;) does
iel icl
not imply that there exists an z € (| A; such that (z,y) € f. ]
iel
Theorem 6. Let f: A — B, I be an index set and {A; :i € I} a collection of subsets of A.

Then,

1. f is one-to-one < f <DA1) = N f(4),

el el

2. f is one-to-one <= f(A— A1) = f(A) — f(A).

Proof. 1. We start by showing that f one-to-one — f (ﬂAZ) = (f(A;). By the
iel el
definition of the image of a function, f (ﬂAZ) C f(4;) for all i. Thus, f (ﬂAZ> C
iel iel

N f(A4;). Now, if y € (f(A;) then for all ¢ there exists z; € A; such that f(z;) = v.
i€l iel

Since f is one-to-one, all x; must be the same, say x;. Thus, 1 € [)A; and consequently

iel
yef (ﬂAz) Hence, (f(4;) C f <ﬂAl) and we conclude that f (ﬂAz) = f(A).
iel iel iel iel iel
We now show that f (ﬂAl> = Nf(4) = [ oneto-one. Let x1,25 € A such that
iel el

f(a1) = f(w) and set A; = {21} and Ay = {2o}. Then, f({z:}) ) f({x2}) £ 0 and by
assumption f({z1}) N f({x2}) = f({z1} N{x2}) which is nonempty if and only if z; = ..
Hence, f is one-to-one.

2. Assume that f is one-to-one. f(z) € f(A— A) = = € A— A,. Since f is one-

to-one f(z) # f(a') for all 2’ € A;. Hence, f(z) ¢ f(A;) and f(z) € f(A) — f(A;) or

9



FA— A1) C F(A) = F(A). T f(x) € F(A)— F(Ay) then f(z) & f(A) which implies @ ¢ A,
and z € A— A,. Consequently f(z) € f(A— A;) and f(A)— f(A1) C f(A— A;) (one-to-one
property of f not used). Thus, f(A) — f(A;) = f(A— A,).

Now, assutme that f(A—A;) = f(A)— f(A;). Let A, = {z} and consider 2’ # z. Clearly,
o€ A— A and f(2') € f(A— A;). But by assumption f(z') € f(A) — f({z}). Hence,
f(a') ¢ f({a}) and f(2') # f(x), establishing that f is one-to-one. O

3 The limit of a sequence of sets

Often, it is necessary to use the infinity symbols —oo or oo in calculations. In these cases
we work with the extended real line, i.e., R := R U {—o00} U {co} := [~00,00]. When we
write £ € R we mean —oo < < 0o. The extended real line inherits the ordering as well as
the rules for addition and multiplication we associate with RR. These rules are augmented as

follows in R:
l. x4+ 00=00, 2+ (—00) = —o0, for z € R
2. 00400 =00, —00 + (—00) = —00
3. —oo + oo and % are not defined
4. 0xo00=0,0x —00=0
5. £ X 00 = £00, +x X (—00) = Foo, for z € R
6. 00 X 00 =00, 00 X —00 = —00, —00 X —00 = 00
Functions that take values in R are called numerical functions.
Definition 6. Let {A,},en be a sequence of arbitrary sets and define the following: I, =
NA, b= NA,, - andUy = JA,, Us= JA,, . Notethat Iy CI, C -+ andU; 2

n>1 n>2 n>1 n>2

10



Uy D ---. We write iminf A, = |J Iy and limsup A, = () Uy. If liminf A,, = limsup A,
n—o0

n—00 keN n—00 kelN n—00

we say that the collection {A,}nen has a limit and we write

A:= lim A, =liminf A,, = limsup A,,.

n—00 n—00 n—00

Example 5. a) Let A, = [0,n/(n+1)) forn € N. Then, Uy =~ A, =1[0,1), Uy = [0, 1),
s =V A, =10,1/2), L = (), A, =[0,2/3), ---. Hence, liminf A, = |J I, =

[0,1) and limsup A, = (U =[0,1).

n—o0 kelN

b) Let A, = (0,1/n) for n € N. Then, Uy = J,—; A, = (0,1), Us = U 2, A, = (0,1/2),

cand I = (A, =0, L = yA, =0, ---. Hence, liminf A, = |J I, =0 and
limsup A, = (Ui = 0.
n—o00 kelN

The next theorem provides a characterization for liminf A, and limsup A, using the
n—0o n—00

indicator function. Here, z ¢ R means that z € R — R.

Theorem 7. Let {A,}nen be a collection of subsets of A. Then,

1.117£g£fAn = {x : ZIA%(QS) < oo},
2.limsup 4,, = {w : Z[An(m) = oo}.

n—oo nelN

Proof. 1. x € liminf A, = =z € [ A, for some k£ € N. But by DeMorgan’s Laws
n—oo

n>k
c

NA, = | UA% | . Hence, x ¢ |J AS and consequently x ¢ A¢ for all n > k. Thus,

n>k n>k n>k
Iae (x) = 0 for all n > k. Hence,

S Lag(x) = Iag(z)+ Y Ing(z) = Iag(x) < .

nelN n<k n>k n<k

Thus, liminf A4, C {x: Y I4c(x) < oo}.
Now, z € {z: >, .n1ac(x) < oo} implies that 2 belongs to a finite number of A7. That

is, there exists ng € IN such that for all n > ny we have I4. (z) = 0. That is, z ¢ A, for all

11



n > no. But this implies that = ¢ (J,,, A5 which implies z € (U,,»n, Ac)" = MNysng An- By
definition, this means that x € liminf A,,. Thus, liminf A4,, = {:c s dac(x) < oo}.

2. x €limsup A, = z € |, An for all k € N. But, by De Morgan’s Laws (J,,», An =

n—oo

(Nyxk A°)°. Hence, z ¢ Nnsk Ay, and it must be that z € A, for some n > k and all k € IN.

Consequently, 14, (z) =1 for some n > k and all £ € N. Hence, z € {x C Y g, (x) = oo}.
nelN

Conversely, if x € {a: c Y g, (x) = oo}, then there are only finitely many A, that do not

nelN
contain z. Hence, for all & € IN we have = € |J,,», Ay, which implies that z € (| U 4, =
= kEN n>k
lim sup A,,. n
n—oo

Remark 2. 1. Because of the characterization given in Theorem|7, it is common to refer to

liminf A, as the set of x’s for which x € A, for all n except a finite number (3, . Lac (7) <

n—oo

00). And to refer to limsup A, is the set of x’s for which x € A,, infinitely often (i.0).

n—oo

2. Note that x € liminf A, — z € |J Iy = = € () A, for some k. Hence, x € A, for

n—ro0 n
alln > some k. Hence, x € Unzk A, fZiﬂ\cILll k, and consezqkuently, by definition x € limsup A,,.
Thus, o
liminf A,, C limsup A,,.
n—00 n—o0
3. By De Morgan’s Laws (lini)inf An>c = limsup A¢.
n—00 n—00

4 Cardinality of sets

The number of elements in a set, or its cardinality, is an important concept. When sets have
finitely many elements, we can obtain a count of these elements and, at least conceptually,
establish its cardinality. The cardinality of sets that have infinitely many elements cannot
be established in this simple manner. We start with a definition of equality of the cardinality

of two sets.

Definition 7. Sets A and B have the same cardinality, and we write #A = #B, if there

12



is a function f : A — B that is one-to-one and onto. We write #A < #B if there is a

one-to-one function g : A — B (not necessarily onto).

If B =N and #A < #IN then every element of A can be associated with a unique

element from IN. If #A < #B, then there exists no g : A — B that is one-to-one and onto.

Definition 8. If #A < #IN we say that A is countable. The cardinality of IN is denoted by

No (aleph naught). If #A > Ry, we say that A is uncountable.

We can establish the cardinality of some important sets by defining suitable bijective

functions.

Example 6. 1. Consider Z ={...,—1,0,1,...} and the function f : Z — IN with

2z, 4f2>0
J=) = {2|z|+1, if 2 <0

f is clearly bijective. Hence, #7, = #IN and we conclude that there are as many

integers as natural numbers.

2. Let A =W x N and denote an arbitrary element of A by a = (ay,a3). Consider the
function f: A — IN given by

fla) = (ay + az)(a21 +ay—1) a4l

f s clearly a bijective. Hence, #IN x IN = #IN and we conclude that the cartesian
product of two sets of natural numbers has the same cardinality of the natural numbers.

See Figure[d for a diagrammatic representation of how f counts the elements of IN x IN.

The next theorem shows that countable unions of countable sets are countable sets.

Theorem 8. Let {A,},ew be a collection of sets (as written, it is countable) with each A,

countable. Then, A= |J A, is countable.
nelN

13
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Figure 2: Counting IN x IN

Proof. Since each A, is countable, we can enumerate its elements as A, = {A, 1, A2, }.
Hence, A = {A1,1,A1,2,A1,3,"' ,A2,17A2,2,A2,3,"'} = {Az‘,j : (4,7) € N x N}, which is

countable by item 2 in the previous Example. O

This theorem can be used to establish that @, the set of rational numbers, is countable.
To verify this, note that if ¢ € Q then ¢ = a1 /as where a1, ay € Z with as # 0. Now, consider
g > 0 and note that in this case ¢ = a;/ay can be written using the pairs (a1, as) in item 2.
Similarly, ¢ < 0 is countable. Since @) is the union of positive and negative rationals with 0,

we conclude that () is countable. A formal proof is left as an exercise.
Theorem 9. For any set A, #A < #24.

Proof. We need to show that any g : A — 24 that is one-to-one is not onto. Let B = {a €
A:a ¢ g(a)} be the elements of A whose images do not contain a. Note that in this case the
images are subsets of A. Since B € 24, if g is onto, there exists a’ € A such that g(a') = B.

Hence, ' € B <= d ¢ g(d') <= d ¢ B which is impossible. O
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Theorem 10. (Cantor-Bernstein) If #A < #B and #B < #A, then #A = #B.

Proof. By assumption, there exists f : A — B and g : B — A that are both one-to-one.
Since g : B — g¢(B) is bijective, #B = #¢(B) and the theorem will be proved if we show
that #A = #g(B). As g(B) C A, we can take g to be the identity function, i.e., g(b) = b
for all b € B, and proceed with B C A. We must obtain a bijection h : A — B.

Put Ay = A and define A; := f(A) C B, Ay = f(f(A4)) = f2(A) = f(A)), A3 = [3(A) =
f(As),- -+ with f° being the identity function. Then, we write A; = fi(A) for i = 0,1,---.
Since B C A we put By = B and similarly define B, := f(B) C B, By := f(f(B)) =
f2(B) = f(B1), B3 = f3*(B) = f(Bs),--- and write B; = fi(B) for i =0,1,---. Now, since
f(A) C Band B C A,

FYA) = FI(f(A) C Fi(B) C fi(A) or Ajyy C Bi C A; fori=0,1,---

Hence, we have A D B D A; O By D Ay O --- Now, define a function h: A — B by

flz) ifze U (A — B,

h(.T) = T if ¢ ieL]jIO(AZ' — Bz)

i€lNg
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h(A) = h g (A-B) | (g (A; — BZ-)>C>
— g (f(A) — f(B,))) U (g (A — Bi)>c since f is injective.
- (Y- m0)U (- mUY - 2)
- (Yt ma) U =20 (U - ) ) =cUa- 1N
by le:‘ing Ci= | (i = Bin) -

But CU((A—-B)°NC°) =CU((A°UB)NC°) = (CUA°UB)N(CUC®) = (CUA°UB)NA.
But C € B, hence CUB =B and CU((A—B)*NC° =(BUA)NA=ANB = B since
B C A. Hence, h(A) = B and h is onto.

We now show that h is one-to-one. To this end, let a, ' € A and let h(a) = h(a’). We

must show that a = a/. There are the following cases:

1. a,d" € | (A; — B;). Then, h(a) = f(a) and h(a’) = f(a’) and consequently f(a) =
ielNg

f(a’). But since f is one-to-one, a = d/;

2. a,d’ ¢ |J (A; — B;).Then, a = h(a) = h(d') = d since f;
1€INg
3.ae |J (A —B;) and d ¢ | (A; — B;) which implies o’ ¢ (A; — B;) for all i € INy.
1€INg i€INg
Then, f(a) = h(a) = h(a’) = d’. Now, a’ = f(a) implies a’ € f(A; — B;) for some i, but
since f is one-to-one f(A;—B;) = f(A;)— f(B;) = Aiz1—Biy1. Hence, o’ € A;jy1— By

which is ruled out by assumption. Hence, this case cannot occur.
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4. d € | (A;—B;) and a ¢ |J (A; — B;) also cannot occur given the arguments we
1€lNg 1€lNg

made for case 3.

Hence, h is one-to-one, and since we have already established that it is onto, it is bijective,

completing the proof. O

Theorem 11. If A C B then #A < #B.

Proof. Since A C B, f: A — B such that f(a) = a is one-to-one. Thus, #A < #B. ]
A direct consequence of the last theorem is that subsets of countable sets are countable.

Not all sets are countable. The next theorem shows that the interval (0, 1) is uncountable.

We use this result to say that the set of real number R is also uncountable.

Theorem 12. The interval (0,1) is uncountable and its cardinality #(0,1) := C is called

the continuum.

Proof. Every x € (0,1) can be written as 0.x1x9,--- where z; € {0,1,---,9}. However,
this representation is not unique since, e.g., 0.500--- = 0.499 ---. To avoid non-uniqueness,
whenever x = 0.1, - -+ , 2, where n is a natural number (finite number of decimal points),

we substitute x,, with x,, — 1 and set all subsequent digits to 9. As a result, every = €
(0,1) is now represented uniquely by an infinite decimal expansion. The proof, follows by
contradiction. Assume, (0,1) is countable and let all its elements be represented by the

enumeration {yi,yo, - }. Then,

y1 = 0.y11Y12913 - - -

Y2 = 0.Y21Y22Y23 - - -

Now, consider x = 0.x1x9, - -+ where 1 is any number in {0,1,--- 9} different from y11, 2
is any number in {0, 1, - - - , 9} different from ys9, and so on. Hence, x # y; for alli = 1,2, ---.
Consequently, {y1, Y2, -+ } cannot include all x € (0, 1). O

17



Theorem 13. #R = #(0,1) =C.

Proof. Let f : (0,1) — R with f(z) = (1 —2)"! — 2z7!. We can promptly verify that

f((0,1)) =R, i.e., onto and f is strictly increasing on (0, 1), hence one-to-one. ]

In the next section we discuss some of the properties of R and its structure.

5 The real numbers

We assume the existence of two operations that can be performed on the elements of R. The
first operation is called the sum of any two x,y € R and is denoted by = 4+ y. The second
operation is called the (scalar) multiplication of any two x,y € R and is denoted by xy. It
is assumed that xzy, v +y € R. For any z,y, 2 € R, these operations are assumed to satisfy

the following axioms (field){|
1. x4y =y+x;ry = yr (commutative property),
2. (z+y)+z=x+ (y+2);(xy)z = z(yz) (associative property),
3. (x 4+ y)z = xz 4+ yz (distributive property),

4. For any x,y there exists z such that x + z = y. This 2 is denoted by y — z. If y = 0,

then z = —z, which is called the negative of z. If y =2, 2 =2 — 2 = 0.

5. There exists at least one x # 0. In this case, for any x,y there exists z such that
xz = y. This z is denoted by y/z. If y =z, 2z = 1. If y = 1, then z = 1/x which is

called the reciprocal of x.

In addition, we assume that there is a relation, denoted by <, which establishes an ordering

for the elements of R. The elements of R satisfy the following axioms (order):

3Recall that in mathematics an axiom is a statement that is taken to be true, requiring no exercise to
establish its validity.
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1. For any x,y either x <y, y <z or y =z,
2. <y = x+z2<y+zforall z
3. 2,y >0 = xy > 0.

4. x>yandy >z = = > 2.

Writing © < y means that x =y or x < y.
Lastly, we assume that R satisfies the ‘completeness axiom.” Before we state this axiom

we need additional definitions.

Definition 9. u € R is an upper bound for A C R if every a € A satisfies a < u. [ € R s

a lower bound for A C R if every a € A satisfies a > [.

If A has an upper bound, it is said to be bounded above, and if A has a lower bound
it is said to be bounded below. It is evident that if u is an upper bound for A, every real
number u; > u is also an upper bound for A. If u € A, u is called the maximum element of
A. Similarly, if [ is a lower bound for A, every real number /; < [ is also a lower bound for

A. If [ € A, [ is called the minimum element of A.

Definition 10. 1. If A C R is bounded above, s € R is the least upper bound for A, or the
supremum of A, if s is an upper bound for A and there is no real number u < s that is an
upper bound for A. We write s = sup A.

2. If A C R is bounded below, v € R s the greatest lower bound for A, or the infimum of
A, if v is a lower bound for A and there is no real number | > ¢ that is a lower bound for A.

We write « = inf A.

As defined, it is easy to verify (you should try) that whenever they exist, the supremum
and the infimum are unique. The completeness axiom states that every nonempty A C R
that is bounded above has a supremum. The next theorem says that subsets of R that have

a supremum contain elements that are arbitrarily close to the supremum.
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Theorem 14. Let A C R be nonempty and bounded above with s = sup A. Then, for every

T < s there exists a € A such that v < a < s.

Proof. By definition of sup A, a < s for all a € A. If all a < x, then x is an upper bound for

A and cannot be less than s. Hence, there must be a > x. O
Theorem 15. IN has no upper bound.

Proof. Suppose IN is bounded above. Then, it has a supremum s € R. By the previous
theorem, there exists n € IN such that s — 1 <n <s. Then, s <n+1. But n+1 € N,

contradicting that s = sup IN. ]
Corollary 1. (Archimedean property) Given any x € R, there exists an integer n > x.

Proof. 1f not, that is, every n < x, then x would be an upper bound for IN, contradicting

the previous theorem. O
Corollary 2. For any z,y € R such that x < y, there exists ¢ € Q such that x < q < y.

Proof. Suppose x > 0. Then 0 < y —x and 0 < y%x By the Archimedean property, there
exist n € IN such that y%z < n or, equivalently,

1
Z<y—ua. 1
S <y-a (1)

Now, for this n and y, let S,,, = {i € N : y < i/n}. Again, by Archimedean property,

Syn # 0. Hence, there exists a smallest element p in the set such that

—1
P y<k (2)
n n

Using equations and (2) wehavez =y —(y—2) <2 —(y—z) < ’%1 and x < p%l <.
Since p%l € Q, we have the desired result.

If x < 0, then by the Archimedean property there exists n € IN such that —x < n
or, equivalently, n + x > 0. By the first part of the proof, there exists ¢ € @Q such that

n+r<qg<n4+yorx<qg—n<y. Since, ¢ —n € Q we have the desired result. O
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Theorem 16. Let x,y € R. If for all ¢ > 0 we have x <y + ¢, then x < y.

Proof. We will prove the contrapositive, i.e., if x > y then for some ¢ > 0, y +¢ < z. Let

e=Ho—9)> 0. Then, y+2 =y + 3o —y) = e +y) < j+a) =2 =

An important function on the R is the absolute value function |- | : R — [0, 00) given by

2] = T if x>0,
=Y =2 ifz<o

We now establish the triangle inequality:.
Theorem 17. For any z,y € R, |+ y| < |z| + |y|.

Proof. By definition, —|z| < z < |z| for all x € R. Hence, —(|z|+ |y|) <z +y < |z| + |y

and |z +y| < |z] + |yl O

6 Sequences

Sequences play important roles in mathematics and many important concepts can be char-

acterized using their behavior or properties.

Definition 11. 1. By a finite sequence of n € IN terms we mean the image of a function
f defined on {1,--- ,n}. The image of f is written as {f(1),---, f(n)} or {f1, -, fu} or
{fj ?:1-

2. By an infinite sequence we mean the image of a function f defined on IN. The image of

fis written as {f(1), f(2),---} or {fi, fo, -+ } or {f;}321 or {fj}jen.
3. If {f1, fa, - -+ } is an infinite sequence and k : N — IN is such that

k(m) < k(n) whenever m < n,

the composition (f ok)(n) = f(k(n)) = f(k,) with image {fx,, frys -+ } = {fr, bnen is called

a subsequence of {f1, fa,---}.
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Below are examples of sequences and subsequences.

Example 7. Let

{f(n)inew = {log(n) tnew = {f(1), f(2), f(3), f(4),--- } = {0,0.6931, 1.0986,1.3863, - - - },

{k(n)}nen = {2n}nen = {2,4,--- }.
Then, {(f © k)(n)}nen = {log(2n)}new = {f(2), f(4),---} = {0.6931,1.3863, - - - }.

Sequences in R are of particular interest. According to Definition , a sequence {x, bnen
must be bounded above (below) for us to define its supremum (infimum). However, it
is convenient to think of co (—o0) as the supremum (infimum) of a sequence that is not
bounded above (below). What follows are the definitions of the limit inferior and limit

superior of a sequence of real numbers.

Definition 12. For a sequence of real numbers {x,},en, the lower limit iminfz, :=
n—oo

sup inf x,,. The upper limit is limsup x,, := inf sup x,,.
kelN n=k n—o0 keN p>k

Note that ¢ = inf x,, and s, = sup z,, for k£ € IN are increasing and decreasing sequences

n>k n>k
in R, with i, € [~00,00) and s € (—o0,00]. Hence, liminf z,,, limsup z,, € R.
n—o0 n—00
Since infx, = —sup(—z,), we have
n>k n>k

lim inf z,, = sup inf z,, = sup | —sup(—=z,,)
n—00 keN n=>k kelN n>k

— —inf -
e

= —lim sup(—=x,,).
n—o0

Also, since by definition s, > 4, for all £ € N, it must be that lim sup x,, := inf s > sup iy :=
n—00 keN kelN
liminf z,,.
n—oo

A sequence is said to be increasing (decreasing) if for all n € N, z,, <z, 11 (T > Tpy1).

A sequence that is increasing or decreasing is called monotonic. When the inequality on the
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image is strict, i.e., z, < x,11 (T, > x,41), we say that the sequence is strictly increasing

(decreasing) or strictly monotonic.

Theorem 18. Let {x,},en be a sequence in R. It contains a decreasing or an increasing

subsequence, or both.

Proof. Let S ={s € IN:xz > x, for all n > s}. This is the set of indices that are associated
with members of the sequence that are larger than all subsequent members of the sequence.
Note that S is either finite or infinite set. It is always the case that the set {z; : j € S}
is such that x; > z; if j < j'. In the first case, when S is finite, S is bounded and has a
supremum, say sup S. Now, sup .S + 1 is the index of a member of the sequence which is not
in S. Therefore, there exists another member of the sequence (with index not in S) that is
larger than xg,, 41, which is denoted by @gupste. Similarly, there exist zg,ps4+3 such that
Tsup S+2 < TsupS+3- Lhe argument can be repeated ad infinitum to construct an increasing
subsequence of x,. In the second case, when S is infinite, there always exists a sequence

member x; > z; if j < j and 7, 7' € S. O

The next theorem relies on the notion of the limit of a sequence. From elementary
Calculus, we will say that a sequence of real numbers {z, },en converges to z € R if for
all € > 0 there exists N(e) € IN such that for all n > N(e) we have |z, — x| < e. In this
case we write, T}erolo x, = x. The notation N(¢) means ‘N depending on € which is often also

represented by N..
It is easy to show that in the case where a limit exists, we have
lim z,, = liminf z,, = limsup z,,.
n—r00 n—00 n—00

Theorem 19. Let {z,}new be a monotonic sequence in R.

{Zp}nen converges <= {x,}nen is bounded.
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Proof. (<) Let {z,}nen be bounded and increasing. Then, there exist 7 = sup{z,} such
nelN

that z,, < 7 for all n. By definition of supremum, for all € > 0, Z — € is not an upper bound

for {z,, }new. Therefore, there exists N(e) € N such that for n > N(e)
T—e<z,<T<ITHeorlr,—I <e

Hence, {z,} e converges to 7 = sup{x,}.
nelN

Let {2, }new be bounded and decreasing. Then, there exist z = inﬂf\I {z,} such that z,, > z
ne
for all n. By definition of infimum, for all € > 0, 2+ € is not a lower bound for {x, },en.

Therefore, there exists N(e) € IN such that for n > N(e)
z—e<z<uz,<zt+eor|r,—z <e

Hence, {z,}nen converges to z = in]%{xn}.

ne
(=) If {z,,}nen converges, let x denote its limit. Then, for all € > 0 there exists N(e) € IN
such that for n > N(¢)

r—e<x, <x-+e

Let r;j = |z; — x| for j =1,...,N(¢) and r := max 7;. Then for all n € IN we have
1<j<N(e)
|z, — x| <r+e.

Thus, {2, }nen is bounded. O

It is useful to establish the relationship between limit inferior and limit superior as defined

for sets and as defined for sequence of real numbers.

Theorem 20. Let x € X the domain of an indicator function. Then,

liminf I, (2) = Dimint 4, (x) and limsup I, (2) = Dimsup 4, ().
J—00 j—roo j—00 j—oo
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Proof. Note that for any collection of sets 51,5, ...

Iﬂgk(l’):1 <~ I & ﬂSk

kelN

— az€ S, foralk < I =1forall k < /innfv[s"' =1.
€
Also,

Iys(r)=1 < ze|JS

keN

< 1z €5, forsomek < I5 =1 for some k <= suplg, = 1.
keN

Now, liminfa,(z) =1 (z) = sup{ = supinf/y. = liminf /4. (z). Using similar
lj%oofAJ( ) kg]NijAj( ) ke]ll\? ijAJ kelII\)IjZ’f . J=roo (@) g
arguments we get the second equivalence. O]

7 Vector spaces and subspaces

A vector space V' as an arbitrary set together with two operations, called addition (+) and
scalar multiplication (-). Addition associates with any two elements u,v € V another element
s =u+wvin V, called the addition (or the sum) of u and v. Scalar multiplication associates
with any v € V another element p = ¢ - u in V called the scalar product of v and c. If
c € R, V is called a real vector space and if ¢ € C, where C is the set of complex numbers,
V' is called a complex vector Space.ﬁ The elements of a vector space are called vectors. We

assume:
Assumption 1. 1. z+y=y+ =z,
2. (x+y)+z=a+(y+2),
3. there exist an element 0 € V' (null vector) such that for allv € V, v+ 6 = v,

4. c(r+y)=cxr+cy, fora,ce R ora,ceC,

4For a review of fundamental properties of complex numbers see [Apostol| (1974).
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5. (a+c)x = ax + cx, fora,c € R ora,c € C,
6. a(cv) = (ac)v fora,c € R ora,c e C,
7. 0v=0,1lv=wv forallveV.
By d = u — v we mean u + (—1)v and call d the subtraction of v from u, or u minus v.

Theorem 21. For all u,v,x € V and a,c € R, we have: 1. u+v = u+ x implies v = x; 2.
cv = cu and ¢ # 0 implies v = u; 3. av = cv and v # 0 implies a = ¢; 4. (a —c)v = av — cv;

5. alu—v)=au—av; 6. ad = 0.

Proof. First, note that from assumption [I{- 5, (1 4+ (—1))z = Ox, and from [I|- 7 we have
0z = 6. Hence, x — x = 0. Also, if x —y = 0, by assumption [l]- 3 we have y +z —y =y
which implies z = y.

Now, 1. u+v=u+2x+ (v—v) = (u+v)+ 2 — v which implies that x —v = 6, and
consequently x = v; 2. cv — cu = ¢(v —u) = 6, and if ¢ # 0, then v —u = 0; 3. av = cv
implies (a — ¢)v = 6. Since, v # 6, it must be that a — ¢ = 0 and consequently, a = ¢. The

proofs for items 4, 5 and 6 are left as an exercise. ]

Example 8. Let V. = {f : f : (0,1) — R and f is continuous on (0,1)}. Recall from
elementary Calculus that f continuous on (0,1) means that for every zo € (0,1) and for
every € > 0 there exists ., > 0 such that whenever |z — x| < 0, we have |f(z)— f(xo)] < €.
Now, note that if f,g € V and we define s(x) = f(x)+ g(x), then by the Triangle Inequality

and continuity of f and g

|s(z) = s(xo)| = [f(z) + g(x) = f(x0) — g(@0)| < |f(2) = f(20)] + [9(x) — g(m0)| < e+ €=2¢

whenever | — xo| < d... Hence, s € V. Also, if we define p(x) = cf(x) for ¢ € R, then, by

continuity of f

p(x) = p(o)| = lef () — cf (xo)| = lel[f(x) = f(wo)| < |cle
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whenever |x —xo| < ¢ . Hence, p € V and, if we let the null vector be the function h(x) = 0

for all x € (0,1) we can conclude that V is a vector space.

Next, we provide a natural definition for addition and scalar multiplication on cartesian

products of vector spaces.

Definition 13. Let X and V' be vector spaces. Addition and scalar multiplication are defined
on the cartesian product X x V' as follows: (x1,v1) + (x2,v2) = (21 + x9,v1 + v2) and
a(xy,vy) = (axy,avy), for any a € R, C.

This definition can be extended to the cartesian product x?_,V;, where n € IN and V;

is a real vector space. In this case, (vi, -, vL) + (v, ,v2) = (v + v}, -+ , 0} + v2) and

a(vh T 7vn) = (avh to 7avn)-
Definition 14. A nonempty subset M of a vector space V is called a subspace of V if for

all vi,vy € M we have a1vy + asvy € M for any two scalars a; and as.

Since M # (), there exists v € M. Consequently, by definition Ov = 6 € M. It should be

clear that a subspace is itself a vector space.

Example 9. 1. Let X = R? and define for x,y € R? the addition s = v +y = (z; +
Y1, T2 + y2), the scalar product cx = (cxy,cxs) for ¢ € R and 0 = (0,0). Now, consider
M = {(x1,22) € R* : 1 = xo}. Clearly, 6 € M. For scalars a and b and z,y € M we
have ax + by = (axy, ax1) + (byy,byr) = (axy + by, axy +byr) = (2,2) € M. Hence, M is a
subspace of X.

2. Let M = {(z1,22) € R*: 2y = 0}. Clearly, § € M. For scalars a and b and x,y € M we
have ax + by = (ax1,0) + (by1,0) = (axy + by,,0) = (2,0) € M. Hence, M is a subspace of
X.

Definition 15. A subset S of a vector space is said to be convex if given any x1,x9 € S, all

points written as axy + (1 — a)xe € S when 0 < a < 1.
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Theorem 22. Let M and N be subspaces of the vector space X. Then, M (N is a subspace
of X.

Proof. The null vector § € M (N since § € M and § € N. If z,y € M (N then z,y € M
and z,y e N. Bt v,y e M = z2=arx+pfy € M and v,y € N = z =ax+ pfy € N, for
any scalars «, 3. Therefore, ax + Sy € M [ N. O

Definition 16. Let S and T be subsets of a vector space X. S + T s the set formed by all

elements s +t such that s € S andt e T.

Theorem 23. Let M and N be subspaces of the vector space X. Then, M + N is a subspace
of X.

Proof. Since M and N are subspaces, they both contain the null vector 6. Since 0 4+ 60 = 6
we have that 6 € M + N. Now, let z,y € M + N. Then, there exist m;,ms € M and
ni,ng € N such that x = my +ny and y = my +ny. Now, let z = ax + by for any two scalars

a and b and note that

z =a(my +ny) + b(mg + ny) = (amy + bms) + (any + bng) = x + Yn

where z,, = (amy + bmy) € M and y,, = (any + bng) € N. O
Definition 17. Let x1, x5, -+ ,x, € X a vector space with n € IN. A linear combination of
the vectors x1, g, -+ ,x, 1S a sum of the form s = Z?:l a;x;, where a; are scalars.

Definition 18. a) Let S be a subset of the vector space X. [S] denotes the subspace generated
by S. It consists of all vectors which are linear combinations of vectors in S which belong to

X. That is,
[S] = {x ceX:x= Zaisi, s; €S and a; SCCI,Z(M“S} )

i=1
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b) A linear variety (or flat, affine subspace, linear manifold) V' is the translation of a sub-

space. That 1is,
V =uxy+ M where M s a subspace of X and x¢ € X a vector space.

c) The linear variety generated by S, say v(S), is the intersection of all linear varieties in

X that contain S.

Remark 3. Part a) of the definition suggests that [S] is a subspace. This is easy to verify

since by taking a; = 0, we have x = 6. Also, if v, 2" € [S], then for any two scalars o and 3,

ar+ B’ = a (31, aisi) + B (D2, aisi) = D i, (aa; + Bag)s; € [S].

Example 10. 1. Let X = R", n € IN and consider the vector e; € R™ where e; has the
number 1 on its it" position and the number 0 in all other positions. Now define S = {e;}7,.
Then, [S] ={zr e X :2 =" ex;} where z; are scalars.

2. Consider M from Ezample[q and define V = o + M with xo = (2,1). Then, ¥ = {v =

(v1,v2) 1 v = (M1 +2,me + 1)} where m = (my, my) € M.
7.1 Linear independence and dimension

Definition 19. a) A vector x € X a vector space is said to be linearly dependent on a set
S of vectors if x = > a;s;, s; € S and a; scalars. That is, x is linearly dependent on S if
z € [S].

b) A set of vectors S is said to be linearly independent, if each x € S is not linearly dependent

(independent) of the remaining vectors in S.

Theorem 24. Let S = {x1,x9, -+ ,2,} C X. S is linearly independent if, and only if,

Yowa;x; =0 implies a; = 0 for all i.

Proof. The theorem describes an equivalence, namely, S linearly independent is the same as

Yo a;x; = 0 implies a; = 0 for all 7. This requires the establishment of two implications:
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1) that S linearly independent implies )" a;z; = 6 implies a; = 0 for all ¢ and that 2)
> a;x; = 0 implies a; = 0 for all ¢ implies S is linearly independent. We will establish both
by proving their corresponding contrapositive statements. Recall that statement A = B if,
and only if, not B = not A. First, suppose ", a;z; = 0 but for i = r, a, # 0 (not B). Then,
Tr 4+ D iz - = 0, which implies that z, =377 |, —%2;, and S is linearly dependent
(not A). Second, suppose x, = > 1, ., a;z; (not A). Then, Y31, a;z; — x, = 0, and at

least one scalar, a, = —1 # 0 (not B). O

A direct consequence of this theorem is that if S = {x1, 29, -+ ,2,} C X is a linearly
independent collection, z; = Z?’:l a;Ti, 2y = Z?:l b;x; and z; = 29, it must be that a; = b;

for all .

Definition 20. A finite set S of linearly independent vectors is said to be a basis for the
space X if S generates X. A vector space having finite bases is said to be finite dimensional.

All other vector spaces are said to be infinite dimensional.

Theorem 25. Any two bases for a finite dimensional vector space contain the same number

of elements.

Proof. Suppose {zi,---,z,} and {y1, - ,ym} are bases for a vector space V with m > n.
Since {x1,---,x,} is a basis, y1 = > .., a;x; for some collection of scalars {a1,--- ,a,}.
Since y; # 0 at least one a; # 0. Suppose, without loss of generality, that a; # 0. Then,
Ty =y /a1 —y . o(a;/ar)z;. Now, the collection {y, xa,- -+ ,x,} is a basis for V since for any
veV wehave v =3 " xb; =210y + >, xib; = (y1/ar — > o(ai/ar)x:)by + > 0y xibi =
y1(bi/ar) +> ¢ o(bi—a;bi /ar)x;. Repeating this procedure, suppose that 21, 22, - - - £x_1 have

been replaced by w1, ¥s, - - - Yx_1, such that
k—1 n
Yk = Z a;Yi + Z Bix;.
i=1 i=k
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Since y1, - - - yx are linearly independent not all 5; = 0. Without loss of generality, assume
B # 0, then xj can be written as a linear combination of {y1, -+ , Yk, Trs1, -+ ,Zn}, which
generates V. By induction on k we can replace all n of the zs by yis forming a generating
set for V' at each step. Hence, {y;,- - ,y,} generates V, and since {yi,- -y} is linearly

independent we must have m = n. [

Theorem 26. Let {v1,...,v,} be a basis for a vector space X. Then, no set of more than n

vectors i X 1s linearly independent.

Proof. Let {x1, ..., xn, Tny1} be a collection of n+ 1 vectors in X. Since {vy, ..., v,} is a basis
for X, there exists ayy, for i = 1,2,...,n such that z;, = > auv; for k = 1,2,...,n+ 1.
Now, consider a linear combination of {x1, ..., z,, T,41}, i€,

n+1 n+1 n n n+l

Z Brrr = Z Br Z Qg Uy = Z <Z 5k%‘k> V.

k=1 k=1 i=1 i=1 \k=1
Linear independence of the collection {x1, ..., x,, ¥, 1} means that Zzg Brri = 0 implies
Br = 0 for all k. Since the collection {v;} is linearly independent, then ZZZ% Broy, = 0 for
all 4 if ZZE Brxi = 0. Note that

n+1

Zﬁkaik =0 for all ¢

k=1
is a (linear) system of n equations with n + 1 unknowns. These systems always have non-

trivial (different from 6) solutions. Hence, there exists (1, 5, ..., Bn+1 (not all zero) such that

Remark 4. The number of elements in a basis for a finite dimensional space X is called the

dimension of the space and we denote it by dim(X) € IN.

Corollary 3. Let X be a vector space such thatn = dim(X). Then, any linearly independent

family of n vectors in X is a basis for X.
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Proof. Let {by,bs,...,b,} € X be such that {by,bs,...,b,} is linearly independent, and let x
be an arbitrary element of X. We must show that z = > | o;b; where o are scalars not all
equal to zero. By the previous theorem, {by, bs, ..., b,, x} forms a linearly dependent family.
Therefore, > 7" | bia; + i1 = 0 for g, as, -+, 41 not all zero. In particular, a1 # 0,

otherwise Y " | bia; = 6 implying {b1, bs, ..., b, } is a linearly dependent collection. Therefore,

r = Z?:l(_#il)bi' o

8 Metric spaces, normed vector spaces and inner prod-
uct spaces

We start by defining a metric on an arbitrary set X. It allows us to think of proximity of
the elements in a set.

Definition 21. Let X be an arbitrary set. A pseudo-metric for X is a function d : X x X —

[0,00) such that, for all x,y,z € X it satisfies
1. for allz e X, d(z,x) =0,
2. forallx,y € X, d(x,y) = d(y, x),
3. forall z,y,z € X, d(x,2) < d(z,y) +d(y, 2).
If, in addition, d(x,y) =0 = x =y, d is called a metric on X.

The pair (X, d) is called a pseudo-metric or metric space depending on the nature of d.
For every r > 0, the set B(z,r) = {y € X : d(y,x) < r} is called a ball centered at x and
radius r. A ball is always non-empty as it contains its center. It contains all points in a
space that are close to its center, where closeness is given by r.

A concept related to that of a semi-metric is that of a semi-norm on X.

Definition 22. Let X be an arbitrary vector space. A semi-norm for X is a function

|-l X = [0,00) satisfying:
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L lz+y| <zl + |ly|| for all x,y € X (Triangle inequality),
2. ||ax|| = |a|||z|| for all x € X and for all « € R.
In addition, if ||z|| =0 <= x =40, ||| is called a norm for X.

Note that by property 2, for all x € X and for « =0, ||0-z|| = ||0]| = 0-||z|| = 0. Hence,
x =60 = ||z|]| = 0. Thus, for || - || to be a norm it suffices to have ||z]| =0 = z=460. A
(semi) normed vector space will be denoted by the pair (X, || - [|)-

A semi-normed vector space naturally becomes a semi-metric space by letting d(z,y) =
|z — y||. This is easily seen by noting that d(z,z) = [|0]] = 0, d(z,y) = ||z — y| =

I(=D)(y = 2)[| = lly — 2] = d(y, ), and
d(z,2) = v = 2| = le =y +y = 2| <lle =yl + [ly — 2]l = d(z, y) + d(y, 2)-

If || - || is a norm, then d(z,y) = ||z —y|| =0 = 2 —y =0 = x =y, which means that
d is a metric. Hence, if (X, || - ||) is a normed vector space, (X, d) where d(z,y) = ||z — y|| is
a metric space.

The following lemma, which is a direct consequence of the triangle inequality, will be

useful in subsequent proofs.

Lemma 1. Let (X, || - ||) be a normed vector space. Then, ||| — ||yl < ||z — yl|| for all
z,y € X.

Proof. |zl =llyl=llz—y+yl = lyl<lz—yl+lyll=lyl=lz-yl O
Example 11. 1. [t is easy to verify that the absolute value of a real number is a norm

on R and we have that (R, |- |) is a normed vector space and (R,d) is a metric space
for d(z,y) = |z — y|. In this metric space, a ball centered in x € R with radius r > 0

is{yeR:|ly—z|<r}=(x—r,x+r), an open interval on R.
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2. The function ||z||p = O 1, xf)l/z is a norm on R"™. To see this, note that for any

a €R, [laz]p = (X1, a*2?)"* = |a||lz[|s. Also,

(2

lo+ulle =3 wf+ D uf+23 way <3 ai+d vl +2Y vl
'Lzl zzl 1:1n 1/12:1 ) 1:11/2 =1
i1 i1 i1 i1

2

n 1/2 n 1/2
= (Zx2> + (Zyz) = (llle + lylle)*.
i=1 i=1

Hence, ||z + yllg < ||zllg + ly||g. Lastly, ||z]|p =0 = z; = 0 for all i, establishing
that x = 0. The pair (R",|| - ||g) is a normed vector space, called the FEuclidean space,
| - ||g is called the Euclidean norm and d(z,y) = || — y||g is the Euclidean metric.

(R™,d) is a metric space.

3. Let Cla,b] be the collection of all real valued continuous functions defined on [a,b]. We
will later define, in general terms, what is meant by a continuous function on a set A,
but as we have discussed earlier, in this case we can rely on elementary Calculus for a
notion of continuity. Cla,b] is a vector space and we let ||f|| = sup |f(t)]. Condition

a<t<b
1 for a norm is obviously met. For condition 2, note that

7+l = 1F +gll = sup F(®)+9(8)] < sup | 7)]+ sup lg(t)] = 1711+ gl

For condition 3, note that ||(af)|| = |laf]| = sup|af(t)| = |a|||fll. The metric
a<t<b

corresponding to this norm is d(f,g) = sup |f(t) — g(t)|

a<t<b
4. Consider Cla,b] and from calculus define ||f|| = fab |f(t)|dt to be the Riemann integral
of the absolute value of f | The existence of ||f|| is not in question here as f € Cla,b]

is sufficient for the existence of f; |f(t)|dt. It can be promptly verified that the set

SLater in these notes we will study the Riemann integral in detail.
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of Riemann integrable functions on [a,b] form a vector space and that ||f]| satisfies

conditions 1-3 in Definition . The metric corresponding to this norm is d(f,g) =
b
Jo 11 (&) = g(#)]dt.

We now provide a definition for an open set associated with a metric space.

Definition 23. Let (X,d) be a metric space and U C X. U s called an open set if for all

x € U there exists B(x,r) such that B(x,r) C U.

Definition 24. Let (X,d) be a metric space and S C X. s € S is said to be an interior
point of S if there exists v > 0, such that B(s,r) C S. The set of interior points of S is

denoted by S or int(S).

By definition, int(S) is an open set and by construction int(S) C S. Also, if S is open it

contains all of its interior points. Hence, if S is open S = int(5).

Remark 5. Since the interior of the empty set is empty, the () is equal to its interior and
consequently it is an open set. Since X is the universal set, for any r > 0 and x € X,

B(xz,r) C X. Hence, X is open.
Theorem 27. In any metric space (X, d), B(xz,r) is an open set.

Proof. We must show that for every y € B(z,r) there exists B(y,s) such that B(y,s) C
B(z,r). y € B(z,r) = d(x,y) < r, hence let s = r — d(z,y) > 0. Then, for any

z € B(y,s) we have that d(z,x) < d(z,y)+d(y,z) < s+d(y,z) = r. Hence, z € B(z,r). O

Theorem 28. In any metric space (X,d), U is an open set if, only if, U is the union of

open balls.

Proof. ( =) U open implies that for every u € U there exists B(u,r,) C U for some r,, > 0.

Hence, U C |J B(u,r,) C U, where the last set containment follows since B(u,r,) C U.
uelU

Hence, U = | B(u, ).

uelU
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(«<=) Suppose U = |J B where C is an arbitrary collection of open balls. If C is empty,
Bec
U = () and consequently open. If C # (), then U # (). Every u € U belongs to some ball B,

and by Theorem [27] there exists a ball B, C B C U. Hence, U is open. O

Theorem 28|can be strengthened when considering the metric space (R, d) where d(z, y) =

|z — y|. To this end consider the following definition.

Definition 25. Let U be an open subset of R. An open finite or infinite interval I = (a,b) =
{z € R:a<x <b} is called a component interval of U if I C U and if there does not exist

an open interval J such that I C J C U.

Theorem 29. Let I denote a component interval of U. If x € U, then there exists I such

that v € 1. If x € I, then x ¢ J where J is any other component interval of S.

Proof. x € U = x € I, I an open interval for some I C U. There may be many
such intervals, but the largest is I, = (a(z),b(x)), where a(z) = inf{a : (a,2) C U},
b(x) = sup{b : (z,b) C U}. Note, a may be —oo and b may be +oo. There is no open
interval J > I, C J C U and by definition I, is a component interval of S. If J, is another
component interval containing x, I | J J, is an open interval > I, | J J, C U. By definition of

component interval I, |JJ, = I, and I,|J J, = Jy, so I, = J,. O

Theorem 30. Let U C R be open with U # (. Then U = \J,-, I,, where {I,,I5,...} is a

collection of disjoint component intervals of U.

Proof. If x € U, then x belongs to one, and only one, component interval I,. Note that
|J I = U and by the definition of component intervals and the proof of the previous theorem,
:}ile] collection of component intervals is disjoint. (If x belongs to I, and J,, both component
intervals, I, = J,). Let {q1,qo,...} be the collection of rational numbers (countable). In

each component interval, there may be infinitely many of these, but among these there is

exactly one with smallest index n. Define a function F, F'(I,) = n if I, contains the rational
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number z,. If F(I,) = F(I,) = n then I, and I, contain z,, and I, = I,. Thus, the

collection of component intervals is countable. O

Theorem 31. Let (X, d) be a metric space. Any union of open sets in X is open. Any finite

intersections of open sets in X is open

Proof. f U = .UGi we have that x € U = there exists i such that x € G;. If G; is open,
then there eXi;i; B(z,r) C G;. But in this case, B(xz,r) C U and we conclude that U is
open.

If7 = ﬂ?zl G; and z € Z then x € G, for all i. Since G, is open, then there exists r; > 0
such that B(z,r;) C G;. Letting r := 12121<nn{r,} we have that B(z,r) C G; C T for all ¢, and

we conclude that Z is open. O

Definition 26. Let (X,d) be a metric space and S C X. x € X is a closure (or adherent,

or contact) point of S if, for all v >0, B(x,r)(S # 0. S is the set of closure points of S.

It is clear from this definition that S C S as for every z € S and any r > 0, B(z,7) () S #

Definition 27. Let (X, d) be a metric space. S C X is closed if S = S.

Definition 28. Let (X, d) be a metric space. x € X is a boundary point for S C X if for
allr >0, B(z,r) (S # 0 and B(x,r)[(S®# 0. The set of boundary points for the set S is
denoted by 0S.

Theorem 32. Let (X, d) be a metric space and S C X. S is open if, and only if, X -5 = S°¢

15 closed.

Proof. ( = ) Since S is open, every p € S is such that there exists r > 0 such that
B(p,r) € S. Thus, p cannot be a closure point of X —S. That is, if x is a closure point of
X — S it must be in X — 5. Thus, X — 5 is closed.
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(<) If X — § is closed, it contains all of its closure points. That is, there is no p € S
such that for any r > 0, B(p,r) (X — S) # 0. Hence, there is always an r > 0 such that

B(p,r) CS. So, S is open. O]

Definition 29. Let (X,d) be a metric space. D C X is said to be dense in X if, and only

if, D = X. X is said to be separable if, and only if, it contains a countable dense subset.

Example 12. From the comments following Theorem|[8, Q is a countable set. Furthermore,
from Corollary@ for any x € R and any r > 0 there exists ¢ € Q such that ¢ € B(z,r).
Hence, Q( B(x,r) # 0 and Q is dense in R. Since Q is countable, R is separable.

Even more structure can be imparted on a vector space by defining inner product spaces.

Definition 30. A wvector space X is called an inner-product space if for all x,y € X, there
exists a function (x,y) : X x X — R, called an inner product, such that for all x,y,z € X

and a € R:

1. (z,y) = (y,x)

NS

Ax+y,2) =(x,2) + (y,2)

3. (az,y) =alr,y), a €R

E

Ax,z) >0, for all x

5. (z,x) =0 < x =0, where 0 is the null vector in X.

Any element x of an inner-product space has a natural norm defined by ||z| = (z, 2)'/2.

To verify that (z,z)!/? is a norm, note that: a) (z,z)/2 > 0; b) for a € R, {(az,az)'/? =

(alz,azx))'/? = (a®*(x,2))"/? = |a|{z,2)'/?; ¢) first, note that for any a € R we have

[~

(z,y

_ 2 : - _
0 < (ax +vy,ax +y) = a”(z,z) + 2a(x,y) + (y,y) and setting a = X

(z,y)”
(z,z)

~

+ (Y, y)
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which gives (z,y) < (z,2)"?(y,y)'/2. Now,

(+y,z+y)=(,2) + (y,y) + 2(x,y) < (T, 2) + (Y, y) + 2(z, ) /*(y,y)"/?

= ({z,a)? + (y,y)"?)’

and we obtain (z + v,z + y)/? < (z,2)Y2 + (y,y)"/?; d){z,2)"/? = 0 implies (x,2) = 0,

which implies = 6. Thus, every inner product space is a normed space with this norm.

1/2

Furthermore, since by letting d(z,y) = (x — y,x — y)'/* we have a metric space.

Theorem 33. (Parallelogram Law) Let (X, (-, -)) be an inner product space with norm ||z|| =

(@, 2)!2. Then, ||z +y|* + o — ylI* = 2[l=|* + 2]ly|”>

Proof. ||z +yl|*> = (x+y,z+y) = (z,2) + (y,y) + 2(z,y) and ||z —y[* = (z —y,x —y) =

(x,2) + (y,y) — 2(z,y). Hence, we obtain ||z + y||* + [lz — y[|* = 2[|z||* + 2[|y||*. O

Example 13. Let X := R" and (z,y) =Y ., T:Y;.

9 Topological spaces

Many of the concepts and results in the previous section can be obtained without a metric.
We start by defining a topology and taking an axiomatic approach to the notion of open

sets.

Definition 31. Let X be an arbitrary set. A topology T on X is a collection of subsets of

X with the following properties:

1. X, 0eT,
2. If G; € T wherei € I, I an arbitrary index set, then |JG; € T,
icl

3. IfG; €T wherei=1,...,n forn e N, then(_, G, € T.
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It is common to refer to property 2 by saying that a topology is ‘closed’ for arbitrary
unions and to property 3 by saying that a topology is ‘closed’ for finite intersections. A
topological space is a pair (X, 7). When a topology is chosen, the sets in T are called open
sets. The complements of open sets U € T relative to X, i.e., X — U are called closed sets.
Since X, () € T, they are open sets, but since X¢ = () and X = ()¢, they are also closed sets.

If G; is open, then GY is closed and by DeMorgan’s Law we have

<UGi> =G (3)
icl iel

Hence, the arbitrary intersection of closed sets is a closed set. Also, since

i=1 i=1
we can conclude that the finite union of closed sets is a closed set.

Example 14. Let (X, d) be an arbitrary metric space, and let the topology T be the class
of all subsets of X that satisfy Definition |25 By Remark |5 and Theorem this collection
satisfies properties 1, 2 and 3 in Definition |31 Note also that by Theorem|[33, complements
of sets in this topology are closed according to Definition [27. This topology is called the

“usual” topology.

Definition 32. A base for a topology 7 on X is any collection U C T such that for every
V €T we have that V = |J U.

veu,ucv
Note that since every member V' of the topology can be written as the union of elements

the base, the definition requires that € V' =— x € U for some U C V.
Example 15. Let (X,d) be a metric space endowed with the usual topology. Then, by

Beu
possible centers and all possible radii) in a metric space is a base for the usual topology.

Theorem every open set U = |J B. Hence, the collection U of all open balls (with all
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A special case of this example is the metric space (R, d) where d(z,y) = |z — y|. In this

case U is the collection of all intervals (x — r,z + ) for z € R and r > 0.

Definition 33. Given a topological space (X, T) and x € X we say that N, is a neighborhood
ofx ifx € U C N, for someU € T. A collection N of neighborhoods of x is a neighborhood-

base at = if, and only if, for every neighborhood N, of z, z € N C N, for some N € N.

Note that N, may or may not be open. If N, is open, we call it an open neighborhood

of z.

Definition 34. 1. Let S C X. z € X is a closure (adherent or contact) point of S if every

neighborhood of x contains a point of S. That is, for every N, we have N, (S # 0.
2. The set of all closure points of S is called the closure of S and is denoted by S.

3. x € X is a limit point of S if every neighborhood of x contains infinitely many points

of S.
The reason for part 3 of Definition |34] will become clearer later in these notes.

Theorem 34. Let T be a set of topologies associated with X. Then, (T is a topology.
TeT

Proof. First, note that ), X € T for every topology 7. Then, we immediately have that
0, X € N T. Second, let G; € (T for every i € I. Then, G; € T for every i € I and

TeT TeT

T € T. But since T is a topology |JG; € T for every T € T. Hence, JG; € N T.
i i TeT

The verification for the third property of a topology follows as in the proof of the second
property. ]
9.1 Normed spaces and topology

We now turn to a more concrete formulation. Under a suitable choice of what constitutes an

open set, metric spaces can be showed to be topological spaces. In particular, let (X, || - [|)
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be a normed space and define a metric dx(z,y) = ||x — y|| such that we have the metric

space (X, dx).

Definition 35. Let S C X. p € S is said to be an interior point of S if there exists € > 0,

such that all x satisfying || v — p ||< € are in S.

Alternatively, if we define the B(p,e) = {x :|| + — p ||< €}, p is an interior point of S if
there exists € > 0 such that B(p,e) C S. B(p,¢) is called an open-ball of radius € centered

at p. The set of interior points of S is denoted by P or int(P).
Definition 36. S is an open set if S = S.

Definition 37. Let (X, || - ||x) be a normed vector space and S C X. A point xy, is said to
be a limit (or cluster, or accumulation) point of S if every open ball of radius € > 0 centered

at xy, contains (at least) a point in S distinct from . That is,
B(zp,e) N (S —{xp}) # 0.
The set of all limit points of S is called the derived set of S and denoted by SP.
Every limit point is a closure point.

Remark 6. 1. [t is clear that every ball centered at x, contains infinitely many points in S.

To see this, suppose there exists B(xy,€) that contains finitely many points of S, and denote

the set of these points by {s1, s, ..., sn}. {l[s; —2Ll[}j=, is a finite collection of non-negative
real numbers and we can set m := 1I<I11£l |lsj —z||. Then, B(x,m/2) contains no elements
<j<n

of S. But if this the case, xy can’t be a limit point of S. This remark justifies part 3 of
Definition |34

2. It follows from 1 that a set with a finite number of elements cannot have a limit point.

3. Since S C S, if v € S then either x € S or x ¢ S but in S. But that is precisely SP.
Hence, S = S U SP.
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Example 16. Let A = (0,1)U{2}. Note that 1 is a closure point and a limit point of A. 2

s a closure point, but not a limit point. It is an isolated point of A.

Definitions [36] and [27] together with Remarks [31] and [5] show that metric spaces are

topological spaces.

Definition 38. Let (X, ||-]|) be a normed vector space. A subset S C X is said to be bounded

if there exists ¢ € X and a scalar r > 0 such that S C B(e,r).

Note that if S is bounded, for every s € S we have that ||s — ¢|| < r. By the Triangle

Inequality ||s — ¢|| > ||s]| — ||¢||. Hence, if S is bounded
r2|ls —cl = [Isll = llell, which gives [[s[ <7+ |c]|
Hence, if S is bounded s € B(6,r + ||c||) or S C B(0,r + ||c[|).

Example 17. Let (X, || - ||) be a normed vector space and consider the set S = {zx € X :
|x|| = 1}. This is called the unit ball. The set S is closed and bounded. The fact that it is
bounded follows directly from the comment following the last definition. To verify that it is
closed, we need to verify that all closure points of S belong to S. If c is a closure point of S
then for any scalar r > 0, B(e,r) (S # 0. Thus, there exists z € X such that ||z —¢|| < r
and ||z]| =1 (z € S). By Lemmall, ||z|| — ||lc|| < ||z —¢|| < r and since ||z|| = 1 we have
that 1 — ||c|| < r. Also, ||c| < 14+7r and 1 —7 <||c|| < 1+r. Sincer can be made arbitrarily

small ||c|| = 1. Hence, c € S.

Definition 39. Let X be a vector space. Two norms || - |1 and || - ||2 on X are said to be

equivalent if there exist scalars a,b > 0 such that al|z||y < ||z||2 < bl|z|]1 for all z € X.

Remark 7. It is clear that if a specific norm defined on X is equivalent to an arbitrary norm

on X, then any two norms on X are equivalent. To see this, let ||z||s be a specific norm and
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suppose it is equivalent to any other norm. Then, if || - || and || - |1 are norms there exist
a,b,c,d >0 such that

allzfls < [lz]l < bf|]ls ()

and

cllells < lzlly < dlj]s. (6)

Since, ¢ > 0 we have from () that ||z]|s < ¢ M|z|i < ¢ d||z||s and bljz|s < be™t|z|):.
Hence, from we conclude that ||z|| < b||z||s < be™t||z|l;. Now, since d > 0 we have from
(©) that d~tc||z||s < d7Hz|1 < ||lz|ls and ad x| < allz|s. Hence, from we conclude

that ||x|| > a||lx||s > ad™||x||y. Thus, || || and || - |1 are equivalent.

The following theorem shows that in finite dimensional spaces any two norms are equiv-

alent.

Theorem 35. Let X be a vector space such that dim(X) =n € N. Any two norms defined

on X are equivalent.

Proof. Since dim(X) = n we can define {¢;}! ; to be a basis for X. Then, for all z € X
there exists a collection of scalars {a;}!, such that x = Y  a;e;. Let || - |1 = X — [0, 00)
be defined by [|z|[y = >, |a;|. It can be easily verified that || - ||; is a norm.

If || -] : X — [0, 00) is any other norm, from Remark (7] it suffices to show that || - || and
| - [|1 are equivalent, i.e., there exist a,b > 0 such that al|z||; < ||z|| < b||z||; for every x € X.
Now, if z = 6 (null vector on X) the result follows trivially. Hence, assume that = # 6 and

note that [|z||; > 0. Then, we need to show (equivalently) that

o<zl ag)iH <b e a<|u<b
[/l 11
where u := i and [Jully = 1. Note that [|z|| = | Yo aie]] <30 Jaillles]l, and since the

space X has finite dimension we can define b := max lle;]| and write ||z]] < b> "7 | |ai| = bl|z|
<i<n

or ||ul]| <b.
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By Lemmall], for any z,y € X we have |||y|| — ||z|| < |ly —z|| < b|ly —z||1. Consequently,
the function ||ul| : S — [0,00) where S = {u : ||u|l; = 1} is continuous under the norm
| - ||1. By the arguments in Example S is closed and bounded. Since ||u|| is continuous
on a closed and bounded set [|u|| has a minimum on S[f Hence, there exists a > 0 such that

a < ||lu||, which completes the proof. O

10 Linear functions

Definition 40. A function f : X — Y is linear if for all x1,x5 € X and scalars o, 5 € R,
we have f(axy + frs) = af(x1) + Bf(z2).

As a matter of terminology, if Y = R, then we call f a functional.
Example 18. 1. Let X = R" forn € N and Y = R. For fized a € R" define f(z) = (a, )

as in Definition [30 f is a linear functional. To see this, let z = ax + By where o, f € R
and x,y € R". Then,

f(2) ={a,2) = (a,az + By) = (aa, x) + (aB,y) = afa, z) + Bla,y) = af(z) + Bf(y).
Note that for R", if we use an Euclidean norm, we have {(a,z) = Y ., a;x; where a =
(ay, -+ ,a,)T and x := (w1, ,x,)". In this context, we also write (a,x) = a’z.

2. Let X =R" and Y = R™ forn,m € IN. For fizeda; € R" forj =1,...,m define f;(z) =
(aj,x) as in Deﬁmtion and f: R® — R™ with f(z) = ( fi(z) folz) -+ ful2) )T.
Let z = ax + By where a, € R and x,y € R". Then,

I(=) = (af= afz -~ afz) =af@)+B/).

Note that in this case we can define,

fi(x) alx
fx) = fz@ o I
fm() ahx

6See Corollary [5| (Weierstrass Theorem).
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a7 a1 a2 - Qi
T
as Qg1 Q2 -+ Q2 . . . .
where A = ) = ] ] ] ] . A is called a matriz of dimension m X n.
T . ..
Clm Am1  Am2 Amn

Remark 8. Recall that Ox = 6 for all x € X, where 0 is the null vector in X. Therefore,
if [ is linear we have f(0) = f(0x) = 0f(x) = 6. Hence, linear functions have the property

that the image of the null vector is a null vector.
We now return to the concept of continuity at a point and give a more general definition.

Definition 41. A function f: (X, - |Ix) = (Y, - ||v) is continuous at xy € X if for all

€ > 0 there ezists (o, €) > 0 such that || f(z) — f(xo)|ly < € whenever ||z — xo||x < I(xo,€).

The added generality of this definition, relative to that from elementary Calculus, rests
on the normed vector spaces that serve as domain and co-domain for the function f and on

the flexibility of the relevant norms. We emphasize that §(zo, €) depends on both zy and e.

Definition 42. Let {z,}n—12,. be a sequence in (X, || - ||). {zn}nz12,. is said to converge
to x if {||zn — || }n=12... converges to zero. In this case, we write x,, — x as n — 0o or

|z — || = 0 as n — o0 or limz, = z.
n—o0

Remark 9. By Lemmall], ||z,|| — ||z|| < ||, — 2| and ||z|| = ||lza| < ||2n — z||. The last

inequality implies that —([lz,|| — [[z]) < llzn = zl| & llzall = |2l = =[lon — 2] Thus,

znll = ||| < ||zn — x||. Consequently, if x, — x, then |||x,| — ||z||| = 0 or ||z.| — ||=||-
The next theorem shows that if a sequence has a limit, the limit is unique.
Theorem 36. If x, — z and x, — y, then x = y.

Proof. ||z =yl = ||z = @n + 20 = yll < [l = @nll + lzn — yll = 0. Hence, [z —y[| = 0 and

by the definition of norms x — y = 6, which implies that x = y. m

The next theorem provides a characterization for continuity at a point.
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Theorem 37. f: (X, |- ||x) = (Y, - |ly) is continuous at xy € X if, and only if, r, —

zg = f(zn) = f(20).

Proof. (<) First, recall that x,, — x¢ means that for any § > 0, there exists Ny, such that
for all n > N; we have || z,, — o ||x< d. Since ||z, — xo||x < ¢ implies || f(z,) — f(zo)||y < €
we have continuity at z.

( =) Second, suppose z,, — xo but f(z,) - f(xo). Then, there exists € > 0 such that for
all N there exists n > N such that || f(z,) — f(x¢)|| > €. Since x, — ¢, for all § > 0 there

exists x,, such that || z, — zo ||[< § and || f(z,) — f(xo) ||> € which refutes continuity. O

The previous theorem characterizes continuity at a point. If a function f is continuous

at every x € S C X we say that the function is continuous on S.

Theorem 38. Let f: (X, | - ||x) = (Y, || - |lv) be linear. If f is continuous at xg, it is

continuous at every x € X.

Proof. By Theorem , f is continuous at xy € X if, and only if, z,, — z¢ = f(x,) —

f(zg). So, let x,, — x for some x € X. Then,

I f(@n) = @) My = f(2n) = f(o) + f(20) = f(2)]lv

= |If(xy — x4+ 20) — f(x0)||y, by linearity.
Now, since x,, — x, continuity of f at xy guarantees that || f(z,+zo—x)— f(zo)|y — 0. O

The set of all linear functions from (X, || - ||x) to (Y, ] - |ly) will be denoted by L(X,Y).
Naturally, for fi, f2 € L(X,Y) we define (fi + f2)(z) = fi(z) + fa(@), (afi)(z) = afi(z) for
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all z € X, If x = a1 + asxs, then

s(z):=(fi+ fo)(x) = filarxy + aszs) + folarxy + asxs)
= a1f1(1131) —l—(lgfl(l'g)“‘aflfQ(xl) +a2f2(x2)
= ai1(fi(71) + fa(z1)) + aa(fi(z2) + fo2))

= ai(fi + f2)(@1) + ax(f1 + fo)(22) = ars(z1) + azs(x2),

and

p(x) = (afi)(z) = afi(arz) + agzs)
= aafi(x1) + azafi(v2) = arp(w1) + asp(2).

Consequently, the sum of two linear functions and the scalar product of a linear function are

themselves linear functions. Thus, L(X,Y) is a vector space.

Definition 43. Let T € L(X,Y). The image of T, denoted by im(T), is im(T) := {y €
Y :y=T(x) for v € X}. The null space (or kernel) of T, denoted by null(T), is given by
null(T) = {z € X : T'(z) = 6}.

Theorem 39. Let T € L(X,Y).
1. im(T) is a subspace of Y.

2. If {1, - ,x,} is a basis for X (finite dimensional) we have that {T'(z1),--- ,T(x,)}

spans (generates) the im(T).

Proof. 1. We take im(T) # (). We must show that if y;,yo € im(T), then for any two
scalars @ and b, y = ayy + bys € im(T). Since, y1,y2 € im(7T) there exist x1,z5 € X
such that y; = T(x1) and yo = T'(x5). Hence, y = aT'(x1) + bT(x5) and since T is linear,
y = T'(azy + bxs). But since X is a vector space, = azy + bxrs € X, hence for some z € X

we have y = T'(z). That is, y € im(T).
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2. We must show that if y € im(T), then y can be written as y = >, a;7'(x;) for some
collection of scalars {a;}!_;. Since {z1, -+ ,x,} is a basis for X, any x € X has a unique

representation given by x = 3" | a;x;. Since T is linear, y = T'(z) = > 1, a;T(z;). O

Definition 44. 1. The rank of a set of vectors {xy, - ,x,} is the cardinality (count) of

the largest collection of independent vectors that are elements of the set.

2. If T e L(X,Y) and {x1,--- ,x,} is a basis for X, the rank of T is the rank of the
collection {T(x1), -+ ,T(z,)}.

The rank(T') is the number of independent vectors in {T'(x1), -+ ,T(z,)}.
Theorem 40. Let T € L(X,Y). The null space of T is a subspace of X.

Proof. Because T is linear, T'(8) = 6, so null(T) # (). We must show that for any x,zs €
null(T) and any @ and b scalars, axy + bxy € null(T). Since T' € L(X,Y), T'(axy + bxy) =
aTl(x1) + bT'(x2), but given that xy,zo € null(T'), we have T(ax; + bxy) = af + bO = 6.

Consequently, axy + bxy € null(T). ]

Theorem 41. Let T € L(X,Y) and X be a space with finite dimension. Then,
dim(X) = dim(null(T)) + dim(im(T)).

Proof. Let n := dim(X), k := dim(null(T)) and r := dim(im(7T)). We must show that
n==k+r. Let {wy, - ,w,} be a basis for im(T) and {us, - ,ur} be a basis for null(T").
Since w; € im(T), there exist z; € X such that T(z;) = w;. We will show that B =
{z1, -+, ug, -+ ,ug} is a basis for X.

Let x € X, and because {wy, - -+ ,w,} is a basis for im(7"), we can write that there exists a
unique collection of scalars {a;}I_; such that T'(z) = >"\_, a;w;. But since w; € im(T), there

exist ; such that w; = T'(z;), hence T'(x) = >, a;T(x;). Furthermore, since 7T is linear

we have T(z) = > ., a;T(z;) = T(>;_, a;z;), which implies that T'(z — >\, a;z;) = 6.
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Hence, x — >"'_, a;x; € null(T'), and since {uy,--- ,u;} is a basis for null(T), we can write
= 3 aw; + S.F b, for some unique collection of scalars {b;}* . Thus, z can be
written as a linear combination of {zy,--- ,&,,uy, - ,ux} and it remains to be shown that
this is a linearly independent collection. That is, if {a;}i_, and {3;}%_, are collection of
scalars such that

r k
Zaiiﬂz‘ + Zﬁz‘ui =0,
i=1 i=1

then it must be that a; =0 foralli =1,--- ;rand f; =0 for all s = 1,--- k. Since T is

linear,
r k k
T <Z ;r; + Z ﬁzuz> Z ;T (x;) + ZﬁzT(Ui) =0
i=1 i=1 i=1
But since u; € null(T), we have > . o;T(z;) = > i, ayw; = 6. Since {wy, - ,w,} is a

basis for im(T'), it must be that o; = 0 for the last equality to hold. Hence, Zle Biu; =0,
but since {uq,--- ,ux} be a basis for null(T), it must be that ; = 0 for the last equality to

hold. Hence, {xy, - , 2., u1,- -+ ,u} is a linearly independent collection. O

Let T € L(X,Y) and consider a certain y € Y. If y = 0 the null vector in Y we have
shown that there exists z € X, specifically z = 6 (the null vector in X) such that 7'(z) = y.
If y # 0, there are three possibilities: a) there is a unique # € X such that y = T'(x); b) there
is no € X such that y = T'(z), and ¢) there is more than one = € X such that y = T'(x).
Possibility a) holds for every y € Y if, and only if, 7" is bijective. In this case, we say that
T has an inverse, denoted by 77! : Y — X with z = T~ !(y).

The following theorem says that if a linear function 7" has an inverse 7!, T~ is linear.
Theorem 42. IfT € L(X,Y) and T~ exists then T~' € L(Y,X).

Proof. We must show that for any two scalars a and b and any vy, 92 € Y, T~ (ay, + bys) =

aT~(y1) + bT~(ys). Since T is linear and by the definition of an inverse function

T ay, + byy) = T~ HaT (zy) + VT (x3)) = T HT (azy, + b)) = T (T(x)) =
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for x = axy +bwy. But since T~ exists, T (y;) = x; and T (y2) = o and T (ay; +bys) =
z=aT  y) + 0T (y2). O

Theorem 43. Let T € L(X,Y). T is one-to-one if, and only if, T(x) = 6 implies x = 6.

Proof. ( =) Recall from Remark |8 that because T is linear we have that 7'(f) = 6. Also,
if T is one-to-one, for any other = € X, T'(x) # 0. Hence, T'(z) = 6 only when z = 6.
(<) If T'(z) = 0 implies = 0, then the null(T) = {#}. For any two different z, 2’ € X,

that is, x—x’ # 6, we have by linearity that T'(z) # T'(2’). Consequently, T is one-to-one. [

Definition 45. Vector spaces X and Y are said to be isomorphic if there exists a linear
function T € L(X,Y) that has an inverse T~'. In this case, any such T is called an

isomorphism.
Theorem 44. Let X and Y be real vector spaces and {xy,--- ,x,} be a basis for X.

1. If {ya, - yyn} €Y, then there exists T € L(X,Y) such that y; = T (z;) for i =

1, ,n.

2. If T, f € LIX)Y) and T(x;) = f(x;) = y; fori=1,--- ,n, then T(x) = f(x) for all

r e X.
Proof. 1. Consider an arbitrary (not necessarily linear) function 7": {z1, -+ ,z,} — Y with
T(x;) =y; fori=1,--- ,n. Since, {z1,--- ,x,} is a basis for X, any = € X can be written

as x = 2?21 a;r;, where a; # 0 for some i. Now, define an extension of T" to all of X as
T(x)=>"", aT(x;) =) ., ay;. Note that for w,v € X

n

r = aw+bv= ai cix; + bi dix; = Z(aci + bd;)x;.
i=1 i=1

i=1
Hence, T (x) = > 1 (ac; + bd;)T(z;) = ad o cyi +b> o diy; = aT (w) + bT (v). Hence,

T is linear and entirely determined by T : {1, - ,z,} = {1, ", Un}-
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2. Let x = Y7 | a;x;, and since f,T are linear functions, we have

T(x) = ZaiT(a:i),

f@) = 3 af().

i=1

and by assumption T'(z;) = f(z;). Consequently, T'(x) = f(z) for all x € X. O

Theorem 45. Let X and Y be real vector spaces. Then, X and Y are isomorphic if, and
only if, dim(X) = dim(Y).

Proof. (=) Let {xy,--- ,x,} be a basis for X, then dim(X) = n. X and Y are isomorphic
if there exist T € L(X,Y) with an inverse T~!. First, we show that {T'(z1), - ,T(z,)}
is a basis for Y. That is, we show that a) {T'(z1),---,T(x,)} is a linearly independent
collection of vectors and b) any y € Y can be written as > . T'(z;)a;. If this is the case,
then dim(Y) = n. For a), note first that > | a;7(x;) = 6 implies T'(>_""_, a;x;) = 6. Since
T~ exists, we have > " ax; = T7H(#) = 6, but given that {x1,---,x,} is a basis for X
it must be that a; = 0 for all 7 if the equality is to hold. Hence, > " | a,T(z;) = 6 implies
a; = 0 for all 7, establishing the linear independence of {T'(x;),--- ,T(z,)}. For b), note that
for all y € Y there exists one, and only one, € X such that y = T'(z). But z =Y. | a;z;,
hence by linearity y = T(3> 0 aiz;) = Y iy a; T (x;).

(«<=) Now, suppose {z1,--+,x,} and {y1, -+ ,y,} are bases for X and Y. By Theorem ,
there exist 7 € L(X,Y) such that 7 (x;) = y;. Hence, all there is to show is that 7 has an
inverse 7. Suppose @’ = >_1"  a;x; and 2" =Y " | bx; are such that T (2/) = T(z”), then
Yo aiT (z) =0, bT (x;) which implies that Y (a; — ;)T (x;) = >, (a; — b;)y; = 6.
But since {41, -, y,} is a basis for Y, it must be that a; = b; for all i, and therefore ' = z”.
So, T is one-to-one, and we need only show that it is onto to conclude it has an inverse.

From Theorem 39| (part 2), {T(z1),---,7T (z,)} generates 7 (X) which is a subspace of Y.
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But {7 (z1), -+ ,T(xn)} = {y1, - ,yn} which is a basis for Y. Hence, T(X) =Y and T is

onto. O

10.1 Vector coordinates

Let X be a vector space of finite dimension n and {vy,--- ,v,} be a basis for X. Then, for
every x € X there exists a unique collection of scalars {a;,--- ,a,} such that x = Y1 | a;v;.
We call a; the i'" coordinate of x given {vy, -+ ,v,}. We define the coordinate vector function

as ¢, : X — R", such that

n a1
() = ¢ <Z aivi> = = q.
Remark 10. 1. Since for any two vectors x # ' and for a fixed basis {vy, -+ ,v,},

co(x) # ¢, (2'), ¢, is one-to-one.

2. For every a € R", we have that > a;v; is an element of X (by the definition of a

vector space and the fact that {vy,--- ,v,} is a basis), thus ¢, is an onto function.

n

3. If v,y € X then v = Y jaw; and y = > o biv;. Hence, if ¢,d are scalars and
z = cx + dy we have that z = Y cav; + > dbv; = > (ca; + db;)v;. Thus,

cy(2) = ca + db = cc,(x) + dey(y). Hence, ¢, is a linear function.

Let f € L(X,Y), and {vy, -+ ,v,} and {wy, - ,w,} are basis for X and Y. Then,

for any © € X we can write x = Y_", a;v; and because of linearity we can write f(x) =
bui

> oimyaif(vi). Since f(v;) € Y we can write f(v;) = > 7 bjsw; and ¢, (f(vi)) = :
bm’

b ;. Since ¢,, is linear,

m a;by;

cw(f(7)) = cu <Z az’f(“z’)) = Z aicw(f(vi)) = Z a;b; =

=L\ aibpi
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Note that for fixed z (a is fixed), f(x) is entirely determined by its action on v;. This, in

turn, is determined by b;. Hence, we can say that f(x) is determined by the collection of

coordinates {by,---,b,,}. Thus, we can associate with f(x) the following object
by -+ bim
bnl T bnm

We call this the matrix B associated with f and we write the function
M(f): L(Xpm, Y,) = MM

where M™ ™ is the set containing matrices with n rows and m columns. Hence, we think of
M(-) as a function that maps linear functions to a space of n x m matrices. The subscripts
on X and Y in L(X,,,Y,) denote the dimension of the spaces.

We note that the set of matrices M™*™ can itself be viewed as a vector space by defining

addition and scalar multiplication for Q, N € M™™ and a € R as
1. @+ N is the matrix S with element S;; = Q;; + N;;
2. a(@) is the matrix P with element P;; = aQ);;

3. 0, the null vector is a matrix with element 6;; = 0

The next theorem establishes that M is linear, one-to-one and onto. One-to-one and onto
means that for any two f,g € L(X,,,Y,) and f # g we have M(f) # M(g) and for every
M € M™™ there exists one, and only one, f € L(X,,,Y,). Consequently, L(X,,,Y,) and

M™¥™ are isomorphic.

Theorem 46. Let f.g € L(X,,,Y,) and h = af + Bg for scalars « and 5. Then, 1.
M(h) = aM(f)+ BM(g); 2. M is one-to-one and onto.

Proof. 1. Since L(X,,,Y,) is a vector space, h € L(X,,,Y,). Let = >, a;v; and observe

that by Remark 3 (linearity of the coordinate vector function) and linearity of f and
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g we have ¢, (h(z)) = ac,(f(z)) + Bew(g(x)) = acwy O imq aif(v:)) + Bew (O img aig(vi)) =
ad i aicy(f(v) + B0, aicw(g(v;)). Recall that by definition

M(h) = ( co(h(vr)) - culh(vm)) ),

hence

M(h) = (acu(f(v1)) - aco(f(vm)) )+ ( Bew(g(vr)) -+ Bewlg(vm)) )

2. First, note that M (f) = M(g) implies that f(v;) = g(v;) foralli = 1,--- ,m. By Theorem
[44}2 this implies f = g. Second, f = g implies f(v;) = g(v;) for all i = 1,---,m since the

basis are in X.. Consequently, M (f) = M(g). Thus, M is one-to-one.
by,
Now, let Q € M™™ and write ) = ( b1 -+ bm ) Note that b; = : is an
bn;
array of n scalars, and if {w;}?_, is a basis for Y,,, for some y; € Y,, we have y; = """ | w;b;;

since dim(Y, ) = n. Then, if {vy,--- ,v,} is a basis for X, by Theorem [44] there exists T €
L(X;,Y,) such that 7 (v;) = y; = >0 wiby;. Also, by Theorem B9}2, {T (v1), -+, T (vim)}
is a basis for the image of 7. Thus, any y € Y,, can be written as y = Z;nzl a;T (v;), and

by linearity of T,y =T (Zm ajvj) = T (x), which is entirely characterized by Q. O

J=1

In the following example we will take X,, = R™ and choose the unit-coordinate vectors

as the components of the basis.

Example 19. Let f € L(R™, R"™) and choose the unit-coordinate vectors as the components

of the basis for R™ and R™. That is, the basis for R™ is the collection {e1, ..., ey} with
e.T:(O e 1 .. O)

where 1 appears at the it position of the m-tuple. Similarly, the basis for R™ is the collection

{ug, ... u,} with ul = ( O -- 1 -0 ) where 1 appears at the it position of the n-
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tuple. For v € R™ we have x = )_." | x;€;
=f (Z xﬂi) = Z-Tzf(ez)
i—1 i=1
Now, f(e;) € R™, therefore f(e;) = Z?Zl fileu; = ( file)) faler) -+ fuler) )T. Hence,

=Y wi( file) fe) - fule))"

( filer) file2) filem) )z filer)  filez) filem)

_ ( faler) falea) falem) ) x _ faler)  fa(ea) falem) .
(fuler) Fulex) - fulew) ) fule) fulex) - Fulen)

= Fux,

where F' is an n X m matric with typical element Fj; := f;(e;)

Example 20. As in the previous example let f € L(R™,R") and g € L(R",RP) where
the domain of g is the range of f. Let (go f)(x) = g(f(x)) for x € R™ and note that
(go f)(x) € L(R™ RP) (why?). Let {e1, -+ ,em}, {us, - ,u,} and {wy,--- ,w,} be the
unit coordinate basis for R™, R"™ and RP. Then, f(z) = f(O " mie;) = Yoo, xif(e;),
Fle) = Sy feuy and F = (B30 is the matnia of £. Also, g(y) = g (S, vyu;) =
> i1 Yig(ug), g(uy) = 370 gr(wj)wy and G = [GRl”, ., is the matriz of g. Now, (g o
@) =(go )L mies) = 3275 (g 0 f)lei)i and

(go f)lei) =g(f(es)) =g (ij(ei)uj) ng e;)g(u;) ng €; Z Wy,
Z <ij ez gk u] )

Hence, the matriz of (g o f) is given by Il = [Z?’:l fj(ei)gk(uj)]nm . We define this

k=1,i=1
matriz to be the (Cayley) product of the matrices G and F' and we write Il = GF. Thus, the

well known formula for multiplication of matrices derives from the composition of two linear

functions.
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Example 21. 1. Let BC RX and T € L(B,R"). Let X € M™¥ be the matriz associated
with T, such that, as in Example[19 we write T(b) = Xb where b € B. Let {e, }I, be a basis
for RE where ey, is the unit coordinate vector of dimension K x 1. X = (X --- X ) and
T(ex) = Xer, = Xy. The rank of T is the cardinality of {X 1, -+, Xk} = K. Recall that
the null(T) = {a : Xa = 0} and by Theorem [41] we have that dim(null(T)) = 0.

2. Note that if y = Xb and y = X3, we can conclude that X (b — ) = 0 and this implies
b= (3 if the columns of X are linearly independent or, equivalently, rank(T) = K.

3. If Y =T(B) +¢, Y is the element of a linear variety, not element of the image of T. A
very interesting question is whether or not there exists an element in the image of T that is

“closest” to Y. For example, is there a solution for the minimization problem
min | = 7(8) |57

10.2 Bounded linear functions

We start by establishing that linear functions defined on finite dimensional spaces are always

continuous.

Theorem 47. Let (X, |- ||x) and (Y, |- ||yv) be normed vector spaces with dim(X) =n € IN.

fe L(X,Y) implies that f is continuous on X.

Proof. Since dim(X) = n € N, there exists a basis {b;}!_; and a collection of scalars {s;}I ,
such that any € X can be written as @ = Y. s;b;. Linearity of f implies f(z) =

> iy s f(b;) and by the properties of norms,

1f(@)lly < Z [silll £ (ba) |-

The set of real numbers {|| f(b;)||y}?; is finite and we define M := max | f(b;)|lyy- Hence,

If @)y < MY sil.
i=1
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