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1 Sets and basic operations

A set is a collection of arbitrary objects. These objects are called the elements of the set.

A set is described by listing its elements or by enunciating the properties its elements must

satisfy. It is common practice to represent a set by including its elements, or the properties

satisfied by its elements, within curly brackets. For example, the set of all outcomes from

rolling a 6-sided die, where the sides are numbered from 1 to 6, can be represented by

A = {1, 2, 3, 4, 5, 6} or by A = {x : x is a natural number and 1  x  6}.

In the second case, we read “A is the set with typical element x such that x is a natural

number and 1  x  6.” Sets are commonly denoted by uppercase roman letters, such as A

in this example.

In mathematics, some of the most fundamental sets contain numbers. The set of natural

numbers is denoted by N with N = {1, 2, · · · }, the set of non-negative integers by N0 =

{0, 1, 2, · · · }, the set of integers by Z = {0,±1,±2, · · · } and the set of rational numbers by

Q = {x : x = a/b where b 6= 0 and a, b 2 Z}. The set of real numbers, denoted by R, is

the set of rational numbers together with the set of irrational numbers, i.e., the numbers

that are not rational.1 Another important set contains the complex numbers and is denoted

by C. The set is formed by all real numbers together with what are known as “imaginary”

numbers.2

If x is an element of a set A we write x 2 A, and when it is not, we write x /2 A. If A and

B are sets such that x 2 A =) x 2 B, we write A ✓ B and say that A is a subset of B. If

A ✓ B and B ✓ A, we write A = B and say that the two sets are equal, otherwise we write

1
Showing that a particular number is irrational can be di�cult, but the existence of irrational numbers is

easy to establish. For example,
p
2 is an irrational number. To see this, suppose that it is not, such that we

can write
p
2 = a/b where a and b have no common prime factors. Then a2 = 2b2 and a2 is a multiple of 2.

But since 2 is a prime number it divides a, so that there exists an integer c such that a = 2c and 4c2 = 2b2,
which implies b2 = 2c2. Hence, b is a multiple of 2 which contradicts the assumption that a and b have no

common factors. Thus,
p
2 cannot be a rational number.

2
Complex numbers will be formally introduced and discussed later in these notes.
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A 6= B. If A ✓ B and A 6= B we say that A is a proper subset of B and when this needs

to be emphasized we write A ⇢ B. The set that contains no elements is called the empty

set and is denoted by ;. The empty set is a subset of all sets, i.e., ; ⇢ A for any nonempty

A. This is true because if the empty set is not a subset of A, then there exists an element

of ; that is not in A. But this is impossible since ; has no elements. The set containing all

subsets of a set A is called the power set of A and is denoted by 2A or P(A). Sets whose

elements are sets are often called systems.

Example 1. Intervals are important subsets of R. An open interval of R, denoted by (a, b), is

the set {x 2 R : a < x < b}, a closed interval, denoted by [a, b] is the set {x 2 R : a  x  b}

and a half-open interval is a set [a, b) = {x 2 R : a  x < b} or (a, b] = {x 2 R : a < x  b}.

Intervals are said to be finite if a, b 2 R and infinite if a = �1 or b = 1. The meaning

of the qualifiers ‘open’, ‘closed’ or ‘half-open’ as well as the meaning of the symbols �1 and

1 will be discussed later in these notes.

The union of sets A and B is denoted by A[B and A[B = {x : x 2 A or x 2 B}. The

intersection of sets A and B is denoted by A \B and A \B = {x : x 2 A and x 2 B}. The

sets A and B are disjoint if A\B = ;. The di↵erence of sets A and B is denoted by A�B

and A�B = {x : x 2 A and x /2 B}. The set that contains the elements that are not in A is

called the complement of A and is denoted by Ac. The set U = A[Ac is called the universal

set and contains all elements that are under consideration. The symmetric di↵erence of sets

A and B is denoted by A�B and A�B = (A� B) [ (B � A).

The next theorem shows that unions and intersections have commutative, associative and

distributive properties. For a visual understanding of these properties it is useful to use of

Venn diagrams.

Theorem 1. 1. (Commutative property) A \B = B \ A and A [ B = B [ A;
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2. (Associative property) (A [ B) [ C = A [ (B [ C) = A [ B [ C and (A \ B) \ C =

A \ (B \ C) = A \ B \ C;

3. (Distributive property) (A[B)\C = (A\C)[ (B \C) and (A\B)[C = (A[C)\

(B [ C).

Proof. Left as an exercise. Note that if A = B it must be that A ✓ B and B ✓ A.

Remark 1. The results in these notes are normally enunciated as ‘If statement A is true

then statement B is true’ or A =) B, that should be read as “A implies B.” If it is also

true that B =) A, we say that A and B are equivalent, and we write A () B. The

contrapositive of A =) B is ‘notB =) notA’ and these implications are equivalent.

Hence, the veracity of a result is established either directly or by its contrapositive. In certain

occasions, the veracity of a statement is established by assuming that A and ‘notB’ hold and

then arriving at a statement known to be false or absurd, leading to the conclusion that A

must imply B (see footnote 1 as an example). This method of establishing a result is known

as ‘proof by contradiction.’

In some instances ‘mathematical induction’ can be used to establish the general veracity

of propositions that we know to be true in special cases. This method of proof is justified

by the following theorem.

Theorem 2. Given a statement P (n) formulated for n 2 N, suppose that:

1. P (1) is true,

2. P (k) true for all k  n implies P (n+ 1) is true.

Then, P (n) is true for all n 2 N.

Proof. Suppose P (n) is not true for some n and let n1 be the smallest natural number for

which the statement P is not true. Clearly, n1 > 1, since P (1) is true and n1 � 1 2 N. P (n)

is valid for all k  n1 � 1 but not n1, contradicting 2.
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It is often possible and useful to numerically index the elements of a set. For example, if

a set S = {apple, orange, banana} we can write S = {si}i2I where I = {1, 2, 3}, s1 = apple,

s2 = orange and s3 = banana. In this case, the set has a finite number of elements and the

associated index set is correspondingly finite. In other cases it may be necessary to consider

larger index sets such as I = N or I = R.

Using an arbitrary index set I, we can represent a system F associated with an arbitrary

set A as F = {Ai ⇢ A : i 2 I}. The next theorem is useful when manipulating sets.

Theorem 3. (De Morgan’s laws) Let I be an index set and F = {Ai : i 2 I}. Then,

1.

✓S
i2I

Ai

◆c

=
T
i2I

Ac

i
,

2.

✓T
i2I

Ai

◆c

=
S
i2I

Ac

i
.

Proof. 1. x 2

✓S
i2I

Ai

◆c

=) x /2
S
i2I

Ai. But this implies that x /2 Ai for all i 2 I.

Consequently, x 2 Ac

i
for all i. That is, x 2

T
i2I

Ac

i
. Conversely, x 2

T
i2I

Ac

i
implies x 2 Ac

i

for all i 2 I. Consequently, x /2 Ai for all i and therefore x /2
S
i2I

Ai, which implies that
✓S

i2I

Ai

◆c

. The proof of 2. is left as an exercise.

We now define the cartesian product of a finite collection of sets. The cartesian product

will be used to define relations and functions.

Definition 1. The cartesian product of sets A1 and A2, denoted by A1 ⇥ A2, is the set of

all elements given by (a1, a2) where a1 2 A1 and a2 2 A2. That is,

A1 ⇥ A2 = {(a1, a2) : a1 2 A1 and a2 2 A2}.

The element (a1, a2) is called an ordered pair. For a finite collection of sets {A1, · · · , An}

where n 2 N, the cartesian product is given by

⇥
n

i=1Ai = {(a1, · · · , an) : ai 2 Ai for i = 1, · · · , n with n 2 N},
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and (a1, · · · , an) is called an ordered n-tuple.

Example 2. Let i = 1, 2, · · · , n, n 2 N and Ai = R. Then,

⇥
n

i=1Ai = ⇥
n

i=1R := Rn = {(a1, · · · , an) : ai 2 R for i = 1, · · · , n with n 2 N}.

What matters in identifying an n-tuple is that it is an ordered collection of elements, each

coming from a specific set. The exact notation adopted to represent the ordered n-tuple is

a matter of convenience. As such, the following representations will generally be taken as

equivalent

(a1, a2, · · · , an),

0

BBB@

a1
a2
...
an

1

CCCA
,
�
a1 a2 · · · an

�
,

2

6664

a1
a2
...
an

3

7775
,
⇥
a1 a2 · · · an

⇤
.

In some instances, it will be convenient or necessary to emphasize that the n-tuple is a

vertical or horizontal array. In this context, if we set

a =

0

BBB@

a1
a2
...
an

1

CCCA
then aT =

�
a1 a2 · · · an

�
.

aT is called the transpose of a and we set (aT )T = a.

2 Relations and functions

Definition 2. 1. A relation R between A and B is a subset of A ⇥ B. 2. The inverse

relation, denoted by R�1, is the set with elements (b, a) 2 B ⇥ A such that (a, b) 2 R.

For a 2 A, we define the image of a under R as the set R(a) = {b : (a, b) 2 R}. Note

that R(a) can be the empty set and that R(a) ✓ B. The image of X ✓ A under R is the

set {b : a 2 X and (a, b) 2 R} =
S
a2X

R(a). For any b 2 B, we define the inverse image of b

under R as R�1(b) = {a : (a, b) 2 R}, which can be the empty set and R�1(b) ✓ A . The
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inverse image of Y ✓ B under R is the set {a : b 2 Y and (a, b) 2 R} =
S
b2Y

R�1(b). The

image of A under R is called the range of R, and the inverse image of B under R is called

the domain of R.

When R is a relation between A and B we often write R : A ⇣ B, and when (a, b) 2 R

we sometimes write aRb and say that a is related to b by R or that a and b are related by R.

Definition 3. If R : A ⇣ B and S : B ⇣ C, the composition of R and S, denoted by R �S,

is the set R � S = {(a, c) : there exists b 2 B with (a, b) 2 R and (b, c) 2 S}. In this case we

write R � S : A ⇣ C.

Definition 4. A function f between A and B, or from A to B, is a relation between A and

B such that for every a 2 A, (a, b) 2 f and (a, c) 2 f =) b = c.

When f is a function from A to B we write f : A ! B. Usually A = f�1(B) and in this

case A is the domain of f . When afb we write b = f(a). The set B is called the co-domain

of f . Gf = {(x, y) : such that x 2 A and y = f(x)} ✓ A ⇥ B is usually called the graph of

f .

For X ✓ A, f(X) = {y 2 B : y = f(x) for x 2 X} ✓ B is called the image of X

under f and f(A) is called the range of f . For Y ✓ B, the inverse image of Y under f is

f�1(Y ) = {a 2 A : f(a) 2 Y }.

It should be clear that f�1 may not be a function on B. If it is a function, i.e., if for

every y 2 B we have that f�1(y) contains one, and only one element, it is called the inverse

function of f . We say that f = g if f and g have the same domain A and for every a 2 A,

f(a) = g(a).

Example 3. Let A = [�1, 1] ⇢ R and f = {(x, y) : x 2 A and y = x}. f is clearly a

function, since for every x 2 A there is one, and only one y satisfying the relation. The

relation R = {(x, y) : x 2 A and y2 = 1� x2
} is not a function, since for x 2 A both y and
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Figure 1: The function y = x, in black, and the relation y2 = 1� x2, in blue

�y satisfy the relation, that is (x, y), (x,�y) 2 R. Figure 1 gives a geometric representation

of these relations.

Example 4. The indicator function of a set A ⇢ ⌦ is denoted by IA : ⌦ ! R and given by

IA(!) =

(
1, if ! 2 A

0, if ! 2 Ac
,

where ! 2 ⌦. It is easily shown that A ✓ B =) IA(!)  IB(!) for all ! 2 ⌦. Also,

IA(!)  IB(!) for all ! 2 ⌦ =) A ✓ B. Hence,

A ✓ B () IA(!)  IB(!).

Also, since ! /2 Ac =) ! 2 A and ! 2 Ac =) ! /2 A, IAc(!) = 1� IA(!) for all ! 2 ⌦.

Definition 5. Let f : A ! B.

1. f is surjective or ‘onto B’ if f(A) = B,
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2. f is injective or ‘one-to-one’ if for all a,↵ 2 A with a 6= ↵, f(a) 6= f(↵),

3. f is bijective if f is onto B and one-to-one.

The next theorem shows that inverse images, unions, intersections and di↵erences of sets

are interchangeable.

Theorem 4. Let f : A ! B, I an index set and F = {Bi : i 2 I} a collection of subsets of

B. Then,

1. f�1

✓S
i2I

Bi

◆
=
S
i2I

f�1(Bi),

2. f�1

✓T
i2I

Bi

◆
=
T
i2I

f�1(Bi),

3. f�1 (Bi � Bj) = f�1(Bi)� f�1(Bj).

Proof. 1. x 2 f�1

✓S
i2I

Bi

◆
=) f(x) 2

S
i2I

Bi =) f(x) 2 Bi for some i. Hence, for some i

we have f(x) 2 Bi and x 2 f�1(Bi). Hence, x 2
S
i2I

f�1(Bi). It is clear that all implications

can be reversed, which establishes the equality of the two sets.

2. Left as an exercise, following the steps in 1.

3. x 2 f�1(Bi � Bj) =) f(x) 2 Bi � Bj. Consequently, f(x) 2 Bi and f(x) /2 Bj. Thus,

x 2 f�1(Bi) and x /2 f�1(Bj). Hence, x 2 f�1(Bi)� f�1(Bj). It can be easily verified that

all reverse implications hold.

The next two theorems address conditions under which images, unions, intersections and

di↵erences of sets are interchangeable.

Theorem 5. Let f : A ! B, I be an index set and {Ai : i 2 I} a collection of subsets of A.

Then,

1. f

✓S
i2I

Ai

◆
=
S
i2I

f(Ai),
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2. f

✓T
i2I

Ai

◆
✓
T
i2I

f(Ai).

Proof. 1. y 2 f

✓S
i2I

Ai

◆
implies that there exists x 2

S
i2I

Ai such that (x, y) 2 f . This implies

that x 2 Ai for some i. Hence, for some i we have (x, y) 2 f and y 2 f(Ai). Consequently,

y 2
S
i2I

f(Ai). It is clear that all implications can be reversed, which establishes the equality

of the two sets. 2. y 2 f

✓T
i2I

Ai

◆
implies that there exists x 2

T
i2I

Ai such that (x, y) 2 f .

This implies that for all Ai, there exists an x such that (x, y) 2 f , and consequently y 2 f(Ai)

for all i. This implies that y 2
T
i2I

f(Ai). The reverse is not true because y 2
T
i2I

f(Ai) does

not imply that there exists an x 2
T
i2I

Ai such that (x, y) 2 f .

Theorem 6. Let f : A ! B, I be an index set and {Ai : i 2 I} a collection of subsets of A.

Then,

1. f is one-to-one () f

✓T
i2I

Ai

◆
=
T
i2I

f(Ai),

2. f is one-to-one () f(A� A1) = f(A)� f(A1).

Proof. 1. We start by showing that f one-to-one =) f

✓T
i2I

Ai

◆
=
T
i2I

f(Ai). By the

definition of the image of a function, f

✓T
i2I

Ai

◆
✓ f(Ai) for all i. Thus, f

✓T
i2I

Ai

◆
✓

T
i2I

f(Ai). Now, if y 2
T
i2I

f(Ai) then for all i there exists xi 2 Ai such that f(xi) = y.

Since f is one-to-one, all xi must be the same, say x1. Thus, x1 2
T
i2I

Ai and consequently

y 2 f

✓T
i2I

Ai

◆
. Hence,

T
i2I

f(Ai) ✓ f

✓T
i2I

Ai

◆
and we conclude that f

✓T
i2I

Ai

◆
=
T
i2I

f(Ai).

We now show that f

✓T
i2I

Ai

◆
=
T
i2I

f(Ai) =) f one-to-one. Let x1, x2 2 A such that

f(x1) = f(x2) and set A1 = {x1} and A2 = {x2}. Then, f({x1})
T
f({x2}) 6= ; and by

assumption f({x1})
T
f({x2}) = f({x1}

T
{x2}) which is nonempty if and only if x1 = x2.

Hence, f is one-to-one.

2. Assume that f is one-to-one. f(x) 2 f(A � A1) =) x 2 A � A1. Since f is one-

to-one f(x) 6= f(x0) for all x0
2 A1. Hence, f(x) /2 f(A1) and f(x) 2 f(A) � f(A1) or
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f(A�A1) ✓ f(A)� f(A1). If f(x) 2 f(A)� f(A1) then f(x) /2 f(A1) which implies x /2 A1

and x 2 A�A1. Consequently f(x) 2 f(A�A1) and f(A)�f(A1) ✓ f(A�A1) (one-to-one

property of f not used). Thus, f(A)� f(A1) = f(A� A1).

Now, assume that f(A�A1) = f(A)�f(A1). Let A1 = {x} and consider x0
6= x. Clearly,

x0
2 A � A1 and f(x0) 2 f(A � A1). But by assumption f(x0) 2 f(A) � f({x}). Hence,

f(x0) /2 f({x}) and f(x0) 6= f(x), establishing that f is one-to-one.

3 The limit of a sequence of sets

Often, it is necessary to use the infinity symbols �1 or 1 in calculations. In these cases

we work with the extended real line, i.e., R̄ := R [ {�1} [ {1} := [�1,1]. When we

write x 2 R we mean �1 < x < 1. The extended real line inherits the ordering as well as

the rules for addition and multiplication we associate with R. These rules are augmented as

follows in R̄:

1. x+1 = 1, x+ (�1) = �1, for x 2 R

2. 1+1 = 1, �1+ (�1) = �1

3. �1+1 and ±1

±1
are not defined

4. 0⇥1 = 0, 0⇥�1 = 0

5. ±x⇥1 = ±1, ±x⇥ (�1) = ⌥1, for x 2 R

6. 1⇥1 = 1, 1⇥�1 = �1, �1⇥�1 = 1

Functions that take values in R̄ are called numerical functions.

Definition 6. Let {An}n2N be a sequence of arbitrary sets and define the following: I1 =
T
n�1

An, I2 =
T
n�2

An, · · · and U1 =
S
n�1

An, U2 =
S
n�2

An, · · · . Note that I1 ✓ I2 ✓ · · · and U1 ◆
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U2 ◆ · · · . We write lim inf
n!1

An =
S
k2N

Ik and lim sup
n!1

An =
T
k2N

Uk. If lim inf
n!1

An = lim sup
n!1

An

we say that the collection {An}n2N has a limit and we write

A := lim
n!1

An = lim inf
n!1

An = lim sup
n!1

An.

Example 5. a) Let An = [0, n/(n+1)) for n 2 N. Then, U1 =
S

1

n=1 An = [0, 1), U2 = [0, 1),

· · · . I1 =
T

1

n=1 An = [0, 1/2), I2 =
T

1

n=2 An = [0, 2/3), · · · . Hence, lim inf
n!1

An =
S
k2N

Ik =

[0, 1) and lim sup
n!1

An =
T
k2N

Uk = [0, 1).

b) Let An = (0, 1/n) for n 2 N. Then, U1 =
S

1

n=1 An = (0, 1), U2 =
S

1

n=2 An = (0, 1/2),

· · · and I1 =
T

1

n=1 An = ;, I2 =
T

1

n=2 An = ;, · · · . Hence, lim inf
n!1

An =
S
k2N

Ik = ; and

lim sup
n!1

An =
T
k2N

Uk = ;.

The next theorem provides a characterization for lim inf
n!1

An and lim sup
n!1

An using the

indicator function. Here, x /2 R means that x 2 R�R.

Theorem 7. Let {An}n2N be a collection of subsets of A. Then,

1. lim inf
n!1

An =

(
x :
X

n2N

IAc
n
(x) < 1

)
,

2. lim sup
n!1

An =

(
x :
X

n2N

IAn(x) = 1

)
.

Proof. 1. x 2 lim inf
n!1

An =) x 2
T
n�k

An for some k 2 N. But by DeMorgan’s Laws

T
n�k

An =

 
S
n�k

Ac

n

!c

. Hence, x /2
S
n�k

Ac

n
and consequently x /2 Ac

n
for all n � k. Thus,

IAc
n
(x) = 0 for all n � k. Hence,

X

n2N

IAc
n
(x) =

X

n<k

IAc
n
(x) +

X

n�k

IAc
n
(x) =

X

n<k

IAc
n
(x) < 1.

Thus, liminf
n!1

An ✓ {x :
P
n2N

IAc
n
(x) < 1}.

Now, x 2 {x :
P

n2N IAc
n
(x) < 1} implies that x belongs to a finite number of Ac

n
. That

is, there exists n0 2 N such that for all n � n0 we have IAc
n
(x) = 0. That is, x /2 Ac

n
for all

11



n � n0. But this implies that x /2
S

n�n0
Ac

n
which implies x 2

�S
n�n0

Ac

n

�c
=
T

n�n0
An. By

definition, this means that x 2 liminf
n!1

An. Thus, liminf
n!1

An =

⇢
x :

P
n2N

IAc
n
(x) < 1

�
.

2. x 2 lim sup
n!1

An =) x 2
S

n�k
An for all k 2 N. But, by De Morgan’s Laws

S
n�k

An =
�T

n�k
Ac

n

�c
. Hence, x /2

T
1

n�k
Ac

n
and it must be that x 2 An for some n � k and all k 2 N.

Consequently, IAn(x) = 1 for some n � k and all k 2 N. Hence, x 2

⇢
x :

P
n2N

IAn(x) = 1

�
.

Conversely, if x 2

⇢
x :

P
n2N

IAn(x) = 1

�
, then there are only finitely many An that do not

contain x. Hence, for all k 2 N we have x 2
S

n�k
An, which implies that x 2

T
k2N

S
n�k

An =

lim sup
n!1

An.

Remark 2. 1. Because of the characterization given in Theorem 7, it is common to refer to

lim inf
n!1

An as the set of x’s for which x 2 An for all n except a finite number (
P

n2N IAc
n
(x) <

1). And to refer to lim sup
n!1

An is the set of x’s for which x 2 An infinitely often (i.o).

2. Note that x 2 lim inf
n!1

An =) x 2
S
k2N

Ik =) x 2
T
n�k

An for some k. Hence, x 2 An for

all n � some k. Hence, x 2
S

n�k
An for all k, and consequently, by definition x 2 lim sup

n!1

An.

Thus,

lim inf
n!1

An ✓ lim sup
n!1

An.

3. By De Morgan’s Laws
⇣
lim inf
n!1

An

⌘c
= lim sup

n!1

Ac

n
.

4 Cardinality of sets

The number of elements in a set, or its cardinality, is an important concept. When sets have

finitely many elements, we can obtain a count of these elements and, at least conceptually,

establish its cardinality. The cardinality of sets that have infinitely many elements cannot

be established in this simple manner. We start with a definition of equality of the cardinality

of two sets.

Definition 7. Sets A and B have the same cardinality, and we write #A = #B, if there

12



is a function f : A ! B that is one-to-one and onto. We write #A  #B if there is a

one-to-one function g : A ! B (not necessarily onto).

If B = N and #A  #N then every element of A can be associated with a unique

element from N. If #A < #B, then there exists no g : A ! B that is one-to-one and onto.

Definition 8. If #A  #N we say that A is countable. The cardinality of N is denoted by

@0 (aleph naught). If #A > @0, we say that A is uncountable.

We can establish the cardinality of some important sets by defining suitable bijective

functions.

Example 6. 1. Consider Z = {. . . ,�1, 0, 1, . . . } and the function f : Z! N with

f(z) =

(
2z, if z > 0

2|z|+ 1, if z  0
.

f is clearly bijective. Hence, #Z = #N and we conclude that there are as many

integers as natural numbers.

2. Let A = N ⇥ N and denote an arbitrary element of A by a = (a1, a2). Consider the

function f : A ! N given by

f(a) =
(a1 + a2)(a1 + a2 � 1)

2
� a2 + 1.

f is clearly a bijective. Hence, #N ⇥ N = #N and we conclude that the cartesian

product of two sets of natural numbers has the same cardinality of the natural numbers.

See Figure 2 for a diagrammatic representation of how f counts the elements of N⇥N.

The next theorem shows that countable unions of countable sets are countable sets.

Theorem 8. Let {An}n2N be a collection of sets (as written, it is countable) with each An

countable. Then, A =
S
n2N

An is countable.

13



Figured : Counting INXIN .

÷
:

y ✗

I

→
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;

The value of flat is given in by for each a- .

Figure 2: Counting N⇥N

Proof. Since each An is countable, we can enumerate its elements as An = {An,1, An,2, · · · }.

Hence, A = {A1,1, A1,2, A1,3, · · · , A2,1, A2,2, A2,3, · · · } = {Ai,j : (i, j) 2 N ⇥ N}, which is

countable by item 2 in the previous Example.

This theorem can be used to establish that Q, the set of rational numbers, is countable.

To verify this, note that if q 2 Q then q = a1/a2 where a1, a2 2 Z with a2 6= 0. Now, consider

q > 0 and note that in this case q = a1/a2 can be written using the pairs (a1, a2) in item 2.

Similarly, q < 0 is countable. Since Q is the union of positive and negative rationals with 0,

we conclude that Q is countable. A formal proof is left as an exercise.

Theorem 9. For any set A, #A < #2A.

Proof. We need to show that any g : A ! 2A that is one-to-one is not onto. Let B = {a 2

A : a /2 g(a)} be the elements of A whose images do not contain a. Note that in this case the

images are subsets of A. Since B 2 2A, if g is onto, there exists a0 2 A such that g(a0) = B.

Hence, a0 2 B () a0 /2 g(a0) () a0 /2 B which is impossible.

14



Theorem 10. (Cantor-Bernstein) If #A  #B and #B  #A, then #A = #B.

Proof. By assumption, there exists f : A ! B and g : B ! A that are both one-to-one.

Since g : B ! g(B) is bijective, #B = #g(B) and the theorem will be proved if we show

that #A = #g(B). As g(B) ✓ A, we can take g to be the identity function, i.e., g(b) = b

for all b 2 B, and proceed with B ✓ A. We must obtain a bijection h : A ! B.

Put A0 = A and define A1 := f(A) ✓ B, A2 := f(f(A)) = f 2(A) = f(A1), A3 = f 3(A) =

f(A2), · · · with f 0 being the identity function. Then, we write Ai = f i(A) for i = 0, 1, · · · .

Since B ✓ A we put B0 = B and similarly define B1 := f(B) ✓ B, B2 := f(f(B)) =

f 2(B) = f(B1), B3 = f 3(B) = f(B2), · · · and write Bi = f i(B) for i = 0, 1, · · · . Now, since

f(A) ✓ B and B ✓ A,

f i+1(A) = f i(f(A)) ✓ f i(B) ⇢ f i(A) or Ai+1 ✓ Bi ✓ Ai for i = 0, 1, · · ·

Hence, we have A ◆ B ◆ A1 ◆ B1 ◆ A2 ◆ · · · Now, define a function h : A ! B by

h(x) :=

8
<

:

f(x) if x 2
S

i2N0

(Ai � Bi),

x if x /2
S

i2N0

(Ai � Bi).
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Now,

h(A) = h

  
[

i2N0

(Ai � Bi)

!
[
 
[

i2N0

(Ai � Bi)

!c!

= h

  
[

i2N0

(Ai � Bi)

!!
[

h

  
[

i2N0

(Ai � Bi)

!c!

= f

  
[

i2N0

(Ai � Bi)

!!
[
 
[

i2N0

(Ai � Bi)

!c

=

 
[

i2N0

(f(Ai)� f(Bi))

!
[
 
[

i2N0

(Ai � Bi)

!c

since f is injective.

=

 
[

i2N0

(Ai+1 � Bi+1)

!
[
 
(A� B)

[[

i2N

(Ai � Bi)

!c

=

 
[

i2N0

(Ai+1 � Bi+1)

!
[
 
(A� B)c

\
 
[

i2N0

(Ai+1 � Bi+1)

!c!
= C

[
((A� B)c

\
Cc)

by letting C :=
S

i2N0

(Ai+1 � Bi+1).

But C [ ((A�B)c\Cc) = C [ ((Ac
[B)\Cc) = (C [Ac

[B)\ (C [Cc) = (C [Ac
[B)\A.

But C ✓ B, hence C [B = B and C [ ((A�B)c \ Cc) = (B [Ac) \A = A \B = B since

B ✓ A. Hence, h(A) = B and h is onto.

We now show that h is one-to-one. To this end, let a, a0 2 A and let h(a) = h(a0). We

must show that a = a0. There are the following cases:

1. a, a0 2
S

i2N0

(Ai � Bi). Then, h(a) = f(a) and h(a0) = f(a0) and consequently f(a) =

f(a0). But since f is one-to-one, a = a0;

2. a, a0 /2
S

i2N0

(Ai � Bi).Then, a = h(a) = h(a0) = a0 since f ;

3. a 2
S

i2N0

(Ai � Bi) and a0 /2
S

i2N0

(Ai � Bi) which implies a0 /2 (Ai � Bi) for all i 2 N0.

Then, f(a) = h(a) = h(a0) = a0. Now, a0 = f(a) implies a0 2 f(Ai�Bi) for some i, but

since f is one-to-one f(Ai�Bi) = f(Ai)�f(Bi) = Ai+1�Bi+1. Hence, a0 2 Ai+1�Bi+1

which is ruled out by assumption. Hence, this case cannot occur.
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4. a0 2
S

i2N0

(Ai � Bi) and a /2
S

i2N0

(Ai � Bi) also cannot occur given the arguments we

made for case 3.

Hence, h is one-to-one, and since we have already established that it is onto, it is bijective,

completing the proof.

Theorem 11. If A ✓ B then #A  #B.

Proof. Since A ✓ B, f : A ! B such that f(a) = a is one-to-one. Thus, #A  #B.

A direct consequence of the last theorem is that subsets of countable sets are countable.

Not all sets are countable. The next theorem shows that the interval (0, 1) is uncountable.

We use this result to say that the set of real number R is also uncountable.

Theorem 12. The interval (0, 1) is uncountable and its cardinality #(0, 1) := C is called

the continuum.

Proof. Every x 2 (0, 1) can be written as 0.x1x2, · · · where xi 2 {0, 1, · · · , 9}. However,

this representation is not unique since, e.g., 0.500 · · · = 0.499 · · · . To avoid non-uniqueness,

whenever x = 0.x1x2, · · · , xn where n is a natural number (finite number of decimal points),

we substitute xn with xn � 1 and set all subsequent digits to 9. As a result, every x 2

(0, 1) is now represented uniquely by an infinite decimal expansion. The proof, follows by

contradiction. Assume, (0, 1) is countable and let all its elements be represented by the

enumeration {y1, y2, · · · }. Then,

y1 = 0.y11y12y13 · · ·

y2 = 0.y21y22y23 · · ·

...

Now, consider x = 0.x1x2, · · · where x1 is any number in {0, 1, · · · , 9} di↵erent from y11, x2

is any number in {0, 1, · · · , 9} di↵erent from y22, and so on. Hence, x 6= yi for all i = 1, 2, · · · .

Consequently, {y1, y2, · · · } cannot include all x 2 (0, 1).
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Theorem 13. #R = #(0, 1) = C.

Proof. Let f : (0, 1) ! R with f(x) = (1 � x)�1
� x�1. We can promptly verify that

f((0, 1)) = R, i.e., onto and f is strictly increasing on (0, 1), hence one-to-one.

In the next section we discuss some of the properties of R and its structure.

5 The real numbers

We assume the existence of two operations that can be performed on the elements of R. The

first operation is called the sum of any two x, y 2 R and is denoted by x + y. The second

operation is called the (scalar) multiplication of any two x, y 2 R and is denoted by xy. It

is assumed that xy, x+ y 2 R. For any x, y, z 2 R, these operations are assumed to satisfy

the following axioms (field):3

1. x+ y = y + x ; xy = yx (commutative property),

2. (x+ y) + z = x+ (y + z) ; (xy)z = x(yz) (associative property),

3. (x+ y)z = xz + yz (distributive property),

4. For any x, y there exists z such that x + z = y. This z is denoted by y � x. If y = 0,

then z = �x, which is called the negative of x. If y = x, z = x� x = 0.

5. There exists at least one x 6= 0. In this case, for any x, y there exists z such that

xz = y. This z is denoted by y/x. If y = x, z = 1. If y = 1, then z = 1/x which is

called the reciprocal of x.

In addition, we assume that there is a relation, denoted by <, which establishes an ordering

for the elements of R. The elements of R satisfy the following axioms (order):

3
Recall that in mathematics an axiom is a statement that is taken to be true, requiring no exercise to

establish its validity.
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1. For any x, y either x < y, y < x or y = x,

2. x < y =) x+ z < y + z for all z,

3. x, y > 0 =) xy > 0.

4. x > y and y > z =) x > z.

Writing x  y means that x = y or x < y.

Lastly, we assume that R satisfies the ‘completeness axiom.’ Before we state this axiom

we need additional definitions.

Definition 9. u 2 R is an upper bound for A ⇢ R if every a 2 A satisfies a  u. l 2 R is

a lower bound for A ⇢ R if every a 2 A satisfies a � l.

If A has an upper bound, it is said to be bounded above, and if A has a lower bound

it is said to be bounded below. It is evident that if u is an upper bound for A, every real

number u1 > u is also an upper bound for A. If u 2 A, u is called the maximum element of

A. Similarly, if l is a lower bound for A, every real number l1 < l is also a lower bound for

A. If l 2 A, l is called the minimum element of A.

Definition 10. 1. If A ⇢ R is bounded above, s 2 R is the least upper bound for A, or the

supremum of A, if s is an upper bound for A and there is no real number u < s that is an

upper bound for A. We write s = sup A.

2. If A ⇢ R is bounded below, ◆ 2 R is the greatest lower bound for A, or the infimum of

A, if ◆ is a lower bound for A and there is no real number l > ◆ that is a lower bound for A.

We write ◆ = inf A.

As defined, it is easy to verify (you should try) that whenever they exist, the supremum

and the infimum are unique. The completeness axiom states that every nonempty A ⇢ R

that is bounded above has a supremum. The next theorem says that subsets of R that have

a supremum contain elements that are arbitrarily close to the supremum.
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Theorem 14. Let A ⇢ R be nonempty and bounded above with s = supA. Then, for every

x < s there exists a 2 A such that x < a  s.

Proof. By definition of supA, a  s for all a 2 A. If all a  x, then x is an upper bound for

A and cannot be less than s. Hence, there must be a > x.

Theorem 15. N has no upper bound.

Proof. Suppose N is bounded above. Then, it has a supremum s 2 R. By the previous

theorem, there exists n 2 N such that s � 1 < n  s. Then, s < n + 1. But n + 1 2 N,

contradicting that s = supN.

Corollary 1. (Archimedean property) Given any x 2 R, there exists an integer n > x.

Proof. If not, that is, every n  x, then x would be an upper bound for N, contradicting

the previous theorem.

Corollary 2. For any x, y 2 R such that x < y, there exists q 2 Q such that x < q < y.

Proof. Suppose x � 0. Then 0 < y � x and 0 < 1
y�x

. By the Archimedean property, there

exist n 2 N such that 1
y�x

< n or, equivalently,

1

n
< y � x. (1)

Now, for this n and y, let Sy,n = {i 2 N : y  i/n}. Again, by Archimedean property,

Sy,n 6= ;. Hence, there exists a smallest element p in the set such that

p� 1

n
< y 

p

n
. (2)

Using equations (1) and (2) we have x = y � (y � x)  p

n
� (y � x) < p�1

n
and x < p�1

n
< y.

Since p�1
n

2 Q, we have the desired result.

If x < 0, then by the Archimedean property there exists n 2 N such that �x < n

or, equivalently, n + x > 0. By the first part of the proof, there exists q 2 Q such that

n+ x < q < n+ y or x < q � n < y. Since, q � n 2 Q we have the desired result.
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Theorem 16. Let x, y 2 R. If for all " > 0 we have x  y + ", then x  y.

Proof. We will prove the contrapositive, i.e., if x > y then for some " > 0, y + " < x. Let

" = 1
2(x� y) > 0. Then, y + " = y + 1

2(x� y) = 1
2(x+ y) < 1

2(x+ x) = x.

An important function on the R is the absolute value function | · | : R! [0,1) given by

|x| =

⇢
x if x � 0,
�x if x < 0.

We now establish the triangle inequality.

Theorem 17. For any x, y 2 R, |x+ y|  |x|+ |y|.

Proof. By definition, �|x|  x  |x| for all x 2 R. Hence, �(|x| + |y|)  x + y  |x| + |y|

and |x+ y|  |x|+ |y|.

6 Sequences

Sequences play important roles in mathematics and many important concepts can be char-

acterized using their behavior or properties.

Definition 11. 1. By a finite sequence of n 2 N terms we mean the image of a function

f defined on {1, · · · , n}. The image of f is written as {f(1), · · · , f(n)} or {f1, · · · , fn} or

{fj}nj=1.

2. By an infinite sequence we mean the image of a function f defined on N. The image of

f is written as {f(1), f(2), · · · } or {f1, f2, · · · } or {fj}1j=1 or {fj}j2N.

3. If {f1, f2, · · · } is an infinite sequence and k : N! N is such that

k(m) < k(n) whenever m < n,

the composition (f � k)(n) = f(k(n)) = f(kn) with image {fk1 , fk2 , · · · } = {fkn}n2N is called

a subsequence of {f1, f2, · · · }.
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Below are examples of sequences and subsequences.

Example 7. Let

{f(n)}n2N = {log(n)}n2N = {f(1), f(2), f(3), f(4), · · · } = {0, 0.6931, 1.0986, 1.3863, · · · },

{k(n)}n2N = {2n}n2N = {2, 4, · · · }.

Then, {(f � k)(n)}n2N = {log(2n)}n2N = {f(2), f(4), · · · } = {0.6931, 1.3863, · · · }.

Sequences in R are of particular interest. According to Definition 10, a sequence {xn}n2N

must be bounded above (below) for us to define its supremum (infimum). However, it

is convenient to think of 1 (�1) as the supremum (infimum) of a sequence that is not

bounded above (below). What follows are the definitions of the limit inferior and limit

superior of a sequence of real numbers.

Definition 12. For a sequence of real numbers {xn}n2N, the lower limit lim inf
n!1

xn :=

sup
k2N

inf
n�k

xn. The upper limit is lim sup
n!1

xn := inf
k2N

sup
n�k

xn.

Note that ik = inf
n�k

xn and sk = sup
n�k

xn for k 2 N are increasing and decreasing sequences

in R, with ik 2 [�1,1) and sk 2 (�1,1]. Hence, lim inf
n!1

xn, lim sup
n!1

xn 2 R̄.

Since inf
n�k

xn = �sup
n�k

(�xn), we have

lim inf
n!1

xn = sup
k2N

inf
n�k

xn = sup
k2N

✓
�sup

n�k

(�xn)

◆

= � inf
k2N

sup
n�k

(�xn)

= �lim sup
n!1

(�xn).

Also, since by definition sk � ik for all k 2 N, it must be that lim sup
n!1

xn := inf
k2N

sk � sup
k2N

ik :=

lim inf
n!1

xn.

A sequence is said to be increasing (decreasing) if for all n 2 N, xn  xn+1 (xn � xn+1).

A sequence that is increasing or decreasing is called monotonic. When the inequality on the
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image is strict, i.e., xn < xn+1 (xn > xn+1), we say that the sequence is strictly increasing

(decreasing) or strictly monotonic.

Theorem 18. Let {xn}n2N be a sequence in R. It contains a decreasing or an increasing

subsequence, or both.

Proof. Let S = {s 2 N : xs > xn for all n > s}. This is the set of indices that are associated

with members of the sequence that are larger than all subsequent members of the sequence.

Note that S is either finite or infinite set. It is always the case that the set {xj : j 2 S}

is such that xj > xj0 if j < j0. In the first case, when S is finite, S is bounded and has a

supremum, say supS. Now, supS +1 is the index of a member of the sequence which is not

in S. Therefore, there exists another member of the sequence (with index not in S) that is

larger than xsupS+1, which is denoted by xsupS+2. Similarly, there exist xsupS+3 such that

xsupS+2  xsupS+3. The argument can be repeated ad infinitum to construct an increasing

subsequence of xn. In the second case, when S is infinite, there always exists a sequence

member xj > xj0 if j < j0 and j, j0 2 S.

The next theorem relies on the notion of the limit of a sequence. From elementary

Calculus, we will say that a sequence of real numbers {xn}n2N converges to x 2 R if for

all ✏ > 0 there exists N(✏) 2 N such that for all n > N(✏) we have |xn � x| < ✏. In this

case we write, lim
n!1

xn = x. The notation N(✏) means ‘N depending on ✏’ which is often also

represented by N✏.

It is easy to show that in the case where a limit exists, we have

lim
n!1

xn = lim inf
n!1

xn = lim sup
n!1

xn.

Theorem 19. Let {xn}n2N be a monotonic sequence in R.

{xn}n2N converges () {xn}n2N is bounded.
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Proof. (() Let {xn}n2N be bounded and increasing. Then, there exist x̄ = sup
n2N

{xn} such

that xn  x̄ for all n. By definition of supremum, for all ✏ > 0, x̄� ✏ is not an upper bound

for {xn}n2N. Therefore, there exists N(✏) 2 N such that for n > N(✏)

x̄� ✏ < xn  x̄ < x̄+ ✏ or |xn � x̄| < ✏.

Hence, {xn}n2N converges to x̄ = sup
n2N

{xn}.

Let {xn}n2N be bounded and decreasing. Then, there exist x = inf
n2N

{xn} such that xn � x

for all n. By definition of infimum, for all ✏ > 0, x + ✏ is not a lower bound for {xn}n2N.

Therefore, there exists N(✏) 2 N such that for n > N(✏)

x� ✏ < x  xn < x+ ✏ or |xn � x| < ✏.

Hence, {xn}n2N converges to x = inf
n2N

{xn}.

()) If {xn}n2N converges, let x denote its limit. Then, for all ✏ > 0 there exists N(✏) 2 N

such that for n > N(✏)

x� ✏ < xn < x+ ✏.

Let rj = |xj � x| for j = 1, . . . , N(✏) and r := max
1jN(✏)

rj. Then for all n 2 N we have

|xn � x|  r + ✏.

Thus, {xn}n2N is bounded.

It is useful to establish the relationship between limit inferior and limit superior as defined

for sets and as defined for sequence of real numbers.

Theorem 20. Let x 2 X the domain of an indicator function. Then,

lim inf
j!1

IAj(x) = Ilim inf
j!1

Aj(x) and lim sup
j!1

IAj(x) = Ilim sup
j!1

Aj(x).
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Proof. Note that for any collection of sets S1, S2, . . .

I T
k2N

Sk
(x) = 1 () x 2

\

k2N

Sk

() x 2 Sk, for all k () ISk
= 1 for all k () inf

k2N
ISk

= 1.

Also,

I S
k2N

Sk
(x) = 1 () x 2

[

k2N

Sk

() x 2 Sk, for some k () ISk
= 1 for some k () sup

k2N

ISk
= 1.

Now, Ilim inf
j!1

Aj(x) = I S
k2N

T
j�k

Aj(x) = sup
k2N

I T
j�k

Aj = sup
k2N

inf
j�k

IAj = lim inf
j!1

IAj(x). Using similar

arguments we get the second equivalence.

7 Vector spaces and subspaces

A vector space V as an arbitrary set together with two operations, called addition (+) and

scalar multiplication (·). Addition associates with any two elements u, v 2 V another element

s = u+ v in V , called the addition (or the sum) of u and v. Scalar multiplication associates

with any u 2 V another element p = c · u in V called the scalar product of u and c. If

c 2 R, V is called a real vector space and if c 2 C, where C is the set of complex numbers,

V is called a complex vector space.4 The elements of a vector space are called vectors. We

assume:

Assumption 1. 1. x+ y = y + x,

2. (x+ y) + z = x+ (y + z),

3. there exist an element ✓ 2 V (null vector) such that for all v 2 V , v + ✓ = v,

4. c(x+ y) = cx+ cy, for a, c 2 R or a, c 2 C,

4
For a review of fundamental properties of complex numbers see Apostol (1974).
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5. (a+ c)x = ax+ cx, for a, c 2 R or a, c 2 C,

6. a(cv) = (ac)v for a, c 2 R or a, c 2 C,

7. 0v = ✓, 1v = v for all v 2 V .

By d = u� v we mean u+ (�1)v and call d the subtraction of v from u, or u minus v.

Theorem 21. For all u, v, x 2 V and a, c 2 R, we have: 1. u+ v = u+ x implies v = x; 2.

cv = cu and c 6= 0 implies v = u; 3. av = cv and v 6= ✓ implies a = c; 4. (a� c)v = av� cv;

5. a(u� v) = au� av; 6. a✓ = ✓.

Proof. First, note that from assumption 1 - 5, (1 + (�1))x = 0x, and from 1 - 7 we have

0x = ✓. Hence, x � x = ✓. Also, if x � y = ✓, by assumption 1 - 3 we have y + x � y = y

which implies x = y.

Now, 1. u + v = u + x + (v � v) = (u + v) + x � v which implies that x � v = ✓, and

consequently x = v; 2. cv � cu = c(v � u) = ✓, and if c 6= 0, then v � u = ✓; 3. av = cv

implies (a� c)v = ✓. Since, v 6= ✓, it must be that a� c = 0 and consequently, a = c. The

proofs for items 4, 5 and 6 are left as an exercise.

Example 8. Let V = {f : f : (0, 1) ! R and f is continuous on (0, 1)}. Recall from

elementary Calculus that f continuous on (0, 1) means that for every x0 2 (0, 1) and for

every ✏ > 0 there exists �✏,x > 0 such that whenever |x�x0| < �✏,x we have |f(x)�f(x0)| < ✏.

Now, note that if f, g 2 V and we define s(x) = f(x) + g(x), then by the Triangle Inequality

and continuity of f and g

|s(x)� s(x0)| = |f(x) + g(x)� f(x0)� g(x0)|  |f(x)� f(x0)|+ |g(x)� g(x0)|  ✏+ ✏ = 2✏

whenever |x� x0| < �✏,x. Hence, s 2 V . Also, if we define p(x) = cf(x) for c 2 R, then, by

continuity of f

|p(x)� p(x0)| = |cf(x)� cf(x0)| = |c||f(x)� f(x0)|  |c|✏
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whenever |x�x0| < �✏,x. Hence, p 2 V and, if we let the null vector be the function h(x) = 0

for all x 2 (0, 1) we can conclude that V is a vector space.

Next, we provide a natural definition for addition and scalar multiplication on cartesian

products of vector spaces.

Definition 13. Let X and V be vector spaces. Addition and scalar multiplication are defined

on the cartesian product X ⇥ V as follows: (x1, v1) + (x2, v2) = (x1 + x2, v1 + v2) and

a(x1, v1) = (ax1, av1), for any a 2 R,C.

This definition can be extended to the cartesian product ⇥
n

i=1Vi, where n 2 N and Vi

is a real vector space. In this case, (v11, · · · , v
1
n
) + (v21, · · · , v

2
n
) = (v11 + v21, · · · , v

1
n
+ v2

n
) and

a(v1, · · · , vn) = (av1, · · · , avn).

Definition 14. A nonempty subset M of a vector space V is called a subspace of V if for

all v1, v2 2 M we have a1v1 + a2v2 2 M for any two scalars a1 and a2.

Since M 6= ;, there exists v 2 M . Consequently, by definition 0v = ✓ 2 M . It should be

clear that a subspace is itself a vector space.

Example 9. 1. Let X = R2 and define for x, y 2 R2 the addition s = x + y = (x1 +

y1, x2 + y2), the scalar product cx = (cx1, cx2) for c 2 R and ✓ = (0, 0). Now, consider

M = {(x1, x2) 2 R2 : x1 = x2}. Clearly, ✓ 2 M . For scalars a and b and x, y 2 M we

have ax+ by = (ax1, ax1) + (by1, by1) = (ax1 + by1, ax1 + by1) = (z, z) 2 M . Hence, M is a

subspace of X.

2. Let M = {(x1, x2) 2 R2 : x2 = 0}. Clearly, ✓ 2 M . For scalars a and b and x, y 2 M we

have ax + by = (ax1, 0) + (by1, 0) = (ax1 + by1, 0) = (z, 0) 2 M . Hence, M is a subspace of

X.

Definition 15. A subset S of a vector space is said to be convex if given any x1, x2 2 S, all

points written as ax1 + (1� a)x2 2 S when 0 < a < 1.
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Theorem 22. Let M and N be subspaces of the vector space X. Then, M
T
N is a subspace

of X.

Proof. The null vector ✓ 2 M
T

N since ✓ 2 M and ✓ 2 N . If x, y 2 M
T

N then x, y 2 M

and x, y 2 N . But x, y 2 M ) z = ↵x + �y 2 M and x, y 2 N ) z = ↵x + �y 2 N , for

any scalars ↵, �. Therefore, ↵x+ �y 2 M
T

N .

Definition 16. Let S and T be subsets of a vector space X. S + T is the set formed by all

elements s+ t such that s 2 S and t 2 T .

Theorem 23. Let M and N be subspaces of the vector space X. Then, M +N is a subspace

of X.

Proof. Since M and N are subspaces, they both contain the null vector ✓. Since ✓ + ✓ = ✓

we have that ✓ 2 M + N . Now, let x, y 2 M + N . Then, there exist m1,m2 2 M and

n1, n2 2 N such that x = m1+n1 and y = m2+n2. Now, let z = ax+ by for any two scalars

a and b and note that

z = a(m1 + n1) + b(m2 + n2) = (am1 + bm2) + (an1 + bn2) = xm + yn

where xm = (am1 + bm2) 2 M and yn = (an1 + bn2) 2 N .

Definition 17. Let x1, x2, · · · , xn 2 X a vector space with n 2 N. A linear combination of

the vectors x1, x2, · · · , xn is a sum of the form s =
P

n

i=1 aixi, where ai are scalars.

Definition 18. a) Let S be a subset of the vector space X. [S] denotes the subspace generated

by S. It consists of all vectors which are linear combinations of vectors in S which belong to

X. That is,

[S] =

(
x 2 X : x =

nX

i=1

aisi, si 2 S and ai scalars

)
.
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b) A linear variety (or flat, a�ne subspace, linear manifold) V is the translation of a sub-

space. That is,

V = x0 +M where M is a subspace of X and x0 2 X a vector space.

c) The linear variety generated by S, say v(S), is the intersection of all linear varieties in

X that contain S.

Remark 3. Part a) of the definition suggests that [S] is a subspace. This is easy to verify

since by taking ai = 0, we have x = ✓. Also, if x, x0
2 [S], then for any two scalars ↵ and �,

↵x+ �x0 = ↵ (
P

n

i=1 aisi) + � (
P

n

i=1 a
0

i
si) =

P
n

i=1(↵ai + �a0
i
)si 2 [S].

Example 10. 1. Let X = Rn, n 2 N and consider the vector ei 2 Rn where ei has the

number 1 on its ith position and the number 0 in all other positions. Now define S = {ei}ni=1.

Then, [S] = {x 2 X : x =
P

n

i=1 eixi} where xi are scalars.

2. Consider M from Example 9 and define V = x0 +M with x0 = (2, 1). Then, V = {v =

(v1, v2) : v = (m1 + 2,m2 + 1)} where m = (m1,m2) 2 M .

7.1 Linear independence and dimension

Definition 19. a) A vector x 2 X a vector space is said to be linearly dependent on a set

S of vectors if x =
P

n

i=1 aisi, si 2 S and ai scalars. That is, x is linearly dependent on S if

x 2 [S].

b) A set of vectors S is said to be linearly independent, if each x 2 S is not linearly dependent

(independent) of the remaining vectors in S.

Theorem 24. Let S = {x1, x2, · · · , xn} ⇢ X. S is linearly independent if, and only if,
P

n

i=1 aixi = ✓ implies ai = 0 for all i.

Proof. The theorem describes an equivalence, namely, S linearly independent is the same as
P

n

i=1 aixi = ✓ implies ai = 0 for all i. This requires the establishment of two implications:
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1) that S linearly independent implies
P

n

i=1 aixi = ✓ implies ai = 0 for all i and that 2)
P

n

i=1 aixi = ✓ implies ai = 0 for all i implies S is linearly independent. We will establish both

by proving their corresponding contrapositive statements. Recall that statement A ) B if,

and only if, not B ) not A. First, suppose
P

n

i=1 aixi = ✓ but for i = r, ar 6= 0 (not B). Then,

xr +
P

n

i=1,i 6=r

ai
ar
xi = ✓, which implies that xr =

P
n

i=1,i 6=r
�

ai
ar
xi, and S is linearly dependent

(not A). Second, suppose xr =
P

n

i=1,i 6=r
aixi (not A). Then,

P
n

i=1,i 6=r
aixi � xr = ✓, and at

least one scalar, ar = �1 6= 0 (not B).

A direct consequence of this theorem is that if S = {x1, x2, · · · , xn} ⇢ X is a linearly

independent collection, z1 =
P

n

i=1 aixi, z2 =
P

n

i=1 bixi and z1 = z2, it must be that ai = bi

for all i.

Definition 20. A finite set S of linearly independent vectors is said to be a basis for the

space X if S generates X. A vector space having finite bases is said to be finite dimensional.

All other vector spaces are said to be infinite dimensional.

Theorem 25. Any two bases for a finite dimensional vector space contain the same number

of elements.

Proof. Suppose {x1, · · · , xn} and {y1, · · · , ym} are bases for a vector space V with m � n.

Since {x1, · · · , xn} is a basis, y1 =
P

n

i=1 aixi for some collection of scalars {a1, · · · , an}.

Since y1 6= ✓ at least one ai 6= 0. Suppose, without loss of generality, that a1 6= 0. Then,

x1 = y1/a1�
P

n

i=2(ai/a1)xi. Now, the collection {y1, x2, · · · , xn} is a basis for V since for any

v 2 V we have v =
P

n

i=1 xibi = x1b1 +
P

n

i=2 xibi = (y1/a1 �
P

n

i=2(ai/a1)xi)b1 +
P

n

i=2 xibi =

y1(b1/a1)+
P

n

i=2(bi�aib1/a1)xi. Repeating this procedure, suppose that x1, x2, · · · xk�1 have

been replaced by y1, y2, · · · yk�1, such that

yk =
k�1X

i=1

aiyi +
nX

i=k

�ixi.
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Since y1, · · · yk are linearly independent not all �i = 0. Without loss of generality, assume

�k 6= 0, then xk can be written as a linear combination of {y1, · · · , yk, xk+1, · · · , xn}, which

generates V . By induction on k we can replace all n of the x0

i
s by y0

i
s forming a generating

set for V at each step. Hence, {y1, · · · , yn} generates V , and since {y1, · · · ym} is linearly

independent we must have m = n.

Theorem 26. Let {v1, ..., vn} be a basis for a vector space X. Then, no set of more than n

vectors in X is linearly independent.

Proof. Let {x1, ..., xn, xn+1} be a collection of n+1 vectors in X. Since {v1, ..., vn} is a basis

for X, there exists ↵ik for i = 1, 2, ..., n such that xk =
P

n

i=1 ↵ikvi for k = 1, 2, ..., n + 1.

Now, consider a linear combination of {x1, ..., xn, xn+1}, i.e.,

n+1X

k=1

�kxk =
n+1X

k=1

�k

nX

i=1

↵ikvi =
nX

i=1

 
n+1X

k=1

�k↵ik

!
vi.

Linear independence of the collection {x1, ..., xn, xn+1} means that
P

n+1
k=1 �kxk = ✓ implies

�k = 0 for all k. Since the collection {vi} is linearly independent, then
P

n+1
k=1 �k↵ik = 0 for

all i if
P

n+1
k=1 �kxk = ✓. Note that

n+1X

k=1

�k↵ik = 0 for all i

is a (linear) system of n equations with n + 1 unknowns. These systems always have non-

trivial (di↵erent from ✓) solutions. Hence, there exists �1, �2, ..., �n+1 (not all zero) such that
P

n+1
k=1 xk�k = 0.

Remark 4. The number of elements in a basis for a finite dimensional space X is called the

dimension of the space and we denote it by dim(X) 2 N.

Corollary 3. Let X be a vector space such that n = dim(X). Then, any linearly independent

family of n vectors in X is a basis for X.
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Proof. Let {b1, b2, ..., bn} 2 X be such that {b1, b2, ..., bn} is linearly independent, and let x

be an arbitrary element of X. We must show that x =
P

n

i=1 ↵ibi where ↵i are scalars not all

equal to zero. By the previous theorem, {b1, b2, ..., bn, x} forms a linearly dependent family.

Therefore,
P

n

i=1 bi↵i + ↵n+1x = ✓ for ↵1,↵2, · · · ,↵n+1 not all zero. In particular, ↵n+1 6= 0,

otherwise
P

n

i=1 bi↵i = ✓ implying {b1, b2, ..., bn} is a linearly dependent collection. Therefore,

x =
P

n

i=1(�
↵i

↵n+1
)bi.

8 Metric spaces, normed vector spaces and inner prod-
uct spaces

We start by defining a metric on an arbitrary set X. It allows us to think of proximity of

the elements in a set.

Definition 21. Let X be an arbitrary set. A pseudo-metric for X is a function d : X⇥X!

[0,1) such that, for all x, y, z 2 X it satisfies

1. for all x 2 X, d(x, x) = 0,

2. for all x, y 2 X, d(x, y) = d(y, x),

3. for all x, y, z 2 X, d(x, z)  d(x, y) + d(y, z).

If, in addition, d(x, y) = 0 =) x = y, d is called a metric on X.

The pair (X, d) is called a pseudo-metric or metric space depending on the nature of d.

For every r > 0, the set B(x, r) = {y 2 X : d(y, x) < r} is called a ball centered at x and

radius r. A ball is always non-empty as it contains its center. It contains all points in a

space that are close to its center, where closeness is given by r.

A concept related to that of a semi-metric is that of a semi-norm on X.

Definition 22. Let X be an arbitrary vector space. A semi-norm for X is a function

k · k : X! [0,1) satisfying:
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1. kx+ yk  kxk+ kyk for all x, y 2 X (Triangle inequality),

2. k↵xk = |↵|kxk for all x 2 X and for all ↵ 2 R.

In addition, if kxk = 0 () x = ✓, k · k is called a norm for X.

Note that by property 2, for all x 2 X and for ↵ = 0, k0 · xk = k✓k = 0 · kxk = 0. Hence,

x = ✓ =) kxk = 0. Thus, for k · k to be a norm it su�ces to have kxk = 0 =) x = ✓. A

(semi) normed vector space will be denoted by the pair (X, k · k).

A semi-normed vector space naturally becomes a semi-metric space by letting d(x, y) =

kx � yk. This is easily seen by noting that d(x, x) = k✓k = 0, d(x, y) = kx � yk =

k(�1)(y � x)k = ky � xk = d(y, x), and

d(x, z) = kx� zk = kx� y + y � zk  kx� yk+ ky � zk = d(x, y) + d(y, z).

If k · k is a norm, then d(x, y) = kx� yk = 0 =) x� y = ✓ =) x = y, which means that

d is a metric. Hence, if (X, k · k) is a normed vector space, (X, d) where d(x, y) = kx� yk is

a metric space.

The following lemma, which is a direct consequence of the triangle inequality, will be

useful in subsequent proofs.

Lemma 1. Let (X, k · k) be a normed vector space. Then, kxk � kyk  kx � yk for all

x, y 2 X.

Proof. k x k � k y k=k x� y + y k � k y kk x� y k + k y k � k y k=k x� y k.

Example 11. 1. It is easy to verify that the absolute value of a real number is a norm

on R and we have that (R, | · |) is a normed vector space and (R, d) is a metric space

for d(x, y) = |x � y|. In this metric space, a ball centered in x 2 R with radius r > 0

is {y 2 R : |y � x| < r} = (x� r, x+ r), an open interval on R.
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2. The function kxkE = (
P

n

i=1 x
2
i
)1/2 is a norm on Rn. To see this, note that for any

a 2 R, kaxkE = (
P

n

i=1 a
2x2

i
)1/2 = |a|kxkE. Also,

kx+ yk2
E
=

nX

i=1

x2
i
+

nX

i=1

y2
i
+ 2

nX

i=1

xiyi 
nX

i=1

x2
i
+

nX

i=1

y2
i
+ 2|

nX

i=1

xiyi|



nX

i=1

x2
i
+

nX

i=1

y2
i
+ 2

 
nX

i=1

x2
i

!1/2 
nX

i=1

x2
i

!1/2

=

0

@
 

nX

i=1

x2
i

!1/2

+

 
nX

i=1

y2
i

!1/2
1

A
2

= (kxkE + kykE)
2.

Hence, kx + ykE  kxkE + kykE. Lastly, kxkE = 0 =) xi = 0 for all i, establishing

that x = ✓. The pair (Rn, k · kE) is a normed vector space, called the Euclidean space,

k · kE is called the Euclidean norm and d(x, y) = kx � ykE is the Euclidean metric.

(Rn, d) is a metric space.

3. Let C[a, b] be the collection of all real valued continuous functions defined on [a, b]. We

will later define, in general terms, what is meant by a continuous function on a set A,

but as we have discussed earlier, in this case we can rely on elementary Calculus for a

notion of continuity. C[a, b] is a vector space and we let kfk = sup
atb

|f(t)|. Condition

1 for a norm is obviously met. For condition 2, note that

k(f + g)k = kf + gk = sup
atb

|f(t) + g(t)|  sup
atb

|f(t)|+ sup
atb

|g(t)| = kfk+ kgk.

For condition 3, note that k(↵f)k = k↵fk = sup
atb

|↵f(t)| = |↵|kfk. The metric

corresponding to this norm is d(f, g) = sup
atb

|f(t)� g(t)|

4. Consider C[a, b] and from calculus define kfk =
R
b

a
|f(t)|dt to be the Riemann integral

of the absolute value of f .5 The existence of kfk is not in question here as f 2 C[a, b]

is su�cient for the existence of
R

b

a
|f(t)|dt. It can be promptly verified that the set

5
Later in these notes we will study the Riemann integral in detail.
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of Riemann integrable functions on [a, b] form a vector space and that kfk satisfies

conditions 1-3 in Definition 22. The metric corresponding to this norm is d(f, g) =
R

b

a
|f(t)� g(t)|dt.

We now provide a definition for an open set associated with a metric space.

Definition 23. Let (X, d) be a metric space and U ⇢ X. U is called an open set if for all

x 2 U there exists B(x, r) such that B(x, r) ⇢ U .

Definition 24. Let (X, d) be a metric space and S ⇢ X. s 2 S is said to be an interior

point of S if there exists r > 0, such that B(s, r) ⇢ S. The set of interior points of S is

denoted by
�

S or int(S).

By definition, int(S) is an open set and by construction int(S) ⇢ S. Also, if S is open it

contains all of its interior points. Hence, if S is open S = int(S).

Remark 5. Since the interior of the empty set is empty, the ; is equal to its interior and

consequently it is an open set. Since X is the universal set, for any r > 0 and x 2 X,

B(x, r) ⇢ X. Hence, X is open.

Theorem 27. In any metric space (X, d), B(x, r) is an open set.

Proof. We must show that for every y 2 B(x, r) there exists B(y, s) such that B(y, s) ⇢

B(x, r). y 2 B(x, r) =) d(x, y) < r, hence let s = r � d(x, y) > 0. Then, for any

z 2 B(y, s) we have that d(z, x)  d(z, y)+d(y, x) < s+d(y, x) = r. Hence, z 2 B(x, r).

Theorem 28. In any metric space (X, d), U is an open set if, only if, U is the union of

open balls.

Proof. ( =) ) U open implies that for every u 2 U there exists B(u, ru) ⇢ U for some ru > 0.

Hence, U ⇢
S
u2U

B(u, ru) ⇢ U , where the last set containment follows since B(u, ru) ⇢ U .

Hence, U =
S
u2U

B(u, ru).
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((=) Suppose U =
S
B2C

B where C is an arbitrary collection of open balls. If C is empty,

U = ; and consequently open. If C 6= ;, then U 6= ;. Every u 2 U belongs to some ball B,

and by Theorem 27, there exists a ball Bu ⇢ B ⇢ U . Hence, U is open.

Theorem 28 can be strengthened when considering the metric space (R, d) where d(x, y) =

|x� y|. To this end consider the following definition.

Definition 25. Let U be an open subset of R. An open finite or infinite interval I = (a, b) =

{x 2 R : a < x < b} is called a component interval of U if I ✓ U and if there does not exist

an open interval J such that I ⇢ J ✓ U .

Theorem 29. Let I denote a component interval of U . If x 2 U , then there exists I such

that x 2 I. If x 2 I, then x /2 J where J is any other component interval of S.

Proof. x 2 U =) x 2 I, I an open interval for some I ✓ U . There may be many

such intervals, but the largest is Ix = (a(x), b(x)), where a(x) = inf{a : (a, x) ✓ U},

b(x) = sup{b : (x, b) ✓ U}. Note, a may be �1 and b may be +1. There is no open

interval J 3 Ix ⇢ J ✓ U and by definition Ix is a component interval of S. If Jx is another

component interval containing x, Ix
S

Jx is an open interval 3 Ix
S
Jx ✓ U . By definition of

component interval Ix
S

Jx = Ix and Ix
S
Jx = Jx, so Ix = Jx.

Theorem 30. Let U ⇢ R be open with U 6= ;. Then U =
S

1

n=1 In where {I1, I2, . . . } is a

collection of disjoint component intervals of U .

Proof. If x 2 U , then x belongs to one, and only one, component interval Ix. Note that
S
x2U

Ix = U and by the definition of component intervals and the proof of the previous theorem,

the collection of component intervals is disjoint. (If x belongs to Ix and Jx, both component

intervals, Ix = Jx). Let {q1, q2, . . . } be the collection of rational numbers (countable). In

each component interval, there may be infinitely many of these, but among these there is

exactly one with smallest index n. Define a function F , F (Ix) = n if Ix contains the rational
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number xn. If F (Ix) = F (Iy) = n then Ix and Iy contain xn, and Ix = Iy. Thus, the

collection of component intervals is countable.

Theorem 31. Let (X, d) be a metric space. Any union of open sets in X is open. Any finite

intersections of open sets in X is open

Proof. If U =
S
i2I

Gi we have that x 2 U =) there exists i such that x 2 Gi. If Gi is open,

then there exists B(x, r) ⇢ Gi. But in this case, B(x, r) ⇢ U and we conclude that U is

open.

If I =
T

n

i=1 Gi and x 2 I then x 2 Gi for all i. Since Gi is open, then there exists ri > 0

such that B(x, ri) ⇢ Gi. Letting r := min
1in

{ri} we have that B(x, r) ⇢ Gi ⇢ I for all i, and

we conclude that I is open.

Definition 26. Let (X, d) be a metric space and S ⇢ X. x 2 X is a closure (or adherent,

or contact) point of S if, for all r > 0, B(x, r)
T

S 6= ;. S is the set of closure points of S.

It is clear from this definition that S ⇢ S as for every x 2 S and any r > 0, B(x, r)
T

S 6=

;.

Definition 27. Let (X, d) be a metric space. S ⇢ X is closed if S = S.

Definition 28. Let (X, d) be a metric space. x 2 X is a boundary point for S ⇢ X if for

all r > 0, B(x, r)
T

S 6= ; and B(x, r)
T

Sc
6= ;. The set of boundary points for the set S is

denoted by @S.

Theorem 32. Let (X, d) be a metric space and S ⇢ X. S is open if, and only if, X�S = Sc

is closed.

Proof. ( =) ) Since S is open, every p 2 S is such that there exists r > 0 such that

B(p, r) ⇢ S. Thus, p cannot be a closure point of X� S. That is, if x is a closure point of

X� S it must be in X� S. Thus, X� S is closed.
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((=) If X � S is closed, it contains all of its closure points. That is, there is no p 2 S

such that for any r > 0, B(p, r)
T
(X � S) 6= ;. Hence, there is always an r > 0 such that

B(p, r) ⇢ S. So, S is open.

Definition 29. Let (X, d) be a metric space. D ⇢ X is said to be dense in X if, and only

if, D = X. X is said to be separable if, and only if, it contains a countable dense subset.

Example 12. From the comments following Theorem 8, Q is a countable set. Furthermore,

from Corollary 2, for any x 2 R and any r > 0 there exists q 2 Q such that q 2 B(x, r).

Hence, Q
T

B(x, r) 6= ; and Q is dense in R. Since Q is countable, R is separable.

Even more structure can be imparted on a vector space by defining inner product spaces.

Definition 30. A vector space X is called an inner-product space if for all x, y 2 X, there

exists a function hx, yi : X ⇥X ! R, called an inner product, such that for all x, y, z 2 X

and a 2 R:

1. hx, yi = hy, xi

2. hx+ y, zi = hx, zi+ hy, zi

3. hax, yi = ahx, yi, a 2 R

4. hx, xi � 0, for all x

5. hx, xi = 0 () x = ✓, where ✓ is the null vector in X.

Any element x of an inner-product space has a natural norm defined by kxk = hx, xi1/2.

To verify that hx, xi1/2 is a norm, note that: a) hx, xi1/2 � 0; b) for a 2 R, hax, axi1/2 =

(ahx, axi)1/2 = (a2hx, xi)1/2 = |a|hx, xi1/2; c) first, note that for any a 2 R we have

0  hax+ y, ax+ yi = a2hx, xi+ 2ahx, yi+ hy, yi and setting a = �
hx,yi

hx,yi

= �
hx, yi2

hx, xi
+ hy, yi
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which gives hx, yi  hx, xi1/2hy, yi1/2. Now,

hx+ y, x+ yi = hx, xi+ hy, yi+ 2hx, yi  hx, xi+ hy, yi+ 2hx, xi1/2hy, yi1/2

=
�
hx, xi1/2 + hy, yi1/2

�2

and we obtain hx + y, x + yi1/2  hx, xi1/2 + hy, yi1/2; d)hx, xi1/2 = 0 implies hx, xi = 0,

which implies x = ✓. Thus, every inner product space is a normed space with this norm.

Furthermore, since by letting d(x, y) = hx� y, x� yi1/2 we have a metric space.

Theorem 33. (Parallelogram Law) Let (X, h·, ·i) be an inner product space with norm kxk =

hx, xi1/2. Then, kx+ yk2 + kx� yk2 = 2kxk2 + 2kyk2.

Proof. kx+ yk2 = hx+ y, x+ yi = hx, xi+ hy, yi+ 2hx, yi and kx� yk2 = hx� y, x� yi =

hx, xi+ hy, yi � 2hx, yi. Hence, we obtain kx+ yk2 + kx� yk2 = 2kxk2 + 2kyk2.

Example 13. Let X := Rn and hx, yi =
P

n

i=1 xiyi.

9 Topological spaces

Many of the concepts and results in the previous section can be obtained without a metric.

We start by defining a topology and taking an axiomatic approach to the notion of open

sets.

Definition 31. Let X be an arbitrary set. A topology T on X is a collection of subsets of

X with the following properties:

1. X, ; 2 T ,

2. If Gi 2 T where i 2 I, I an arbitrary index set, then
S
i2I

Gi 2 T ,

3. If Gi 2 T where i = 1, . . . , n for n 2 N, then
T

n

i=1 Gi 2 T .
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It is common to refer to property 2 by saying that a topology is ‘closed’ for arbitrary

unions and to property 3 by saying that a topology is ‘closed’ for finite intersections. A

topological space is a pair (X, T ). When a topology is chosen, the sets in T are called open

sets. The complements of open sets U 2 T relative to X, i.e., X� U are called closed sets.

Since X, ; 2 T , they are open sets, but since Xc = ; and X = ;
c, they are also closed sets.

If Gi is open, then Gc

i
is closed and by DeMorgan’s Law we have

 
[

i2I

Gi

!c

=
\

i2I

Gc

i
. (3)

Hence, the arbitrary intersection of closed sets is a closed set. Also, since
 

n\

i=1

Gi

!c

=
n[

i=1

Gc

i
, (4)

we can conclude that the finite union of closed sets is a closed set.

Example 14. Let (X, d) be an arbitrary metric space, and let the topology T be the class

of all subsets of X that satisfy Definition 23. By Remark 5 and Theorem 31, this collection

satisfies properties 1, 2 and 3 in Definition 31. Note also that by Theorem 32, complements

of sets in this topology are closed according to Definition 27. This topology is called the

“usual” topology.

Definition 32. A base for a topology T on X is any collection U ⇢ T such that for every

V 2 T we have that V =
S

U2U , U⇢V

U .

Note that since every member V of the topology can be written as the union of elements

the base, the definition requires that x 2 V =) x 2 U for some U ⇢ V .

Example 15. Let (X, d) be a metric space endowed with the usual topology. Then, by

Theorem 28 every open set U =
S

B2U

B. Hence, the collection U of all open balls (with all

possible centers and all possible radii) in a metric space is a base for the usual topology.
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A special case of this example is the metric space (R, d) where d(x, y) = |x� y|. In this

case U is the collection of all intervals (x� r, x+ r) for x 2 R and r > 0.

Definition 33. Given a topological space (X, T ) and x 2 X we say that Nx is a neighborhood

of x if x 2 U ⇢ Nx for some U 2 T . A collection N of neighborhoods of x is a neighborhood-

base at x if, and only if, for every neighborhood Nx of x, x 2 N ⇢ Nx for some N 2 N .

Note that Nx may or may not be open. If Nx is open, we call it an open neighborhood

of x.

Definition 34. 1. Let S ⇢ X. x 2 X is a closure (adherent or contact) point of S if every

neighborhood of x contains a point of S. That is, for every Nx we have Nx

T
S 6= ;.

2. The set of all closure points of S is called the closure of S and is denoted by S.

3. x 2 X is a limit point of S if every neighborhood of x contains infinitely many points

of S.

The reason for part 3 of Definition 34 will become clearer later in these notes.

Theorem 34. Let T be a set of topologies associated with X. Then,
T

T 2T

T is a topology.

Proof. First, note that ;,X 2 T for every topology T . Then, we immediately have that

;,X 2
T

T 2T

T . Second, let Gi 2
T

T 2T

T for every i 2 I. Then, Gi 2 T for every i 2 I and

T 2 T . But since T is a topology
S
i

Gi 2 T for every T 2 T . Hence,
S
i

Gi 2
T

T 2T

T .

The verification for the third property of a topology follows as in the proof of the second

property.

9.1 Normed spaces and topology

We now turn to a more concrete formulation. Under a suitable choice of what constitutes an

open set, metric spaces can be showed to be topological spaces. In particular, let (X, k · k)
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be a normed space and define a metric dX(x, y) = kx � yk such that we have the metric

space (X, dX).

Definition 35. Let S ⇢ X. p 2 S is said to be an interior point of S if there exists ✏ > 0,

such that all x satisfying k x� p k< ✏ are in S.

Alternatively, if we define the B(p, ✏) = {x :k x � p k< ✏}, p is an interior point of S if

there exists ✏ > 0 such that B(p, ✏) ⇢ S. B(p, ✏) is called an open-ball of radius ✏ centered

at p. The set of interior points of S is denoted by
�

P or int(P ).

Definition 36. S is an open set if S =
�

S.

Definition 37. Let (X, k · kX) be a normed vector space and S ⇢ X. A point xL is said to

be a limit (or cluster, or accumulation) point of S if every open ball of radius ✏ > 0 centered

at xL contains (at least) a point in S distinct from xL. That is,

B(xL, ✏) \ (S � {xL}) 6= ;.

The set of all limit points of S is called the derived set of S and denoted by SD.

Every limit point is a closure point.

Remark 6. 1. It is clear that every ball centered at xL contains infinitely many points in S.

To see this, suppose there exists B(xL, ✏) that contains finitely many points of S, and denote

the set of these points by {s1, s2, . . . , sn}. {ksj�xLk}
n

j=1 is a finite collection of non-negative

real numbers and we can set m := min
1jn

ksj � xLk. Then, B(xL,m/2) contains no elements

of S. But if this the case, xL can’t be a limit point of S. This remark justifies part 3 of

Definition 34.

2. It follows from 1 that a set with a finite number of elements cannot have a limit point.

3. Since S ✓ S, if x 2 S then either x 2 S or x /2 S but in S. But that is precisely SD.

Hence, S = S [ SD.
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Example 16. Let A = (0, 1) [ {2}. Note that 1 is a closure point and a limit point of A. 2

is a closure point, but not a limit point. It is an isolated point of A.

Definitions 36 and 27 together with Remarks 31 and 5 show that metric spaces are

topological spaces.

Definition 38. Let (X, k ·k) be a normed vector space. A subset S ⇢ X is said to be bounded

if there exists c 2 X and a scalar r > 0 such that S ✓ B(c, r).

Note that if S is bounded, for every s 2 S we have that ks � ck  r. By the Triangle

Inequality ks� ck � ksk � kck. Hence, if S is bounded

r � ks� ck � ksk � kck, which gives ksk  r + kck.

Hence, if S is bounded s 2 B(✓, r + kck) or S ✓ B(✓, r + kck).

Example 17. Let (X, k · k) be a normed vector space and consider the set S = {x 2 X :

kxk = 1}. This is called the unit ball. The set S is closed and bounded. The fact that it is

bounded follows directly from the comment following the last definition. To verify that it is

closed, we need to verify that all closure points of S belong to S. If c is a closure point of S

then for any scalar r > 0, B(c, r)
T

S 6= ;. Thus, there exists z 2 X such that kz � ck  r

and kzk = 1 (z 2 S). By Lemma 1, kzk � kck  kz � ck  r and since kzk = 1 we have

that 1�kck  r. Also, kck  1+ r and 1� r  kck  1+ r. Since r can be made arbitrarily

small kck = 1. Hence, c 2 S.

Definition 39. Let X be a vector space. Two norms k · k1 and k · k2 on X are said to be

equivalent if there exist scalars a, b > 0 such that akxk1  kxk2  bkxk1 for all x 2 X.

Remark 7. It is clear that if a specific norm defined on X is equivalent to an arbitrary norm

on X, then any two norms on X are equivalent. To see this, let kxks be a specific norm and
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suppose it is equivalent to any other norm. Then, if k · k and k · k1 are norms there exist

a, b, c, d > 0 such that

akxks  kxk  bkxks (5)

and

ckxks  kxk1  dkxks. (6)

Since, c > 0 we have from (6) that kxks  c�1
kxk1  c�1dkxks and bkxks  bc�1

kxk1.

Hence, from (5) we conclude that kxk  bkxks  bc�1
kxk1. Now, since d > 0 we have from

(6) that d�1ckxks  d�1
kxk1  kxks and ad�1

kxk1  akxks. Hence, from (5) we conclude

that kxk � akxks � ad�1
kxk1. Thus, k · k and k · k1 are equivalent.

The following theorem shows that in finite dimensional spaces any two norms are equiv-

alent.

Theorem 35. Let X be a vector space such that dim(X) = n 2 N. Any two norms defined

on X are equivalent.

Proof. Since dim(X) = n we can define {ei}ni=1 to be a basis for X. Then, for all x 2 X

there exists a collection of scalars {ai}ni=1 such that x =
P

n

i=1 aiei. Let k · k1 = X! [0,1)

be defined by kxk1 =
P

n

i=1 |ai|. It can be easily verified that k · k1 is a norm.

If k · k : X! [0,1) is any other norm, from Remark 7, it su�ces to show that k · k and

k ·k1 are equivalent, i.e., there exist a, b > 0 such that akxk1  kxk  bkxk1 for every x 2 X.

Now, if x = ✓ (null vector on X) the result follows trivially. Hence, assume that x 6= ✓ and

note that kxk1 > 0. Then, we need to show (equivalently) that

a 
kxk

kxk1
 b () a 

����
x

kxk1

����  b () a  kuk  b

where u := x

kxk1
and kuk1 = 1. Note that kxk = k

P
n

i=1 aieik 
P

n

i=1 |ai|keik, and since the

spaceX has finite dimension we can define b := max
1in

keik and write kxk  b
P

n

i=1 |ai| = bkxk1

or kuk  b.
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By Lemma 1, for any x, y 2 X we have |kyk�kxk|  ky�xk  bky�xk1. Consequently,

the function kuk : S ! [0,1) where S = {u : kuk1 = 1} is continuous under the norm

k · k1. By the arguments in Example 17, S is closed and bounded. Since kuk is continuous

on a closed and bounded set kuk has a minimum on S.6 Hence, there exists a > 0 such that

a  kuk, which completes the proof.

10 Linear functions

Definition 40. A function f : X ! Y is linear if for all x1, x2 2 X and scalars ↵, � 2 R,

we have f(↵x1 + �x2) = ↵f(x1) + �f(x2).

As a matter of terminology, if Y = R, then we call f a functional.

Example 18. 1. Let X = Rn for n 2 N and Y = R. For fixed a 2 Rn define f(x) = ha, xi

as in Definition 30. f is a linear functional. To see this, let z = ↵x + �y where ↵, � 2 R

and x, y 2 Rn. Then,

f(z) = ha, zi = ha,↵x+ �yi = ha↵, xi+ ha�, yi = ↵ha, xi+ �ha, yi = ↵f(x) + �f(y).

Note that for Rn, if we use an Euclidean norm, we have ha, xi =
P

n

i=1 aixi where a :=

(a1, · · · , an)T and x := (x1, · · · , xn)T . In this context, we also write ha, xi = aTx.

2. Let X = Rn and Y = Rm for n,m 2 N. For fixed aj 2 Rn for j = 1, . . . ,m define fj(x) =

haj, xi as in Definition 30 and f : Rn
! Rm with f(x) =

�
f1(x) f2(x) · · · fm(x)

�T
.

Let z = ↵x+ �y where ↵, � 2 R and x, y 2 Rn. Then,

f(z) =
�
aT1 z aT2 z · · · aT

m
z
�T

= ↵f(x) + �f(y).

Note that in this case we can define,

f(x) =

0

BBB@

f1(x)
f2(x)
...

fm(x)

1

CCCA
=

0

BBB@

aT1 x
aT2 x
...

aT
m
x

1

CCCA
:= Ax

6
See Corollary 5 (Weierstrass Theorem).
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where A =

0

BBB@

aT1
aT2
...
aT
m

1

CCCA
=

0

BBB@

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

1

CCCA
. A is called a matrix of dimension m⇥ n.

Remark 8. Recall that 0x = ✓ for all x 2 X, where ✓ is the null vector in X. Therefore,

if f is linear we have f(✓) = f(0x) = 0f(x) = ✓. Hence, linear functions have the property

that the image of the null vector is a null vector.

We now return to the concept of continuity at a point and give a more general definition.

Definition 41. A function f : (X, k · kX) ! (Y, k · kY) is continuous at x0 2 X if for all

✏ > 0 there exists �(x0, ✏) > 0 such that kf(x)� f(x0)kY < ✏ whenever kx� x0kX < �(x0, ✏).

The added generality of this definition, relative to that from elementary Calculus, rests

on the normed vector spaces that serve as domain and co-domain for the function f and on

the flexibility of the relevant norms. We emphasize that �(x0, ✏) depends on both x0 and ✏.

Definition 42. Let {xn}n=1,2,··· be a sequence in (X, k · k). {xn}n=1,2,··· is said to converge

to x if {kxn � xk}n=1,2,··· converges to zero. In this case, we write xn ! x as n ! 1 or

kxn � xk ! 0 as n ! 1 or lim
n!1

xn = x.

Remark 9. By Lemma 1, kxnk � kxk  kxn � xk and kxk � kxnk  kxn � xk. The last

inequality implies that �(kxnk � kxk)  kxn � xk , kxnk � kxk � �kxn � xk. Thus,

|kxnk � kxk|  kxn � xk. Consequently, if xn ! x, then |kxnk � kxk| ! 0 or kxnk ! kxk.

The next theorem shows that if a sequence has a limit, the limit is unique.

Theorem 36. If xn ! x and xn ! y, then x = y.

Proof. kx � yk = kx � xn + xn � yk  kx � xnk + kxn � yk ! 0. Hence, kx � yk = 0 and

by the definition of norms x� y = ✓, which implies that x = y.

The next theorem provides a characterization for continuity at a point.
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Theorem 37. f : (X, k · kX) ! (Y, k · kY) is continuous at x0 2 X if, and only if, xn !

x0 =) f(xn) ! f(x0).

Proof. ((=) First, recall that xn ! x0 means that for any � > 0, there exists N�, such that

for all n > N� we have k xn � x0 kX< �. Since kxn � x0kX < � implies kf(xn)� f(x0)kY < ✏

we have continuity at x0.

( =) ) Second, suppose xn ! x0 but f(xn) 9 f(x0). Then, there exists ✏ > 0 such that for

all N there exists n > N such that kf(xn)� f(x0)k � ✏. Since xn ! x0, for all � > 0 there

exists xn such that k xn � x0 k< � and k f(xn)� f(x0) k� ✏ which refutes continuity.

The previous theorem characterizes continuity at a point. If a function f is continuous

at every x 2 S ✓ X we say that the function is continuous on S.

Theorem 38. Let f : (X, k · kX) ! (Y, k · kY) be linear. If f is continuous at x0, it is

continuous at every x 2 X.

Proof. By Theorem 37, f is continuous at x0 2 X if, and only if, xn ! x0 =) f(xn) !

f(x0). So, let xn ! x for some x 2 X. Then,

k f(xn)� f(x) kY = kf(xn)� f(x0) + f(x0)� f(x)kY

= kf(xn � x+ x0)� f(x0)kY, by linearity.

Now, since xn ! x, continuity of f at x0 guarantees that kf(xn+x0�x)�f(x0)kY ! 0.

The set of all linear functions from (X, k · kX) to (Y, k · kY) will be denoted by L(X,Y).

Naturally, for f1, f2 2 L(X,Y) we define (f1 + f2)(x) = f1(x) + f2(x), (af1)(x) = af1(x) for
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all x 2 X. If x = a1x1 + a2x2, then

s(x) := (f1 + f2)(x) = f1(a1x1 + a2x2) + f2(a1x1 + a2x2)

= a1f1(x1) + a2f1(x2) + a1f2(x1) + a2f2(x2)

= a1(f1(x1) + f2(x1)) + a2(f1(x2) + f2(x2))

= a1(f1 + f2)(x1) + a2(f1 + f2)(x2) = a1s(x1) + a2s(x2),

and

p(x) := (af1)(x) = af1(a1x1 + a2x2)

= a1af1(x1) + a2af1(x2) = a1p(x1) + a2p(x2).

Consequently, the sum of two linear functions and the scalar product of a linear function are

themselves linear functions. Thus, L(X,Y) is a vector space.

Definition 43. Let T 2 L(X,Y). The image of T , denoted by im(T ), is im(T ) := {y 2

Y : y = T (x) for x 2 X}. The null space (or kernel) of T , denoted by null(T ), is given by

null(T ) = {x 2 X : T (x) = ✓}.

Theorem 39. Let T 2 L(X,Y).

1. im(T ) is a subspace of Y.

2. If {x1, · · · , xn} is a basis for X (finite dimensional) we have that {T (x1), · · · , T (xn)}

spans (generates) the im(T ).

Proof. 1. We take im(T ) 6= ;. We must show that if y1, y2 2 im(T ), then for any two

scalars a and b, y = ay1 + by2 2 im(T ). Since, y1, y2 2 im(T ) there exist x1, x2 2 X

such that y1 = T (x1) and y2 = T (x2). Hence, y = aT (x1) + bT (x2) and since T is linear,

y = T (ax1 + bx2). But since X is a vector space, x = ax1 + bx2 2 X, hence for some x 2 X

we have y = T (x). That is, y 2 im(T ).
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2. We must show that if y 2 im(T ), then y can be written as y =
P

n

i=1 aiT (xi) for some

collection of scalars {ai}ni=1. Since {x1, · · · , xn} is a basis for X, any x 2 X has a unique

representation given by x =
P

n

i=1 aixi. Since T is linear, y = T (x) =
P

n

i=1 aiT (xi).

Definition 44. 1. The rank of a set of vectors {x1, · · · , xn} is the cardinality (count) of

the largest collection of independent vectors that are elements of the set.

2. If T 2 L(X,Y) and {x1, · · · , xn} is a basis for X, the rank of T is the rank of the

collection {T (x1), · · · , T (xn)}.

The rank(T ) is the number of independent vectors in {T (x1), · · · , T (xn)}.

Theorem 40. Let T 2 L(X,Y). The null space of T is a subspace of X.

Proof. Because T is linear, T (✓) = ✓, so null(T ) 6= ;. We must show that for any x1, x2 2

null(T ) and any a and b scalars, ax1 + bx2 2 null(T ). Since T 2 L(X,Y), T (ax1 + bx2) =

aT (x1) + bT (x2), but given that x1, x2 2 null(T ), we have T (ax1 + bx2) = a✓ + b✓ = ✓.

Consequently, ax1 + bx2 2 null(T ).

Theorem 41. Let T 2 L(X,Y) and X be a space with finite dimension. Then,

dim(X) = dim(null(T )) + dim(im(T )).

Proof. Let n := dim(X), k := dim(null(T )) and r := dim(im(T )). We must show that

n = k + r. Let {w1, · · · , wr} be a basis for im(T ) and {u1, · · · , uk} be a basis for null(T ).

Since wi 2 im(T ), there exist xi 2 X such that T (xi) = wi. We will show that B =

{x1, · · · , xr, u1, · · · , uk} is a basis for X.

Let x 2 X, and because {w1, · · · , wr} is a basis for im(T ), we can write that there exists a

unique collection of scalars {ai}ri=1 such that T (x) =
P

r

i=1 aiwi. But since wi 2 im(T ), there

exist xi such that wi = T (xi), hence T (x) =
P

r

i=1 aiT (xi). Furthermore, since T is linear

we have T (x) =
P

r

i=1 aiT (xi) = T (
P

r

i=1 aixi), which implies that T (x �
P

r

i=1 aixi) = ✓.
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Hence, x�
P

r

i=1 aixi 2 null(T ), and since {u1, · · · , uk} is a basis for null(T ), we can write

x =
P

r

i=1 aixi +
P

k

i=1 biui for some unique collection of scalars {bi}ki=1. Thus, x can be

written as a linear combination of {x1, · · · , xr, u1, · · · , uk} and it remains to be shown that

this is a linearly independent collection. That is, if {↵i}
r

i=1 and {�i}
k

i=1 are collection of

scalars such that
rX

i=1

↵ixi +
kX

i=1

�iui = ✓,

then it must be that ↵i = 0 for all i = 1, · · · , r and �i = 0 for all i = 1, · · · , k. Since T is

linear,

T

 
rX

i=1

↵ixi +
kX

i=1

�iui

!
=

rX

i=1

↵iT (xi) +
kX

i=1

�iT (ui) = ✓.

But since ui 2 null(T ), we have
P

r

i=1 ↵iT (xi) =
P

r

i=1 ↵iwi = ✓. Since {w1, · · · , wr} is a

basis for im(T ), it must be that ↵i = 0 for the last equality to hold. Hence,
P

k

i=1 �iui = ✓,

but since {u1, · · · , uk} be a basis for null(T ), it must be that �i = 0 for the last equality to

hold. Hence, {x1, · · · , xr, u1, · · · , uk} is a linearly independent collection.

Let T 2 L(X,Y) and consider a certain y 2 Y. If y = ✓ the null vector in Y we have

shown that there exists x 2 X, specifically x = ✓ (the null vector in X) such that T (x) = y.

If y 6= ✓, there are three possibilities: a) there is a unique x 2 X such that y = T (x); b) there

is no x 2 X such that y = T (x), and c) there is more than one x 2 X such that y = T (x).

Possibility a) holds for every y 2 Y if, and only if, T is bijective. In this case, we say that

T has an inverse, denoted by T�1 : Y ! X with x = T�1(y).

The following theorem says that if a linear function T has an inverse T�1, T�1 is linear.

Theorem 42. If T 2 L(X,Y) and T�1 exists then T�1
2 L(Y,X).

Proof. We must show that for any two scalars a and b and any y1, y2 2 Y, T�1(ay1 + by2) =

aT�1(y1) + bT�1(y2). Since T is linear and by the definition of an inverse function

T�1(ay1 + by2) = T�1(aT (x1) + bT (x2)) = T�1(T (ax1 + bx2)) = T�1(T (x)) = x
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for x = ax1+bx2. But since T�1 exists, T�1(y1) = x1 and T�1(y2) = x2 and T�1(ay1+by2) =

x = aT�1(y1) + bT�1(y2).

Theorem 43. Let T 2 L(X,Y). T is one-to-one if, and only if, T (x) = ✓ implies x = ✓.

Proof. ( =) ) Recall from Remark 8 that because T is linear we have that T (✓) = ✓. Also,

if T is one-to-one, for any other x 2 X, T (x) 6= ✓. Hence, T (x) = ✓ only when x = ✓.

((=) If T (x) = ✓ implies x = ✓, then the null(T ) = {✓}. For any two di↵erent x, x0
2 X,

that is, x�x0
6= ✓, we have by linearity that T (x) 6= T (x0). Consequently, T is one-to-one.

Definition 45. Vector spaces X and Y are said to be isomorphic if there exists a linear

function T 2 L(X,Y) that has an inverse T�1. In this case, any such T is called an

isomorphism.

Theorem 44. Let X and Y be real vector spaces and {x1, · · · , xn} be a basis for X.

1. If {y1, · · · , yn} 2 Y, then there exists T 2 L(X,Y) such that yi = T (xi) for i =

1, · · · , n.

2. If T, f 2 L(X,Y) and T (xi) = f(xi) = yi for i = 1, · · · , n, then T (x) = f(x) for all

x 2 X.

Proof. 1. Consider an arbitrary (not necessarily linear) function T : {x1, · · · , xn} ! Y with

T (xi) = yi for i = 1, · · · , n. Since, {x1, · · · , xn} is a basis for X, any x 2 X can be written

as x =
P

n

i=1 aixi, where ai 6= 0 for some i. Now, define an extension of T to all of X as

T (x) =
P

n

i=1 aiT (xi) =
P

n

i=1 aiyi. Note that for w, v 2 X

x = aw + bv = a
nX

i=1

cixi + b
nX

i=1

dixi =
nX

i=1

(aci + bdi)xi.

Hence, T (x) =
P

n

i=1(aci + bdi)T (xi) = a
P

n

i=1 ciyi + b
P

n

i=1 diyi = aT (w) + bT (v). Hence,

T is linear and entirely determined by T : {x1, · · · , xn} ! {y1, · · · , yn}.
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2. Let x =
P

n

i=1 aixi, and since f, T are linear functions, we have

T (x) =
nX

i=1

aiT (xi),

f(x) =
nX

i=1

aif(xi),

and by assumption T (xi) = f(xi). Consequently, T (x) = f(x) for all x 2 X.

Theorem 45. Let X and Y be real vector spaces. Then, X and Y are isomorphic if, and

only if, dim(X) = dim(Y).

Proof. ( =) ) Let {x1, · · · , xn} be a basis for X, then dim(X) = n. X and Y are isomorphic

if there exist T 2 L(X,Y) with an inverse T�1. First, we show that {T (x1), · · · , T (xn)}

is a basis for Y. That is, we show that a) {T (x1), · · · , T (xn)} is a linearly independent

collection of vectors and b) any y 2 Y can be written as
P

n

i=1 T (xi)ai. If this is the case,

then dim(Y) = n. For a), note first that
P

n

i=1 aiT (xi) = ✓ implies T (
P

n

i=1 aixi) = ✓. Since

T�1 exists, we have
P

n

i=1 aixi = T�1(✓) = ✓, but given that {x1, · · · , xn} is a basis for X

it must be that ai = 0 for all i if the equality is to hold. Hence,
P

n

i=1 aiT (xi) = ✓ implies

ai = 0 for all i, establishing the linear independence of {T (x1), · · · , T (xn)}. For b), note that

for all y 2 Y there exists one, and only one, x 2 X such that y = T (x). But x =
P

n

i=1 aixi,

hence by linearity y = T (
P

n

i=1 aixi) =
P

n

i=1 aiT (xi).

((=) Now, suppose {x1, · · · , xn} and {y1, · · · , yn} are bases for X and Y. By Theorem 44,

there exist T 2 L(X,Y) such that T (xi) = yi. Hence, all there is to show is that T has an

inverse T
�1. Suppose x0 =

P
n

i=1 aixi and x00 =
P

n

i=1 bixi are such that T (x0) = T (x00), then
P

n

i=1 aiT (xi) =
P

n

i=1 biT (xi) which implies that
P

n

i=1(ai � bi)T (xi) =
P

n

i=1(ai � bi)yi = ✓.

But since {y1, · · · , yn} is a basis for Y, it must be that ai = bi for all i, and therefore x0 = x00.

So, T is one-to-one, and we need only show that it is onto to conclude it has an inverse.

From Theorem 39 (part 2), {T (x1), · · · , T (xn)} generates T (X) which is a subspace of Y.
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But {T (x1), · · · , T (xn)} = {y1, · · · , yn} which is a basis for Y. Hence, T (X) = Y and T is

onto.

10.1 Vector coordinates

Let X be a vector space of finite dimension n and {v1, · · · , vn} be a basis for X. Then, for

every x 2 X there exists a unique collection of scalars {a1, · · · , an} such that x =
P

n

i=1 aivi.

We call ai the ith coordinate of x given {v1, · · · , vn}. We define the coordinate vector function

as cv : X! Rn, such that

cv(x) = cv

 
nX

i=1

aivi

!
=

0

B@
a1
...
an

1

CA = a.

Remark 10. 1. Since for any two vectors x 6= x0 and for a fixed basis {v1, · · · , vn},

cv(x) 6= cv(x0), cv is one-to-one.

2. For every a 2 Rn, we have that
P

n

i=1 aivi is an element of X (by the definition of a

vector space and the fact that {v1, · · · , vn} is a basis), thus cv is an onto function.

3. If x, y 2 X then x =
P

n

i=1 aivi and y =
P

n

i=1 bivi. Hence, if c, d are scalars and

z = cx + dy we have that z =
P

n

i=1 caivi +
P

n

i=1 dbivi =
P

n

i=1(cai + dbi)vi. Thus,

cv(z) = ca+ db = ccv(x) + dcv(y). Hence, cv is a linear function.

Let f 2 L(X,Y), and {v1, · · · , vm} and {w1, · · · , wn} are basis for X and Y. Then,

for any x 2 X we can write x =
P

m

i=1 aivi and because of linearity we can write f(x) =

P
m

i=1 aif(vi). Since f(vi) 2 Y we can write f(vi) =
P

n

j=1 bjiwj and cw(f(vi)) =

0

B@
b1i
...
bni

1

CA =

b.i. Since cw is linear,

cw(f(x)) = cw

 
mX

i=1

aif(vi)

!
=

mX

i=1

aicw(f(vi)) =
mX

i=1

aib.i =
mX

i=1

0

B@
aib1i
...

aibni

1

CA .
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Note that for fixed x (a is fixed), f(x) is entirely determined by its action on vi. This, in

turn, is determined by b.i. Hence, we can say that f(x) is determined by the collection of

coordinates {b.1, · · · , b.m}. Thus, we can associate with f(x) the following object

B :=
�
b.1 · · · b.m

�
=

0

B@
b11 · · · b1m
...

...
...

bn1 · · · bnm

1

CA =
�
cw(f(v1)) · · · cw(f(vm))

�
.

We call this the matrix B associated with f and we write the function

M(f) : L(Xm,Yn) ! M
n⇥m,

where Mn⇥m is the set containing matrices with n rows and m columns. Hence, we think of

M(·) as a function that maps linear functions to a space of n⇥m matrices. The subscripts

on X and Y in L(Xm,Yn) denote the dimension of the spaces.

We note that the set of matrices Mn⇥m can itself be viewed as a vector space by defining

addition and scalar multiplication for Q,N 2 M
n⇥m and a 2 R as

1. Q+N is the matrix S with element Sij = Qij +Nij

2. aQ is the matrix P with element Pij = aQij

3. ✓, the null vector is a matrix with element ✓ij = 0

The next theorem establishes that M is linear, one-to-one and onto. One-to-one and onto

means that for any two f, g 2 L(Xm,Yn) and f 6= g we have M(f) 6= M(g) and for every

M 2 M
n⇥m there exists one, and only one, f 2 L(Xm,Yn). Consequently, L(Xm,Yn) and

M
n⇥m are isomorphic.

Theorem 46. Let f, g 2 L(Xm,Yn) and h = ↵f + �g for scalars ↵ and �. Then, 1.

M(h) = ↵M(f) + �M(g); 2. M is one-to-one and onto.

Proof. 1. Since L(Xm,Yn) is a vector space, h 2 L(Xm,Yn). Let x =
P

m

i=1 aivi and observe

that by Remark 10-3 (linearity of the coordinate vector function) and linearity of f and
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g we have cw(h(x)) = ↵cw(f(x)) + �cw(g(x)) = ↵cw (
P

m

i=1 aif(vi)) + �cw (
P

m

i=1 aig(vi)) =

↵
P

m

i=1 aicw(f(vi)) + �
P

m

i=1 aicw(g(vi)). Recall that by definition

M(h) =
�
cw(h(v1)) · · · cw(h(vm))

�
,

hence

M(h) =
�
↵cw(f(v1)) · · · ↵cw(f(vm))

�
+
�
�cw(g(v1)) · · · �cw(g(vm))

�

= ↵M(f) + �M(g).

2. First, note thatM(f) = M(g) implies that f(vi) = g(vi) for all i = 1, · · · ,m. By Theorem

44-2 this implies f = g. Second, f = g implies f(vi) = g(vi) for all i = 1, · · · ,m since the

basis are in X. Consequently, M(f) = M(g). Thus, M is one-to-one.

Now, let Q 2 M
n⇥m and write Q =

�
b.1 · · · b.m

�
. Note that b.j =

0

B@
b1j
...
bnj

1

CA is an

array of n scalars, and if {wi}
n

i=1 is a basis for Yn, for some yj 2 Yn we have yj =
P

n

i=1 wibij

since dim(Yn) = n. Then, if {v1, · · · , vm} is a basis for X, by Theorem 44 there exists T 2

L(Xm,Yn) such that T (vj) = yj =
P

n

i=1 wibij. Also, by Theorem 39-2, {T (v1), · · · , T (vm)}

is a basis for the image of T . Thus, any y 2 Yn can be written as y =
P

m

j=1 ajT (vj), and

by linearity of T , y = T

⇣P
m

j=1 ajvj
⌘
= T (x), which is entirely characterized by Q.

In the following example we will take Xn = Rn and choose the unit-coordinate vectors

as the components of the basis.

Example 19. Let f 2 L(Rm,Rn) and choose the unit-coordinate vectors as the components

of the basis for Rm and Rn. That is, the basis for Rm is the collection {e1, . . . , em} with

eT
i
=
�
0 · · · 1 · · · 0

�

where 1 appears at the ith position of the m-tuple. Similarly, the basis for Rn is the collection

{u1, . . . , un} with uT

i
=
�
0 · · · 1 · · · 0

�
where 1 appears at the ith position of the n-
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tuple. For x 2 Rm we have x =
P

m

i=1 xiei

y = f(x) = f

 
mX

i=1

xiei

!
=

mX

i=1

xif(ei).

Now, f(ei) 2 Rn, therefore f(ei) =
P

n

j=1 fj(ei)uj =
�
f1(ei) f2(ei) · · · fn(ei)

�T
. Hence,

f(x) =
mX

i=1

xi

�
f1(ei) f2(ei) · · · fn(ei)

�T

=

0

BBB@

�
f1(e1) f1(e2) · · · f1(em)

�
x�

f2(e1) f2(e2) · · · f2(em)
�
x

...�
fn(e1) fn(e2) · · · fn(em)

�
x

1

CCCA
=

0

BBB@

f1(e1) f1(e2) · · · f1(em)
f2(e1) f2(e2) · · · f2(em)

...
fn(e1) fn(e2) · · · fn(em)

1

CCCA
x

:= Fx,

where F is an n⇥m matric with typical element Fji := fj(ei)

Example 20. As in the previous example let f 2 L(Rm,Rn) and g 2 L(Rn,Rp) where

the domain of g is the range of f . Let (g � f)(x) = g(f(x)) for x 2 Rm and note that

(g � f)(x) 2 L(Rm,Rp) (why?). Let {e1, · · · , em}, {u1, · · · , un} and {w1, · · · , wp} be the

unit coordinate basis for Rm, Rn and Rp. Then, f(x) = f (
P

m

i=1 xiei) =
P

m

i=1 xif(ei),

f(ei) =
P

n

j=1 fj(ei)uj and F = [Fji]
n,m

j=1,i=1 is the matrix of f . Also, g(y) = g
⇣P

n

j=1 yjuj

⌘
=

P
n

j=1 yjg(uj), g(uj) =
P

p

k=1 gk(uj)wk and G = [Gki]
p,n

k=1,i=1 is the matrix of g. Now, (g �

f)(x) = (g � f)(
P

m

i=1 xiei) =
P

m

i=1(g � f)(ei)xi and

(g � f)(ei) = g(f(ei)) = g

 
nX

j=1

fj(ei)uj

!
=

nX

j=1

fj(ei)g(uj) =
nX

j=1

fj(ei)
pX

k=1

gk(uj)wk

=
pX

k=1

 
nX

j=1

fj(ei)gk(uj)

!
wk.

Hence, the matrix of (g � f) is given by ⇧ =
hP

n

j=1 fj(ei)gk(uj)
ip,m
k=1,i=1

. We define this

matrix to be the (Cayley) product of the matrices G and F and we write ⇧ = GF . Thus, the

well known formula for multiplication of matrices derives from the composition of two linear

functions.

56



Example 21. 1. Let B ⇢ RK and T 2 L(B,Rn). Let X 2 M
n⇥K be the matrix associated

with T , such that, as in Example 19 we write T (b) = Xb where b 2 B. Let {ek}Kk=1 be a basis

for RK, where ek is the unit coordinate vector of dimension K ⇥ 1. X = (X.1 · · · X.K) and

T (ek) = Xek = X.k. The rank of T is the cardinality of {X.1, · · · , X.K} = K. Recall that

the null(T ) = {a : Xa = ✓} and by Theorem 41 we have that dim(null(T )) = 0.

2. Note that if y = Xb and y = X�, we can conclude that X(b � �) = ✓ and this implies

b = � if the columns of X are linearly independent or, equivalently, rank(T ) = K.

3. If Y = T (�) + ✏, Y is the element of a linear variety, not element of the image of T . A

very interesting question is whether or not there exists an element in the image of T that is

“closest” to Y . For example, is there a solution for the minimization problem

min
�

kY � T (�)kE?

10.2 Bounded linear functions

We start by establishing that linear functions defined on finite dimensional spaces are always

continuous.

Theorem 47. Let (X, k ·kX) and (Y, k ·kY) be normed vector spaces with dim(X) = n 2 N.

f 2 L(X,Y) implies that f is continuous on X.

Proof. Since dim(X) = n 2 N, there exists a basis {bi}ni=1 and a collection of scalars {si}ni=1

such that any x 2 X can be written as x =
P

n

i=1 sibi. Linearity of f implies f(x) =
P

n

i=1 sif(bi) and by the properties of norms,

kf(x)kY 

nX

i=1

|si|kf(bi)kY.

The set of real numbers {kf(bi)kY}ni=1 is finite and we define M := max
1in

kf(bi)kY. Hence,

kf(x)kY  M
nX

i=1

|si|.
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