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Chapter 1

Probability spaces

1.1 �-algebras

We begin by defining �-algebras and investigating some of their properties.

Definition 1.1. Let X be an arbitrary set. A �-algebra (or �-field) is a collection of subsets

F of X having the following properties:

1. X 2 F

2. A 2 F =) A
c 2 F

3. Ai 2 F for i 2 N =) [
i2N

Ai 2 F .

In this context we say that F is a �-algebra associated with X. As a matter of terminology,

if A 2 F it is said to be a F -measurable set and the pair (⌦,F) is called a measurable space.

Remark 1.1. 1. Since X 2 F , by property 2 we conclude that the empty set ; 2 F .

2. By de Morgan’s Laws
✓

[
i2N

Ai

◆c

= \
i2N

A
c
i and by properties 2 and 3, if Ai 2 F for

i 2 N, Ac
i 2 F and \1

i=1A
c
i 2 F .

3. Given Remarks 1.1.1, 1.1.2 and Definition 1.1, we say that F is “closed” under count-

able unions, intersections and complementation.
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4. A collection of subsets of X is said to be an algebra if properties 1 and 2 in Definition

1.1 hold and if Ai 2 F for i = 1, · · ·m implies [m
i=1Ai 2 F with m 2 N.

5. If A1, A2 2 F then A2 � A1 2 F . This follows from the fact that A2 � A1 = A2 \ A
c
1.

We now provide examples of �-algebras.

Example 1.1. 1. For any X, F = {X, ;} is a �-algebra. It is called the minimal �-

algebra.

2. For any X, the collection 2X of all subsets of X is a �-algebra. It is called the maximal

�-algebra.

3. Let S ⇢ X and F a �-algebra associated with X. Then, FS := S\F := {S\F : F 2 F}

is a �-algebra associated with S. It is called the trace �-algebra. We verify that FS is

a �-algebra by establishing the properties of Definition 1.1:

1. S 2 FS. Note that since X 2 F , S \ X = S 2 FS.

2. A 2 FS =) A
c 2 FS (note that A

c = S � A, complementation relative to S).

A 2 FS =) 9F 2 F such that A = S \ F 2 FS. Since F 2 F , F
c 2 F and

S \ F
c 2 FS. Furthermore, (S \ F ) [ (S \ F

c) = S or A [ (S \ F
c) = S. But by

definition, A [ A
c = S, so A

c = S \ F
c 2 FS.

3. If Ai 2 FS for i 2 N, U = [
i2N

Ai 2 FS. Ai 2 FS =) 9Fi 2 F 3 Ai = S \ Fi.

U = [i2N(S \ Fi) = S \ [i2NFi, but [i2NFi 2 F , so U 2 FS.

4. Let f : X ! Y and Y be a �-algebra associated with Y. Then F := f
�1(Y) = {f�1(S) :

S 2 Y} is a �-algebra associated with X. We need to verify that:

1. X 2 F . Since Y is a �-algebra associated with Y, Y 2 Y. f
�1(Y) = {x : x 2 X and

f(x) 2 Y} = X. Thus, X 2 F .
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2. If A 2 F then A
c 2 F . A 2 F =) 9SA 2 Y 3 A = f

�1(SA). Now, SA 2 Y =)

Y� SA 2 Y and f
�1(Y� SA) = X� f

�1(SA). Thus, f�1(Y� SA) = X�A = A
c 2 F .

3. If Ai 2 F for i 2 N, [i2NAi 2 F . Ai 2 F =) 9 SAi 2 Y 3 Ai = f
�1(SAi). Now,

SAi 2 Y, 8i 2 N =) [i2NSAi 2 Y and f
�1([i2NSAi) = [i2Nf

�1(SAi) = [i2NAi 2 F .

F is called the inverse image �-algebra.

These examples demonstrate that multiple �-algebras can be associated with a set. The

following theorem shows that the intersection of an arbitrary collection of �-algebras is itself

a �-algebra.

Theorem 1.1. Let F = {F : F is a �-algebra associated with the set X}. Then I := \
F2F

F

is a �-algebra.

Proof. 1. Since X 2 F for all F 2 F then X 2 \
F2F

F . 2. A 2 I =) A 2 F for all F 2 F .

Then, Ac 2 F for all F 2 F . Consequently, Ac 2 I. 3. Let Ai 2 I for i 2 N. Then, Ai 2 F

for all F 2 F . Hence, [
i2N

Ai 2 F for all F 2 F , which implies [
i2N

Ai 2 I. ⌅

Definition 1.2. Let B be a collection of subsets of X. The �-algebra generated by B, denoted

by �(B), is a �-algebra satisfying:

1. B ✓ �(B)

2. If F is a �-algebra such that B ✓ F , then �(B) ✓ F .

The defining properties of �(B) allow us to view it as the smallest �-algebra containing B as

is made explicit in the next theorem.

Theorem 1.2. For an arbitrary collection of subsets B of X, there exists a unique smallest

�-algebra containing B.

Proof. Let F = {F : F is a �-algebra associated with X and B ✓ F} be the set of all �-

algebras containing B. F 6= ; since 2X is a �-algebra. By Theorem 1.1, \
F2F

F is a �-algebra.

3



Since B is in all F , B 2 \
F2F

F . Thus, \
F2F

F 2 F , but by construction it is the smallest

�-algebra in F , since all others contain or are equal to \
F2F

F . ⌅

The generation of the smallest �-algebra associated with a collection of subsets B of X

is monotonic as demonstrated in the following theorem.

Theorem 1.3. Let C and D be two nonempty collections of subsets of X. If C ✓ D then

�(C) ✓ �(D).

Proof. Let FC = {H : H is a �-algebra associated with X and C ✓ H} be the collection of

all �-algebras that contain C, and similarly FD = {G : G is a �-algebra associated with X and

D ✓ G}. Since, C ✓ D ✓ G, G is a �-algebra that contains C, therefore G 2 FC. Hence,

FD ✓ FC and \H2FCH ✓ \G2FDG. By definition, �(C) = \H2FCH ✓ \G2FDG = �(D). ⌅

Remark 1.2. 1. A topology of X, denoted by OX, is a collection of subsets of X that

satisfies the following properties:

(a) X, ; 2 OX

(b) Oi 2 OX for i = 1, · · · , n and n 2 N =) \n
i=1Oi 2 OX

(c) Oi 2 OX for i 2 I (an arbitrary index set) =) [
i2I

Oi 2 OX.

The elements of OX are called the open sets of X and the pair (X,OX) is called a

topological space. The �-algebra generated by the open sets �(OX) is called the Borel

�-algebra associated with X. The elements of �(OX) are called the Borel sets of X.

2. If we define a metric1
dX on X we say that

O ✓ X is open () 8x 2 O 9 ✏ > 0 3 B(x, ✏) ✓ O

1
A metric on X is a function dX : X ⇥X ! R such that for all x, y, z 2 X it satisfies a) dX(x, y) � 0,

dX(x, y) = 0 if, and only if, x = y; b) dX(x, y) = dX(y, x); c) dX(x, z)  dX(x, y) + dX(y, z).
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where B(x, ✏) = {y 2 X : dX(x, y) < ✏}. OX is the collection of open sets of X. When

X = Rn an usual choice of metric is dRn(x, y) = (
Pn

i=1(xi � yi)2)
1/2.

Theorem 1.4. Let S ⇢ X, F = �(C) where C is a collection of subsets of X. Define

C \ S = {A \ S : A 2 C}. Then,

�(C \ S) = �(C) \ S is a �-algebra associated with S.

Proof. First, note that since C ✓ �(C) we have C\S ✓ �(C)\S. From Example 1.1.3, �(C)\S

is a �-algebra associated with S. Then, it follows from Theorem 1.3 that �(C\S) ✓ �(C)\S.

Now, we need only show that �(C \S) ◆ �(C)\S to conclude that �(C \S) = �(C)\S.

To this end, consider the collection of subsets of X (not necessarily in C) such that their

intersection with S is in �(C \ S), i.e. G = {A ✓ X : A \ S 2 �(C \ S)}.

By construction, C ⇢ G since A 2 C =) A \ S 2 C \ S ✓ �(C \ S). Thus, A 2 G. We

will show that G is a �-algebra. If this is the case, �(C) ⇢ G. But from the definition of G,

if A 2 �(C) then A \ S 2 �(C \ S). This means that �(C) \ S ✓ �(C \ S).

1. X 2 G since X \ S = S 2 �(C \ S).

2. A 2 G, Ac = X � A and A
c \ S = (X � A) \ S = S � (A \ S). But since A 2 G,

A \ S 2 �(C \ S) which implies that S � (A \ S) 2 �(C \ S), so A
c 2 G.

3. Let An 2 G, n 2 N and note that

✓
[

n2N
An

◆
\ S = [

n2N
(An \ S).

Since, An \ S 2 �(C \ S), [
n2N

(An \ S) 2 �(C \ S) and [
n2N

An 2 G.

Thus, G is a �-algebra. ⌅
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1.2 Measure spaces

We start by defining a measure on a measurable space.

Definition 1.3. Given a measurable space (X,F) a (positive) measure µ : F ! [0,1] is a

function having the following properties:

1. µ(;) = 0

2. For all Aj 2 F , j = 1, 2, . . . with Aj \ Ai = ; if i 6= j,

µ
�
[1

j=1Aj

�
=

1X

j=1

µ(Aj).

The triple (X,F , µ) is called a measure space.

Remark 1.3. 1. Property 2 in Definition 1.3 is called �-additivity or countable additivity

of µ.

2. If µ(X) < 1, the measure µ is called a finite measure. In this case, (X,F , µ) is called

a finite measure space.

3. A sequence {A1, A2, · · · } 2 F such that A1 ✓ A2 ✓ · · · is said to be exhausting

if lim
j!1

Aj := [1

j=1Aj = X. A measure µ is called �-finite if there is an exhausting

sequence {A1, A2, · · · } 2 F such that µ(Aj) < 1 for all j.

4. If µ satisfies properties 1 and 2 but F is not a �-algebra, µ is called a pre-measure.

But in this case, property 2 requires that [1

j=1Aj 2 F .

5. If we assume that for at least one set A 2 F we have µ(A) < 1, then condition 1

follows from condition 2 by letting A1 = A and A2 = A3 = · · · = ;.

Definition 1.4. Let (⌦,F , P ) be a measure space such that P (⌦) = 1. We call (⌦,F , P ) a

probability space and P is called a probability measure.
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In the context of probability spaces, ⌦ is called the outcome space and the elements of

F are called events. The construction of useful measure (probability) spaces can be difficult

as we will soon discover. What follows are very simple examples of measure and probability

spaces.

Example 1.2. 1. Let (X,F) be a measurable space and F 2 F . Define µ(F ) = 1 if F

has infinitely many elements and µ(F ) = number of elements (cardinality) of F if F

has finitely many elements. µ is called the counting measure.

2. Let (X,F) be a measurable space and for x 2 X and F 2 F let µx(F ) = 1 if x 2 F

and µx(F ) = 0 if x /2 F . This is called the unit mass at x or Dirac’s delta measure.

3. Let ⌦ = {!1,!2, · · · } and pi 2 [0, 1] for i = 1, 2, · · · such that
P

1

i=1 pi = 1. Let (⌦, 2⌦)

be a measurable space, then the set function

P (A) =
X

i:!i2A

pi =
1X

i=1

piµ!i(A), A ✓ ⌦

is a probability measure.

1.2.1 Some properties of measures

Theorem 1.5. For A,A1, A2, · · · 2 F we have for any measure µ,

1. A ✓ A1 =) µ(A)  µ(A1) (monotonicity)

2. µ(A [ A1) = µ(A) + µ(A1)� µ(A \ A1)

3. µ([1

i=1Ai) 
P

1

i=1 µ(Ai) (subadditivity)

Proof. 1. A and A1�A are disjoint sets. Hence, µ(A[(A1�A)) = µ(A)+µ(A1�A) = µ(A1),

which implies µ(A)  µ(A1).

2. A [A1 = A [ (A1 �A) and A1 = (A \A1) [ (A1 �A). So, by the second equality, given
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that (A \ A1) and (A1 � A) are disjoint, µ(A1) = µ(A \ A1) + µ(A1 � A). By the first,

µ(A[A1) = µ(A) + µ(A1 �A). Hence, µ(A1) = µ(A\A1) + µ(A[A1)� µ(A), which gives

2.

3. Let B1 = A1, B2 = A2 � A1, B3 = A3 � [2
j=1Aj, . . . . Hence, {Bj} is a disjoint collection

and Bj ✓ Aj, µ
�
[1

j=1Bj = [1

j=1Aj

�
=
P

1

j=1 µ(Bj) 
P

1

j=1 µ(Aj). ⌅

An important property of any probability measure is continuity. But since probabilities

are set functions, it is useful to define what we mean by limits of sets.

Definition 1.5. Let {Ai}i2N be a collection of sets. We have,

1. If A1 ✓ A2 ✓ A3 . . . , lim
n!1

An := [1

i=1Ai

2. If A1 ◆ A2 ◆ A3 . . . , lim
n!1

An := \1

i=1Ai

3. If A1, A2, . . . is an arbitrary sequence of sets, let Bn = \1

m=nAm (B1 ✓ B2 ✓ . . . )

and Cn = [1

m=nAm (C1 ◆ C2 ◆ . . . ). Then, put B = lim
n!1

Bn = [1

n=1 \1

m=n Am and

C = lim
n!1

Cn = \1

n=1 [1

m=n Am. We say that A = lim
n!1

An exists if B = C, and we write

A = B = C. B is called the limit inferior of {A1, A2, . . . } or lim inf
n!1

An and C is called

the limit superior of {A1, A2, . . . } or lim sup
n!1

An.

Theorem 1.6. Let (X,F) be a measurable space. A function µ : F ! [0,1] is a measure

if, and only if,

a) µ(;) = 0

b) If A1, A2 2 F are disjoint µ(A1 [ A2) = µ(A1) + µ(A2)

c) If A1, A2, · · · 2 F and A1 ✓ A2 ✓ · · · with limn!1 An = A 2 F we have

µ(A) = lim
n!1

µ(An).
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Proof. ( =) ) If µ is a measure then properties a) and b) follow directly from properties

1) and 2) from the definition of measure. Now, for property c) define B1 := A1, B2 :=

A2�A1, · · · . From Remark 1.1.5 we have that Bj 2 F and the collection {Bj}1j=1 is pairwise

disjoint. Put An = [n
j=1Bj and [1

n=1An = [1

j=1Bj = A. The last equality results from the

definition of the limit of a sequence of non-decreasing sets. Then, by �-additivity of µ

µ(A) = µ
�
[1

j=1Bj

�
=

1X

j=1

µ(Bj) = lim
n!1

nX

j=1

µ(Bj) = lim
n!1

µ(B1 [ B2 [ · · · [Bn)

= lim
n!1

µ(An).

((=) Now, assume that µ : F ! [0,1] satisfies a)-c). We will show that in this case µ will

satisfy properties 1) and 2) from the definition of measure. Let {Bj}1j=1 be a pairwise disjoint

sequence in F and define An := [n
j=1Bj and A := [1

n=1An = [1

j=1Bj. Clearly, A1 ✓ A2 ✓ · · ·

and limn!1 An = A. Using b), we have

µ(A1) = µ(B1), µ(A2) = µ(B1) + µ(B2), · · · , µ(An) =
nX

j=1

µ(Bj).

From c) we conclude (second equality) that

µ
�
[1

j=1Bj

�
= µ(A) = lim

n!1

µ(An) = lim
n!1

 
nX

j=1

µ(Bj)

!
=

1X

j=1

µ(Bj).

⌅

Remark 1.4. If µ is a finite measure, c) in Theorem 1.6 can be replaced by either of these

two equivalent conditions

c’) If A1, A2, · · · 2 F and A1 ◆ A2 ◆ · · · with limn!1 An = A 2 F we have

µ(A) = lim
n!1

µ(An)

or

c”) If A1, A2, · · · 2 F and A1 ◆ A2 ◆ · · · with limn!1 An = ; 2 F we have

lim
n!1

µ(An) = 0.
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Theorem 1.7. Let (⌦,F , P ) be a probability space. Then,

1. P (Ac) = 1� P (A) for all A 2 F

2. A,B 2 F , A ✓ B =) P (A)  P (B) for all A,B 2 F

3. If Ai 2 F , i = 1, 2, . . . , then

P ([n
i=1Ai) =

nX

i=1

P (Ai)�
X

1i1<i2n

P (Ai1 \ Ai2) +
X

1i1<i2<i3n

P (Ai1 \ Ai2 \ Ai3)

+ · · ·+ (�1)n+1
P (\n

i=1Ai)

Proof. 1. ⌦ = A [ A
c. Hence, 1 = P (⌦) = P (A) + P (Ac) =) P (Ac) = 1 � P (A). 2.

follows from Theorem 1.5.1. 3. Let n = 2. Then, from Theorem 1.5.2 we have

P (A1 [ A2) = P (A1) + P (A2)� P (A1 \ A2).

Now, let B1 = A1, B2 = B1 [ A2 = A1 [ A2, B3 = B2 [ A3 = A1 [ A2 [ A3, · · · , Bn�1 =

Bn�2 [ An�1 = A1 [ · · · [ An�1. Now, suppose

P (Bn�1) = P ([n�1
i=1 Ai) =

n�1X

i=1

P (Ai)�
X

1i<jn�1

P (Ai \ Aj) +
X

1i<j<kn�1

P (Ai \ Aj \ Ak)+

· · ·+ (�1)nP (A1 \ A2 \ · · · \ An�1).

We will show that this representation holds for n. From the case where there are only two

sets

P (Bn) = P ([n
i=1Ai) = P (Bn�1 [ An) = P (Bn�1) + P (An)� P (Bn�1 \ An)

= P (Bn�1) + P (An)� P (([n�1
i=1 Ai) \ An)

= P (Bn�1) + P (An)� P ([n�1
i=1 (Ai \ An))

= P (Bn�1) + P (An)� P ([n�1
i=1 Ci), where Ci = (Ai \ An).
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But,

P ([n�1
i=1 Ci) =

n�1X

i=1

P (Ci)�
X

1i1<i2n�1

P (Ci1 \ Ci2) +
X

1i1<i2<i3n�1

P (Ci1 \ Ci2 \ Ci3)+

· · ·+ (�1)nP (C1 \ C2 \ · · · \ Cn�1),

with

n�1X

n=1

P (Ci) =
n�1X

i=1

P (Ai \ An)

X

1i1<i2n�1

P (Ci1 \ Ci2) =
X

1i1<i2n�1

P (Ai1 \ An \ Ai2 \ An)

=
X

1i1<i2n�1

P (Ai1 \ Ai2 \ An)

X

1i1<i2<i3n�1

P (Ci1 \ Ci2 \ Ci3) =
X

1i1<i3<i3n�1

P (Ai1 \ Ai2 \ Ai3 \ An)

...

P (C1 \ C2 \ · · · \ Cn�1) = P (A1 \ · · · \ An).

Then, we have

P (Bn) =
n�1X

i=1

P (Ai)�
X

1i1<i2n�1

P (Ai1 \ Ai2) +
X

1i1<i2<i3n�1

P (Ai \ Aj \ Ak)+

· · ·+ (�1)nP (A1 \ A2 \ · · · \ An�1) + P (An)

�
n�1X

i=1

P (Ai \ An) +
X

1i1<i2n�1

P (Ai1 \ Ai2 \ An)

�
X

1i1<i2<i3n�1

P (Ai1 \ Ai2 \ Ai3 \ An) + · · ·+ (�1)n+1
P (Ai1 \ · · · \ An)

=
nX

i=1

P (Ai)�
X

i1<i2

P (Ai1 \ Ai2) +
X

i1<i2<i3

P (Ai1 \ Ai2 \ Ai3) + . . .

+ (�1)n+1
P (\n

i=1Ai).

⌅

The next theorem shows that probability measures are continuous set functions.
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Theorem 1.8. Suppose {An}1n=1 2 F , where (⌦,F , P ) is a probability space. Let A =

limn!1 An. Then, A 2 F and P (An) ! P (A) as n ! 1.

Proof. Since {An}n=1,2,... has a limit, there exist C1 ◆ C2 ◆ C3 ◆ . . . and B1 ✓ B2 ✓

B3 ✓ . . . as in Definition 1.5, such that B = [1

i=1Bi = \1

i=1Ci = C = A. By construction,

B = B1[ (B2�B1)[ (B3�B2)[ · · · = �1[�2[ . . . . The collection {�1,�2, . . . } is pairwise

disjoint. By �-additivity of measures we have P (B) =
P

1

i=1 P (�i) = limn!1

Pn
i=1 P (�i).

But,
Pn

i=1 P (�i) = P (Bn), where Bn = B1 [ (B2 � B1) [ · · · [ (Bn � Bn�1). Hence,

P (B) = limn!1 P (Bn).

By De Morgan’s Laws C = \1

i=1Ci = ([1

i=1C
c
i )

c. Therefore, P (C) = 1 � P ([1

i=1C
c
i ).

Now, [1

i=1C
c
i = C

c
1 [ (Cc

2 � C
c
1) [ (Cc

3 � C
c
2) · · · = ✓1 [ ✓2 [ ✓3 . . . , where the collection

{✓1, ✓2, . . . } is pairwise disjoint. Hence, P ([1

i=1C
c
i ) =

P
1

i=1 P (✓i) = limn!1

Pn
i=1 P (✓i). But

Pn
i=1 P (✓i) = P (Cc

n) and P (Cc
n) = 1 � P (Cn). Hence, P ([1

i=1C
c
i ) = limn!1(1 � P (Cn)) =

1� limn!1 P (Cn). Consequently, P (C) = 1� (1� limn!1 P (Cn)) = limn!1 P (Cn).

Finally, by construction, Bn ✓ An ✓ Cn, for all n. Therefore, P (Bn)  P (An)  P (Cn)

and limn!1 P (Bn)  limn!1 P (An)  limn!1 P (Cn) or P (B)  limn!1 P (An)  P (C)

and consequently since A = B = C, limn!1 P (An) = P (A).

To see that A 2 F , just note that A = C = \1

i=1Ci where Ci’s represent countable unions

of events. Hence, Ci are events for all i and by De Morgan’s Laws \1

i=1Ci are events. ⌅

1.3 Independence of events

Definition 1.6. 1. Let (⌦,F , P ) be a probability space. Given any B 2 F such that

P (B) 6= 0, we define PB : F ! [0, 1] where

PB(A) =
P (A \B)

P (B)
.

PB(A) is called the conditional probability of A given B.2

2
We show below that this is indeed a probability measure.
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2. Any A, B 2 F are said to be independent if P (A \B) = P (A)P (B);

3. If 2 < n 2 N then E1, · · · , En 2 F are independent if

P

✓
\

m2I
Em

◆
=
Y

m2I

P (Em) for all I ⇢ {1, · · · , n}. (1.1)

Remark 1.5. Note that (1.1) represents
Pn

i=2

✓
n

i

◆
= 2n � n� 1 equations.

Theorem 1.9. Let (⌦,F , P ) and A, B 2 F such that P (B) 6= 0.

1. A and B independent () PB(A) = P (A)

2. PB : F ! [0, 1] defines a new probability measure on F .

Proof. 1. Since A and B are independent P (A\B) = P (A)P (B) and since PB(A) =
P (A\B)
P (B)

we have PB(A) = P (A)P (B)
P (B) = P (A). Now, PB(A) = P (A) =) P (A \ B)/P (B) = P (A)

which implies P (A \B) = P (A)P (B) =) A and B are independent.

2. We must show that PB is a probability measure on F for any B such that P (B) 6= 0.

First, note that PB(;) = P (;\B)/P (B) = P (;)/P (B) = 0 and PB(⌦) = P (⌦\B)/P (B) =

P (B)/P (B) = 1. Second, PB
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Theorem 1.10. Let (⌦,F , P ) be a probability space. If A,B 2 F are independent, then:

1. A and B
c are independent (or A

c and B are independent).

2. A
c and B

c are independent.

Proof. 1. Recall that A [ B = B [ (A \ B
c) and P (A [ B) = P (B) + P (A \ B

c). The

last equality together with Theorem 1.5.2 gives P (A) � P (A \ B) = P (A \ B
c). Now, by

independence of A and B we have P (A \ B
c) = P (A) � P (A \ B) = P (A) � P (A)P (B).

Hence, P (A \ B
c) = P (A)(1� P (B)) = P (A)P (Bc).
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2. Note that

A
c \ B

c = (A [ B)c by DeMorgan’s Laws

= ⌦� (A [ B)

P (Ac \ B
c) = 1� P (A [ B)

= 1� (P (A) + P (B)� P (A)P (B)) by independence of A and B

= (1� P (A))(1� P (B)) = P (Ac)P (Bc).

⌅

Theorem 1.11. Let (⌦,F , P ) be a probability space and A1, A2, · · · , An 2 F . If P (A1 \

A2 \ · · · \ An�1) > 0 then P (A1 \ · · · \ An) = P (A1)P (A2|A1)P (A3|A1 \ A2) . . . P (An|A1 \

A2 \ · · · \ An�1).

Proof. We will use induction. For n = 2, we have that if P (A1) > 0, P (A2|A1) = P (A1 \

A2)/P (A1) which implies P (A1 \ A2) = P (A1)P (A2|A1). Now, assume that

P (A1 \ · · · \ An�1) = P (A1)P (A2|A1)P (A3|A1 \ A2) . . . P (An�1|A1 \ A2 \ · · · \ An�2)

and define Bn = (A1 \ A2 . . . An�1) \ An with P (A1 \ · · · \ An�1) > 0. Then,

P (Bn) = P (A1 \ · · · \ An�1)P (An|A1 \ · · · \ An�1)

= P (A1)P (A2|A1) . . . P (An�1|A1 \ A2 \ · · · \ An�2)P (An|A1 \ · · · \ An�1)

by the assumption in the induction argument. ⌅

Recall the definition of a partition for a set.

Definition 1.7. {E1, E2 . . . } is a partition of ⌦ if [
i2N

Ei = ⌦ and Ei \Ej = ;, for all i 6= j.

Theorem 1.12. Let (⌦,F , P ) be a probability space and {E1, E2, . . . } be a partition of ⌦.

If A 2 F ,

P (A) =
1X

i=1

P (A|Ei)P (Ei).
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