FUNDAMENTAL ELEMENTS OF PROBABILITY AND ASYMPTOTIC THEORY

CLASS NOTES FOR ECON 7818

by

Carlos Brunet Martins-Filho Department of Economics 256 UCB University of Colorado at Boulder Boulder, CO 80309-0256 USA email: carlos.martins@colorado.edu

August 22, 2022

Chapter 1 Probability spaces

1.1 σ -algebras

We begin by defining σ -algebras and investigating some of their properties.

Definition 1.1. Let X be an arbitrary set. A σ -algebra (or σ -field) is a collection of subsets \mathcal{F} of X having the following properties:

- 1. $\mathbb{X} \in \mathcal{F}$
- 2. $A \in \mathcal{F} \implies A^c \in \mathcal{F}$
- 3. $A_i \in \mathcal{F} \text{ for } i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{F}.$

In this context we say that \mathcal{F} is a σ -algebra *associated* with X. As a matter of terminology, if $A \in \mathcal{F}$ it is said to be a \mathcal{F} -measurable set and the pair (Ω, \mathcal{F}) is called a measurable space.

Remark 1.1. *1.* Since $X \in \mathcal{F}$, by property 2 we conclude that the empty set $\emptyset \in \mathcal{F}$.

- 2. By de Morgan's Laws $\left(\bigcup_{i\in\mathbb{N}}A_i\right)^c = \bigcap_{i\in\mathbb{N}}A_i^c$ and by properties 2 and 3, if $A_i \in \mathcal{F}$ for $i\in\mathbb{N}, A_i^c\in\mathcal{F}$ and $\bigcap_{i=1}^{\infty}A_i^c\in\mathcal{F}$.
- 3. Given Remarks 1.1.1, 1.1.2 and Definition 1.1, we say that \mathcal{F} is "closed" under countable unions, intersections and complementation.

- 4. A collection of subsets of X is said to be an algebra if properties 1 and 2 in Definition 1.1 hold and if $A_i \in \mathcal{F}$ for $i = 1, \dots, m$ implies $\bigcup_{i=1}^m A_i \in \mathcal{F}$ with $m \in \mathbb{N}$.
- 5. If $A_1, A_2 \in \mathcal{F}$ then $A_2 A_1 \in \mathcal{F}$. This follows from the fact that $A_2 A_1 = A_2 \cap A_1^c$.

We now provide examples of σ -algebras.

- **Example 1.1.** 1. For any \mathbb{X} , $\mathcal{F} = {\mathbb{X}, \emptyset}$ is a σ -algebra. It is called the minimal σ -algebra.
 - For any X, the collection 2^X of all subsets of X is a σ-algebra. It is called the maximal σ-algebra.
 - 3. Let $S \subset \mathbb{X}$ and \mathcal{F} a σ -algebra associated with \mathbb{X} . Then, $\mathcal{F}_S := S \cap \mathcal{F} := \{S \cap F : F \in \mathcal{F}\}$ is a σ -algebra associated with S. It is called the trace σ -algebra. We verify that \mathcal{F}_S is a σ -algebra by establishing the properties of Definition [1.1]:

1. $S \in \mathcal{F}_S$. Note that since $\mathbb{X} \in \mathcal{F}, S \cap \mathbb{X} = S \in \mathcal{F}_S$.

2. $A \in \mathcal{F}_S \implies A^c \in \mathcal{F}_S$ (note that $A^c = S - A$, complementation relative to S). $A \in \mathcal{F}_S \implies \exists F \in \mathcal{F}$ such that $A = S \cap F \in \mathcal{F}_S$. Since $F \in \mathcal{F}$, $F^c \in \mathcal{F}$ and $S \cap F^c \in \mathcal{F}_S$. Furthermore, $(S \cap F) \cup (S \cap F^c) = S$ or $A \cup (S \cap F^c) = S$. But by definition, $A \cup A^c = S$, so $A^c = S \cap F^c \in \mathcal{F}_S$.

3. If $A_i \in \mathcal{F}_S$ for $i \in \mathbb{N}$, $U = \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{F}_S$. $A_i \in \mathcal{F}_S \implies \exists F_i \in \mathcal{F} \ni A_i = S \cap F_i$. $U = \bigcup_{i \in \mathbb{N}} (S \cap F_i) = S \cap \bigcup_{i \in \mathbb{N}} F_i$, but $\bigcup_{i \in \mathbb{N}} F_i \in \mathcal{F}$, so $U \in \mathcal{F}_S$.

4. Let f: X → Y and Y be a σ-algebra associated with Y. Then F := f⁻¹(Y) = {f⁻¹(S) : S ∈ Y} is a σ-algebra associated with X. We need to verify that:
1. X ∈ F. Since Y is a σ-algebra associated with Y, Y ∈ Y. f⁻¹(Y) = {x : x ∈ X and f(x) ∈ Y} = X. Thus, X ∈ F.

2. If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$. $A \in \mathcal{F} \implies \exists S_A \in \mathcal{Y} \ni A = f^{-1}(S_A)$. Now, $S_A \in \mathcal{Y} \implies \mathbb{Y} - S_A \in \mathcal{Y}$ and $f^{-1}(\mathbb{Y} - S_A) = \mathbb{X} - f^{-1}(S_A)$. Thus, $f^{-1}(\mathbb{Y} - S_A) = \mathbb{X} - A = A^c \in \mathcal{F}$. 3. If $A_i \in \mathcal{F}$ for $i \in \mathbb{N}$, $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{F}$. $A_i \in \mathcal{F} \implies \exists S_{A_i} \in \mathcal{Y} \ni A_i = f^{-1}(S_{A_i})$. Now, $S_{A_i} \in \mathcal{Y}, \forall i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} S_{A_i} \in \mathcal{Y}$ and $f^{-1}(\bigcup_{i \in \mathbb{N}} S_{A_i}) = \bigcup_{i \in \mathbb{N}} f^{-1}(S_{A_i}) = \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{F}$. \mathcal{F} is called the inverse image σ -algebra.

These examples demonstrate that multiple σ -algebras can be associated with a set. The following theorem shows that the intersection of an arbitrary collection of σ -algebras is itself a σ -algebra.

Theorem 1.1. Let $F = \{\mathcal{F} : \mathcal{F} \text{ is a } \sigma\text{-algebra associated with the set } X\}$. Then $\mathcal{I} := \bigcap_{\mathcal{F} \in F} \mathcal{F}$ is a $\sigma\text{-algebra}$.

Proof. 1. Since $\mathbb{X} \in \mathcal{F}$ for all $\mathcal{F} \in F$ then $\mathbb{X} \in \bigcap_{\mathcal{F} \in F} \mathcal{F}$. 2. $A \in \mathcal{I} \implies A \in \mathcal{F}$ for all $\mathcal{F} \in F$. Then, $A^c \in \mathcal{F}$ for all $\mathcal{F} \in F$. Consequently, $A^c \in \mathcal{I}$. 3. Let $A_i \in \mathcal{I}$ for $i \in \mathbb{N}$. Then, $A_i \in \mathcal{F}$ for all $\mathcal{F} \in F$. Hence, $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{F}$ for all $\mathcal{F} \in F$, which implies $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{I}$.

Definition 1.2. Let \mathcal{B} be a collection of subsets of \mathbb{X} . The σ -algebra generated by \mathcal{B} , denoted by $\sigma(\mathcal{B})$, is a σ -algebra satisfying:

- 1. $\mathcal{B} \subseteq \sigma(\mathcal{B})$
- 2. If \mathcal{F} is a σ -algebra such that $\mathcal{B} \subseteq \mathcal{F}$, then $\sigma(\mathcal{B}) \subseteq \mathcal{F}$.

The defining properties of $\sigma(\mathcal{B})$ allow us to view it as the smallest σ -algebra containing \mathcal{B} as is made explicit in the next theorem.

Theorem 1.2. For an arbitrary collection of subsets \mathcal{B} of \mathbb{X} , there exists a unique smallest σ -algebra containing \mathcal{B} .

Proof. Let $F = \{\mathcal{F} : \mathcal{F} \text{ is a } \sigma\text{-algebra associated with } \mathbb{X} \text{ and } \mathcal{B} \subseteq \mathcal{F}\}$ be the set of all σ algebras containing \mathcal{B} . $F \neq \emptyset$ since $2^{\mathbb{X}}$ is a σ -algebra. By Theorem 1.1, $\bigcap_{\mathcal{F} \in F} \mathcal{F}$ is a σ -algebra.

Since \mathcal{B} is in all $\mathcal{F}, \mathcal{B} \in \bigcap_{\mathcal{F} \in F} \mathcal{F}$. Thus, $\bigcap_{\mathcal{F} \in F} \mathcal{F} \in F$, but by construction it is the smallest σ -algebra in F, since all others contain or are equal to $\bigcap_{\mathcal{F} \in F} \mathcal{F}$.

The generation of the smallest σ -algebra associated with a collection of subsets \mathcal{B} of X is monotonic as demonstrated in the following theorem.

Theorem 1.3. Let C and D be two nonempty collections of subsets of X. If $C \subseteq D$ then $\sigma(C) \subseteq \sigma(D)$.

Proof. Let $\mathcal{F}_{\mathcal{C}} = \{\mathcal{H} : \mathcal{H} \text{ is a } \sigma\text{-algebra associated with } X \text{ and } \mathcal{C} \subseteq \mathcal{H}\}$ be the collection of all $\sigma\text{-algebras that contain } \mathcal{C}$, and similarly $\mathcal{F}_{\mathcal{D}} = \{\mathcal{G} : \mathcal{G} \text{ is a } \sigma\text{-algebra associated with } X \text{ and}$ $\mathcal{D} \subseteq \mathcal{G}\}$. Since, $\mathcal{C} \subseteq \mathcal{D} \subseteq \mathcal{G}$, \mathcal{G} is a $\sigma\text{-algebra that contains } \mathcal{C}$, therefore $\mathcal{G} \in \mathcal{F}_{\mathcal{C}}$. Hence, $\mathcal{F}_{\mathcal{D}} \subseteq \mathcal{F}_{\mathcal{C}} \text{ and } \cap_{\mathcal{H} \in \mathcal{F}_{\mathcal{C}}} \mathcal{H} \subseteq \cap_{\mathcal{G} \in \mathcal{F}_{\mathcal{D}}} \mathcal{G}$. By definition, $\sigma(\mathcal{C}) = \cap_{\mathcal{H} \in \mathcal{F}_{\mathcal{C}}} \mathcal{H} \subseteq \cap_{\mathcal{G} \in \mathcal{F}_{\mathcal{D}}} \mathcal{G} = \sigma(\mathcal{D})$.

- **Remark 1.2.** 1. A topology of X, denoted by \mathcal{O}_X , is a collection of subsets of X that satisfies the following properties:
 - (a) $\mathbb{X}, \emptyset \in \mathcal{O}_{\mathbb{X}}$
 - (b) $O_i \in \mathcal{O}_{\mathbb{X}}$ for $i = 1, \cdots, n$ and $n \in \mathbb{N} \implies \cap_{i=1}^n O_i \in \mathcal{O}_{\mathbb{X}}$
 - (c) $O_i \in \mathcal{O}_{\mathbb{X}}$ for $i \in I$ (an arbitrary index set) $\implies \bigcup_{i \in I} O_i \in \mathcal{O}_{\mathbb{X}}$.

The elements of $\mathcal{O}_{\mathbb{X}}$ are called the open sets of \mathbb{X} and the pair $(\mathbb{X}, \mathcal{O}_{\mathbb{X}})$ is called a topological space. The σ -algebra generated by the open sets $\sigma(\mathcal{O}_{\mathbb{X}})$ is called the Borel σ -algebra associated with \mathbb{X} . The elements of $\sigma(\mathcal{O}_{\mathbb{X}})$ are called the Borel sets of \mathbb{X} .

2. If we define a metric $d_{\mathbf{X}}$ on \mathbf{X} we say that

$$O \subseteq \mathbb{X} \text{ is open } \iff \forall x \in O \exists \epsilon > 0 \ \ni B(x, \epsilon) \subseteq O$$

¹A metric on X is a function $d_{\mathbb{X}} : \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ such that for all $x, y, z \in \mathbb{X}$ it satisfies a) $d_{\mathbb{X}}(x, y) \ge 0$, $d_{\mathbb{X}}(x, y) = 0$ if, and only if, x = y; b) $d_{\mathbb{X}}(x, y) = d_{\mathbb{X}}(y, x)$; c) $d_{\mathbb{X}}(x, z) \le d_{\mathbb{X}}(x, y) + d_{\mathbb{X}}(y, z)$.

where $B(x,\epsilon) = \{y \in \mathbb{X} : d_X(x,y) < \epsilon\}$. $\mathcal{O}_{\mathbb{X}}$ is the collection of open sets of \mathbb{X} . When $\mathbb{X} = \mathbb{R}^n$ an usual choice of metric is $d_{\mathbb{R}^n}(x,y) = (\sum_{i=1}^n (x_i - y_i)^2)^{1/2}$.

Theorem 1.4. Let $S \subset \mathbb{X}$, $\mathcal{F} = \sigma(\mathcal{C})$ where \mathcal{C} is a collection of subsets of \mathbb{X} . Define $\mathcal{C} \cap S = \{A \cap S : A \in \mathcal{C}\}$. Then,

 $\sigma(\mathcal{C} \cap S) = \sigma(\mathcal{C}) \cap S$ is a σ -algebra associated with S.

Proof. First, note that since $\mathcal{C} \subseteq \sigma(\mathcal{C})$ we have $\mathcal{C} \cap S \subseteq \sigma(\mathcal{C}) \cap S$. From Example 1.1.3, $\sigma(\mathcal{C}) \cap S$ is a σ -algebra associated with S. Then, it follows from Theorem 1.3 that $\sigma(\mathcal{C} \cap S) \subseteq \sigma(\mathcal{C}) \cap S$.

Now, we need only show that $\sigma(\mathcal{C} \cap S) \supseteq \sigma(\mathcal{C}) \cap S$ to conclude that $\sigma(\mathcal{C} \cap S) = \sigma(\mathcal{C}) \cap S$. To this end, consider the collection of subsets of X (not necessarily in \mathcal{C}) such that their intersection with S is in $\sigma(\mathcal{C} \cap S)$, i.e. $\mathcal{G} = \{A \subseteq X : A \cap S \in \sigma(\mathcal{C} \cap S)\}$.

By construction, $C \subset \mathcal{G}$ since $A \in \mathcal{C} \implies A \cap S \in \mathcal{C} \cap S \subseteq \sigma(\mathcal{C} \cap S)$. Thus, $A \in \mathcal{G}$. We will show that \mathcal{G} is a σ -algebra. If this is the case, $\sigma(\mathcal{C}) \subset \mathcal{G}$. But from the definition of \mathcal{G} , if $A \in \sigma(\mathcal{C})$ then $A \cap S \in \sigma(\mathcal{C} \cap S)$. This means that $\sigma(\mathcal{C}) \cap S \subseteq \sigma(\mathcal{C} \cap S)$.

- 1. $\mathbb{X} \in \mathcal{G}$ since $\mathbb{X} \cap S = S \in \sigma(\mathcal{C} \cap S)$.
- 2. $A \in \mathcal{G}, A^c = \mathbb{X} A$ and $A^c \cap S = (\mathbb{X} A) \cap S = S (A \cap S)$. But since $A \in \mathcal{G}$, $A \cap S \in \sigma(\mathcal{C} \cap S)$ which implies that $S - (A \cap S) \in \sigma(\mathcal{C} \cap S)$, so $A^c \in \mathcal{G}$.
- 3. Let $A_n \in \mathcal{G}, n \in \mathbb{N}$ and note that

$$\left(\bigcup_{n\in\mathbb{N}}A_n\right)\cap S=\bigcup_{n\in\mathbb{N}}(A_n\cap S).$$

Since, $A_n \cap S \in \sigma(\mathcal{C} \cap S)$, $\bigcup_{n \in \mathbb{N}} (A_n \cap S) \in \sigma(\mathcal{C} \cap S)$ and $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{G}$.

Thus, \mathcal{G} is a σ -algebra.

1.2 Measure spaces

We start by defining a measure on a measurable space.

Definition 1.3. Given a measurable space $(\mathbb{X}, \mathcal{F})$ a (positive) measure $\mu : \mathcal{F} \to [0, \infty]$ is a function having the following properties:

- 1. $\mu(\emptyset) = 0$
- 2. For all $A_i \in \mathcal{F}$, $j = 1, 2, \ldots$ with $A_i \cap A_i = \emptyset$ if $i \neq j$,

$$\mu\left(\cup_{j=1}^{\infty}A_j\right) = \sum_{j=1}^{\infty}\mu(A_j).$$

The triple (X, \mathcal{F}, μ) is called a measure space.

- **Remark 1.3.** 1. Property 2 in Definition 1.3 is called σ -additivity or countable additivity of μ .
 - If µ(X) < ∞, the measure µ is called a finite measure. In this case, (X, F, µ) is called a finite measure space.
 - 3. A sequence $\{A_1, A_2, \dots\} \in \mathcal{F}$ such that $A_1 \subseteq A_2 \subseteq \dots$ is said to be exhausting if $\lim_{j \to \infty} A_j := \bigcup_{j=1}^{\infty} A_j = \mathbb{X}$. A measure μ is called σ -finite if there is an exhausting sequence $\{A_1, A_2, \dots\} \in \mathcal{F}$ such that $\mu(A_j) < \infty$ for all j.
 - If µ satisfies properties 1 and 2 but F is not a σ-algebra, µ is called a pre-measure.
 But in this case, property 2 requires that ∪_{j=1}[∞]A_j ∈ F.
 - If we assume that for at least one set A ∈ F we have μ(A) < ∞, then condition 1 follows from condition 2 by letting A₁ = A and A₂ = A₃ = ··· = Ø.

Definition 1.4. Let (Ω, \mathcal{F}, P) be a measure space such that $P(\Omega) = 1$. We call (Ω, \mathcal{F}, P) a probability space and P is called a probability measure.

In the context of probability spaces, Ω is called the outcome space and the elements of \mathcal{F} are called events. The construction of useful measure (probability) spaces can be difficult as we will soon discover. What follows are very simple examples of measure and probability spaces.

- **Example 1.2.** 1. Let (X, \mathcal{F}) be a measurable space and $F \in \mathcal{F}$. Define $\mu(F) = \infty$ if F has infinitely many elements and $\mu(F) =$ number of elements (cardinality) of F if F has finitely many elements. μ is called the counting measure.
 - 2. Let (X, \mathcal{F}) be a measurable space and for $x \in X$ and $F \in \mathcal{F}$ let $\mu_x(F) = 1$ if $x \in F$ and $\mu_x(F) = 0$ if $x \notin F$. This is called the unit mass at x or Dirac's delta measure.
 - 3. Let $\Omega = \{\omega_1, \omega_2, \cdots\}$ and $p_i \in [0, 1]$ for $i = 1, 2, \cdots$ such that $\sum_{i=1}^{\infty} p_i = 1$. Let $(\Omega, 2^{\Omega})$ be a measurable space, then the set function

$$P(A) = \sum_{i:\omega_i \in A} p_i = \sum_{i=1}^{\infty} p_i \mu_{\omega_i}(A), \ A \subseteq \Omega$$

is a probability measure.

1.2.1 Some properties of measures

Theorem 1.5. For $A, A_1, A_2, \dots \in \mathcal{F}$ we have for any measure μ ,

1. $A \subseteq A_1 \implies \mu(A) \le \mu(A_1) \pmod{\text{monotonicity}}$ 2. $\mu(A \cup A_1) = \mu(A) + \mu(A_1) - \mu(A \cap A_1)$ 3. $\mu(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} \mu(A_i) \pmod{\text{subadditivity}}$

Proof. 1. A and $A_1 - A$ are disjoint sets. Hence, $\mu(A \cup (A_1 - A)) = \mu(A) + \mu(A_1 - A) = \mu(A_1)$, which implies $\mu(A) \le \mu(A_1)$.

2. $A \cup A_1 = A \cup (A_1 - A)$ and $A_1 = (A \cap A_1) \cup (A_1 - A)$. So, by the second equality, given

that $(A \cap A_1)$ and $(A_1 - A)$ are disjoint, $\mu(A_1) = \mu(A \cap A_1) + \mu(A_1 - A)$. By the first, $\mu(A \cup A_1) = \mu(A) + \mu(A_1 - A)$. Hence, $\mu(A_1) = \mu(A \cap A_1) + \mu(A \cup A_1) - \mu(A)$, which gives 2.

3. Let $B_1 = A_1, B_2 = A_2 - A_1, B_3 = A_3 - \bigcup_{j=1}^2 A_j, \dots$ Hence, $\{B_j\}$ is a disjoint collection and $B_j \subseteq A_j, \mu\left(\bigcup_{j=1}^\infty B_j = \bigcup_{j=1}^\infty A_j\right) = \sum_{j=1}^\infty \mu(B_j) \le \sum_{j=1}^\infty \mu(A_j)$.

An important property of any probability measure is continuity. But since probabilities are set functions, it is useful to define what we mean by limits of sets.

Definition 1.5. Let $\{A_i\}_{i \in \mathbb{N}}$ be a collection of sets. We have,

- 1. If $A_1 \subseteq A_2 \subseteq A_3 \dots$, $\lim_{n \to \infty} A_n := \bigcup_{i=1}^{\infty} A_i$
- 2. If $A_1 \supseteq A_2 \supseteq A_3 \dots$, $\lim_{n \to \infty} A_n := \bigcap_{i=1}^{\infty} A_i$
- 3. If A_1, A_2, \ldots is an arbitrary sequence of sets, let $B_n = \bigcap_{m=n}^{\infty} A_m$ $(B_1 \subseteq B_2 \subseteq \ldots)$ and $C_n = \bigcup_{m=n}^{\infty} A_m$ $(C_1 \supseteq C_2 \supseteq \ldots)$. Then, put $B = \lim_{n \to \infty} B_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$ and $C = \lim_{n \to \infty} C_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$. We say that $A = \lim_{n \to \infty} A_n$ exists if B = C, and we write A = B = C. B is called the limit inferior of $\{A_1, A_2, \ldots\}$ or $\liminf_{n \to \infty} A_n$ and C is called the limit superior of $\{A_1, A_2, \ldots\}$ or $\limsup_{n \to \infty} A_n$.

Theorem 1.6. Let $(\mathbb{X}, \mathcal{F})$ be a measurable space. A function $\mu : \mathcal{F} \to [0, \infty]$ is a measure *if, and only if,*

a) $\mu(\emptyset) = 0$

- b) If $A_1, A_2 \in \mathcal{F}$ are disjoint $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$
- c) If $A_1, A_2, \dots \in \mathcal{F}$ and $A_1 \subseteq A_2 \subseteq \dots$ with $\lim_{n \to \infty} A_n = A \in \mathcal{F}$ we have

$$\mu(A) = \lim_{n \to \infty} \mu(A_n).$$

Proof. (\implies) If μ is a measure then properties a) and b) follow directly from properties 1) and 2) from the definition of measure. Now, for property c) define $B_1 := A_1, B_2 := A_2 - A_1, \cdots$. From Remark 1.1.5 we have that $B_j \in \mathcal{F}$ and the collection $\{B_j\}_{j=1}^{\infty}$ is pairwise disjoint. Put $A_n = \bigcup_{j=1}^n B_j$ and $\bigcup_{n=1}^{\infty} A_n = \bigcup_{j=1}^{\infty} B_j = A$. The last equality results from the definition of the limit of a sequence of non-decreasing sets. Then, by σ -additivity of μ

$$\mu(A) = \mu\left(\bigcup_{j=1}^{\infty} B_j\right) = \sum_{j=1}^{\infty} \mu(B_j) = \lim_{n \to \infty} \sum_{j=1}^{n} \mu(B_j) = \lim_{n \to \infty} \mu(B_1 \cup B_2 \cup \dots \cup B_n)$$
$$= \lim_{n \to \infty} \mu(A_n).$$

(\Leftarrow) Now, assume that $\mu : \mathcal{F} \to [0, \infty]$ satisfies a)-c). We will show that in this case μ will satisfy properties 1) and 2) from the definition of measure. Let $\{B_j\}_{j=1}^{\infty}$ be a pairwise disjoint sequence in \mathcal{F} and define $A_n := \bigcup_{j=1}^n B_j$ and $A := \bigcup_{n=1}^\infty A_n = \bigcup_{j=1}^\infty B_j$. Clearly, $A_1 \subseteq A_2 \subseteq \cdots$ and $\lim_{n\to\infty} A_n = A$. Using b), we have

$$\mu(A_1) = \mu(B_1), \ \mu(A_2) = \mu(B_1) + \mu(B_2), \ \cdots, \ \mu(A_n) = \sum_{j=1}^n \mu(B_j).$$

From c) we conclude (second equality) that

$$\mu\left(\bigcup_{j=1}^{\infty}B_j\right) = \mu(A) = \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \left(\sum_{j=1}^{n} \mu(B_j)\right) = \sum_{j=1}^{\infty} \mu(B_j).$$

Remark 1.4. If μ is a finite measure, c) in Theorem 1.6 can be replaced by either of these two equivalent conditions

c') If $A_1, A_2, \dots \in \mathcal{F}$ and $A_1 \supseteq A_2 \supseteq \dots$ with $\lim_{n \to \infty} A_n = A \in \mathcal{F}$ we have

$$\mu(A) = \lim_{n \to \infty} \mu(A_n)$$

or

c") If $A_1, A_2, \dots \in \mathcal{F}$ and $A_1 \supseteq A_2 \supseteq \dots$ with $\lim_{n \to \infty} A_n = \emptyset \in \mathcal{F}$ we have

$$\lim_{n \to \infty} \mu(A_n) = 0.$$

Theorem 1.7. Let (Ω, \mathcal{F}, P) be a probability space. Then,

- 1. $P(A^c) = 1 P(A)$ for all $A \in \mathcal{F}$
- 2. $A, B \in \mathcal{F}, A \subseteq B \implies P(A) \leq P(B) \text{ for all } A, B \in \mathcal{F}$
- 3. If $A_i \in \mathcal{F}$, $i = 1, 2, \ldots$, then

$$P(\bigcup_{i=1}^{n} A_{i}) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \le i_{1} < i_{2} \le n} P(A_{i_{1}} \cap A_{i_{2}}) + \sum_{1 \le i_{1} < i_{2} < i_{3} \le n} P(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}) + \dots + (-1)^{n+1} P(\bigcap_{i=1}^{n} A_{i})$$

Proof. 1. $\Omega = A \cup A^c$. Hence, $1 = P(\Omega) = P(A) + P(A^c) \implies P(A^c) = 1 - P(A)$. 2. follows from Theorem 1.5.1. 3. Let n = 2. Then, from Theorem 1.5.2 we have

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2).$$

Now, let $B_1 = A_1$, $B_2 = B_1 \cup A_2 = A_1 \cup A_2$, $B_3 = B_2 \cup A_3 = A_1 \cup A_2 \cup A_3$, \cdots , $B_{n-1} = B_{n-2} \cup A_{n-1} = A_1 \cup \cdots \cup A_{n-1}$. Now, suppose

$$P(B_{n-1}) = P(\bigcup_{i=1}^{n-1} A_i) = \sum_{i=1}^{n-1} P(A_i) - \sum_{1 \le i < j \le n-1} P(A_i \cap A_j) + \sum_{1 \le i < j < k \le n-1} P(A_i \cap A_j \cap A_k) + \dots + (-1)^n P(A_1 \cap A_2 \cap \dots \cap A_{n-1}).$$

We will show that this representation holds for n. From the case where there are only two sets

$$P(B_n) = P(\bigcup_{i=1}^n A_i) = P(B_{n-1} \cup A_n) = P(B_{n-1}) + P(A_n) - P(B_{n-1} \cap A_n)$$

= $P(B_{n-1}) + P(A_n) - P((\bigcup_{i=1}^{n-1} A_i) \cap A_n)$
= $P(B_{n-1}) + P(A_n) - P(\bigcup_{i=1}^{n-1} (A_i \cap A_n))$
= $P(B_{n-1}) + P(A_n) - P(\bigcup_{i=1}^{n-1} C_i)$, where $C_i = (A_i \cap A_n)$

But,

$$P(\bigcup_{i=1}^{n-1}C_i) = \sum_{i=1}^{n-1} P(C_i) - \sum_{1 \le i_1 < i_2 \le n-1} P(C_{i_1} \cap C_{i_2}) + \sum_{1 \le i_1 < i_2 < i_3 \le n-1} P(C_{i_1} \cap C_{i_2} \cap C_{i_3}) + \cdots + (-1)^n P(C_1 \cap C_2 \cap \cdots \cap C_{n-1}),$$

with

$$\sum_{n=1}^{n-1} P(C_i) = \sum_{i=1}^{n-1} P(A_i \cap A_n)$$
$$\sum_{1 \le i_1 < i_2 \le n-1} P(C_{i_1} \cap C_{i_2}) = \sum_{1 \le i_1 < i_2 \le n-1} P(A_{i_1} \cap A_n \cap A_{i_2} \cap A_n)$$
$$= \sum_{1 \le i_1 < i_2 \le n-1} P(A_{i_1} \cap A_{i_2} \cap A_n)$$
$$\sum_{1 \le i_1 < i_2 < i_3 \le n-1} P(C_{i_1} \cap C_{i_2} \cap C_{i_3}) = \sum_{1 \le i_1 < i_3 < i_3 \le n-1} P(A_{i_1} \cap A_{i_2} \cap A_{i_3} \cap A_n)$$
$$\vdots$$
$$P(C_1 \cap C_2 \cap \dots \cap C_{n-1}) = P(A_1 \cap \dots \cap A_n).$$

Then, we have

$$P(B_n) = \sum_{i=1}^{n-1} P(A_i) - \sum_{1 \le i_1 < i_2 \le n-1} P(A_{i_1} \cap A_{i_2}) + \sum_{1 \le i_1 < i_2 < i_3 \le n-1} P(A_i \cap A_j \cap A_k) + \dots + (-1)^n P(A_1 \cap A_2 \cap \dots \cap A_{n-1}) + P(A_n)$$

$$- \sum_{i=1}^{n-1} P(A_i \cap A_n) + \sum_{1 \le i_1 < i_2 \le n-1} P(A_{i_1} \cap A_{i_2} \cap A_n)$$

$$- \sum_{1 \le i_1 < i_2 < i_3 \le n-1} P(A_{i_1} \cap A_{i_2} \cap A_{i_3} \cap A_n) + \dots + (-1)^{n+1} P(A_{i_1} \cap \dots \cap A_n)$$

$$= \sum_{i=1}^n P(A_i) - \sum_{i_1 < i_2} P(A_{i_1} \cap A_{i_2}) + \sum_{i_1 < i_2 < i_3} P(A_{i_1} \cap A_{i_2} \cap A_{i_3}) + \dots + (-1)^{n+1} P(\cap_{i=1}^n A_i).$$

The next theorem shows that probability measures are continuous set functions.

Theorem 1.8. Suppose $\{A_n\}_{n=1}^{\infty} \in \mathcal{F}$, where (Ω, \mathcal{F}, P) is a probability space. Let $A = \lim_{n \to \infty} A_n$. Then, $A \in \mathcal{F}$ and $P(A_n) \to P(A)$ as $n \to \infty$.

Proof. Since $\{A_n\}_{n=1,2,\ldots}$ has a limit, there exist $C_1 \supseteq C_2 \supseteq C_3 \supseteq \ldots$ and $B_1 \subseteq B_2 \subseteq B_3 \subseteq \ldots$ as in Definition 1.5, such that $B = \bigcup_{i=1}^{\infty} B_i = \bigcap_{i=1}^{\infty} C_i = C = A$. By construction, $B = B_1 \cup (B_2 - B_1) \cup (B_3 - B_2) \cup \cdots = \chi_1 \cup \chi_2 \cup \ldots$ The collection $\{\chi_1, \chi_2, \ldots\}$ is pairwise disjoint. By σ -additivity of measures we have $P(B) = \sum_{i=1}^{\infty} P(\chi_i) = \lim_{n \to \infty} \sum_{i=1}^{n} P(\chi_i)$. But, $\sum_{i=1}^{n} P(\chi_i) = P(B_n)$, where $B_n = B_1 \cup (B_2 - B_1) \cup \cdots \cup (B_n - B_{n-1})$. Hence, $P(B) = \lim_{n \to \infty} P(B_n)$.

By De Morgan's Laws $C = \bigcap_{i=1}^{\infty} C_i = (\bigcup_{i=1}^{\infty} C_i^c)^c$. Therefore, $P(C) = 1 - P(\bigcup_{i=1}^{\infty} C_i^c)$. Now, $\bigcup_{i=1}^{\infty} C_i^c = C_1^c \cup (C_2^c - C_1^c) \cup (C_3^c - C_2^c) \cdots = \theta_1 \cup \theta_2 \cup \theta_3 \dots$, where the collection $\{\theta_1, \theta_2, \dots\}$ is pairwise disjoint. Hence, $P(\bigcup_{i=1}^{\infty} C_i^c) = \sum_{i=1}^{\infty} P(\theta_i) = \lim_{n \to \infty} \sum_{i=1}^n P(\theta_i)$. But $\sum_{i=1}^n P(\theta_i) = P(C_n^c)$ and $P(C_n^c) = 1 - P(C_n)$. Hence, $P(\bigcup_{i=1}^{\infty} C_i^c) = \lim_{n \to \infty} (1 - P(C_n)) = 1 - \lim_{n \to \infty} P(C_n)$. Consequently, $P(C) = 1 - (1 - \lim_{n \to \infty} P(C_n)) = \lim_{n \to \infty} P(C_n)$.

Finally, by construction, $B_n \subseteq A_n \subseteq C_n$, for all n. Therefore, $P(B_n) \leq P(A_n) \leq P(C_n)$ and $\lim_{n\to\infty} P(B_n) \leq \lim_{n\to\infty} P(A_n) \leq \lim_{n\to\infty} P(C_n)$ or $P(B) \leq \lim_{n\to\infty} P(A_n) \leq P(C)$ and consequently since A = B = C, $\lim_{n\to\infty} P(A_n) = P(A)$.

To see that $A \in \mathcal{F}$, just note that $A = C = \bigcap_{i=1}^{\infty} C_i$ where C_i 's represent countable unions of events. Hence, C_i are events for all i and by De Morgan's Laws $\bigcap_{i=1}^{\infty} C_i$ are events.

1.3 Independence of events

Definition 1.6. 1. Let (Ω, \mathcal{F}, P) be a probability space. Given any $B \in \mathcal{F}$ such that $P(B) \neq 0$, we define $P_B : \mathcal{F} \rightarrow [0, 1]$ where

$$P_B(A) = \frac{P(A \cap B)}{P(B)}.$$

 $P_B(A)$ is called the conditional probability of A given B^2 .

²We show below that this is indeed a probability measure.

- 2. Any $A, B \in \mathcal{F}$ are said to be independent if $P(A \cap B) = P(A)P(B)$;
- 3. If $2 < n \in \mathbb{N}$ then $E_1, \cdots, E_n \in \mathcal{F}$ are independent if

$$P\left(\bigcap_{m\in I} E_m\right) = \prod_{m\in I} P(E_m) \text{ for all } I \subset \{1,\cdots,n\}.$$
(1.1)

Remark 1.5. Note that (1.1) represents $\sum_{i=2}^{n} \binom{n}{i} = 2^n - n - 1$ equations.

Theorem 1.9. Let (Ω, \mathcal{F}, P) and $A, B \in \mathcal{F}$ such that $P(B) \neq 0$.

- 1. A and B independent $\iff P_B(A) = P(A)$
- 2. $P_B: \mathcal{F} \to [0,1]$ defines a new probability measure on \mathcal{F} .

Proof. 1. Since A and B are independent $P(A \cap B) = P(A)P(B)$ and since $P_B(A) = \frac{P(A \cap B)}{P(B)}$ we have $P_B(A) = \frac{P(A)P(B)}{P(B)} = P(A)$. Now, $P_B(A) = P(A) \implies P(A \cap B)/P(B) = P(A)$ which implies $P(A \cap B) = P(A)P(B) \implies A$ and B are independent.

2. We must show that P_B is a probability measure on \mathcal{F} for any B such that $P(B) \neq 0$. First, note that $P_B(\emptyset) = P(\emptyset \cap B)/P(B) = P(\emptyset)/P(B) = 0$ and $P_B(\Omega) = P(\Omega \cap B)/P(B) = P(B)/P(B) = 1$. Second, $P_B(\bigcup_{j=1}^{\infty} A_j) = P((\bigcup_{j=1}^{\infty} A_j) \cap B)/P(B) = P((\bigcup_{j=1}^{\infty} A_j \cap B))/P(B) = \sum_{j=1}^{\infty} P_B(A_j)$.

Theorem 1.10. Let (Ω, \mathcal{F}, P) be a probability space. If $A, B \in \mathcal{F}$ are independent, then:

- 1. A and B^c are independent (or A^c and B are independent).
- 2. A^c and B^c are independent.

Proof. 1. Recall that $A \cup B = B \cup (A \cap B^c)$ and $P(A \cup B) = P(B) + P(A \cap B^c)$. The last equality together with Theorem 1.5.2 gives $P(A) - P(A \cap B) = P(A \cap B^c)$. Now, by independence of A and B we have $P(A \cap B^c) = P(A) - P(A \cap B) = P(A) - P(A)P(B)$. Hence, $P(A \cap B^c) = P(A)(1 - P(B)) = P(A)P(B^c)$. 2. Note that

$$A^{c} \cap B^{c} = (A \cup B)^{c} \text{ by DeMorgan's Laws}$$
$$= \Omega - (A \cup B)$$
$$P(A^{c} \cap B^{c}) = 1 - P(A \cup B)$$
$$= 1 - (P(A) + P(B) - P(A)P(B)) \text{ by independence of } A \text{ and } B$$
$$= (1 - P(A))(1 - P(B)) = P(A^{c})P(B^{c}).$$

Theorem 1.11. Let (Ω, \mathcal{F}, P) be a probability space and $A_1, A_2, \dots, A_n \in \mathcal{F}$. If $P(A_1 \cap A_2 \cap \dots \cap A_{n-1}) > 0$ then $P(A_1 \cap \dots \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \dots P(A_n|A_1 \cap A_2 \cap \dots \cap A_{n-1})$.

Proof. We will use induction. For n = 2, we have that if $P(A_1) > 0$, $P(A_2|A_1) = P(A_1 \cap A_2)/P(A_1)$ which implies $P(A_1 \cap A_2) = P(A_1)P(A_2|A_1)$. Now, assume that

$$P(A_1 \cap \dots \cap A_{n-1}) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)\dots P(A_{n-1}|A_1 \cap A_2 \cap \dots \cap A_{n-2})$$

and define $B_n = (A_1 \cap A_2 \dots A_{n-1}) \cap A_n$ with $P(A_1 \cap \dots \cap A_{n-1}) > 0$. Then,

$$P(B_n) = P(A_1 \cap \dots \cap A_{n-1}) P(A_n | A_1 \cap \dots \cap A_{n-1})$$

= $P(A_1) P(A_2 | A_1) \dots P(A_{n-1} | A_1 \cap A_2 \cap \dots \cap A_{n-2}) P(A_n | A_1 \cap \dots \cap A_{n-1})$

by the assumption in the induction argument. \blacksquare

Recall the definition of a partition for a set.

Definition 1.7. $\{E_1, E_2 \dots\}$ is a partition of Ω if $\bigcup_{i \in \mathbb{N}} E_i = \Omega$ and $E_i \cap E_j = \emptyset$, for all $i \neq j$. **Theorem 1.12.** Let (Ω, \mathcal{F}, P) be a probability space and $\{E_1, E_2, \dots\}$ be a partition of Ω . If $A \in \mathcal{F}$,

$$P(A) = \sum_{i=1}^{\infty} P(A|E_i)P(E_i).$$