
Proof. A = A \⌦ = A \ ([i2NEi) = [i2N(A \Ei). The collection {(A \E1), (A \E2), . . . }

is pairwise disjoint. Therefore, P (A) =
P

i2N P (A \ Ei) =
P

i2N P (A|Ei)P (Ei). ⌅

Theorem 1.13. (Bayes’ Theorem) Let (⌦,F , P ) be a probability space and {E1, E2, . . . } be

a partition of ⌦. Let A 2 F such that P (A) 6= 0. Then,

P (Ei|A) =
P (A|Ei)P (Ei)P

j2N P (A|Ej)P (Ej)
,

Proof. By the previous theorem P (A) =
P

j2N P (A|Ej)P (Ej) 6= 0. Hence,

P (Ei|A) =
P (Ei \ A)

P (A)
=

P (A|Ei)P (Ei)P
j2N P (A|Ej)P (Ej)

which establishes the desired result. ⌅

1.3.1 Some remarks on the structure of R and its Borel sets

In Remark 1.2.1 we defined the Borel �-algebra associated with a set X using open sets. We

now provide results that are useful in obtaining the Borel sets of R, denoted by B(R) or BR.

Recall that an open interval on R is a set (a, b) := {x 2 R : a < x < b} and a closed interval

is a set [a, b] := {x 2 R : a  x  b}. They are said to be finite if a, b 2 R and infinite if

a = �1 or b = 1.

Definition 1.8. Let S be an open subset of R. An open finite or infinite interval I is called

a component interval of S if I ✓ S and if @ an open interval J such that I ⇢ J ✓ S.

Theorem 1.14. Let I denote a component interval of the open set S. If x 2 S, then

9I 3 x 2 I. If x 2 I, then x 62 J where J is any other component interval of S.

Proof. Since S is open, for any x 2 S there exists I an open interval such that x 2 I

and I ✓ S. There may be many such intervals, but the largest is Ix = (a(x), b(x)), where

a(x) = inf{a : (a, x) ✓ S}, b(x) = sup{b : (x, b) ✓ S}. Note, a may be �1 and b may

be +1. There is no open interval J 3 Ix ⇢ J ✓ S and by definition Ix is a component
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interval of S. If Jx is another component interval containing x, Ix [ Jx is an open interval

3 Ix [ Jx ✓ S. By definition of component inteval Ix [ Jx = Ix and Ix [ Jx = Jx, so Ix = Jx.

⌅

Theorem 1.15. Let S ✓ R be open with S 6= ;. Then S = [1

n=1In where {I1, I2, . . . } is a

collection of disjoint component intervals of S.

Proof. If x 2 S, then x belongs to one, and only one, component interval Ix. Note that

[
x2S

Ix = S and by the definition of component intervals and the proof of the previous theorem,

the collection of component intervals is disjoint. (If x belongs to Ix and Jx, both component

intervals, Ix = Jx). Let {q1, q2, . . . } be the collection of rational numbers (countable). In

each component interval, there may be infinitely many of these, but among these there is

exactly one with smallest index n. Define a function F , F (Ix) = n if Ix contains the rational

number xn. If F (Ix) = F (Iy) = n then Ix and Iy contain xn, and Ix = Iy. Thus, the

collection of component intervals is countable. ⌅

Remark 1.6. Several collections of subsets of R generate B(R). In particular, we have:

1. Let A1 = {I : I = (a, b) is an interval (finite or infinite) with �1  a < b  1}.

Since (a, b) is open in R, A1 ✓ OR and �(A1) ✓ �(OR) := BR. Every nonempty

open set O ✓ R can be written as O = [1

↵=1I↵, where I↵ is a component interval

of O. I↵ 2 A1 8↵ and I↵ 2 �(A1), hence O 2 �(A1). Thus, OR ✓ �(A1) and

�(OR) ✓ �(A1). Together with �(A1) ✓ �(OR) gives �(OR) = �(A1).

2. Since [a, b] = \1

n=1(a � 1/n, b + 1/n), [a, b] 2 �(A1). Hence the collection of closed

intervals A2 = {I : I = [a, b], a, b 2 R} is such that A2 ✓ �(A1). Hence �(A2) ✓

�(A1). Also, since (a, b) = [1

n=1[a+1/n, b�1/n], (a, b) 2 �(A2), hence the collection of

open intervals A1 is such that A1 ✓ �(A2) and �(A1) ✓ �(A2). Hence, �(A1) = �(A2).

But since, �(A1) = �(OR), �(A2) = �(OR).
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3. Let A3 = {I : I = (a, b] : �1  a < b < 1}. Note that since (a, b) = [1

n=1(a, b � 1
n ]

we have that (a, b) 2 �(A3). Consequently, A1 ✓ �(A3) and �(A1) ✓ �(A3). Also,

since (a, b] = [1

i=1(a, b +
1
n) we have that (a, b] 2 �(A1). Consequently, A3 ✓ �(A1)

and �(A3) ✓ �(A1). Thus, �(A3) = �(A1).

4. Using similar arguments, if A4 = {I : I = (�1, a] : a 2 R} we have �(A4) = �(OR).

First, note that (�1, a] = \1

n=1(�1, a + 1
n) 2 �(A1). Hence, A4 ✓ �(A1) and

�(A4) ✓ �(A1). Second, note that for a < b

(a, b) = (�1, b) \ (a,1) = (�1, b) \ (�1, a]c

=

✓
[1

n=1(�1, b� 1

n
]

◆
\ (�1, a]c 2 �(A4).

Hence, A1 ✓ �(A4) and �(A1) ✓ �(A4) and, together with the reverse set containment,

we have �(A1) = �(A4).

Remark 1.7. The collection of open sets of Rn will be denoted by ORn. Of course, this

collection has the following properties:

i) Rn
, ; 2 ORn

ii) Ai 2 ORn, i 2 I (arbitrary) =) [
i2I

Ai 2 ORn

iii) A1, A2, · · · , Am 2 ORn =) \m
i=1Ai 2 ORn for m 2 N.

Countable or arbitrary intersections of open sets do not belong to ORn.

Theorem 1.16. Let ORn , CRn ,KRn be the collections of open, closed, and compact subsets of

Rn. Then, �(ORn) = �(CRn) = �(KRn). By definition this is the Borel �-algebra associated

with Rn, denoted by B(Rn).

Proof. From classical analysis if A ⇢ Rn, then A compact () A closed and bounded

(Apostol, 1974, p. 59). Thus, KRn ✓ CRn . Hence, by Theorem 1.3, �(KRn) ✓ �(CRn).
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Now, if C 2 CRn and B̄(✓, k) is a closed ball with radius k centered at ✓ = (0, . . . , 0)0 2 Rn,

i.e. B̄(✓, k) = {x 2 Rn : kxkE  k}, then Ck := C \ B̄(✓, k) is closed and bounded.

Closeness follows from the fact that complements of open sets are closed, and if Ai are open

([Ai)c = \Ac
i is closed and boundedness follows from k 2 N. Hence, Ck 2 KRn for all k 2 N.

By construction, C = [
k2N

Ck, thus C 2 �(KRn) and �(CRn) ✓ �(KRn), so �(CRn) = �(KRn).

Since CRn = (ORn)c, we have that CRn ✓ �(ORn) and consequently �(CRn) ✓ �(ORn).

The converse �(ORn) ✓ �(CRn) follows similarly to give �(CRn) = �(ORn). ⌅

The pairs (Rn
,B(Rn)) for n 2 N are measurable spaces.

1.4 Measurable functions and random elements

Definition 1.9. Let (⌦,F) and (E, E) be two measurable spaces. A function f : (⌦,F) !

(E, E) is said to be measurable if for all A 2 E, f�1(A) 2 F .

Remark 1.8. If (⌦,F , P ) is a probability space we say that f is a random element. If,

in addition, (E, E) := (R,B(R)) we will refer to f : (⌦,F , P ) ! (R,B(R)) as a random

variable. We will normally represent random elements or random variables by uppercase

roman letters, e.g., X or Y .

The next theorem shows that measurability of a function f can be established by ex-

amining inverse images of sets in a collection that generates the measurable sets associated

with the co-domain of f .

Theorem 1.17. Let C be a collection of subsets of E such that �(C) = E . Then, f measurable

() f
�1(C) ✓ F .

Proof. ()) First, assume f is measurable. f measurable () for all A 2 E , f�1(A) 2 F .

In particular, let A be an element of C, then f
�1(A) 2 F , hence f

�1(C) ✓ F .
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(() Second, assume that f
�1(C) ✓ F , i.e., f�1(C) 2 F , for all C 2 C. We must prove that

8A 2 E , f�1(A) 2 F (or f
�1(E) ✓ F). Let G = {A 2 E : f�1(A) 2 F} and by construction

C ✓ G. If G is a �-algebra, then �(C) = E ✓ G. Also, by construction G ✓ E , hence E = G,

which is what must be proven.

We will show that G is a �-algebra. Consider a sequence A1, A2, · · · 2 E such that

f
�1(Ai) 2 F (i.e., A1, A2 · · · 2 G). Then, since E is a �-algebra, [1

i=1Ai 2 E . And since

f
�1([1

i=1Ai) = [1

i=1f
�1(Ai), which is the union of elements in F , f�1([1

i=1Ai) 2 F . Now, if

A 2 E is such that f�1(A) 2 F (i.e., A 2 G), then A
c 2 E and f

�1(Ac) = f
�1(E)�f

�1(A) =

⌦� f
�1(A) which is in F . Hence G is a �-algebra. ⌅

Remark 1.9. 1. We can take A4 = {(�1, a] : a 2 R}) (this is the collection A4 in

Remark 1.6.4) and state that

X : (⌦,F , P ) ! (R, �(C) = B(R)))

is a random variable if, and only if, X�1(C) ✓ F . Equivalently we can state X is a

random variable if, and only if, X�1((�1, a]) = {! 2 ⌦ : X(!)  a} 2 F 8a 2 R.

2. Since X
�1((�1, a]) 2 F 8a 2 R we can write P (X�1((�1, a])) = P �X�1((1, a]) :=

PX((�1, a]), where � indicates composition.

Theorem 1.18. Let (X,F , µ) be a measure space, (E, E) be a measurable space and f : X!

E be a measurable function. Then,

m(E) := µ(f�1(E)) for all E 2 E

is a measure on (E, E).

Proof. We verify the two defining properties of measures. First, note that if E = ;, m(;) =

µ(f�1(;)) = µ(;) = 0 since µ is a measure. Second, if {En}n2N is a pairwise disjoint
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collection of sets in E then

m

✓
[

n2N
En

◆
= µ

✓
f
�1

✓
[

n2N
En

◆◆
= µ

✓
[

n2N
f
�1(En)

◆
=

X

n2N

µ(f�1(En)) =
X

n2N

m(En),

where the next to last equality follows from the fact that µ is a measure and the last equality

follows from the definition of m. ⌅

If, in Theorem 1.18 we take (X,F , µ) := (⌦,F , P ), (E, E) := (R,BR), and f := X :

(⌦,F , P ) ! (R,BR) then PX := P �X�1 is a measure on B.

The following definition follows directly from Remark 1.9.1.

Definition 1.10. (Measurability of a real-valued function) A function f : (X,F) ! (R,B(R))

is said to be F/B(R)-measurable, or simply measurable, if for all a 2 R, the set Sa = {x 2

X : f(x)  a} 2 F .

Remark 1.10. Since Sa 2 F and F is a �-algebra, S
c
a 2 F . Hence, f is measurable if

S
c
a = {x 2 X : f(x) > a} 2 F . Also, consider S

c
a�1/n = {x 2 X : f(x) > a � 1/n}

and let S
0

a = \1

n=1{x 2 X : f(x) > a � 1/n} = {x 2 X : f(x) � a}. Clearly, by the

properties of �-algebras S
0

a 2 F . Hence, f is measurable if {x 2 X : f(x) � a} 2 F . Since,

{x 2 X : f(x) < a} = {x 2 X : f(x) � a}c, measurability could also be defined in terms of

{x 2 X : f(x) < a}.

Example 1.3. 1. Let f : X ! R, such that for all x 2 X, f(x) = c, c 2 R. Let a 2 R

and consider S
c
a = {x 2 X : f(x) > a} = {x 2 X : c > a}. If a � c, Sc

a = ;, and if

c > a, Sc
a = X. Since �-algebras always contain ; and X, f(x) = c is measurable.

2. Let E 2 F (F a �-algebra). Recall that the indicator function of E is

IE(x) =

(
1 if x 2 E

0 if x /2 E

If a � 1, Sc
a = ;; if 0  a < 1, Sc

a = E; if a < 0 S
c
a = X. Since X, ; 2 F (always) and

E 2 F by construction, IE is measurable.
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3. Let f : (X, �(OX)) ! (Y, �(OY)) be continuous on X. From classical analysis

f
�1(OY) ✓ OX. Hence, f�1(OY) ✓ �(OX) and by Theorem 1.17 f is measurable.

4. Let X = R and F = B(R). If f is monotone increasing, i.e., 8 x < x
0, f(x)  f(x0),

f is measurable. Note that in this case, Sc
a = {x : x > y for some y 2 R} = (y,1) or

S
c
a = {x : x � y}[y,1), which are Borel sets.

Theorem 1.19. Let f and g be measurable real valued functions and let c 2 R. Then,

cf, f
2
, f + g, fg, |f | are measurable.

Proof. If c = 0, cf = 0 is a constant and consequently, measurable. If c > 0, then {x 2 X :

cf(x) > a} = {x 2 X : f(x) > a/c} 2 F . Similarly for c < 0. If a < 0, {x 2 X : (f(x))2 >

a} = X and X 2 F . If a � 0, {x 2 X : f 2(x) > a} = {x 2 X : f(x) > a
1/2 or f(x) <

�a
1/2} = {x 2 X : f(x) > a

1/2} [ {x 2 X : f(x) < �a
1/2}. The first set in the union is in F

by assumption (f is measurable) and the second is in F by the arguments in Remark 1.10.

Now, g(x) + f(x) > a =) f(x) > a � g(x) which implies that there exists a rational

number r such that f(x) > r > a � g(x). Hence, {x 2 X : g(x) + f(x) > a} = [
r2Q

{x 2

X : f(x) > r} \ {x 2 X : g(x) > a � r}. Since the rational numbers are countable [
r2Q

is countable. Since f and g are measurable, and unions of countable measurable sets are

measurable {x 2 X : g(x)+f(x) > a} 2 F . Note that �f = (�1)f . Hence if f is measurable,

�f is also measurable and so is f + (�g) = f � g.

Now, fg = 1/2[(f + g)2 � (f 2 + g
2)]. Since f

2
, g

2
, f + g, f � g and cf are measurable, if

f, g are measurable, so is fg.

Lastly, {x 2 X : |f(x)| > a} = {x 2 X : f(x) > a or f(x) < �a} = {x 2 X : f(x) >

a}[ {x 2 X : f(x) < �a} = {x 2 X : f(x) > a}[ {x 2 X : �f(x) > a}. Since f and �f are

measurable, {x 2 X : |f(x)| > a} 2 F . ⌅
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Recall that if {xn}n2N is a sequence of real numbers

lim inf
n!1

xn := sup
k2N

inf
j�k

{xj} and lim sup
n!1

xn := inf
k2N

sup
j�k

{xj}.

Theorem 1.20. Let fi(x) : X ! R for i = 1, 2, . . . be measurable. Then sup{f1, . . . , fn},

inf{f1, . . . , fn}, sup
n

fn, inf
n
fn, lim sup

n
fn and lim inf

n
fn are all measurable functions.

Proof. Let h(x) = sup{f1(x), . . . , fn(x)}. Then, Sa = {x 2 X : h(x) > a} = [n
i=1{x :

fi(x) > a}. Consequently, since fi is measurable, Sa 2 F . Similarly if g(x) = sup
n2N

fn(x),

Sa = {x 2 X : g(x) > a} = [1

n=1{x : fn(x) > a} 2 F . The same argument can be made for

inf. Since lim sup
n!1

fn = inf
n�1

sup
k�n

fk, lim sup fn is measurable. The same for lim inf
n!1

fn. ⌅

As in Remark 1.6 several collections of subsets of Rn can generate the Borel sets of Rn.

Of particular interest are In = {Rn = ⇥n
i=1(ai, bi] : ai, bi 2 R}, In,o = {Rn,o = ⇥n

i=1(ai, bi) :

ai, bi 2 R}, In
Q = {Rn

Q = ⇥n
i=1(ai, bi] : ai, bi 2 Q} and In,o

Q = {Rn,o
Q = ⇥n

i=1(ai, bi) : ai, bi 2

Q}. In all cases, when bi  ai we take (ai, bi) = (ai, bi] = ; and whenever an interval in any

of the the cartesian products is empty, the cartesian product is empty.

Theorem 1.21. B(Rn) = �(In) = �(In,o) = �(In
Q) = �(In,o

Q ).

Proof. Note that every open rectangle R
n,o is an open set. To see this, choose any x 2 R

n,o.

Since (ai, bi) is open for all i and n 2 N, there exists � > 0 such that (xi� �, xi+ �) ⇢ (ai, bi)

for all i. Let B(x, �) = {y : ky� xk < �}. Then, ky� xk < � ()
Pn

i=1(yi � xi)2 < �
2 =)

(yi � xi)2 < �
2 �

Pn
j 6=i(yj � xj)2 < �

2 =) |yi � xi| < � () yi 2 (xi � �, xi + �) ⇢ (ai, bi)

for all i. Hence, B(x, �) ⇢ R
n,o. Since, In,o

Q ✓ In,o ✓ ORn , we have �(In,o
Q ) ✓ �(In,o) ✓

�(ORn) = B(Rn).

Now, let U 2 ORn and consider [
R2I

o,n
Q , R✓U

R. Clearly, by construction U ✓ [
R2I

o,n
Q , R✓U

R.

Now, choose x 2 U . Since U is open, there exists B(x, ✏) ⇢ U . Choose R
n,o containing

x such that R
n,o ⇢ B(x, ✏) and further shrink this rectangle, by choosing R

n,o
Q containing
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x such that R
n,o
Q ⇢ R

n,o ⇢ B(x, ✏). Hence, [
R2I

n,o
Q , R✓U

R ✓ U and we conclude that U =

[
R2I

n,o
Q , R✓U

R. Since there are at most countably many rectangles in the union defining U , we

have U 2 ORn ✓ �(In,o
Q ) and �(ORn) ✓ �(In,o

Q ). Hence, �(ORn) = �(In,o
Q ) = �(In,o).

Since Rn
Q = \i2N(a1�1/i, b1)⇥· · · (an�1/i, bn), Rn,o

Q = [i2N[c1+1/i, d1)⇥· · · [cn+1/i, dn),

R
n = \i2N(a1 � 1/i, b1) ⇥ · · · (an � 1/i, bn) and R

n,o = [i2N[c1 + 1/i, d1) ⇥ · · · [cn + 1/i, dn)

we have �(In,o) = �(In) and �(In,o
Q ) = �(In

Q),which completes the proof. ⌅
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