
Chapter 2

Construction of probability measures

We have revealed a number of properties of measures, but we have not discussed their

existence (in general) or how to construct them.

Definition 2.1. 1. A class of subsets P of X is called a ⇡-system if A,B 2 P =)

A \ B 2 P.

2. A class of subsets D of X is called a Dynkin1 system if:

(a) X 2 D

(b) A 2 D =) A
c 2 D

(c) If A1, A2, · · · 2 D and are pairwise disjoint, then [1

i=1Ai 2 D.

It is clear from the definition that a �-algebra associated with X is also a Dynkin system.

Theorem 2.1. Let C ✓ 2X. There exist a smallest Dynkin system �(C) such that C ✓ �(C).

It is called the Dynkin system generated by C. In addition, �(C) ✓ �(C).

Proof. Existence and characterization of �(C) is proved as in Theorem 1.2. Since �(C) is a

Dynkin system �(�(C)) = �(C). Since C ✓ �(C), �(C) ✓ �(�(C)) = �(C) as in Theorem 1.3.

⌅
1
Eugene Borisovich Dynkin was a Russian mathematician that made important contributions to algebra

and probability. He was a student of Andrei Kolmogorov.

25



Theorem 2.2. A Dynkin system D is a �-algebra () A,B 2 D =) A \ B 2 D.

Proof. If D is a �-algebra, A,B 2 D =) A \B = (Ac [ B
c)c 2 D.

If D is a Dynkin system it satisfies requirements 1 and 2 for �-algebras in Definition 1.1.

Now let Ai, i 2 N be such that Ai 2 D. We must show that [i2NAi 2 D. Define B1 := A1,

B2 := A2�B1 = A2\B
c
1, B3 := A3�[2

i=1Bi = A3\([2
i=1Bi)c · · · Bn := An�[n�1

i=1 Bi = An\

([n�1
i=1 Bi)c. The collection {Bi}i2N is pairwise disjoint, and since each Bi is the intersection

of two sets in D, using closeness under finite intersections, [i2NBi = [i2NAi 2 D. ⌅

Another may to state the previous theorem is to say that a Dynkin system is a �-algebra

if, and only if, it is a ⇡-system.

Theorem 2.3. If G ✓ 2X is a ⇡-system, then �(G) = �(G).

Proof. From Theorem 2.1, �(G) ✓ �(G) and from Theorem 2.2 if �(G) is a ⇡-system it is a

�-algebra. Since �(G) is the smallest �-algebra it must be that �(G) = �(G), so it suffices to

show that �(G) is a ⇡-system.

For any D 2 �(G), let DD = {A ✓ X : A \ D 2 �(G)}. First, we show that DD is

a Dynkin system. Note that X \ D = D, so X 2 DD. If A 2 DD, then A \ D 2 �(G).

A
c \D = (Ac [D

c)\D = (A\D)c \D = ((A\D)[D
c)c where A\D and D

c are disjoint.

Also, since D 2 �(G) so is D
c and A \D 2 �(G) by assumption, so ((A \D) [D

c)c 2 �(G).

Thus A
c 2 DD. Now, let Ai for i 2 N be pairwise disjoint with Ai \ D 2 �(G) and note

that {(Ai \ D)}i2N forms a disjoint collection. Thus U = [i2N(Ai \ D) = D \ [i2NAi and

[i2NAi 2 DD. Thus, DD is a Dynkin system.

Now, since G ✓ �(G) and since G is a ⇡-system, G ✓ DG, for all G 2 G. To see this, note

that for G 2 G and DG is as defined above, for any G
0 2 G, we have G

0 \G 2 G, since G is a

⇡-system. But since G ✓ �(G), G0 2 DG. But DG is a Dynkin system and consequently, by

definition �(G) ✓ DG, 8G 2 G.
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Thus, we have that if D 2 �(G) and G 2 G, G \D 2 �(G) and G ✓ DD (by definition of

DD). Then, �(G) ✓ DD implying that �(G) is a ⇡-system. ⌅

The following theorem shows that under some conditions, measures that coincide on some

generating class G coincide on �(G).

Theorem 2.4. Let (X, �(G)) be a measurable space and G a collection of subsets of X, such

that:

1. G is a ⇡-system,

2. there exists {Gj}j2N ✓ G with G1 ✓ G2 ✓ . . . such that [1

j=1Gj := limj!1 Gj = X

(the sequence {Gj}j2N is exhausting).

Then, if µ and v are measures that coincide on G and are finite for all Gj, µ(A) = v(A), for

all A 2 �(G).

Proof. For j 2 N let Dj = {A 2 �(G) : µ(A\Gj) = v(A\Gj)}. First, we show that Dj is a

Dynkin system.

1. X 2 Dj since µ(X \Gj) = µ(Gj) = v(Gj) = v(X \Gj) .

2. Let A 2 Dj. Note that Gj = (A \ Gj) [ (Ac \ Gj) and note that the two sets in

the union are disjoint. Since µ is a measure µ(Gj) = µ(A \ Gj) + µ(Ac \ Gj). But

µ(Ac\Gj) = µ(Gj �A), hence µ(Gj �A) = µ(Gj)�µ(A\Gj). Since µ and v coincide

in G we have that v(Gj) = µ(Gj) and since A 2 Dj we have that µ(A\Gj) = v(A\Gj).

Hence,

µ(Ac \Gj) = µ(Gj)� µ(Gj \ A) = v(Gj)� v(A \Gj) = v(Gj � A) = v(Gj \ A
c).

Thus, Ac 2 Dj.
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3. Let A1, A2, . . . be a disjoint collection in Dj.

µ(([i2NAi) \Gj) = µ([i2N(Ai \Gj)) =
1X

i=1

µ(Ai \Gj)

=
1X

i=1

v(Gj \ Ai) since Ai 2 Dj

= v([i2N(Gj \ Ai)) = v(Gj \ ([i2NAi))

and consequently, [i2NAi 2 Dj.

Since G is a ⇡-system, by Theorem 2.3 �(G) = �(G) and G ✓ Dj by definition of �(G), hence

�(G) ✓ Dj. But by construction Dj ✓ �(G) and we conclude that Dj = �(G). So, for all

A 2 �(G) and j = 1, 2, , . . . ,

µ(A \Gj) = v(A \Gj). (2.1)

By continuity of measures from below and noting that (A1 \G1) ✓ (A \G2) ✓ · · · , letting

j ! 1 in (2.1) we have for all A 2 �(G),

µ(A) = lim
j!1

µ(A \Gj) = lim
j!1

v(A \Gj) = v(A).

⌅

We take the following proven path to construct a measure on F . We start with a class

of subsets S of X such that F = �(S) and define a pre-measure µ on S. If S and µ satisfy

the requirements of Theorem 2.4, then µ will extend uniquely to F , provided we are able

to extend it from S to F . The result that provides the conditions and possibility for such

extension is known as Carathéodory’s Extension Theorem. Before stating this theorem we

need the following definition.

Definition 2.2. A nonempty collection S ✓ 2X of subsets of X is called a semi-ring if:

1. ; 2 S

28



2. A,B 2 S =) A \ B 2 S

3. For all A,B 2 S there exists m 2 N and {Sj}mj=1 2 S that is pairwise disjoint such

that B � A = [m
j=1Sj.

Remark 2.1. 1. S is a ⇡-system in view of condition 2.

2. Condition 3 says that the difference between two sets in a semi-ring can be expressed

as a finite partition of sets in the semi-ring.

3. A ring is a nonempty collection R ✓ 2X such that A,B 2 R =) A [ B 2 R and

A� B 2 R.

4. If A is an algebra, then for A,B 2 A we have that A \ B 2 A, A� B = A \ B
c 2 A.

Thus, an algebra is a ring.

5. If A 2 R then A�A = ; 2 R. Also, if A,B 2 R and noting that A\B = A� (A�B)

we have that A \ B 2 R. Now let A1 ✓ A, A1, A 2 R. A = A1 [ (A � A1) 2 R, so

every ring is a semi-ring.

It follows from these remarks that we have the following hierarchy of collections of algebras

A, rings R and semi-rings S, viz., A ✓ R ✓ S.

Definition 2.3. (Alternative) A semi-ring S ✓ 2X is a collection of subsets of X such that

1. ; 2 S

2. A,B 2 S =) A \B 2 S

3.’ For all A,A1 2 S =) A1 ✓ A then A has the representation A = [m
j=1Aj for {Aj}

pairwise disjoint.
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Theorem 2.5. (Carathéodory) Let S be a semi-ring of subsets of X and µ : S ! [0,1] be a

pre-measure. Then, µ has an extension to a measure µ on �(S). If there exists {Sj}j2N 2 S

with S1 ✓ S2 . . . such that Sj ! X as j ! 1 with µ(Sj) < 1, for all j, then the extension

is unique.

Proof. Step 1. We start by defining the set function µ
⇤ : 2X ! [0,1]. For any A ✓ X

define the collection of countable covers for A that are composed of sets in S by

C(A) = {{Sj}j2N ✓ S : A ✓ [
j2N

Sj}.

Since a semi-ring S does not necessarily contain X, it is possible that C(A) = ;. Now, define

µ
⇤(A) = inf

(
X

j2N

µ(Sj) : {Sj}j2N 2 C(A)

)
,

where inf ; := 1. Note that,

a) µ
⇤(;) = 0, by taking S1 = S2 = · · · = ;

b) A ✓ B implies that every cover for B is also covers A, i.e., C(B) ✓ C(A). Therefore,

µ
⇤(A) = inf

(
X

j2N

µ(Sj) : {Sj}j2N 2 C(A)

)
 inf

(
X

j2N

µ(Tj) : {Tj}j2N 2 C(B)

)
= µ

⇤(B).

c) Let An ✓ X for n 2 N and, without loss of generality, assume that µ(An) < 1 (that

is C(An) 6= ;). Choose ✏ > 0 and let {Snk}k2N 2 C(An) be such that
1X

k=1

µ(Snk)  µ
⇤(An) + ✏/2n.

Now, [
n2N

An ✓ [
n2N

[
k2N

Snk and by the definition of infimum

µ
⇤

✓
[

n2N
An

◆


X

n2N

X

k2N

µ(Snk)


1X

n=1

(µ⇤(An) + ✏/2n) =
1X

n=1

µ
⇤(An) + ✏.

Hence, µ⇤( [
n2N

An) 
P
n2N

µ
⇤(An).
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Since µ
⇤ satisfies properties a)-c) it is called an outer-measure.

Step 2. We now show that µ
⇤ extends µ (defined on S) to 2X. By this we mean that

µ
⇤(S) = µ(S) for S 2 S.

First, let SU = {S : S = [m
j=1Sj, Sj 2 S and m 2 N} be the collection of sets that can be

written as disjoint finite unions of elements of S and let µ̄(S) =
Pm

j=1 µ(Sj) for S 2 SU . Note

that the image of µ̄(S) is independent of the disjoint finite union used in its representation.

To see this, suppose S = [m
j=1Sj and S = [n

k=1Tk for m,n 2 N. Then, [m
j=1Sj = [n

k=1Tk

and Sj = Sj \ ([n
k=1Tk) = [n

k=1(Tk \ Sj) and Sj \ Tk 2 S, since a semi-ring is a ⇡-system

and since µ is a pre-measure (additive) on S. µ(Sj) =
Pn

k=1 µ(Tk \ Sj). Given that Tk are

disjoint, then
mX

j=1

µ(Sj) =
nX

k=1

mX

j=1

µ(Tk \ Sj) =
nX

k=1

µ(Tk).

This shows that the set function µ̄ can be unambiguously defined on SU . We now show

that SU is closed under (arbitrary) finite intersections and unions. If A,B 2 SU then

A \ B = ([m
j=1Sj) \ ([n

k=1Tk) where the two unions are over disjoint sets. Then, A \ B =

[m
j=1 [n

k=1 (Sj \ Tk) 2 SU , since Sj \ Tk 2 S, for all j, k. Also, since, Sj � Tk 2 S

A� B = [m
j=1Sj � [n

k=1Tk = [m
j=1 \n

k=1 (Sj \ T
c
k ) = [m

j=1 \n
k=1 (Sj � Tk) 2 SU

where the unions are over disjoint sets. Lastly, we conclude that

A [B = (A� B) [ (A \ B) [ (B � A) 2 SU

where all sets in the union are disjoint.

We now show that µ̄ is �-additive on SU , i.e., a pre-measure. Let {Tk}k2N ✓ SU such

that {Tk}k2N is pairwise disjoint and T := [
k2N

Tk 2 SU . Since Tk 2 SU , by definition there

exists {Sj}j2N 2 S and a sequence of 0 = n0  n1  . . . of integers such that

Tk = Sn(k�1)+1 [ · · · [ Snk
for k 2 N,
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where the collection {Sn(k�1)+1,··· ,Snk
} is disjoint. Let Ul = [

j2Jl
Sj for disjoint index sets

J1, . . . , JN such that [N
l=1Jl = N, and note that Ul 2 S. Now, T = [

k2N
Tk = [N

l=1Ul and

µ̄(T ) =
NX

l=1

µ(Ul) by definition of µ̄

=
NX

l=1

X

j2Jl

µ(Sj) by µ being a pre-measure

=
X

k2N

nkX

j=n(k�1)+1

µ(Sj) =
X

k2N

µ̄(Tk).

Now, observe that for all S 2 S and all {Sj}j2N 2 C(S)

µ(S) = µ̄(S) = µ̄

✓
[
j2N

(Sj \ S)

◆


X

j2N

µ̄(Sj \ S) since µ̄ is a pre-measure and sub-additive

=
X

j2N

µ(Sj \ S) 
X

j2N

µ(Sj).

Taking the infimum over C(S), we have µ(S)  µ
⇤(S). Now, taking (S, ;, . . . ) 2 C(S) gives

µ
⇤(S)  µ(S). Combining the two inequalities, we have

µ
⇤(S) = µ(S) for all S 2 S.

Step 3. We will show that S ✓ A⇤ where

A⇤ = {A ✓ X : µ⇤(Q) = µ
⇤(Q \ A) + µ

⇤(Q \ A
c), 8 Q ✓ X}. (2.2)

Let S, T 2 S. Since S is a semi-ring and T = (T \ S) [ (T \ S
c) = (T \ S) [ (T � S) =

(T \ S) [ {[m
j=1Sj} with {Sj}mj=1 disjoint. Since µ is a pre-measure on S we have

µ(T ) = µ(T \ S) +
mX

j=1

µ(Sj).

Since µ⇤ and µ coincide on S and T \S 2 S, and since µ⇤ is sub-additive we have µ⇤(T�S) =

µ
⇤([m

j=1Sj) 
Pm

j=1 µ
⇤(Sj) =

Pm
j=1 µ(Sj). Consequently,

µ(T ) = µ(T \ S) +
mX

j=1

µ(Sj) � µ
⇤(T \ S) + µ

⇤(T � S). (2.3)
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Take Q ✓ X and {Tj}j2N 2 C(Q). Using µ
⇤(Tj) = µ(Tj) and summing (2.3) over j taking

T = Tj

X

j2N

µ
⇤(S \ Tj) +

X

j2N

µ
⇤(Tj � S) 

X

j2N

µ
⇤(Tj).

Sub-additivity and monotonicity of µ⇤ together with Q ✓ [j2NTj give

µ
⇤(Q \ S) + µ

⇤(Q� S)  µ
⇤([j2N(Tj \ S)) + µ

⇤([j2N(Tj � S))


X

j2N

µ
⇤(Tj) =

X

j2N

µ(Tj).

Taking the infimum over C(Q), µ⇤(Q \ S) + µ
⇤(Q � S)  µ

⇤(Q). The reverse inequality

follows easily from sub-additivity of µ⇤. Consequently, if S 2 S we have that S 2 A⇤.

Step 4. We show that A⇤ is a �-algebra and µ
⇤ is a measure on (X,A⇤).

1. For all Q ✓ X, Q \X = Q and Q \Xc = ;. Since µ
⇤(;) = 0 we have that X 2 A⇤.

2. For all Q ✓ X suppose A 2 A⇤, i.e.

µ
⇤(Q) = µ

⇤(Q \ A) + µ
⇤(Q \ A

c).

But by symmetry of the right hand side of the equality due to (Ac)c = A, we have A
c 2 A⇤.

3. If A,A0 2 A⇤, for all Q ✓ X

µ
⇤(Q \ (A [ A

0)) + µ
⇤(Q� (A [ A

0))

= µ
⇤(Q \ (A [ (A0 � A))) + µ

⇤(Q� (A [ A
0))

= µ
⇤((Q \ A) [ [Q \ (A0 � A)]) + µ

⇤(Q� (A [ A
0))

 µ
⇤(Q \ A) + µ

⇤(Q \ (A0 � A)) + µ
⇤(Q� (A [ A

0))

using subadditivity of µ⇤.

= µ
⇤(Q \ A) + µ

⇤((Q� A) \ A
0) + µ

⇤((Q� A)� A
0)

= µ
⇤(Q \ A) + µ

⇤(Q� A) = µ
⇤(Q)

using the defining expression for A⇤ twice, once for Q� A and once for Q.
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Thus,

µ
⇤(Q \ (A [ A

0)) + µ
⇤(Q� (A [ A

0))  µ
⇤(Q). (2.4)

Now, Q = {Q \ (A [ A
0)} [ {Q \ (A [ A

0)c}. By sub-additivity of µ⇤

µ
⇤(Q)  µ

⇤(Q \ (A [ A
0)) + µ

⇤(Q� (A [ A
0)). (2.5)

Combining inequalities (2.4) and (2.5) we conclude that µ⇤(Q) = µ
⇤(Q\ (A[A

0)) +µ
⇤(Q�

(A [ A
0)) and consequently A⇤ is closed under finite unions.

If A \ A
0 = ;, then the equality [µ⇤(Q \ A) + µ

⇤(Q � A) = µ
⇤(Q)], becomes for Q :=

(A [ A
0) \ P , P ✓ X and

µ
⇤((A [ A

0) \ P ) = µ
⇤(P \ A) + µ

⇤(P \ A
0), 8P ✓ X.

By induction for a disjoint collection Aj 2 A⇤,

µ
⇤(([m

j=1Aj) \ P ) =
mX

j=1

µ
⇤(P \ Aj).

In particular, if A = [j2NAj, where {Aj} is a disjoint collection,

µ
⇤(P \ A) � µ

⇤(P \ ([m
j=1Aj)) =

mX

j=1

µ
⇤(P \ Aj).

Since [m
j=1Aj 2 A⇤ we have that

µ
⇤(P ) = µ

⇤(P \ ([m
j=1Aj)) + µ

⇤(P � [m
j=1Aj)

� µ
⇤(P \ ([m

j=1Aj)) + µ
⇤(P � A)

=
mX

j=1

µ
⇤(P \ Aj) + µ

⇤(P � A).

Let m ! 1, to conclude

µ
⇤(P ) �

1X

j=1

µ
⇤(P \ Aj) + µ

⇤(P � A) = µ
⇤(P \ A) + µ

⇤(P � A)
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The reverse inequality follows directly from sub-additivity of µ⇤. Thus,

µ
⇤(P ) = µ

⇤(P \ A) + µ
⇤(P � A), 8P ✓ X.

Consequently, A = [j2NAj where the collection {Aj}j2N is pairwise disjoint is in A⇤. Con-

sequently, A⇤ is a Dynkin system that is closed under finite unions. By DeMorgan Laws, A⇤

is closed under finite intersections, so by Theorem 2.2, A⇤ is a �-algebra.

Now, we show that µ
⇤ is a measure on �(S). From above, S ✓ A

⇤, so �(S) ✓ A⇤. From

above, µ⇤ is a measure on A⇤ and on �(S), which extends µ on S. By Theorem 2.4, any two

extensions µ
⇤ and v

⇤ of µ coincide on �(S). ⌅

Remark 2.2. If E 2 A⇤ and µ
⇤(E) = 0 then, if B ✓ E, we have B 2 A⇤ and µ

⇤(B) = 0. To

see this, we first show that µ⇤(B) = 0, assuming that B is µ
⇤ measurable. For all B,E ✓ X,

such that B ✓ E, µ⇤(B)  µ
⇤(E). Since, µ⇤(E) = 0, it must be that µ⇤(B) = 0. Let Q ✓ X

(Q arbitrary), we want to show that µ⇤(Q) = µ
⇤(Q\B)+µ

⇤(Q\B
c). Now Q\B ✓ B =)

µ
⇤(Q\B)  µ

⇤(B) = 0, thus µ⇤(Q\B) = 0. Q\B
c ✓ Q =) µ

⇤(Q\B
c)  µ

⇤(Q). Hence,

µ
⇤(Q) � µ

⇤(Q \ B
c) + µ

⇤(Q \ B). By sub-additivity µ
⇤(Q)  µ

⇤(Q \ B
c) + µ(Q \ B) and

thus µ
⇤(Q) = µ

⇤(Q \ B
c) + µ

⇤(Q \ B) and B 2 A⇤. Every subset of a µ
⇤ measurable set of

measure zero is µ
⇤-measurable, and has measure zero.

In what follows we let Rn = (a1, b1]⇥ (a2, b2]⇥ · · ·⇥ (an, bn] be a half-open rectangle in

Rn with (ai, bi] = ; if bi  ai and ai, bi 2 R. Let In be the collection of all such rectangles

R
n.

Theorem 2.6. In for n 2 N is a semi-ring.

Proof. Let I1 = {(ai, bi] : ai  bi where ai, bi 2 R} and consider the following cases:

1. If bi = ai, (ai, bi] = ;
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2. (ai, bi] \ (aj, bj] =

8
>>><

>>>:

; 2 I1

(aj, bi] 2 I1

(ai, bj] 2 I1

(ai, bi] 2 I1

3. If (a1, b1] ✓ (a2, b2] then (a2, b2] = (a2, a1][ (a1, b1][ (b1, b2], where the members in the

union are all disjoint.

Hence, I1 is a semi-ring.

Finally, suppose In is a semi-ring, we will verify that In+1 is a semi-ring. First, note

that In+1 = In ⇥ I1 and since ; 2 In we immediately conclude that ; 2 In+1. Now, the

intersection of two rectangles in In+1 is given by

(Rn ⇥R1) \ (In ⇥ I1) = (Rn \ In)⇥ (R1 \ I1)

where the righthand side of the equality is an element of In+1.

Now,

(Rn ⇥R1)� (In ⇥ I1) = (Rn ⇥R1) \ (In ⇥ I1)
c
.

Note that,

(In ⇥ I1)
c = {(x, y) : x 62 In, y 62 I1, or x 2 In and y 62 I1, or x 62 In and y 2 I1}

= (Icn ⇥ I
c
1) [ (In ⇥ I

c
1) [ (Icn ⇥ I1)

where the components of the union are disjoint. Thus,

(Rn ⇥R1)� (In ⇥ I1) = [(Rn ⇥R1) \ (Icn ⇥ I
c
1)] [ [(Rn ⇥R1) \ (In ⇥ I

c
1)]

[ [(Rn ⇥R1) \ (Icn ⇥ I1)]

= [(Rn � In)⇥ (R1 � I1)] [ [(Rn \ In)⇥ (R1 � I1)]

[ [(Rn � In)⇥ (R1 \ I1)].

By the induction assumption, Rn�In and R1�I1 can be expressed as finite unions of disjoint

rectangles, which completes the proof. ⌅
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Definition 2.4. Let �n : In ! [0,1) be defined as �n(Rn) =
Qn

j=1(bj�aj) whenever bj > aj

for j = 1, · · · , n and �
n(Rn) = 0 if bj  aj for some j.

Theorem 2.7. �
n is a pre-measure on In.

Proof. We need only verify conditions a), b) and c”) from Theorem 1.6 and Remark 1.4.

First, let’s consider n = 1. a) If b  a then �
1(;) = 0. b) Let I = (a, b] and choose a < c < b.

Then, I = (a, c] [ (c, b].

�
1((a, c]) + �

1((c, b]) = (c� a) + (b� c) = b� a = �
1(I).

c”) Let {Ij = (aj, bj]}j2N be such that (a1, b1] ◆ (a2, b2] ◆ · · · and Ij # ; as j ! 1 or equiv-

alently, \1

j=1(aj, bj] = ;. Thus, we must have limj!1(bj�aj) = 0, that is limj!1 �
1(Ij) = 0.

Now, let’s consider n = 2. a) If bi  ai for i = 1 or i = 2 then �
2(;) = 0. b) Let

I = (a1, b1]⇥(a2, b2] and choose a2 < c2 < b2. Then, I = ((a2, c2]⇥(a1, b1])[((c2, b2]⇥(a1, b1])

and the component sets of the union are disjoint.

�
2((a2, c2]⇥ (a1, b1]) + �

1((c2, b2]⇥ (a1, b1]) = (c2 � a2)(b1 � a1) + (b2 � c2)(b1 � a1)

= (b1 � a1)(b2 � a2) = �
2(I).

c) Let {Ij = (aj, bj] ⇥ (↵j, �j]}j2N be such that I1 ◆ I2 ◆ · · · and Ij # ; as j ! 1 or

equivalently, \1

j=1Ij = ;. Thus, we must have either limj!1(bj�aj) = 0 or limj!1(�j�↵j) =

0. Thus,

�
2(Ij) = (�j � ↵j)(bj � aj) ! 0 as j ! 1.

The cases for n = 3, 4, · · · follow similarly. ⌅

Theorem 2.8. There exists a unique extension of �n from In to a mesure on the Borel sets

B(Rn). This extension is denoted by �
n and is called Lebesgue measure.

Proof. We know that B(Rn) = �(In). Since, (�k, k]n = ⇥n
1 (�k, k] " Rn is an exhaust-

ing sequence of n-cubes (intervals) and since �
n((�k, k]n) = (2k)n < 1, all conditions of

Carathéodory’s Theorem are fulfilled. ⌅
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