
Let (R, �(I1) = B(R)) be a measurable space. From Theorem 1.4 if we set S = (0, 1] and

consider I = I1 \ S = {(0, 1] \ A : A 2 I1} then �(I1 \ (0, 1]) = B(R)\ (0, 1] is a �-algebra

associated with (0, 1]. Thus, if we define B(0,1] := �(I1 \ (0, 1]), then

((0, 1],B(0,1] := �(I))

is a measurable space where I = {(a, b] : 0  a  b  1}. Define the set function � : I !

[0, 1] such that �(;) = 0 and �((a, b]) = b� a.

If � is �-additive on I it is a pre-measure on I and extends uniquely to B(0,1].

Theorem 2.9. � is �-additive on I.

Proof. First, we show that � is finitely additive on I. Let (a, b] 2 I and (a, b] = [n
i=1(ai, bi]

with a1 = a, a2 = b1, a3 = b2, . . . , an = bn�1, bn = b. Then,
nX

i=1

�((ai, bi]) = (b1 � a1) + (b2 � a2) + · · ·+ (bn � an)

= ( 6 a2 � a) + ( 6 a3� 6 a2) + . . . (b� 6 an) = b� a

= �((a, b]) = �([n
i=1(ai, bi]).

Therefore, � is finitely additive.

We need to show that for (a, b] = [1

i=1(ai, bi], where {(ai, bi]}i2N is a pairwise disjoint

collection we have b� a =
P

1

i=1(bi � ai).

For any n, let {(ai, bi]}ni=1 be a pairwise disjoint collection. Then, we can write

(a, b]� [n
i=1(ai, bi] = [m

j=1Ij,

where the last set is the finite union of pairwise disjoint intervals. Thus, since � is finitely

additive on I

�((a, b]) =
nX

i=1

�((ai, bi]) +
mX

i=1

�(Ij) �
nX

i=1

�((ai, bi]).

Thus, �((a, b]) = b� a � limn!1

Pn
i=1 �((ai, bi]) =

P
1

i=1 �((ai, bi]).
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Now, for the reverse inequality (b� a 
P

1

i=1 �((ai, bi])) let 0 < ✏ < b� a and note that

(a+ ✏, b] ✓ [a+ ✏, b] ✓ [1

i=1(ai, bi +
1

2i
✏)

✓ [n
i=1(ai, bi +

1

2i
✏) for some n 2 N by the Heine-Borel Theorem

✓ [n
i=1(ai, bi +

1

2i
✏].

But �((ai, bi] = �((ai, bi +
1
2i ✏]�

1
2i ✏. Hence,

�((a+ ✏, b]) 
nX

i=1

�((ai, bi +
1

2i
✏]) by subadditivity

=
nX

i=1

(bi � ai +
1

2i
✏)

b� a� ✏ 
nX

i=1

(bi � ai) + ✏

nX

i=1

1

2i
or

b� a 
nX

i=1

(bi � ai) + ✏

 
1 +

nX

i=1

1

2i

!
.

The last inequality gives b � a 
P

1

i=1(bi � ai). Hence, combining with the previously

obtained reverse inequality we have b� a =
P

1

i=1(bi � ai). ⌅

Since � is �-additive (pre-measure) on I (a semi-ring), using Carathéodory’s theorem,

we can state that

((0, 1],B(0,1] := �(I),�⇤)

is a measure space, where �⇤ is the unique extension of � from I to �(I). In addition,

0  �
⇤((a, b])  1, �⇤((0, 1]) = 1. Thus, we have constructed a specific probability space.

We will now construct a probability measure on (R,B).

Definition 2.5. Let F : R ! [0, 1] be a function with the following properties:

1. lim
h#0

F (x+ h) := F (x+) = F (x) for all x 2 R and h > 0,

2. F (x)  F (y) if x < y,
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3. lim
x!1

F (x) = 1, lim
x!�1

F (x) = 0.

F is called a proper distribution function (df). If only conditions 1 and 2 are met, F is called

a distribution function or a defective df .

Remark 2.3. 1. Let F (x�) := lim
h#0

F (x�h) for h > 0. The left jump of F at x is defined as

LJF (x) = F (x)�F (x�) and the right jump of F at x is defined as RJF (x) = F (x+)�F (x).

The jump of F at x is defined as JF (x) = LJF (x) + RJF (x) = F (x+) � F (x�). Since F

satisfies condition 2, RJF (x) = 0 for all x 2 R and JF (x) = F (x) � F (x�). In addition,

since F is nondecreasing JF (x) � 0. If JF (x) = 0 then F is continuous at x.

2. For any two x  y 2 R we have that 0  F (y)� F (x)  1

Definition 2.6. The left (generalized) inverse of a df F , denoted by F
�(y), is defined as

F
�(y) := inf{x : F (x) � y for y 2 (0, 1]}.

Theorem 2.10. Let S(y) = {x : F (x) � y} for y 2 (0, 1]. Then,

1. S(y) is a closed set.

2. F
�(y) > t () y > F (t) or F

�(y)  t () y  F (t).

Proof. 1. If sn 2 S(y) and sn # s, by right continuity of F we have y  F (sn) # F (s). Thus,

y  F (s) and s 2 S(y). If sn 2 S(y) and sn " s, we have y  F (sn) " F (s�)  F (s). Thus,

y  F (s) which implies that s 2 S(y). Consequently, by a characterization of closed sets,

S(y) is closed.

2. Since S(y) is closed, its infimum F
�(y) 2 S(y) and therefore F (F�(y)) � y. t <

F
�(y) =) t 62 S(y) =) F (t) < y. The reverse implications all apply. ⌅

Theorem 2.11. Let A ✓ R and SF (A) = {y 2 (0, 1] : F�(y) 2 A}. If A 2 �(I1) = B(R),

then SF (A) 2 B(0,1] = �(I1) \ (0, 1].
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Proof. Let G = {A ✓ R : SF (A) 2 B(0,1]}. Note that G contains intervals of the type (a, b]

since

SF ((a, b]) = {y 2 (0, 1] : F�(y) 2 (a, b]} = {y 2 (0, 1] : a < F
�(y)  b}

= {y 2 (0, 1] : F (a) < y  F (b)} = (F (a), F (b)] 2 B(0,1].

Note that since I1 ✓ G, if G is a �-algebra, �(I1) = B ✓ G. Hence, A 2 B implies

SF (A) 2 B(0,1]. Hence, we now show that G is a �-algebra associated with R.

1. SF (R) = {y 2 (0, 1] : F�(y) 2 R} = (0, 1] 2 B(0,1], thus R 2 G.

2. By definition of SF

SF (A
c) = {y 2 (0, 1] : F�(y) 2 A

c}

= {y 2 (0, 1] : F�(y) 2 A}c = (SF (A))
c 2 B(0,1]

where the last inclusion statement follows if A 2 G and the fact that B(0,1] is a �-algebra.

3. If {An}n2N 2 G we have by definition of SF

SF ( [
n2N

An) = {y 2 (0, 1] : F�(y) 2 [
n2N

An}

= [
n2N

{y 2 (0, 1] : F�(y) 2 An} = [
n2N

SF (A) 2 B(0,1]

where the last inclusion statement follows since An 2 G and the fact that B(0,1] is a

�-algebra.

⌅

Definition 2.7. Let A 2 B and define PF (A) = �(SF (A)) where � is the Lebesgue measure

on B(0,1].

Remark 2.4. It is easy to verify that PF is a probability measure. First, note that

PF (;) = �(SF (;)) = �({y 2 (0, 1] : F�(y) 2 ;}) = �(;) = 0.
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Second, if {An}n2N is a pairwise disjoint collection of sets in B then

PF ( [
n2N

An) = �(SF ( [
n2N

An)) = �({y 2 (0, 1] : F�(y) 2 [
n2N

An}) = �( [
n2N

SF (An))

=
1X

n=1

�(SF (An)) =
1X

n=1

PF (An).

where the next to last equality follows from the fact that � is a measure and {SF (An)}n2N is

a pairwise disjoint collection.

Its df can be obtained by noting that

PF ((�1, x]) = �(SF ((�1, x])) = �({y 2 (0, 1] : F�(y) 2 (�1, x]})

= �({y 2 (0, 1] : y  F (x)}) = �((0, F (x)]) = F (x)

This last equality will be used throughout the notes. It is fundamental to our study.

If we take (X,F , µ) to be a probability space (⌦,F , P ), (E, E) := (R,B) and X : ⌦ ! R

be a random variable, then Theorem 1.18 establishes that

PX(B) = P (X�1(B)) = (P �X�1)(B) for all B 2 B is a measure on (R,B).

We call PX the distribution measure (or distribution law) of X.

42



Chapter 3

Integration

3.1 Simple functions

In many cases it is convenient to use �1 or 1 in calculations. In these cases we work

with the extended real line, i.e., R̄ := R [ {�1} [ {1}. Functions that take values in R̄

are called numerical functions. The Borel sets associated with the extended real line are

denoted by B̄ := B(R̄) and are defined as the collection of sets B̄ such that B̄ = B[S where

B 2 B(R) and S 2 {;, {�1}, {1}, {�1,1}}. It is easy to verify that B̄ is a �-algebra

and that B(R) = R \ B(R̄). In addition, B̄ is generated by a collection of sets of the form

[a,1] (or (a,1], [�1, a], [�1, a)) where a 2 R.

Let (X,F) and (R,B) be measurable spaces. Since the indicator function of a measurable

set is a measurable function, it follows from Theorem 1.19 that if {Aj}nj=1 with n 2 N is a

pairwise disjoint collection in F and aj 2 R for j = 1, · · · , n, the linear combination

f(x) =
nX

i=1

ajIAj(x) (3.1)

is a F/B-measurable function.

Definition 3.1. A real-valued function on a measurable space (X,F) is said to be simple if

it has the representation (3.1). A standard representation of a simple function is given by

f(x) =
nX

j=0

ajIAj(x) with a0 = 0 and A0 = ([n
j=1Aj)c. (3.2)
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Remark 3.1. 1. If f : (X,F) ! (R,B) is measurable and takes on finitely many values,

say {aj}nj=1 then it is a simple function. To see this, note that that Bj is measurable,

since Bj = {x : f(x) = aj} = {x : f(x)  aj} � {x : f(x) < aj} and f is measurable.

Also, note that the collection {Bj}nj=1 is pairwise disjoint. Hence,

f(x) =
nX

j=1

ajIBj(x) =
nX

j=1

ajIf=aj(x). (3.3)

Conversely, if X is simple it takes on finitely many values.

2. Representation (3.2) is not unique, but a simple function has at least one representation

such as (3.2) .

Theorem 3.1. Let f : (X,F) ! (R,B) and g : (X,F) ! (R,B) be simple functions. Then,

f ± g, cf for c > 0, fg, f+ = max{f, 0}, f� = �min{f, 0} and |f | are simple functions.

Proof. Homework. ⌅

3.2 Integral of simple functions

Definition 3.2. Let f : (X,F , µ) ! (R,B) be a non-negative simple function with standard

representation (3.2). The integral of f with respect to µ, denoted by
R
X
fdµ, is given by

Z

X

fdµ :=
nX

j=0

ajµ(Aj) 2 [0,1]. (3.4)

By definition aj 2 R for j = 0, 1, . . . , n, but since µ takes values in [0,1] we can have
R
X
fdµ = 1. If µ is a finite measure, e.g., a probability measure P , then it must be that

R
X
fdµ 2 R. When X : ⌦ an outcome space, f := X is a random variable and µ := P is

a probability measure we write EP (X) :=
R
⌦ XdP and call it the expectation of X given

probability P . It will be convenient, in the case of simple functions, to write Iµ(f) :=
R
X
fdµ.
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Remark 3.2. Since the representation (3.2) is not unique, for uniqueness, the definition

of integral requires that it be invariant to the representation used. To see this, suppose that

f(x) =
Pn

j=0 ajIAj(x) =
Pm

k=0 bkIBk
(x). Then, X = [n

j=0Aj = [m
k=0Bk and

Aj = [m
k=0(Aj \Bk), Bk = [n

j=0(Aj \ Bk).

Since µ finitely additive and the sets in the above unions are disjoint we have that

nX

j=0

ajµ(Aj) =
nX

j=0

aj

mX

k=0

µ(Aj \Bk) =
nX

j=0

mX

k=0

ajµ(Aj \ Bk).

Similarly,
mX

k=0

bkµ(Bk) =
mX

k=0

bk

nX

j=0

µ(Aj \ Bk) =
nX

j=0

mX

k=0

bkµ(Aj \ Bk).

But aj = bk whenever Aj \ Bk 6= ;, and when Aj \ Bk = ;, µ(Aj \ Bk) = 0. Thus,

ajµ(Aj \Bk) = bkµ(Aj \ Bk) for all pairs (j, k), and Iµ(f) is unique.

Theorem 3.2. Let f : (X,F , µ) ! (R,B) and g : (X,F , µ) ! (R,B) be simple non-negative

functions. Then,

a)
R

X

cfdµ = c
R

X

fdµ for c � 0 and
R

X

IEdµ = µ(E) for E 2 F .

b)
R

X

(f + g)dµ =
R

X

fdµ+
R

X

gdµ,

c) If for E 2 F , we have �(E) =
R

X

fIEdµ, then � is a measure on F .

d) f  g =)
R

X

fdµ 
R

X

gdµ.

Proof. For a) note that c � 0 =) cf � 0 with representation cf(x) =
Pn

j=0 cajIAj(x).

Therefore,
R
X
cfdµ =

Pn
j=0 cajµ(Aj) = c

Pn
j=0 ajµ(Aj) = c

R
X
fdµ. For the second part,

note that IE(x) = IE(x) + 0IEc(x). Hence,
R

X

IEdµ = µ(E).

For b) let f(x) =
Pn

j=0 ajIAj(x) and g(x) =
Pm

k=0 bkIBk
(x). Then, f(x) + g(x) =

Pn
j=0

Pm
k=0(aj + bk)IAj\Bk

(x) with (Aj \ Bk) \ (Aj0 \ Bk0) = ; whenever (j, k) 6= (j0, k0).
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Then,
Z

X

(f + g) dµ =
nX

j=0

mX

k=0

(aj + bk)µ(Aj \Bk)

=
nX

j=0

aj

mX

k=0

µ(Aj \Bk) +
mX

k=0

bk

nX

j=0

µ(Aj \ Bk)

=
nX

j=0

ajµ(Aj) +
mX

k=0

bkµ(Bk),

since X is the union of both {Aj} and {Bk}. Then, by definition
R
X
(f + g)dµ =

R
X
fdµ +

R
X
gdµ.

For c) note that f(x)IE(x) =
Pn

j=0 ajIAj\E(x). From b) and a),

�(E) =

Z

X

fIEdµ =
nX

j=0

aj

Z

⌦

IAj\E(x)dµ =
nX

j=0

ajµ(Aj \ E).

But µ(Aj\E) is a measure, and we have expressed �(E) as a linear combination of measures

on F , hence � is a measure on F .

For d) write g = f + (g � f). Note that g � f is simple and non-negative since g � f .

Hence, Iµ(g) = Iµ(f) + Iµ(g � f) � Iµ(f). ⌅

3.3 Integral of non-negative functions

We start with the following fundamental theorem.

Theorem 3.3. Let f(!) : (⌦,F) ! (R̄, B̄) be a non-negative measurable function. Then,

there exists a sequence 'n(!) : (⌦,F) ! (R,B) of simple non-negative functions such that:

1. 'n(!)  'n+1(!), for all ! 2 ⌦ and n 2 N

2. lim
n!1

'n(!) = f(!), for all ! 2 ⌦.

Proof. 1. For each n = 1, 2, . . . define the sets

Ek,n =

(�
! 2 ⌦ : k

2n  f(!) < k
2n + 1

2n

 
= f

�1([ k
2n ,

k
2n + 1

2n )) for k = 0, 1, . . . , n2n � 1

{! 2 ⌦ : f(!) � n} = f
�1([n,1]) for k = n2n.
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For each n, the sets {Ek,n : k = 0, 1, . . . , n2n} are disjoint by construction, belong to F since

f is measurable and [n2n
k=0Ek,n = ⌦. Now, let

'n(!) =
n2nX

k=0

k

2n
IEk,n

(!).

Fix ! 2 ⌦ and for any n 2 N we note that ! 2 Ek0,n for some k0. By definition

'n(!) =

(
k0
2n if k0 = 0, 1, · · · , n2n � 1

n if k0 = n2n.

First, let k0 2 {0, 1, · · · , n2n�1} and consider n+1. The lower bound on [ k02n ,
k0
2n+

1
2n ) must co-

incide with k
2n+1 , which gives k = 2k0. Thus, Ek,n+1 = E2k0,n+1 = f

�1
�
[ 2k0
2n+1 ,

2k0
2n+1 +

1
2n+1 )

�
=

f
�1
�
[ k02n ,

k0
2n + 1

2n+1 )
�

and

Ek+1,n+1 = E2k0+1,n+1 = f
�1

✓
[
k0

2n
+

1

2n+1
,
k0

2n
+

2

2n+1
)

◆
= f

�1

✓
[
k0

2n
+

1

2n+1
,
k0

2n
+

1

2n
)

◆
.

Consequently, Ek0,n = Ek,n+1 [ Ek+1,n+1 = E2k0,n+1 [ E2k0+1,n+1. If ! 2 E2k0,n+1 then

'n+1(!) =
2k0
2n+1 and 'n+1(!)� 'n(!) =

2k0
2n+1 � k0

2n = 0. Alternatively, if ! 2 E2k0+1,n+1 then

'n+1(!) =
2k0+1
2n+1 and 'n+1(!) � 'n(!) =

2k0+1
2n+1 � k0

2n = 1
2n+1 > 0. Consequently, if ! 2 Ek0,n

then 'n+1(!)� 'n(!) � 0.

Second, if k0 = n2n then Ek0,n = f
�1([n,1]). Now, if ! 2 f

�1([n+1,1]) then 'n+1(!) =

n + 1 and 'n(!) = n. Consequently, 'n+1(!) � 'n(!) = 1 > 0. If ! 2 f
�1([n, n + 1]) then

'n(!) = n and 'n+1(!) = k
2n+1 if ! 2 f

�1([ k
2n+1 ,

k
2n+1 + 1

2n+1 )). Setting the lower bound

of the interval equal to n gives k = n2n+1 and 'n+1(!) = n if ! 2 f
�1([n, n + 1

2n+1 )),

giving 'n+1(!) � 'n(!) = 0. If ! 2 f
�1([n + 1

2n+1 , n + 2
2n+1 )) then 'n+1(!) = n2n+1+1

2n+1

and consequently 'n+1(!) � 'n(!) = 1
2n+1 > 0. Continuing in this fashion for subsequent

sub-intervals of [n, n+ 1] gives 'n+1(!)� 'n(!) � 0.

2. From item 1, we have that '1(!)  '2(!)  · · ·  f(!) for all ! 2 ⌦. Hence, lim
n!1

'n(!) =

sup
n2N

'n(!). But 0  f(!) � 'n(!)  1
2n and taking limits as n ! 1 we have f(!) =

lim
n!1

'n(!) = sup
n2N

'n(!). ⌅
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Definition 3.3. Let f : (X,F , µ) ! (R̄, B̄) be a non-negative measurable function. The

integral of f with respect to µ is given by
Z

X

fdµ := sup
'

Z

X

'(x)dµ := sup
'

Iµ(') 2 [0,1], (3.5)

where the sup is taken over all simple functions ' which are non-negative satisfying '(x) 

f(x) for all x 2 X.

Remark 3.3. If f is a non-negative simple function
R
X
fdµ = Iµ(f).

Theorem 3.4. (Beppo-Levi Theorem) Let (X,F , µ) be a measure space and {fj}j2N be

an increasing sequence of non-negative measurable functions fj : (X,F) ! (R̄, B̄). Then

f = sup
j2N

fj is a non-negative measurable function and

Z

X

fdµ :=

Z

X

sup
j2N

fjdµ = sup
j2N

Z

X

fjdµ.

Proof. That f is a non-negative measurable function follows from Theorem 1.20. Note that

if g and h are non-negative measurable functions, we have by definition that
Z

X

gdµ := sup
'

Z

X

'dµ where '  g, ' a simple function.

But since g  h, Z

X

gdµ  sup
'

Z

X

'dµ =

Z

X

hdµ where '  h.

Now, fj  f := sup
j2N

fj. By the monotonicity of integrals, which we just established,

Z

X

fjdµ 
Z

X

fdµ.

Taking sup
j2N

on both sides gives sup
j2N

R
X
fjdµ 

R
X
fdµ.

Now, we establish the reverse inequality, i.e., sup
j2N

R
X
fjdµ �

R
X
fdµ. Let '(x) be a simple

function such that '  f . If we can show that

Iµ(') =

Z

X

'dµ  sup
j2N

Z

X

fjdµ (3.6)
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we will have the desired inequality since we can take sup over all simple functions on both

sides of (3.6) to give

sup
'

Z

X

'dµ :=

Z

X

fdµ  sup
j2N

Z

X

fjdµ.

Let ' be a simple nonnegative function such that '  f . Since f(x) := sup
j2N

fj(x), for every

x 2 X and ✏ 2 (0, 1), there exists N(x,✏) such that

fj(x) � ✏'(x) whenever j � N(x,✏).

Now, if Aj = {x : fj(x) � ✏'(x)} we note that the sets Aj increase as j ! 1 since

f1  f2 · · · . Furthermore, these sets are measurable by measurability of fj and '. By

definition of Aj

✏IAj(x)'(x)  IAj(x)fj(x)  fj(x). (3.7)

Since ' is a simple function it has a standard representation '(x) =
Pm

i=0 yiIBi(x) and

✏IAj(x)
mX

i=0

yiIBi(x) = ✏

mX

i=0

yiIBi\Aj(x).

Thus, the integral of the simple function in this expression is given by ✏
Pm

i=0 yiµ(Bi \ Aj).

By monotonicity of integrals and using (3.7) we have

✏

mX

i=0

yiµ(Bi \ Aj) 
Z

X

fjdµ  sup
j2N

Z

X

fjdµ.

Since '  f , the collection {Aj} grows toX as j ! 1. Thus, by the fact that µ is continuous

from below

µ(Bi \ Aj) " µ(Bi \X) = µ(Bi) as j ! 1

and

✏

mX

i=0

yiµ(Bi) = ✏

Z

X

'dµ  sup
j2N

Z

X

fjdµ.

Now, just let ✏ be arbitrarily close to 1 to finish the proof. ⌅
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Remark 3.4. 1. If we take fj = 'j where 'j are non-negative simple functions and

f = sup
j
'j, then

Z

X

fdµ = sup
j2N

Z

X

'jdµ.

Note that sup can be replaced with limj!1.

2. If E 2 F , then IE(x)f(x) is a non-negative measurable function if f � 0. We define

Z

E

fdµ =

Z

X

IEfdµ. (3.8)

Theorem 3.5. Let (X,F , µ) be a measure space and f, g : (X,F , µ) ! (R̄, B̄) be numerical

non-negative measurable functions. Then

1.
R

X

IAdµ = µ(A) for all A 2 F ,

2.
R

X

afdµ = a
R

X

fdµ for a � 0,

3.
R

X

(f + g)dµ =
R

X

fdµ+
R

X

gdµ,

4. If E,F 2 F and E ✓ F , then
R
E fdµ 

R
F fdµ.

Proof. 1.
R

X

IAdµ = Iµ(IA) = µ(A). 2. If a > 0, let 'n be an increasing sequence of

measurable non-negative simple functions converging to f (such sequence exists by Theorem

3.3). Then, a'n(!) is an increasing sequence converging to af . By Theorem 3.4 and the

fact that Iµ(a'n) = aIµ('n)

Z

X

afdµ = lim
n!1

Z

X

a'ndµ = a lim
n!1

Z

X

'n(!)dµ = a

Z

X

fdµ

3. Let 'n, n be non-negative increasing simple functions converging to f and g. Then
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'n +  n is an increasing sequence converging to f + g. Again, by Theorem 3.4
Z

X

(f + g)dµ = lim
n!1

Z

X

('n +  n)dµ

= lim
n!1

Z

X

'ndµ+ lim
n!1

Z

X

 ndµ

=

Z

X

fdµ+

Z

X

gdµ.

4. fIE  fIF therefore
Z

E

fdµ =

Z

X

fIEdµ 
Z

X

fIFdµ =

Z

F

fdµ.

⌅

Corollary 3.1. Let {fj}j2N be a sequence of measurable non-negative numerical functions

(fj : (X,F , µ) ! (R̄, B̄)). Then,
P

1

j=1 fj is measurable and

Z

X

 
1X

j=1

fj

!
dµ =

1X

j=1

Z

X

fjdµ.

Proof. Let Sm =
Pm

j=1 fj, S = lim
m!1

Pm
j=1 fj =

P
1

j=1 fj and note that 0  S1  S2  · · · .

Then, by Theorem 3.5.3 we have that
Z

X

Smdµ =
mX

j=1

Z

X

fjdµ.

Taking limits as m ! 1 and using Theorem 3.4, we have

lim
m!1

Z

X

Smdµ = lim
m!1

mX

j=1

Z

X

fjdµ =
1X

j=1

Z

X

fjdµ =

Z

X

Sdµ =

Z

X

 
1X

j=1

fj

!
dµ.

⌅

Theorem 3.6. (Fatou’s Lemma): Let {fj}j2N be a sequence of measurable non-negative

numerical functions (fj : (X,F , µ) ! (R̄, B̄)). Then, f := lim inf
n!1

fj is measurable and
Z

X

fdµ  lim inf
j!1

Z

X

fjdµ.
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Proof. Let gn = inf{fn, fn+1, . . . } for n = 1, 2, . . . , and note that g1  f1, g1  f2, . . . . Also,

g2  f2, g2  f3 . . . . Thus, gn  fj for all n  j. Furthermore, g1  g2  . . . . Now, recall

that f := lim inf
j!1

fj := sup
n2N

inf
j�n

fj and

lim
n!1

gn = lim inf
j!1

fj := f.

Also,
R
X
gndµ 

R
X
fjdµ for all n  j and

Z

X

gndµ  lim inf
j!1

Z

X

fjdµ.

Since the sequence gn " lim inf
j!1

fj, by Theorem 3.4

lim
n!1

Z

X

gndµ =

Z

X

fdµ  lim inf
j!1

Z

X

fj(!)dµ.

⌅

3.4 Integral of functions

Let f : (X,F , µ) ! (R̄, B̄) be a measurable numerical function and f
+ = max{f, 0} and

f
� = �min{f, 0}.

Definition 3.4. Let f : (X,F , µ) ! (R̄, B̄) be a measurable numerical function such that
R
X
f
+
dµ < 1 and

R
X
f
�
dµ < 1. In this case, we say that f is µ-integrable and we write

Z

X

fdµ :=

Z

X

f
+
dµ�

Z

X

f
�
dµ.

We note that
R
X
fdµ 2 R and denote by LR the set of integrable real functions and LR̄

the set of integrable numerical functions. A non-negative function f is said to be integrable

if, and only if,
R
fdµ < 1. If (X,F , µ) := (Rn

,Bn
,�

n) we call
R
Rn fd�

n the Lebesgue

integral.

Theorem 3.7. Let f : (X,F , µ) ! (R̄, B̄) be a measurable function. Then,

(1) f 2 LR̄ () (2) |f | 2 LR̄ () (3) there exist 0  g 2 LR̄ such that |f |  g.
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Proof. ((1) =) (2)) Since, |f | = f
++ f

� and since integrability of f implies
R
X
f
+
dµ < 1

and
R
X
f
�
dµ < 1 we have

R
X
|f |dµ =

R
X
f
+
dµ+

R
X
f
�
dµ < 1.

((2) =) (3)) Just take g = |f |.

((3) =) (1)) Since f
+  |f |  g and f

�  |f |  g we have by the monotonicity of

the integral of non-negative functions and the integrability of g that f
+
, f

� 2 LR̄. Hence,

f 2 LR̄. ⌅

Theorem 3.8. Let f, g : (X,F , µ) ! (R̄, B̄) be measurable functions such that f, g 2 LR̄

and a 2 R. Then,

1. af 2 LR̄ and
R
X
afdµ = a

R
X
fdµ,

2. (f + g) 2 LR̄ and
R
X
(f + g)dµ =

R
X
fdµ+

R
X
gdµ,

3. max{f, g}, min{f, g} 2 LR̄,

4. if f  g then
R
X
fdµ 

R
X
gdµ.

Proof. Homework. Use Theorems 3.7 and 3.5. ⌅

Remark 3.5. Note that
����
Z

X

fdµ

���� 
����
Z

X

f
+
dµ

����+
����
Z

X

f
�
dµ

���� =
Z

X

f
+
dµ+

Z

X

f
�
dµ =

Z

X

(f+ + f
�)dµ =

Z

X

|f |dµ.

Theorem 3.9. Let f : (X,F , µ) ! (R̄, B̄) be a measurable function such that 0  f 2 LR̄

and

m(E) =

Z

E

fdµ for all E 2 F .

Then, m is a measure on F .

Proof. Since f � 0, m(E) � 0. If E = ;, then fIE = 0 and

m(;) =
Z

;

fdµ =

Z

X

fI;dµ =

Z

X

0dµ = 0.
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Now, let {Ej}j2N be a disjoint collection of sets in F such that [1

j=1Ej = E and let

fn(x) =
Pn

j=1 f(x)IEj(x). By Theorem 3.5.3
R
X
fndµ =

Pn
j=1

R
X
fIEjdµ. Thus,

R
X
fndµ =

Pn
j=1 m(Ej).

Note that f1  f2  . . . and converges to fIE. Hence, by Theorem 3.4

m(E) =

Z

X

fIEdµ = lim
n!1

Z

X

fndµ = lim
n!1

nX

j=1

m(Ej) =
1X

j=1

�(Ej).

⌅

Remark 3.6. m is called the measure with density function f with respect to µ and denoted

by m = fµ. If m has a density with respect to µ it is traditional in mathematics to write

dm/dµ for the the density function. We note that with a little more work we can recognize

f as the Radon-Nikodým derivative of m with respect to the measure µ.

3.5 Lebesgue’s convergence theorems

Theorem 3.10 (Lebesgue’s Monotone Convergence Theorem). Let fn : (X,F , µ) ! (R̄, B̄)

for n 2 N be integrable functions such that f1  f2  · · · and f := limn!1fn := supn2N fn.

Then,

f 2 L(µ) () sup
n2N

Z

X

fndµ < 1.

In this case,

sup
n2N

Z

X

fndµ =

Z
sup
n2N

fndµ.

Proof. Since fn 2 L(µ) and f1  f2  · · · we have that 0  fn � f1 2 L(µ) forms an

increasing sequence of nonnegative measurable functions. Hence, by Theorem 3.4

0  sup
n2N

Z

X

(fn � f1)dµ =

Z

X

sup
n2N

(fn � f1)dµ. (3.9)
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Now, suppose f 2 L(µ) and note that from equation (3.9)

sup
n2N

Z

X

fndµ�
Z

X

f1dµ =

Z

X

(f � f1)dµ or

sup
n2N

Z

X

fndµ =

Z

X

f1dµ+

Z

X

(f � f1)dµ

=

Z

X

f1dµ+

Z

X

fdµ�
Z

X

f1dµ =

Z

X

fdµ < 1.

If supn2N

R
X
fndµ < 1, then from equation (3.9) we have

R
X
(f � f1)dµ < 1 and since f1 is

integrable f = (f � f1) + f1 is integrable. Therefore,

Z
fdµ =

Z
(f � f1)dµ+

Z
f1du = sup

n2N

Z

X

fndµ < 1.

⌅

In the context of a measure space (X,F , µ), we will call N a null set if N 2 F and

µ(N) = 0. If a certain property P(x) that depends on x 2 X holds for all x 2 X except

x 2 NP ✓ N , where N is a null set, we say that the property is true almost everywhere

(ae) or almost surely (as). Note the set NP where the property does not hold need not be a

measurable set.

Theorem 3.11. (Markov’s Inequality) Let (X,F , µ) be a measure space and f 2 LR̄(µ).

Then, for all E 2 F and a > 0

µ ({|f | � a} \ E)  1

a

Z

E

|f |dµ.

Proof. Note that, aI{|f |�a}\E = aI{|f |�a}IE  |f |IE and consequently, integrating both sides,

aµ({|f | � a} \ E) 
R
E |f |dµ. Therefore,

µ({|f | � a} \ E)  1

a

Z

E

|f |dµ.

⌅
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Note that if E = X we have µ({|f | � a})  1
a

R
X
|f |dµ. When (X,F , µ) = (⌦,F , P ) a

probability space and f := X a random variable, the last result is commonly stated as

P ({|X| � a})  1

a
EP (|X|).

Theorem 3.12. Let (X,F , µ) be a measure space and f 2 LR̄(µ). Then,

1. if N is a null set
R
N fdµ = 0,

2.
R
X
|f |dµ = 0 () |f | = 0 ae.

Proof. 1. Let fj = min{|f |, j} and note 0  f1  f2  · · · with limj!1 fj = |f |. Hence, by

Theorem 3.4

0 
����
Z

N

fdµ

���� =

����
Z

X

INfdµ

���� 
Z

X

IN |f |dµ

= lim
j!1

Z

X

INfjdµ = lim
j!1

Z

X

IN min{|f |, j}dµ  lim
j!1

Z

X

jINdµ

= lim
j!1

j

Z

X

INdµ = lim
j!1

jµ(N) = 0.

2. (()
R
X
|f |dµ =

R
{|f |=0} |f |dµ+

R
{|f | 6=0} |f |dµ =

R
{|f | 6=0} |f |dµ = 0 by item 1.

()) Note that by the fact that µ is a measure

µ({|f | > 0}) = µ ([i2N{|f | � 1/i}) 
X

i2N

µ({|f | � 1/i})


X

i2N

i

Z

X

|f |dµ = 0

by Markov’s Inequality and the assumption that
R
X
|f |dµ = 0.

⌅

A direct consequence of this Theorem is that functions that are equal almost everywhere

have the same integral.
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Remark 3.7. 1. If f, g � 0 are measurable and f = g ae then
R
X
fdµ =

R
{x:f(x) 6=g(x)} fdµ+

R
{x:f(x)=g(x)} fdµ. But by Theorem 3.12.1, the first integral is equal to zero. Consequently,
R
X
fdµ =

R
{x:f(x)=g(x)} fdµ =

R
{x:f(x)=g(x)} gdµ =

R
{x:f(x) 6=g(x)} gdµ +

R
{x:f(x)=g(x)} gdµ =

R
X
gdµ.

2. If f 2 LR̄ and f = g ae then f
+,� = g

+,� ae. Using the previous remark on f
+,� we have

R
X
f
+,�

dµ =
R
X
g
+,�

dµ. Hence,
R
X
fdµ =

R
X
gdµ.

3. If f is measurable and 0  g 2 LR̄ with |f |  g ae, then

f
+,�  |f |  g ae .

Hence,
R
X
f
+,�

dµ 
R
X
gdµ. So, f is integrable.

Theorem 3.13. (Lebesgue Dominated Convergence Theorem) Let (X,F , µ) be a measure

space and {fn}n2N be a sequence of integrable functions such that |fn|  g for all n and some

integrable nonnegative function g. If limn!1 fn(x) = f(x) exists ae, then f is integrable and

lim
n!1

Z

X

fndµ =

Z

X

lim
n!1

fndµ :=

Z

X

fdµ.

Proof. We start by observing that since the fn are measurable, the set

N = {x : lim
n!1

fn does not exist}

is measurable and µ(N) = 0. Thus, we proceed by taking N = ; as it does not contribute

to the integrals.

For any ✏ > 0 there exists N(✏,x) such that for all n > N(✏,x)

|f | = |f � fn + fn|  |fn|+ |f � fn|

 g + |f � fn| by the bound assumption on the theorem statement

 g + ✏.
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Therefore,
R
fdµ < 1 provided g 2 L(µ). Also, |fn|  g () �g  fn  g. Hence,

fn + g � 0. By Fatou’s Lemma,
Z

lim inf
n!1

(fn + g)dµ =

Z
(f + g)dµ  lim inf

n!1

Z
(fn + g)dµ

= lim inf
n!1

Z
fndµ+

Z
gdµ.

Therefore, Z
fdµ  lim inf

n!1

Z
fndµ. (3.10)

Also, g � fn � 0 and again by Fatou’s Lemma,

0 
Z

lim inf
n!1

(g � fn)dµ =

Z
gdµ�

Z
fdµ

 lim inf
n!1

Z
(g � fn)dµ

=

Z
gdµ+ lim inf

n!1

�
Z

fndµ

=

Z
gdµ� lim sup

n!1

Z
fndµ.

The first inequality together with the last equality imply that
Z

fdµ � lim sup
n!1

Z
fndµ. (3.11)

Combining (3.10) and (3.11) completes the proof. ⌅

We now consider a measurable function that is indexed by a parameter ✓ 2 (a, b) for

a < b. As such, we define f(x, ✓) : (X,F , µ)⇥ (a, b) ! (R,B) where f is measurable for all

✓ 2 (a, b).

Theorem 3.14. Let f(x, ✓) : (X,F , µ)⇥(a, b) ! (R,B) where f is measurable and f 2 L(µ)

for all ✓ 2 (a, b). Also, assume that f(x, ✓) is continuous for every x 2 X and |f(x, ✓)|  g(x)

for all (x, t) 2 X ⇥ (a, b) and some nonnegative integrable function g. Then, the function

h : (a, b) ! R given by

h(✓) :=

Z

X

f(x, ✓)dµ
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is continuous.

Proof. The function h is well defined because of integrability of f(x, ✓). It suffices to show

that for any sequence ✓n 2 (a, b) such that ✓n ! ✓ we have h(✓n) ! h(✓). By continuity

of f(x, ✓) for every x we have f(x, ✓n) ! f(x, ✓) and |f(x, ✓n)|  g(x) for all x 2 X. By

Lebesgue’s Dominated Convergence Theorem,

lim
n!1

h(✓n) =

Z

X

lim
n!1

f(✓n, x)dµ =

Z

X

f(✓, x)dµ = h(✓).

⌅

Theorem 3.15. Let f(x, ✓) : (X,F , µ)⇥(a, b) ! (R,B) where f is measurable and f 2 L(µ)

for all ✓ 2 (a, b). Also, assume that f(x, ✓) is differentiable on (a, b) for every x 2 X and

| d
d✓f(x, ✓)|  g(x) for all (t, x) 2 (a, b) ⇥ X and some nonnegative integrable function g.

Then, the function h : (a, b) ! R given by

h(✓) :=

Z

X

f(x, ✓)dµ

is differentiable and its derivative is given by

d

d✓
h(✓) =

Z

X

d

d✓
f(x, ✓)dµ.

Proof. Recall that ✓, ✓n 2 (a, b) with ✓n ! ✓ and ✓n 6= ✓.

df

d✓
(x, ✓) = lim

n!1

f(x, ✓n)� f(x, ✓)

✓n � ✓

for all x 2 X and consequently df
d✓ (x, ✓) is measurable. By the Mean Value Theorem,

f(x, ✓n) � f(x, ✓) = df
d✓ (x, ✓z,n)(✓n � ✓) with ✓z,n = �✓n + (1 � �)✓, � 2 (0, 1), ✓z,n 2 (a, b).

Consequently, ����
f(x, ✓n)� f(x, ✓)

✓n � ✓

���� =
����
df

d✓
(x, ✓z,n)

����  g(x)

so that
���f(x,✓n)�f(x,✓)

✓n�✓

��� is integrable. Thus,

h(✓n)� h(✓)

✓n � ✓0
=

Z

X

f(x, ✓n)� f(x, ✓)

✓n � ✓
dµ.
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Hence, by the Lebesgue’s Dominated Convergence Theorem

lim
n!1

h(✓n)� h(✓)

✓n � ✓
=

d

d✓
h(✓) =

Z

X

lim
n!1

f(x, ✓n)� f(x, ✓)

✓n � ✓
dµ =

Z

X

df

d✓
(x, ✓)dµ.

⌅

3.6 Lp spaces

Definition 3.5. The collection of measurable functions f : (X,F , µ) ! (R,B) such that
R
X
|f |pdµ < 1 for p 2 [1,1) is denoted by Lp(µ) or Lp(X,F , µ).

Let f, g 2 Lp(X,F , µ) and define s : (X,F , µ) ! (R,B) as s(x) = f(x) + g(x) for all

x 2 X. Then, |s(x)|  |f(x)|+ |g(x)|  2max{|f(x)|, |g(x)|} and

|s(x)|p  2p max{|f(x)|, |g(x)|}p = 2p max{|f(x)|p, |g(x)|p}  2p(|f(x)|p + |g(x)|p).

Consequently,
R
X
|s|pdµ  2p(

R
X
|f |pdµ+

R
X
|g|pdµ) < 1. Also, if a 2 R and m : (X,F , µ) !

(R,B) as m(x) = af(x) for all x 2 X we have |m(x)|p = |a|p|f(x)|p and
R
X
|m|pdµ =

|a|p
R
X
|f |pdµ < 1. Lastly, if we take ✓(x) = 0 for all x 2 X to be the null vector in

Lp(X,F , µ), then Lp(X,F , µ) is a vector space.

If f 2 Lp(X,F , µ) we define the function k · kp : Lp(X,F , µ) ! [0,1) as kfkp =
�R
X
|f |pdµ

�1/p and prove Hölder’s Inequality.

Theorem 3.16. (Hölder’s Inequality) If 1 < p < 1, p�1 + q
�1 = 1, f 2 Lp, g 2 Lq, then

fg 2 L and
R
|fg|dµ  kfkpkgkq.

Proof. If kfkp = 0 then, by Theorem 3.12 |f | = 0 ae, so |fg| = 0 ae. Hence,
R
|fg|dµ = 0

and the inequality holds. Likewise for kgkq = 0. So, assume kfkp, kgkq 6= 0. Let x = f/kfkp,

y = g/kgkq and note that kxkp = 1 and kykq = 1. It suffices to prove
R
|xy|dµ  1.

Now, note that for any a, b > 0 and 0 < ↵ < 1,

a
↵
b
1�↵  ↵a+ (1� ↵)b.
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To see this, divide by b to obtain (ab )
↵  ↵

a
b +(1�↵). It suffices to show u

↵  ↵u+(1�↵),

for u > 0.

The inequality holds for u = 1. Now, d
duu

↵ = ↵u
↵�1 = ↵

1
u1�↵ . Since ↵ 2 (0, 1) we have

that u
1�↵

< 1 if u < 1. Consequently, in this case, u↵�1
> 1 and d

duu
↵
> ↵. Also, using

the same arguments, if u > 1 we have that d
duu

↵
< ↵. By the Mean Value Theorem, for

� 2 (0, 1)

u
↵ � 1 = ↵(�u+ (1� �))↵�1(u� 1) < ↵(u� 1) =) u

↵
< 1� ↵ + ↵u if u > 1.

Also,

u
↵ � 1 = ↵(�u+ (1� �))↵�1(u� 1) < ↵(u� 1) =) u

↵
< 1 + ↵u� ↵, if u < 1.

Thus, u↵  ↵u+ (1� ↵) for u > 0.

Now, let ↵ = 1/p, a(!) = |x(!)|p, b(!) = |y(!)|q and 1� ↵ = 1/q. Then,

(|x(!)|p)1/p(|y(!)|q)1/q  ↵|x(!)|p + (1� ↵)|y(!)|q, or

|x(!)y(!)|  ↵|x(!)|p + (1� ↵)|y(!)|q.

Thus, integrating both sides of the inequality we obtain
R
|xy|dµ  ↵kxkp+(1�↵)kykq = 1.

⌅

Theorem 3.17. (Minkowski-Riez Inequality) For 1  p < 1, if f and g are in Lp we have

kf + gkp  kfkp + kgkp.

Proof. By the triangle inequality

kf + gkpp =
Z

|f + g||f + g|p�1
dµ 

Z �
|f ||f + g|p�1 + |g||f + g|p�1

�
dµ

=

Z
|f ||f + g|p�1

dµ+

Z
|g||f + g|p�1

dµ, and if p = 1 the proof is complete.

If p > 1, by Hölder’s Inequality

 kfkpk|f + g|p�1kq + kgkpk|f + g|p�1kq,
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where 1/p+ 1/q = 1 which implies 1/q = 1� 1/p =) q = p
p�1 . Thus,

kf + gkpp  kfkpk|f + g|p/qkq + kgkpk|f + g|p/qkq = (kfkp + kgkp)k|f + g|p/qkq. (3.12)

Now,

k|f + g|p/qkq =
✓Z

(|f + g|p/q)qdµ
◆1/q

=

✓Z
|f + g|pdµ

◆1/q

=

✓Z
|f + g|pdµ

◆ p�1
p

= kf + gkp�1
p

Using this in inequality (3.12) we obtain kf + gkp�(p�1)
p = kf + gkp  kfkp + kgkp. ⌅

Remark 3.8. 1. The Minkowski-Riez Inequality and the fact that a 2 R, kafkp = |a|kfkp

and kfkp � 0 shows that k ·kp has almost all of the properties of a norm. The exception

is that kfkp = 0 does not imply that f(x) = 0 for all x 2 X. It only implies that

f(x) = 0 almost everywhere.

2. f, g 2 Lp(X,F , µ) are taken to be equivalent if they differ at most on a set of µ-

measure zero (null set), i.e., f ⇠ g if {x : f(x) 6= g(x)} is a null set. Then, for

every f 2 Lp(X,F , µ) we can define an equivalence class (reflexive, symmetric and

transitive) of Lp functions induced by f , which will be denoted by [f ]p. The space of

all equivalence classes [f ]p of functions f 2 Lp is denoted by L
p with norm k[f ]pkp :=

inf{kgkp : g 2 Lp and g ⇠ f}. (Lp
, kf[p]kp) is a norm vector space and in what follows

we will dispense with these technicalities and identify [f ]p with f .

A commonly encountered case, treated in the next theorem, has p = 2 and X, Y :

(⌦,F , P ) ! (R,B) being random variables such that X, Y 2 L2
R(⌦,F , P ).

Theorem 3.18. Let X, Y : (⌦,F , P ) ! (R,B) be random variables such that X, Y 2

L2(⌦,F , P ).

1. XY 2 L(⌦,F , P ) and |
R
⌦ XY dP | 

�R
⌦ X

2
dP

�1/2 �R
⌦ Y

2
dP

�1/2,
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2. If X 2 L2(⌦,F , P ) then X 2 L(⌦,F , P ) and
�R

⌦ XdP
�2 

R
⌦ X

2
dP ,

3. L2(⌦,F , P ) is a vector space.

Proof. 1. This is just a special case of Hölder’s Inequality with p = q = 2. 3. follows from the

comments after Definition 3.5. 2. Let X 2 L2 and note that I⌦ 2 L2 with
R
⌦ I⌦dP =

R
⌦ dP .

Then, ����
Z

⌦

XI⌦dP

���� 
✓Z

⌦

X
2
dP

◆1/2✓Z

⌦

dP

◆1/2

.

Since
R
⌦ dP = 1, we have

����
Z

⌦

XdP

���� 
✓Z

⌦

X
2
dP

◆1/2

or
✓Z

⌦

XdP

◆2


Z

⌦

X
2
dP.

⌅

Remark 3.9. If X 2 L2 we define VP (X) =
R
⌦(X � EP (X))2dP =

R
⌦ X

2
dP � (

R
⌦ XdP )2

and call it the variance of X (under P ).

Theorem 3.19. Let X be a random variable defined on the probability space (⌦,F , P ) taking

values in (R,B) and h : (R,B) ! (R,B) be measurable.

1. f := h �X is integrable in (⌦,F , P ) if, and only if, h is integrable in (R,B, PX).

2. E(h(X)) :=
R
⌦ fdP =

R
R
hdPX .

Proof. First, let h be a non-negative simple function. Then we have that f(!) =
Pm

j=1 yjIAj(!)

where Aj 2 F . Consequently,

IP (f) =

Z

⌦

fdP =
mX

j=0

yjP (Aj) =
mX

j=0

yjP (X�1(Bj)) where Bj = {x 2 R : h(x) = yj}

=
mX

j=0

yj(P �X�1)(Bj) =
mX

j=0

yjPX(Bj) =

Z

R

hdPX = IPX (h).
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Second, let h � 0. Then, by Theorem 3.3 there exists a sequence of increasing non-negative

simple function �n such that �n ! h as n ! 1. Hence, if we define fn(!) = �n(X(!)) =

(�n �X)(!), it is a sequence of increasing simple function that converges to f .

Z

⌦

fdP =

Z

⌦

(h �X)dP =

Z

⌦

lim
n!1

(�n �X)dP

= lim
n!1

Z

⌦

(�n �X)dP by Beppo-Levi’s Theorem

= lim
n!1

Z

R

�ndPX by the first part of the argument

=

Z

R

hdPX .

This proves 2. for simple and non-negative h. If h takes values in R, consider |h| and let

�n be a sequence of increasing non-negative simple function such that �n ! |h| as n ! 1.

Then, we have from above that

Z

⌦

|f |dP =

Z

R

|h|dPX .

But from Remark 3.5, if |h| is integrable in (R,B, PX) then h is integrable in (R,B, PX),

establishing 1. Now, for arbitrary h we can prove the rest of part 2 by applying the same

arguments to h
+ and h

� and using the fact that h = h
+ � h

�. ⌅

Clearly, taking h(x) = x in the previous theorem gives EP (X) :=
R
⌦ XdP =

R
R
xdPX(x)

where in the last integral we emphasize that the “variable” in integration is taking values in

R.

Definition 3.6. The density of a probability measure PX associated with a random variable

X defined on a probability space (⌦,F , P ) is a non-negative Borel measurable function fX

that satisfies

PX((�1, a]) =

Z

(�1,a]

fXd� =

Z

R
I(�1,a]fXd�

where � is Lebesgue measure on R.
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Theorem 3.20. fX is a density ()
R
R fXd� = 1, fX is unique almost everywhere.

Proof. ( =) ) fX a density implies FX(a) = PX((�1, a]) =
R
(�1,a] fXd�. lima!1 PX((�1, a]) =

1 = lima!1

R
(�1,a] fXd�, where the first equality follows from definition 2.5 and continuity

of probability measures.

( (= ) Suppose fX is a non-negative Borel measurable function such that
R
fXd� = 1. For

all A 2 B, we put

PX(A) =

Z

A

fXd� =

Z

R
IAfXd�.

By Theorem 3.9, PX is a measure on B with PX(R) = 1, by assumption. Taking A = (�1, a],

PX((�1, a]) =

Z

(�1,a]

fXd�

and fX is a density for FX .

Now, suppose gX is another density for FX . Then, PX(A) =
R
A gXd� =

R
R gXIAd�.

Let An = {x : gX(x) � fX(x) + 1/n}. For all n 2 N,
R
An

gXd� �
R
An
(fX + 1

n)d� =
R
An

fXd�+ 1
n�(An). Since

R
An

fXd� =
R
An

gXd� it must be that �(An) = 0.

Note that A1 ✓ A2 ✓ . . . . limn!1 An = [1

n=1An = A = {x : gX(x) > fX(x)} and

�(A) = limn!1 �(An) = 0. Similarly, we have �(B) = 0 for B = {x : gX(x) < fX(x)}. So,

�({x : gX = fX}) = 1. ⌅

Theorem 3.21. Let X : (⌦,F , P ) ! (R,B) be a random variable with density fX and

h : (R,B) ! (R,B) be a measurable function such that
R
⌦ |h �X|dP < 1, i.e., f = h �X is

integrable. Then, Z

⌦

(h �X)dP =

Z

R

hdPX =

Z

R

h(x)fX(x)d�(x)

Proof. Homework. ⌅
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