Let (R,0(Z') = B(R)) be a measurable space. From Theorem |1.4]if we set S = (0, 1] and
consider Z=7'NS = {(0,1]NA: A€ Z'} then o(Z' N (0,1]) = B(R) N (0,1] is a o-algebra
associated with (0, 1]. Thus, if we define B 1 := o(Z* N (0,1]), then

((0,1}, B,y := o(T))

is a measurable space where Z = {(a,b] : 0 < a < b < 1}. Define the set function A : Z —
0,1] such that A(0) = 0 and A((a,b]) = b — a.

If X is o-additive on Z it is a pre-measure on Z and extends uniquely to B .
Theorem 2.9. \ is o-additive on T.

Proof. First, we show that A is finitely additive on Z. Let (a,b] € Z and (a,b] = U, (a;, b;]

with a1 = a,a0 = by, a3 =bs,...,a, = b,_1,b, = b. Then,

Z)\ a'zaz bl_al) (b2_a2)++(bn_an)

= (fi2 — a) + (fis— fio) +...(b= /i) =b—a
= M(a. b)) = AU (a, b)),

Therefore, A is finitely additive.
We need to show that for (a,b] = U2, (a;, b;], where {(a;, b;]}iew is a pairwise disjoint
collection we have b —a =32, (b; — a;).

For any n, let {(a;, b;]}!; be a pairwise disjoint collection. Then, we can write
((I b] ((Iz, bz] = U;-nzllj,

where the last set is the finite union of pairwise disjoint intervals. Thus, since \ is finitely

additive on Z

Z/\ az, z zm: >Z)\ CLZ, z

=1

Thus, A((a,b]) =b—a > lim, e > o AM(a; bi]) = >0, ((ai, bi]).
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Now, for the reverse inequality (b —a < > "7, A((a;,b;])) let 0 < € < b — a and note that

1
(a+6b] Cla+eb] CUZ (ai bi+ ;)

1
C U (ai,b; + Ee) for some n € IN by the Heine-Borel Theorem

1
g U;‘Zl(ai, bz + 56]

But A((a;, bi] = A((ai, b; + 5:¢] — 5¢. Hence,

- 1
M(a+e,b]) < M(as, b + o)) by subadditivity
=1

= (bi—ai+ %e)

i=1
n n

b—a—eSZ(bi—ai)—FeZ%or
i=1 i=1

b—aSZ(bi—ai)%—e(l—{—i%).
i=1 i=1

The last inequality gives b —a < > >°,(b; — a;). Hence, combining with the previously

obtained reverse inequality we have b —a =Y = (b — a;). B

Since A is o-additive (pre-measure) on Z (a semi-ring), using Carathéodory’s theorem,
we can state that

((0’ 1}’ 8(071} = 0<I>7 /\*>

is a measure space, where A\* is the unique extension of A from Z to o(Z). In addition,
0 < X((a,b]) <1, A*((0,1]) = 1. Thus, we have constructed a specific probability space.

We will now construct a probability measure on (R, B).
Definition 2.5. Let F': R — [0, 1] be a function with the following properties:

1. l}%lF(x—i—h) = F(z+) = F(x) for allz € R and h > 0,

2. F(x) < F(y) ifx <y,
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3. lim F(z) =1, lim F(z)=0.

T—r00 T—r—00

F is called a proper distribution function (df). If only conditions 1 and 2 are met, F is called

a distribution function or a defective df .

Remark 2.3. 1. Let F(z—) := lgﬂ)l F(x—h) for h > 0. The left jump of F at x is defined as
LJp(z) = F(x)— F(xz—) and the right jump of F at = is defined as RJp(x) = F(x+)— F(x).
The jump of F at x is defined as Jp(x) = LJp(z) + RIp(z) = F(a+) — F(x—). Since F
satisfies condition 2, RJp(x) = 0 for all x € R and Jp(z) = F(z) — F(xz—). In addition,
since F' is nondecreasing Jp(x) > 0. If Jp(x) = 0 then F is continuous at x.

2. For any two x <y € R we have that 0 < F(y) — F(z) <1
Definition 2.6. The left (generalized) inverse of a df F, denoted by F~(y), is defined as
F~(y) :=inf{z: F(x) >y fory € (0,1]}.
Theorem 2.10. Let S(y) = {z: F(x) >y} for y € (0,1]. Then,
1. S(y) is a closed set.
2. F (y) >t «<= y>F(t) or F-(y) <t < y < F(1).

Proof. 1. If s, € S(y) and s, | s, by right continuity of F' we have y < F(s,) | F(s). Thus,
y < F(s) and s € S(y). If s, € S(y) and s, T s, we have y < F(s,) T F(s—) < F(s). Thus,
y < F(s) which implies that s € S(y). Consequently, by a characterization of closed sets,
S(y) is closed.

2. Since S(y) is closed, its infimum F~(y) € S(y) and therefore F(F~(y)) > y. t <

F~(y) = t¢ S(y) = F(t) <y. The reverse implications all apply. B

Theorem 2.11. Let A C R and Sp(A) = {y € (0,1] : F~(y) € A}. If A € o(T") = B(R),
then SF(A) € B(O’H = O(Il) N (O, 1]
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Proof. Let G = {A C R : Sp(A) € By} Note that G contains intervals of the type (a, b]

Se((a,b]) ={y € (0,1] - F~(y) € (a,b]} = {y € (0,1] : a < F"(y) < b}
={y e (0,1]: Fla) <y < F(b)} = (F(a), F(b)] € Bo,y-

Note that since Z! C G, if G is a o-algebra, o(Z') = B C G. Hence, A € B implies

Sr(A) € B(o)- Hence, we now show that G is a o-algebra associated with R.
1. Sr(R) ={y € (0,1]: F~(y) € R} = (0,1] € B(y,1), thus R € G.
2. By definition of Sg
Sp(A%) = {ye(0,1]: F(y) € A%}
= {ye(0,1]: F(y) € A} = (Sp(A))" € Bo
where the last inclusion statement follows if A € G and the fact that B j) is a o-algebra.
3. If {A,}new € G we have by definition of Sg

Sr( A = e F e ya)

= Ulye 0.1 F(y) e A} = U Se(4) € Boy

where the last inclusion statement follows since A,, € G and the fact that B is a

o-algebra.
|

Definition 2.7. Let A € B and define Pr(A) = MN(Sp(A)) where X is the Lebesgue measure

on B(O,l] .
Remark 2.4. It is easy to verify that Pr is a probability measure. First, note that

Pr(0) = A(Sr(0) = A({y € (0,1] : F~(y) € 0}) = A(0) = 0.
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Second, if {An}nen 18 a pairwise disjoint collection of sets in BB then

Pr( U An) = MNSr( U An)) = Ay € (0.1]: F7(y) € U Au}) =AU Sr(4n))

nelN nelN

= Z A(Sr(4,)) = Z Pr(A,).

where the next to last equality follows from the fact that X is a measure and {Sp(A,) }new is
a parrwise disjoint collection.

Its df can be obtained by noting that

Pp((=00,2]) = AM(Sp((—o00,z])) = A({y € (0,1] : F~(y) € (—o0,z]})

=My € (0,1] -y < F(2)}) = (0, F(2)]) = F(x)

This last equality will be used throughout the notes. It is fundamental to our study.
If we take (X, F, i) to be a probability space (2, F, P), (E,&) .= (R,B) and X : Q - R
be a random variable, then Theorem [1.18] establishes that

Px(B) = P(X YB)) = (Po X ")(B) for all B € B is a measure on (R, B).

We call Px the distribution measure (or distribution law) of X.
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Chapter 3

Integration

3.1 Simple functions

In many cases it is convenient to use —oo or oo in calculations. In these cases we work
with the extended real line, i.e., R := R U {—o00} U {oc}. Functions that take values in R
are called numerical functions. The Borel sets associated with the extended real line are
denoted by B := B(R) and are defined as the collection of sets B such that B = BU S where
B € B(R) and S € {0, {—oc},{o0}, {—00,00}}. It is easy to verify that B is a o-algebra
and that B(R) = RN B(R). In addition, B is generated by a collection of sets of the form
la, o0] (or (a, 0], [—00,al, [—00,a)) where a € R.

Let (X, F) and (R, B) be measurable spaces. Since the indicator function of a measurable
set is a measurable function, it follows from Theorem m that if {A;}7_; withn € Nis a

pairwise disjoint collection in F and a; € R for j = 1,--- ,n, the linear combination
f@) =3 asla (@) (3.1)
i=1
is a F/B-measurable function.

Definition 3.1. A real-valued function on a measurable space (X, F) is said to be simple if

it has the representation (3.1). A standard representation of a simple function is given by

fz) = Zaj]Aj (z) with ag = 0 and Ay = (Uj_; A;)°. (3.2)
=0
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Remark 3.1. 1. If f: (X, F) — (R, B) is measurable and takes on finitely many values,
say {a;}j_, then it is a simple function. To see this, note that that B; is measurable,
since B ={z: f(x) =a;} ={z: f(x) <a;} —{z: f(z) < a;} and f is measurable.

Also, note that the collection {B;}}_, is pairwise disjoint. Hence,

fle) = ajIp () =Y alj—q (x). (3.3)
j=1 j=1
Conversely, if X 1s simple it takes on finitely many values.

2. Representation (3.2)) is not unique, but a simple function has at least one representation
such as (3.2)) .

Theorem 3.1. Let f : (X, F) = (R, B) and g : (X, F) — (R, B) be simple functions. Then,
fEg,cf forc>0, fg, fT =max{f,0}, f~ = —min{f,0} and |f| are simple functions.

Proof. Homework.

3.2 Integral of simple functions

Definition 3.2. Let f : (X, F,u) — (R, B) be a non-negative simple function with standard

representation (3.2). The integral of f with respect to u, denoted by fX fdu, is given by
[ fin= 3" am(ay) € 0.l (34)
X 0

By definition a; € R for j = 0,1,...,n, but since p takes values in [0, co] we can have
fx fdu = oo. If p is a finite measure, e.g., a probability measure P, then it must be that
fx fdp € R. When X : © an outcome space, f := X is a random variable and p := P is
a probability measure we write Ep(X) := [, XdP and call it the expectation of X given

probability P. It will be convenient, in the case of simple functions, to write I,,(f) := [ fdu.
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Remark 3.2. Since the representation (3.2)) is not unique, for uniqueness, the definition
of integral requires that it be invariant to the representation used. To see this, suppose that

f(z) = Z?:o a;la,(x) = > o bilp, (x). Then, X = Ur_gA; = Uiy By and

Since p finitely additive and the sets in the above unions are disjoint we have that

n n

Yoau(A) =D a; > m(A;NBy) =YY a;u(A; N By).

j=0 j=0 k=0 7j=0 k=0

Similarly,

3

D beu(Be) = bk Y p(A;NBy) = beu(A; N By).
k=0 k=0  j=0 =0 k=0

But a; = by whenever A; N By, # 0, and when A; N By, = 0, p(A; N B,) = 0. Thus,

aji(A; N By) = bpu(A; N By) for all pairs (5, k), and 1,(f) is unique.

Theorem 3.2. Let f : (X, F,u) = (R,B) and g : (X, F,pu) — (R, B) be simple non-negative

functions. Then,
a) [cfdu=c[fdu forc>0 and [Ipdu = u(E) for E € F.
X X X

b) }{(f + g)dp = ngfdw g;gdu,

¢) If for E € F, we have N(E) = [ fIgdu, then X is a measure on F.
X

d) f<g = [fdu < [gdpu.
X X

Proof. For a) note that ¢ > 0 == cf > 0 with representation cf(z) = >°7_ ca;la, ().
Therefore, [ cfdp = 377 caju(A;) = ¢y i gaju(A;) = ¢ [ fdu. For the second part,
note that Ip(z) = Ig(x) + 0Ipe(x). Hence, [Ipdp = p(E).

For b) let f(z) = Y7 a;la;(z) and ?(:c) = > obelp, (x). Then, f(z) + g(z) =

Z?:o Y orveolaj 4+ bp)la,np, () with (A; N By) N (Ay N By) = 0 whenever (j,k) # (', k).
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Then,

Lo = 3w nntanm)
= Zn: Zm: (A; N By) Xm:bkzn: (A; N By)
j=0 k=0 k=0 Jj=0

since X is the union of both {A;} and {Bj}. Then, by definition [ (f + ¢)du = [y fdu +

Jx gdp.
For c) note that f(2)Ig(r) = > _ga;jlane(z). From b) and a),

= / fIgdp = Zaj / Ta,ne(z)dp = Zaj,u(Aj NE).
X = /e =

But p(A;NE) is a measure, and we have expressed A(E) as a linear combination of measures
on JF, hence )\ is a measure on F.

For d) write g = f + (¢ — f). Note that g — f is simple and non-negative since g > f.
Hence, 1,(g) = 1,(f) + (g = f) = L,(f)- A

3.3 Integral of non-negative functions

We start with the following fundamental theorem.

Theorem 3.3. Let f(w) : (Q,F) — (R,B) be a non-negative measurable function. Then,

there exists a sequence ,(w) : (Q,F) = (R, B) of simple non-negative functions such that:

1. pp(w) < vpi1(w), for allw € Q and n € N

2. lim p,(w) = f(w), for allw € Q.

n—oo

Proof. 1. For each n = 1,2,... define the sets

B - fweQ: E<fw<EL+5t =YL £ +5)) fork=0,1,...,n2" — 1
BTV w e Qs fw) > n) = ' ([n, od]) for k = n2n,
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For each n, the sets {Ej,, : k =0,1,...,n2"} are disjoint by construction, belong to F since

[ is measurable and U2, Fy ,, = Q. Now, let

n2m

o) = 3 T, ()

k=0
Fix w € 2 and for any n € IN we note that w € Ej, ,, for some ky. By definition

5 ifkg=0,1,---,n2" — 1
@n(w): . n
n if kg = n2™.

First, let kg € {0,1,-- ,n2"—1} and consider n+1. The lower bound on [£2, 2 4 L) must co-

.. . k . . —1 2k 2k 1
incide with 53, which gives k = 2kg. Thus, Ey i1 = Eoggng1 = f ([2n+°1, st T+ 2n+1)) =

71 (5% 3% + 57r)) and

1 (ko 1 ko 2 1 (ko 1 ke 1
Eppint1 = Bakgpnpr = [ ([27 tomian T 2n+1)> = [ <[2—n toe T Q—n) .

Consequently, Ek:o,n = Ek,n+1 U Ek+1,n+1 = E2k07n+1 U E2k0+1,n+1- If we E2k07n+1 then

Oni1(w) = 22”% and @,11(w) — @n(w) = 22,[?1 — ];—2 = 0. Alternatively, if w € Eogy+1n41 then

Pni1(w) = 22 and g, (w) — pn(w) = 2ol — 2o — L5 0. Consequently, if w € Ej,

thet g1 () — pu(w) > 0.
Second, if kg = n2" then Ey, , = f~([n, 00]). Now, ifw € f~!([n+1, 00]) then ¢, 11 (w) =

n+ 1 and ¢,(w) = n. Consequently, ¢, 1(w) — @p(w) =1>0. If w € f~([n,n + 1]) then

on(w) = n and @, (w) = Qn% if we f71<[2nk+17 27511 + 27}“)). Setting the lower bound

of the interval equal to n gives k = n2""! and ¢,41(w) = nif w € f7H[n,n + 557)),

giving @n1(w) — en(w) = 0. If w € f7H([n + 5, n + 357)) then oy (w) = "Z5H
and consequently ¢,41(w) — ¢n(w) = 55 > 0. Continuing in this fashion for subsequent
sub-intervals of [n,n + 1] gives ¢,+1(w) — @, (w) > 0.

2. From item 1, we have that ¢ (w) < @a(w) < -+ < f(w) for allw € . Hence, nlgg(}gp“w) =

sup @, (w). But 0 < f(w) — pn(w) < 5 and taking limits as n — oo we have f(w) =
nelN

lim 9, (@) = sup @, (w). W
nelN

n—oo
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Definition 3.3. Let f : (X, F,u) — (R,B) be a non-negative measurable function. The

integral of f with respect to u is given by

/deu = sgp/xso(w)du 5231;1)[#(90) € [0, 0], (3.5)

where the sup is taken over all simple functions ¢ which are non-negative satisfying ¢(x) <

f(z) for all z € X.
Remark 3.3. If f is a non-negative simple function fx fdp=1,(f).

Theorem 3.4. (Beppo-Levi Theorem) Let (X, F,u) be a measure space and {f;};en be
an increasing sequence of non-negative measurable functions f; : (X, F) = (R,B). Then

f =supf; is a non-negative measurable function and

jEN
/fdu ::/supfjdu:sup/ fidp.
X X jeN JEN JX

Proof. That f is a non-negative measurable function follows from Theorem 1.20. Note that

if g and h are non-negative measurable functions, we have by definition that

/ gdp == sup/ wdp where ¢ < g, ¢ a simple function.
X ¢ Jx

But since g < h,

/gdugsup/ godu:/ hdp where ¢ < h.
X ¢ Jx X

Now, f; < f :=supf;. By the monotonicity of integrals, which we just established,

JEN
/ijdué/xfdu-

Taking sup on both sides gives sup [y f;du < [ fdp.

jEN jEN

Now, we establish the reverse inequality, i.e., sup fx fidp > fx fdu. Let o(x) be a simple
jEN

function such that ¢ < f. If we can show that

(o) = [ o <sup [ (3.6)

JEN
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we will have the desired inequality since we can take sup over all simple functions on both

sides of (3.6) to give
sup [ pdui= [ fdu <su [ fid
X X X

¢ jEN
Let ¢ be a simple nonnegative function such that ¢ < f. Since f(x) := supf;(z), for every
jEN
r € X and € € (0,1), there exists N, such that

fi(z) > ep(x) whenever j > N, ).

Now, if A; = {x : fj(x) > ep(r)} we note that the sets A; increase as j — oo since

fi < fo---. Furthermore, these sets are measurable by measurability of f; and ¢. By

definition of A;

L, (2)p(x) < L, (2)f(x) < f(). (3.7)

Since ¢ is a simple function it has a standard representation ¢(x) = > v, (z) and

EIAJ‘ <x> Z Yilp, (:l}) =¢€ Z yi[BzﬂAj (:L’)
1=0 =0

Thus, the integral of the simple function in this expression is given by €Y ", y;u(B; N A;).
By monotonicity of integrals and using we have

e;ym(& NA4;) < /ijdu < ?gﬂg/xfjd:u'
Since ¢ < f, the collection {A;} grows to X as j — co. Thus, by the fact that p is continuous
from below

and
€Y yin(B;) = e/ pdp < sup/ fidp.
P X jeN Jx

Now, just let € be arbitrarily close to 1 to finish the proof. B
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Remark 3.4. 1. If we take f; = ¢; where p; are non-negative simple functions and

f =supy;j, then
J

/fduzsup/ pjdp.
X jeN JX

Note that sup can be replaced with 1im;_,.

2. If E € F, then Ig(z)f(x) is a non-negative measurable function if f > 0. We define

/E Fu = /X I fdp. (3.8)

Theorem 3.5. Let (X, F, ) be a measure space and f, g : (X, F,u) — (R, B) be numerical

non-negative measurable functions. Then
1. [Tadp = p(A) for all A € F,
X
2. [afdp=affdu fora>0,
X X
8. [(f+g)du = [fdu+ [gdpu,
X X X
4. If E.F € F and E C F, then fEfdu < fFfd,u.

Proof. 1. [Iadp = I,(I4) = p(A). 2. If a > 0, let ¢, be an increasing sequence of
X

measurable non-negative simple functions converging to f (such sequence exists by Theorem

3.3). Then, ap,(w) is an increasing sequence converging to af. By Theorem and the

fact that I,(ap,) = al,(pn)

/afd,u = lim /agpndu = a lim /gpn(w)du = a/fdu
X X X

X

3. Let ¢,,1, be non-negative increasing simple functions converging to f and g. Then
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©n + ¥, is an increasing sequence converging to f + g. Again, by Theorem

/(f+g)du = lim [+ ¢n)dp
X X

= lim [ ndu+ lim /wndu
n—oo
X

n—00
X

= éfd,u—l—/gdu.

X
4. flg < fIg therefore

[E fdp = / fIpdp < / fIpdp = /F fdu.

X X

Corollary 3.1. Let {f;};en be a sequence of measurable non-negative numerical functions

(fi + X, F,n) = (R,B)). Then, > o1 fi is measurable and

Proof. Let S, = Z;ﬂ:l fi, S = lim 27:1 fi= Z;; f; and note that 0 < S; < S5 < ---.

m— 00

Then, by Theorem [3.5]3 we have that

Smdp = /f»du.
Josmn=32 0

Taking limits as m — oo and using Theorem we have

lim/Smd:lim /-d: /d:/Sd:/ | du.
Jim | Swdp m%m;ngu ;iju | Sdu X;f] z

Theorem 3.6. (Fatou’s Lemma): Let {f;};en be a sequence of measurable non-negative

numerical functions (f; : (X, F,u) = (R, B)). Then, f :=liminff; is measurable and
n—oo

/fdugliminf/ fidp.
X J7ee Jx
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Proof. Let g, = inf{f,, fut1,...} forn=1,2 ... and note that g; < f1, g1 < fa,.... Also,
g2 < fa,92 < fs.... Thus, g, < f; for all n < 5. Furthermore, g < go < .... Now, recall

that f := liminf f; := sup inf f; and
J—o0 nelN J=

lim g, = liminf f; := f.
n—00 j—o0

Also, [y gndp < [ fidp for all n < j and

/ gndp < lim inf / fidp.
X J7o Jx

Si th » T liminf f;, by Th 3.4
ince the sequence g, 1 im in fi, by eorem

n—oo

lim gnd,u:/ fd,ugliminf/ fi(w)dp.
X X J7reo Jx

3.4 Integral of functions

Let f: (X, F,u) — (R,B) be a measurable numerical function and f* = max{f,0} and
f_ = —min{f, O}

Definition 3.4. Let f : (X, F,u) — (R, B) be a measurable numerical function such that

fx frdu < oo and fx f~du < oo. In this case, we say that f is p-integrable and we write

/deu :—/Xf+du—/xf‘du-

We note that fx fdup € R and denote by Ly the set of integrable real functions and Lz
the set of integrable numerical functions. A non-negative function f is said to be integrable
if, and only if, [ fdu < oo. If (X,F,pu) := (R",B",A\") we call [, fd\" the Lebesgue

integral.
Theorem 3.7. Let f: (X, F,u) — (R, B) be a measurable function. Then,
(1) feLlr < (2)|f| € Lg < (3) there exist 0 < g € L such that |f]| < g.
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Proof. ((1) = (2)) Since, |f| = f*+ f~ and since integrability of f implies [y fTdu < oo
and [ f~dp < oo we have [ |fldu = [ fTdu+ [ [~ dp < oo.

((2) = (3)) Just take g = | f].

((3) = (1)) Since f* < |f| < gand f~ < |f|] < g we have by the monotonicity of
the integral of non-negative functions and the integrability of g that f*, f~ € L. Hence,

felyg N

Theorem 3.8. Let f,g: (X, F,u) — (R,B) be measurable functions such that f,g € Ly

and a € R. Then,
1. af € Lg and [y afdp = a [y fdpu,
2. (f+9) € Ly and [((f +9)dp = [y fdu+ [ gdp,
3. max{f,g}, min{f, g} € L,
4. if f < g then [ fdp < [ gdp.
Proof. Homework. Use Theorems and 3.5 W
Remark 3.5. Note that

/de,u‘ﬁ /Xf+du‘+ /Xf_d#’:/5§f+dﬂ+/xf_dﬂz/X(erJrf_)d/‘:/Xlﬂdl‘-

Theorem 3.9. Let f: (X, F,u) — (R, B) be a measurable function such that 0 < f € Ly

and

m(E):/Efdufor al E e F.

Then, m is a measure on JF.

Proof. Since f >0, m(FE) > 0. It E =10, then fIr =0 and

m(@)Z/wfd,u:/XfI@du:/XOdu:O.
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Now, let {Fj}jen be a disjoint collection of sets in F such that U, E; = E and let
ful@) = 0, f(@)Ig,(x). By Theorem B3 fi fudp = S0, fio flu,dpr. Thus, fy fudy =
Z?:l m(E;).

Note that f; < f < ... and converges to fIg. Hence, by Theorem

/fIEd,u— hm/fndu—gl_)lgo Z)\ ).

Remark 3.6. m s called the measure with density function f with respect to p and denoted
by m = fu. If m has a density with respect to p it is traditional in mathematics to write
dm/du for the the density function. We note that with a little more work we can recognize

f as the Radon-Nikodym derivative of m with respect to the measure .

3.5 Lebesgue’s convergence theorems

Theorem 3.10 (Lebesgue’s Monotone Convergence Theorem). Let f, : (X, F, ) — (R, B)
for n € IN be integrable functions such that fi < fo < --- and f = limy oo fr, 1= SUDP,en fr-

Then,

feLlu <:>sup/fnd,u<oo

nelN

In this case,

sup / Jndp = / sup fndp.
nelN JX nelN

Proof. Since f, € L(p) and f; < fo < --- we have that 0 < f, — f1 € L(u) forms an

increasing sequence of nonnegative measurable functions. Hence, by Theorem

nelN nelN

0 < sup /X (o — f)dp = /X sup(f — fu)dp. (3.9)
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Now, suppose f € L(u) and note that from equation (3.9)

%/hw‘/Mu/f fi)dp or
iﬁéhWZAyﬂwﬁéﬁ—ﬁwu

_éﬁw+4ﬂw—4ﬁm—éﬂw<w

If sup,,c fx fndp < 0o, then from equation (3.9)) we have fx(f — f1)du < oo and since f; is
integrable f = (f — f1) + f1 is integrable. Therefore,

[ tin= [ foau+ [ = sup /X Fudp < 00,

In the context of a measure space (X, F,u), we will call N a null set if N € F and
w(N) = 0. If a certain property P(z) that depends on z € X holds for all x € X except
xr € Np C N, where N is a null set, we say that the property is true almost everywhere
(ae) or almost surely (as). Note the set Np where the property does not hold need not be a

measurable set.

Theorem 3.11. (Markov’s Inequality) Let (X, F,pu) be a measure space and f € Li(u).
Then, for all E € F and a > 0

p({lf1z 0B < 1 [ iflan

Proof. Note that, al{f>ayne = alfjfj>a1le < |f|Ip and consequently, integrating both sides,
au({1f| > a} N E) < [, |fldu. Therefore.

w1 =y B < = [ |fidg
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Note that if £ = X we have u({|f| > a}) <% [ [fldu. When (X, F,p) = (Q,F,P) a

probability space and f := X a random variable, the last result is commonly stated as
1
P({|X]| = a}) < —Ep(|X]).
Theorem 3.12. Let (X, F, pu) be a measure space and f € Lg(u). Then,
1. if N s a null set fN fdu =0,
2. [ |fldp=0 <= |f| =0 ae.

Proof. 1. Let f; = min{|f],j} and note 0 < f; < fy <--- with lim; , f; = |f|. Hence, by
Theorem [3.4]

/Nfdu‘ - /XINfdu‘ S/szvlfldu

= lim [ Infidu= lim/]Nmin{|f|,j}du§ hm/j]Nd,u

0<

Jj—00
= limj/ Indp = lim ju(N) = 0.
j—00 < j—00

2.(€) [x Ifldu = Jy oy 1F1dp+ Jyygz0y 1 F1die = Jyygiz0p fldpe = 0 by item 1.

(=) Note that by the fact that u is a measure
p{If1>01) = n(Uen{lfl 2 1/i}) <D u{Ifl = 1/i})
i€N
S [\l =0

i€
by Markov’s Inequality and the assumption that [y |f|du = 0.

IN

A direct consequence of this Theorem is that functions that are equal almost everywhere

have the same integral.
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Remark 3.7. 1. If f,g > 0 are measurable and f = g ae then [ fdp = f{m:f(m#g(z)} fdp+
f{z:f(z):g(x)} fdu. But by Theorem .1, the first integral is equal to zero. Consequently,

S fdin = Jp@—g@n T = Jiap@—g@n 9% = S 2oy 9+ Js—gtany 99 =
Jx 9dp.

2. If f € Li and f = g ae then fT~ = g™~ ae. Using the previous remark on f+~ we have

Jx Idp =[x 9" dp. Hence, [ fdp = [ gdp.

3. If f is measurable and 0 < g € L with |f| < g ae, then
ffrm<ifl<g ae.
Hence, [ fT~du < [ gdp. So, f is integrable.

Theorem 3.13. (Lebesgue Dominated Convergence Theorem) Let (X, F,u) be a measure
space and { fn }new be a sequence of integrable functions such that | f,,| < g for all n and some

integrable nonnegative function g. If lim, o fn(z) = f(x) exists ae, then f is integrable and

lim fndu:/ lim f,du ::/fdp,.

Proof. We start by observing that since the f,, are measurable, the set
N = {z: lim f, does not exist}
n—0o0

is measurable and p(N) = 0. Thus, we proceed by taking N = ) as it does not contribute
to the integrals.

For any € > 0 there exists V(.. such that for all n > N,

< g+ |f — fu| by the bound assumption on the theorem statement

<g+e
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Therefore, [ fdp < oo provided g € L(p). Also, |f,| < g9 < —g < f, < g. Hence,

fn+ g >0. By Fatou’s Lemma,

/ liminf(, + )du = / (f +9)du < liminf / (fu+ 9)du

:liminf/fndu—i-/gdu.
n—o0
Therefore,

/fd,u < lim inf/fnd,u.
n—oo
Also, g — f, > 0 and again by Fatou’s Lemma,
0< /ﬁminf(g—fn)du—/gdu—/fdu
n—oo
< liminf/(g — fa)du
n—oo
= /gd,u + lim inf — / fndp
n—oo
= /gd,u — lim sup / fndpt.
n—oo
The first inequality together with the last equality imply that

/fd,u > limsup/fndu.

n—0o0

Combining (3.10) and (3.11]) completes the proof. B

(3.10)

(3.11)

We now consider a measurable function that is indexed by a parameter 6 € (a,b) for

a < b. As such, we define f(z,0) : (X, F,u) x (a,b) — (R, B) where f is measurable for all

0 € (a,b).

Theorem 3.14. Let f(z,0) : (X, F, u) % (a,b) — (R, B) where f is measurable and f € L()

for all @ € (a,b). Also, assume that f(x,0) is continuous for every x € X and | f(z,0)| < g(x)

for all (xz,t) € X x (a,b) and some nonnegative integrable function g. Then, the function

h:(a,b) = R given by
h(8) := /Xf(x,ﬁ)d,u
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18 continuous.

Proof. The function h is well defined because of integrability of f(xz,0). It suffices to show
that for any sequence 6, € (a,b) such that 6, — 6 we have h(6,) — h(f). By continuity
of f(x,0) for every = we have f(x,0,) — f(x,0) and |f(x,6,)| < g(x) for all z € X. By

Lebesgue’s Dominated Convergence Theorem,

lim h(6,) = / lim f(0,,x)du = / f(6,x2)du = h(0).
X

n—o0 n—oo

Theorem 3.15. Let f(x,0) : (X, F, u) % (a,b) — (R, B) where f is measurable and f € L(1)
for all 0 € (a,b). Also, assume that f(x,8) is differentiable on (a,b) for every x € X and
|Lf(z,0)] < g(x) for all (t,z) € (a,b) x X and some nonnegative integrable function g.

Then, the function h : (a,b) — R given by

_ /X f(z,0)dp

is differentiable and its derivative is given by

d

d
Proof. Recall that 0,0, € (a,b) with 6,, — 6 and 6,, # 6.

g0\ 0) = Jm =

for all + € X and consequently %(z,@) is measurable. By the Mean Value Theorem,
f(z,0,) — f(z,0) = Z—é(mﬁz,n)(@n —0) with 0., = N0, + (1 — N0, A € (0,1), 0,,, € (a,b).

Consequently,

(2,0.0)| <

ot —fe)| | oo

0, — 0 do

so that ’971——9

is integrable. Thus,

h(6 f(z ,0)
9 —90 / 9 —9 -




Hence, by the Lebesgue’s Dominated Convergence Theorem

i 2 = gt = [ Jim SR | G o

3.6 L? spaces

Definition 3.5. The collection of measurable functions f : (X, F,u) — (R, B) such that
Jx [fPdp < oo for p € [1,00) is denoted by LP(p) or LP(X, F, ).

Let f,g € LP(X,F,pn) and define s : (X, F,u) — (R,B) as s(z) = f(z) + g(x) for all
z € X, Then, [s(z)] < |f(z)] + |g(2)| < 2max{|f ()], ]g(x)[} and

[s(2)|P < 2P max{|f(z)], |g()|}* = 2" max{[f(x)]", lg(=)["} < 2°(|f (@) + [g(x)]").

Consequently, [y |s|Pdp < 2°( [y | f|Pdu+ [ |gPdp) < oo. Also,ifa € Rand m : (X, F,u) —
(R,B) as m(z) = af(x) for all z € X we have |m(z)P = |af?’|f(x)[” and [ |m|Pdp =
lal” [ |fIPdp < oo. Lastly, if we take @(z) = 0 for all z € X to be the null vector in
LP(X, F,u), then LP(X, F, 1) is a vector space.

If f e £°(X,F,u) we define the function || - ||, : L/(X, F,u) — [0,00) as [|f]|, =

(S IS |pd,u)1/ ” and prove Hoélder’s Inequality.
Theorem 3.16. (Hilder’s Inequality) If 1 < p < oo, pt+q =1, f € LP, g€ LI, then
fg €L and [|fgldu < flpllgllq-

Proof. If || f|l, = O then, by Theorem |f] = 0 ae, so |fg| = 0 ae. Hence, [|fgldu =0
and the inequality holds. Likewise for ||g||, = 0. So, assume || f||,, ||g||; # 0. Let = = f/|| fll,.
y = g/|lgll; and note that ||z||, = 1 and ||y||, = 1. It suffices to prove [ |zy|dp < 1.

Now, note that for any a,b >0 and 0 < a < 1,
a®b™* < aa + (1 — a)b.
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To see this, divide by b to obtain (%)% < af + (1 — ). It suffices to show u® < au+ (1 — ),
for u > 0.

The inequality holds for ©w = 1. Now, %ua = qu* ! = aul%a. Since a € (0,1) we have
that u'~* < 1 if u < 1. Consequently, in this case, u*~* > 1 and Lu® > a. Also, using
the same arguments, if u > 1 we have that d%ua < «. By the Mean Value Theorem, for
Ae(0,1)

u —l=aQu+1-N))*" Y u—-1)<alu—-1) = v*<1l—a+auifu>1.
Also,
u —l=aQu+1-N)) " u—-1)<alu—-1) = v*<l+aou—aq,ifu<l.
Thus, u* < au+ (1 — a) for u > 0.
Now, let o = 1/p, a(w) = |z(w)|P, b(w) = |y(w)|? and 1 — a = 1/q. Then,
(J(@) )P (ly@)|) " < alz(@) + (1 = @)ly(@)|*, or

[z(w)y(W)| < afz@)[” + (1 = a)ly(w)|*.

Thus, integrating both sides of the inequality we obtain [ |zy|dp < ofjz||,+ (1 —a)||yll, = 1.
[

Theorem 3.17. (Minkowski-Riez Inequality) For 1 < p < oo, if f and g are in LP we have

1+ glle < 11f 1o+ llgllp-

Proof. By the triangle inequality

£+l = [17+gllr ol dn s [ 5115+~ +1gllr + ol ™) d

= / \fIf +glPtdu + / lg||f + g[P~'du, and if p = 1 the proof is complete.

If p > 1, by Holder’s Inequality

< AU+ gl lg + NgllpNLf + g7~ g,
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where 1/p+ 1/g =1 which implies 1/g=1—-1/p = ¢q= z%' Thus,

1F +gls < AU IF + gl g+ alloll1f + g lly = (L1l + Ngllo)ILf + gl ]l

Now,

1/q 1/q
s+l = ( s +apovau) = ([ 17+ gpan)

p—1

~([1rara) " =1+ ol

Using this in inequality (3:12) we obtain ||f + gll5" """ = | + gll, < I fll, + lgll,- ™

(3.12)

Remark 3.8. 1. The Minkowski-Riez Inequality and the fact that a € R, ||af||, = |alll fll,

and || f|l, > 0 shows that || -||, has almost all of the properties of a norm. The exception

is that || f||, = 0 does not imply that f(x) = 0 for all x € X. It only implies that

f(z) =0 almost everywhere.

. f,9 € LP(X,F,u) are taken to be equivalent if they differ at most on a set of p-
measure zero (null set), i.e., f ~ g if {z : f(x) # g(x)} is a null set. Then, for
every [ € LP(X,F,pu) we can define an equivalence class (reflexive, symmetric and
transitive) of LP functions induced by f, which will be denoted by [f],. The space of
all equivalence classes [f], of functions f € LP is denoted by LP with norm ||[f],||, :=
inf{|\gll, : g € LP and g ~ f}. (LP,] fillp) is @ norm vector space and in what follows

we will dispense with these technicalities and identify |f], with f.

A commonly encountered case, treated in the next theorem, has p = 2 and X,Y :

(2, F, P) = (R, B) being random variables such that X,Y € L%(Q, F, P).

Theorem 3.18. Let X,Y : (Q,F,P) — (R,B) be random variables such that X,

LX(Q, F,P).
1. XY € L(Q,F, P) and | [, XYdP| < ([, X2dP)"* ([, Y2dP)"*

)
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2. If X € L2, F, P) then X € L(Q, F, P) and ([, XdP)* < [, X2dP,
3. L*(Q, F, P) is a vector space.

Proof. 1. This is just a special case of Holder’s Inequality with p = ¢ = 2. 3. follows from the
comments after Definition . 2. Let X € £* and note that I € £* with [, IodP = [, dP.

1/2 1/2
/XIQdP’ < </ X2dP) (/ dP) .
Q Q Q

Since fQ dP =1, we have

/QXdP' < (/Q X2dP)1/2 or (/Q XdP)2 < /QX2dP.

Then,

Remark 3.9. If X € £? we define Vp(X) = [(X — Ep(X))?dP = [, X*dP — ([, XdP)?

and call it the variance of X (under P).

Theorem 3.19. Let X be a random variable defined on the probability space (2, F, P) taking
values in (R, B) and h: (R, B) — (R, B) be measurable.

1. f:=ho X is integrable in (0, F, P) if, and only if, h is integrable in (R, B, Px).
2. E(W(X)) := [, fdP = [, hdPx.

Proof. First, let h be a non-negative simple function. Then we have that f(w) = >"", y; 14, (w)

where A; € F. Consequently,

Ip(f) = /QfdP = Z%P(Aj) = y;P(X7(B))) where B; = {z € R : h(z) = y;}

j=0

= 0P o X)) = SousPx(By) = [ hdPy = I (1)
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Second, let h > 0. Then, by Theorem there exists a sequence of increasing non-negative
simple function ¢,, such that ¢, — h as n — oo. Hence, if we define f,(w) = ¢,(X(w)) =

(¢n, 0 X)(w), it is a sequence of increasing simple function that converges to f.

n—oo

/QfdP:/Q(hox)dpz/Q lim (6, 0 X)dP

= lim [ (¢, o X)dP by Beppo-Levi’s Theorem

n—o0 0

= lim [ ¢,dPx by the first part of the argument

n—0o0 R

= / hdPx.
R

This proves 2. for simple and non-negative h. If h takes values in R, consider |h| and let

¢n be a sequence of increasing non-negative simple function such that ¢,, — |h| as n — co.

[ \rap = [ piary.

But from Remark if |h| is integrable in (R, B, Px) then h is integrable in (R, B, Px),

Then, we have from above that

establishing 1. Now, for arbitrary h we can prove the rest of part 2 by applying the same

arguments to A" and h~ and using the fact that h =hT™ —h~. R

Clearly, taking h(z) = x in the previous theorem gives Ep(X) := [, XdP = [, xdPx(x)
where in the last integral we emphasize that the “variable” in integration is taking values in

R.

Definition 3.6. The density of a probability measure Px associated with a random variable
X defined on a probability space (S0, F, P) is a non-negative Borel measurable function fx

that satisfies

Px((-c.d) = [

frid = [ o
(—00,a] R

where X\ is Lebesque measure on R.
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Theorem 3.20. fx is a density < fR fxd\ =1, fx is unique almost everywhere.

Proof. (=) fx adensity implies Fx(a) = Px((—00,a]) = f(_oo o SxdA. Timg_, o Px((—00,a]) =
1 =lim, . f(foo,a] fxd\, where the first equality follows from definition and continuity
of probability measures.

(<= ) Suppose fx is a non-negative Borel measurable function such that [ fxd\ = 1. For

all A € B, we put
PX(A):/fXd)\:/IAfXd)\~
A R

By Theorem[3.9] Px is a measure on B with Px(R) = 1, by assumption. Taking A = (—o0, a],

O

and fx is a density for Fy.

Now, suppose gx is another density for Fx. Then, Px(A) = [, gxd\ = [5gxIadA.
Let A, = {z : gx(¥) > fx(z) +1/n}. Foralln € N, [, gxd\ > [, (fx + L)\ =
fAn fxdXA+ £X(A,). Since fAn fxd\ = fAn gxd\ it must be that A\(4,) = 0.

Note that A; € Ay C ... limp 004, = U A, = A = {x: gx(z) > fx(z)} and
A(A) = lim,, 00 A(A,) = 0. Similarly, we have A(B) = 0 for B = {z : gx(z) < fx(z)}. So,

AMz:gx=fx})=1 1

Theorem 3.21. Let X : (Q,F,P) — (R,B) be a random variable with density fx and
h:(R,B) = (R,B) be a measurable function such that [, |ho X|dP < oo, i.e., f =hoX is

integrable. Then,
hoX)dP = [ hdPx = | h(x)f d\

Proof. Homework. B
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