Let $(\mathbb{R}, \sigma(\mathcal{I}^1) = \mathcal{B}(\mathbb{R}))$ be a measurable space. From Theorem 1.4 if we set S = (0, 1] and consider $\mathcal{I} = \mathcal{I}^1 \cap S = \{(0, 1] \cap A : A \in \mathcal{I}^1\}$ then $\sigma(\mathcal{I}^1 \cap (0, 1]) = \mathcal{B}(\mathbb{R}) \cap (0, 1]$ is a σ -algebra associated with (0, 1]. Thus, if we define $\mathcal{B}_{(0,1]} := \sigma(\mathcal{I}^1 \cap (0, 1])$, then

$$((0,1],\mathcal{B}_{(0,1]}:=\sigma(\mathcal{I}))$$

is a measurable space where $\mathcal{I} = \{(a, b] : 0 \le a \le b \le 1\}$. Define the set function $\lambda : \mathcal{I} \to [0, 1]$ such that $\lambda(\emptyset) = 0$ and $\lambda((a, b]) = b - a$.

If λ is σ -additive on \mathcal{I} it is a pre-measure on \mathcal{I} and extends uniquely to $\mathcal{B}_{(0,1]}$.

Theorem 2.9. λ is σ -additive on \mathcal{I} .

Proof. First, we show that λ is finitely additive on \mathcal{I} . Let $(a, b] \in \mathcal{I}$ and $(a, b] = \bigcup_{i=1}^{n} (a_i, b_i]$ with $a_1 = a, a_2 = b_1, a_3 = b_2, \ldots, a_n = b_{n-1}, b_n = b$. Then,

$$\sum_{i=1}^{n} \lambda((a_i, b_i]) = (b_1 - a_1) + (b_2 - a_2) + \dots + (b_n - a_n)$$
$$= (\not a_2 - a) + (\not a_3 - \not a_2) + \dots (b - \not a_n) = b - a$$
$$= \lambda((a, b]) = \lambda(\bigcup_{i=1}^{n} (a_i, b_i]).$$

Therefore, λ is finitely additive.

We need to show that for $(a, b] = \bigcup_{i=1}^{\infty} (a_i, b_i]$, where $\{(a_i, b_i]\}_{i \in \mathbb{N}}$ is a pairwise disjoint collection we have $b - a = \sum_{i=1}^{\infty} (b_i - a_i)$.

For any n, let $\{(a_i, b_i]\}_{i=1}^n$ be a pairwise disjoint collection. Then, we can write

$$(a,b] - \bigcup_{i=1}^{n} (a_i,b_i] = \bigcup_{j=1}^{m} I_j,$$

where the last set is the finite union of pairwise disjoint intervals. Thus, since λ is finitely additive on \mathcal{I}

$$\lambda((a,b]) = \sum_{i=1}^{n} \lambda((a_i,b_i]) + \sum_{i=1}^{m} \lambda(I_j) \ge \sum_{i=1}^{n} \lambda((a_i,b_i])$$

Thus, $\lambda((a, b]) = b - a \ge \lim_{n \to \infty} \sum_{i=1}^{n} \lambda((a_i, b_i]) = \sum_{i=1}^{\infty} \lambda((a_i, b_i]).$

Now, for the reverse inequality $(b - a \leq \sum_{i=1}^{\infty} \lambda((a_i, b_i]))$ let $0 < \epsilon < b - a$ and note that

$$(a + \epsilon, b] \subseteq [a + \epsilon, b] \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i + \frac{1}{2^i} \epsilon)$$
$$\subseteq \bigcup_{i=1}^n (a_i, b_i + \frac{1}{2^i} \epsilon) \text{ for some } n \in \mathbb{N} \text{ by the Heine-Borel Theorem}$$
$$\subseteq \bigcup_{i=1}^n (a_i, b_i + \frac{1}{2^i} \epsilon].$$

But $\lambda((a_i, b_i] = \lambda((a_i, b_i + \frac{1}{2^i}\epsilon] - \frac{1}{2^i}\epsilon$. Hence,

$$\lambda((a+\epsilon,b]) \leq \sum_{i=1}^{n} \lambda((a_i, b_i + \frac{1}{2^i}\epsilon]) \text{ by subadditivity}$$
$$= \sum_{i=1}^{n} (b_i - a_i + \frac{1}{2^i}\epsilon)$$
$$b-a-\epsilon \leq \sum_{i=1}^{n} (b_i - a_i) + \epsilon \sum_{i=1}^{n} \frac{1}{2^i} \text{ or}$$
$$b-a \leq \sum_{i=1}^{n} (b_i - a_i) + \epsilon \left(1 + \sum_{i=1}^{n} \frac{1}{2^i}\right).$$

The last inequality gives $b - a \leq \sum_{i=1}^{\infty} (b_i - a_i)$. Hence, combining with the previously obtained reverse inequality we have $b - a = \sum_{i=1}^{\infty} (b_i - a_i)$.

Since λ is σ -additive (pre-measure) on \mathcal{I} (a semi-ring), using Carathéodory's theorem, we can state that

$$((0,1],\mathcal{B}_{(0,1]}:=\sigma(\mathcal{I}),\lambda^*)$$

is a measure space, where λ^* is the unique extension of λ from \mathcal{I} to $\sigma(\mathcal{I})$. In addition, $0 \leq \lambda^*((a, b]) \leq 1, \ \lambda^*((0, 1]) = 1$. Thus, we have *constructed* a specific probability space.

We will now construct a probability measure on $(\mathbb{R}, \mathcal{B})$.

Definition 2.5. Let $F : \mathbb{R} \to [0,1]$ be a function with the following properties:

lim _{h↓0} F(x + h) := F(x+) = F(x) for all x ∈ ℝ and h > 0,
 F(x) ≤ F(y) if x < y,

3. $\lim_{x \to \infty} F(x) = 1, \lim_{x \to -\infty} F(x) = 0.$

F is called a proper distribution function (df). If only conditions 1 and 2 are met, F is called a distribution function or a defective df.

Remark 2.3. 1. Let $F(x-) := \lim_{h \downarrow 0} F(x-h)$ for h > 0. The left jump of F at x is defined as $LJ_F(x) = F(x) - F(x-)$ and the right jump of F at x is defined as $RJ_F(x) = F(x+) - F(x)$. The jump of F at x is defined as $J_F(x) = LJ_F(x) + RJ_F(x) = F(x+) - F(x-)$. Since F satisfies condition 2, $RJ_F(x) = 0$ for all $x \in \mathbb{R}$ and $J_F(x) = F(x) - F(x-)$. In addition, since F is nondecreasing $J_F(x) \ge 0$. If $J_F(x) = 0$ then F is continuous at x. 2. For any two $x \le y \in \mathbb{R}$ we have that $0 \le F(y) - F(x) \le 1$

Definition 2.6. The left (generalized) inverse of a df F, denoted by $F^{-}(y)$, is defined as

$$F^{-}(y) := \inf\{x : F(x) \ge y \text{ for } y \in (0,1]\}.$$

Theorem 2.10. Let $S(y) = \{x : F(x) \ge y\}$ for $y \in (0, 1]$. Then,

1. S(y) is a closed set.

2.
$$F^{-}(y) > t \iff y > F(t) \text{ or } F^{-}(y) \le t \iff y \le F(t).$$

Proof. 1. If $s_n \in S(y)$ and $s_n \downarrow s$, by right continuity of F we have $y \leq F(s_n) \downarrow F(s)$. Thus, $y \leq F(s)$ and $s \in S(y)$. If $s_n \in S(y)$ and $s_n \uparrow s$, we have $y \leq F(s_n) \uparrow F(s_n) \leq F(s)$. Thus, $y \leq F(s)$ which implies that $s \in S(y)$. Consequently, by a characterization of closed sets, S(y) is closed.

2. Since S(y) is closed, its infimum $F^{-}(y) \in S(y)$ and therefore $F(F^{-}(y)) \geq y$. $t < F^{-}(y) \implies t \notin S(y) \implies F(t) < y$. The reverse implications all apply.

Theorem 2.11. Let $A \subseteq \mathbb{R}$ and $\mathcal{S}_F(A) = \{y \in (0,1] : F^-(y) \in A\}$. If $A \in \sigma(\mathcal{I}^1) = \mathcal{B}(\mathbb{R})$, then $\mathcal{S}_F(A) \in \mathcal{B}_{(0,1]} = \sigma(\mathcal{I}^1) \cap (0,1]$. *Proof.* Let $\mathcal{G} = \{A \subseteq \mathbb{R} : \mathcal{S}_F(A) \in \mathcal{B}_{(0,1]}\}$. Note that \mathcal{G} contains intervals of the type (a, b] since

$$\mathcal{S}_F((a,b]) = \{ y \in (0,1] : F^-(y) \in (a,b] \} = \{ y \in (0,1] : a < F^-(y) \le b \}$$
$$= \{ y \in (0,1] : F(a) < y \le F(b) \} = (F(a),F(b)] \in \mathcal{B}_{(0,1]}.$$

Note that since $\mathcal{I}^1 \subseteq \mathcal{G}$, if \mathcal{G} is a σ -algebra, $\sigma(\mathcal{I}^1) = \mathcal{B} \subseteq \mathcal{G}$. Hence, $A \in \mathcal{B}$ implies $S_F(A) \in \mathcal{B}_{(0,1]}$. Hence, we now show that \mathcal{G} is a σ -algebra associated with \mathbb{R} .

- 1. $S_F(\mathbb{R}) = \{ y \in (0,1] : F^-(y) \in \mathbb{R} \} = (0,1] \in \mathcal{B}_{(0,1]}, \text{ thus } \mathbb{R} \in \mathcal{G}.$
- 2. By definition of \mathcal{S}_F

$$\mathcal{S}_F(A^c) = \{ y \in (0,1] : F^-(y) \in A^c \}$$
$$= \{ y \in (0,1] : F^-(y) \in A \}^c = (\mathcal{S}_F(A))^c \in \mathcal{B}_{(0,1]} \}$$

where the last inclusion statement follows if $A \in \mathcal{G}$ and the fact that $\mathcal{B}_{(0,1]}$ is a σ -algebra.

3. If $\{A_n\}_{n\in\mathbb{N}}\in\mathcal{G}$ we have by definition of \mathcal{S}_F

$$\mathcal{S}_F(\bigcup_{n\in\mathbb{N}}A_n) = \{y\in(0,1]: F^-(y)\in\bigcup_{n\in\mathbb{N}}A_n\}$$
$$= \bigcup_{n\in\mathbb{N}}\{y\in(0,1]: F^-(y)\in A_n\} = \bigcup_{n\in\mathbb{N}}\mathcal{S}_F(A)\in\mathcal{B}_{(0,1]}\}$$

where the last inclusion statement follows since $A_n \in \mathcal{G}$ and the fact that $\mathcal{B}_{(0,1]}$ is a σ -algebra.

Definition 2.7. Let $A \in \mathcal{B}$ and define $P_F(A) = \lambda(\mathcal{S}_F(A))$ where λ is the Lebesgue measure on $\mathcal{B}_{(0,1]}$.

Remark 2.4. It is easy to verify that P_F is a probability measure. First, note that

$$P_F(\emptyset) = \lambda(\mathcal{S}_F(\emptyset)) = \lambda(\{y \in (0,1] : F^-(y) \in \emptyset\}) = \lambda(\emptyset) = 0$$

Second, if $\{A_n\}_{n\in\mathbb{N}}$ is a pairwise disjoint collection of sets in \mathcal{B} then

$$P_F(\bigcup_{n\in\mathbb{N}}A_n) = \lambda(\mathcal{S}_F(\bigcup_{n\in\mathbb{N}}A_n)) = \lambda(\{y\in(0,1]: F^-(y)\in\bigcup_{n\in\mathbb{N}}A_n\}) = \lambda(\bigcup_{n\in\mathbb{N}}\mathcal{S}_F(A_n))$$
$$= \sum_{n=1}^{\infty}\lambda(\mathcal{S}_F(A_n)) = \sum_{n=1}^{\infty}P_F(A_n).$$

where the next to last equality follows from the fact that λ is a measure and $\{S_F(A_n)\}_{n \in \mathbb{N}}$ is a pairwise disjoint collection.

Its df can be obtained by noting that

$$P_F((-\infty, x]) = \lambda(\mathcal{S}_F((-\infty, x])) = \lambda(\{y \in (0, 1] : F^-(y) \in (-\infty, x]\})$$
$$= \lambda(\{y \in (0, 1] : y \le F(x)\}) = \lambda((0, F(x)]) = F(x)$$

This last equality will be used throughout the notes. It is fundamental to our study.

If we take $(\mathbb{X}, \mathcal{F}, \mu)$ to be a probability space (Ω, \mathcal{F}, P) , $(\mathbb{E}, \mathcal{E}) := (\mathbb{R}, \mathcal{B})$ and $X : \Omega \to \mathbb{R}$ be a random variable, then Theorem 1.18 establishes that

$$P_X(B) = P(X^{-1}(B)) = (P \circ X^{-1})(B)$$
 for all $B \in \mathcal{B}$ is a measure on $(\mathbb{R}, \mathcal{B})$.

We call P_X the distribution measure (or distribution law) of X.

Chapter 3 Integration

3.1 Simple functions

In many cases it is convenient to use $-\infty$ or ∞ in calculations. In these cases we work with the extended real line, i.e., $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$. Functions that take values in $\overline{\mathbb{R}}$ are called *numerical* functions. The Borel sets associated with the extended real line are denoted by $\overline{\mathcal{B}} := \mathcal{B}(\overline{\mathbb{R}})$ and are defined as the collection of sets $\overline{\mathcal{B}}$ such that $\overline{\mathcal{B}} = \mathcal{B} \cup S$ where $\mathcal{B} \in \mathcal{B}(\mathbb{R})$ and $S \in \{\emptyset, \{-\infty\}, \{\infty\}, \{-\infty, \infty\}\}$. It is easy to verify that $\overline{\mathcal{B}}$ is a σ -algebra and that $\mathcal{B}(\mathbb{R}) = \mathbb{R} \cap \mathcal{B}(\overline{\mathbb{R}})$. In addition, $\overline{\mathcal{B}}$ is generated by a collection of sets of the form $[a, \infty]$ (or $(a, \infty], [-\infty, a], [-\infty, a)$) where $a \in \mathbb{R}$.

Let $(\mathbb{X}, \mathcal{F})$ and $(\mathbb{R}, \mathcal{B})$ be measurable spaces. Since the indicator function of a measurable set is a measurable function, it follows from Theorem 1.19 that if $\{A_j\}_{j=1}^n$ with $n \in \mathbb{N}$ is a pairwise disjoint collection in \mathcal{F} and $a_j \in \mathbb{R}$ for $j = 1, \dots, n$, the linear combination

$$f(x) = \sum_{i=1}^{n} a_j I_{A_j}(x)$$
(3.1)

is a \mathcal{F}/\mathcal{B} -measurable function.

Definition 3.1. A real-valued function on a measurable space (X, \mathcal{F}) is said to be simple if it has the representation (3.1). A standard representation of a simple function is given by

$$f(x) = \sum_{j=0}^{n} a_j I_{A_j}(x) \text{ with } a_0 = 0 \text{ and } A_0 = (\bigcup_{j=1}^{n} A_j)^c.$$
(3.2)

Remark 3.1. 1. If $f : (\mathbb{X}, \mathcal{F}) \to (\mathbb{R}, \mathcal{B})$ is measurable and takes on finitely many values, say $\{a_j\}_{j=1}^n$ then it is a simple function. To see this, note that B_j is measurable, since $B_j = \{x : f(x) = a_j\} = \{x : f(x) \le a_j\} - \{x : f(x) < a_j\}$ and f is measurable. Also, note that the collection $\{B_j\}_{j=1}^n$ is pairwise disjoint. Hence,

$$f(x) = \sum_{j=1}^{n} a_j I_{B_j}(x) = \sum_{j=1}^{n} a_j I_{f=a_j}(x).$$
(3.3)

Conversely, if X is simple it takes on finitely many values.

2. Representation (3.2) is not unique, but a simple function has at least one representation such as (3.2).

Theorem 3.1. Let $f : (\mathbb{X}, \mathcal{F}) \to (\mathbb{R}, \mathcal{B})$ and $g : (\mathbb{X}, \mathcal{F}) \to (\mathbb{R}, \mathcal{B})$ be simple functions. Then, $f \pm g$, cf for c > 0, fg, $f^+ = \max\{f, 0\}$, $f^- = -\min\{f, 0\}$ and |f| are simple functions.

Proof. Homework.

3.2 Integral of simple functions

Definition 3.2. Let $f : (\mathbb{X}, \mathcal{F}, \mu) \to (\mathbb{R}, \mathcal{B})$ be a non-negative simple function with standard representation (3.2). The integral of f with respect to μ , denoted by $\int_{\mathbb{X}} f d\mu$, is given by

$$\int_{\mathbb{X}} f d\mu := \sum_{j=0}^{n} a_{j} \mu(A_{j}) \in [0, \infty].$$
(3.4)

By definition $a_j \in \mathbb{R}$ for j = 0, 1, ..., n, but since μ takes values in $[0, \infty]$ we can have $\int_{\mathbb{X}} f d\mu = \infty$. If μ is a finite measure, e.g., a probability measure P, then it must be that $\int_{\mathbb{X}} f d\mu \in \mathbb{R}$. When $\mathbb{X} : \Omega$ an outcome space, f := X is a random variable and $\mu := P$ is a probability measure we write $E_P(X) := \int_{\Omega} X dP$ and call it the expectation of X given probability P. It will be convenient, in the case of simple functions, to write $I_{\mu}(f) := \int_{\mathbb{X}} f d\mu$. **Remark 3.2.** Since the representation (3.2) is not unique, for uniqueness, the definition of integral requires that it be invariant to the representation used. To see this, suppose that $f(x) = \sum_{j=0}^{n} a_j I_{A_j}(x) = \sum_{k=0}^{m} b_k I_{B_k}(x)$. Then, $X = \bigcup_{j=0}^{n} A_j = \bigcup_{k=0}^{m} B_k$ and

$$A_j = \bigcup_{k=0}^m (A_j \cap B_k), \ B_k = \bigcup_{j=0}^n (A_j \cap B_k).$$

Since μ finitely additive and the sets in the above unions are disjoint we have that

$$\sum_{j=0}^{n} a_{j}\mu(A_{j}) = \sum_{j=0}^{n} a_{j} \sum_{k=0}^{m} \mu(A_{j} \cap B_{k}) = \sum_{j=0}^{n} \sum_{k=0}^{m} a_{j}\mu(A_{j} \cap B_{k}).$$

Similarly,

$$\sum_{k=0}^{m} b_k \mu(B_k) = \sum_{k=0}^{m} b_k \sum_{j=0}^{n} \mu(A_j \cap B_k) = \sum_{j=0}^{n} \sum_{k=0}^{m} b_k \mu(A_j \cap B_k).$$

But $a_j = b_k$ whenever $A_j \cap B_k \neq \emptyset$, and when $A_j \cap B_k = \emptyset$, $\mu(A_j \cap B_k) = 0$. Thus, $a_j\mu(A_j \cap B_k) = b_k\mu(A_j \cap B_k)$ for all pairs (j,k), and $I_\mu(f)$ is unique.

Theorem 3.2. Let $f : (X, \mathcal{F}, \mu) \to (\mathbb{R}, \mathcal{B})$ and $g : (X, \mathcal{F}, \mu) \to (\mathbb{R}, \mathcal{B})$ be simple non-negative functions. Then,

a)
$$\int_{\mathbb{X}} cfd\mu = c \int_{\mathbb{X}} fd\mu \text{ for } c \ge 0 \text{ and } \int_{\mathbb{X}} I_E d\mu = \mu(E) \text{ for } E \in \mathcal{F}.$$

b)
$$\int_{\mathbb{X}} (f+g)d\mu = \int_{\mathbb{X}} fd\mu + \int_{\mathbb{X}} gd\mu,$$

c) If for $E \in \mathcal{F}$, we have $\lambda(E) = \int_{\mathbb{X}} fI_E d\mu$, then λ is a measure on \mathcal{F}
d) $f \le g \implies \int_{\mathbb{X}} fd\mu \le \int_{\mathbb{X}} gd\mu.$

Proof. For a) note that $c \ge 0 \implies cf \ge 0$ with representation $cf(x) = \sum_{j=0}^{n} ca_j I_{A_j}(x)$. Therefore, $\int_{\mathbb{X}} cfd\mu = \sum_{j=0}^{n} ca_j \mu(A_j) = c \sum_{j=0}^{n} a_j \mu(A_j) = c \int_{\mathbb{X}} fd\mu$. For the second part, note that $I_E(x) = I_E(x) + 0I_{E^c}(x)$. Hence, $\int_{\mathbb{Y}} I_E d\mu = \mu(E)$.

For b) let $f(x) = \sum_{j=0}^{n} a_j I_{A_j}(x)$ and $g(x) = \sum_{k=0}^{m} b_k I_{B_k}(x)$. Then, $f(x) + g(x) = \sum_{j=0}^{n} \sum_{k=0}^{m} (a_j + b_k) I_{A_j \cap B_k}(x)$ with $(A_j \cap B_k) \cap (A_{j'} \cap B_{k'}) = \emptyset$ whenever $(j,k) \neq (j',k')$.

Then,

$$\int_{\mathbb{X}} (f+g) d\mu = \sum_{j=0}^{n} \sum_{k=0}^{m} (a_j + b_k) \mu(A_j \cap B_k)$$
$$= \sum_{j=0}^{n} a_j \sum_{k=0}^{m} \mu(A_j \cap B_k) + \sum_{k=0}^{m} b_k \sum_{j=0}^{n} \mu(A_j \cap B_k)$$
$$= \sum_{j=0}^{n} a_j \mu(A_j) + \sum_{k=0}^{m} b_k \mu(B_k),$$

since X is the union of both $\{A_j\}$ and $\{B_k\}$. Then, by definition $\int_{\mathbb{X}} (f+g)d\mu = \int_{\mathbb{X}} f d\mu + \int_{\mathbb{X}} g d\mu$.

For c) note that $f(x)I_E(x) = \sum_{j=0}^n a_j I_{A_j \cap E}(x)$. From b) and a),

$$\lambda(E) = \int_{\mathbb{X}} fI_E d\mu = \sum_{j=0}^n a_j \int_{\Omega} I_{A_j \cap E}(x) d\mu = \sum_{j=0}^n a_j \mu(A_j \cap E).$$

But $\mu(A_j \cap E)$ is a measure, and we have expressed $\lambda(E)$ as a linear combination of measures on \mathcal{F} , hence λ is a measure on \mathcal{F} .

For d) write g = f + (g - f). Note that g - f is simple and non-negative since $g \ge f$. Hence, $I_{\mu}(g) = I_{\mu}(f) + I_{\mu}(g - f) \ge I_{\mu}(f)$.

3.3 Integral of non-negative functions

We start with the following fundamental theorem.

Theorem 3.3. Let $f(\omega) : (\Omega, \mathcal{F}) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be a non-negative measurable function. Then, there exists a sequence $\varphi_n(\omega) : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B})$ of simple non-negative functions such that:

- 1. $\varphi_n(\omega) \leq \varphi_{n+1}(\omega)$, for all $\omega \in \Omega$ and $n \in \mathbb{N}$
- 2. $\lim_{n \to \infty} \varphi_n(\omega) = f(\omega)$, for all $\omega \in \Omega$.

Proof. 1. For each n = 1, 2, ... define the sets

$$E_{k,n} = \begin{cases} \{\omega \in \Omega : \frac{k}{2^n} \le f(\omega) < \frac{k}{2^n} + \frac{1}{2^n} \} = f^{-1}([\frac{k}{2^n}, \frac{k}{2^n} + \frac{1}{2^n})) \text{ for } k = 0, 1, \dots, n2^n - 1\\ \{\omega \in \Omega : f(\omega) \ge n\} = f^{-1}([n, \infty]) \text{ for } k = n2^n. \end{cases}$$

For each n, the sets $\{E_{k,n}: k = 0, 1, ..., n2^n\}$ are disjoint by construction, belong to \mathcal{F} since f is measurable and $\bigcup_{k=0}^{n2^n} E_{k,n} = \Omega$. Now, let

$$\varphi_n(\omega) = \sum_{k=0}^{n2^n} \frac{k}{2^n} I_{E_{k,n}}(\omega)$$

Fix $\omega \in \Omega$ and for any $n \in \mathbb{N}$ we note that $\omega \in E_{k_0,n}$ for some k_0 . By definition

$$\varphi_n(\omega) = \begin{cases} \frac{k_0}{2^n} \text{ if } k_0 = 0, 1, \cdots, n2^n - 1\\ n \text{ if } k_0 = n2^n. \end{cases}$$

First, let $k_0 \in \{0, 1, \dots, n2^n - 1\}$ and consider n+1. The lower bound on $\left[\frac{k_0}{2^n}, \frac{k_0}{2^n} + \frac{1}{2^n}\right)$ must coincide with $\frac{k}{2^{n+1}}$, which gives $k = 2k_0$. Thus, $E_{k,n+1} = E_{2k_0,n+1} = f^{-1}\left(\left[\frac{2k_0}{2^{n+1}}, \frac{2k_0}{2^{n+1}} + \frac{1}{2^{n+1}}\right]\right) = f^{-1}\left(\left[\frac{k_0}{2^n}, \frac{k_0}{2^n} + \frac{1}{2^{n+1}}\right]\right)$ and

$$E_{k+1,n+1} = E_{2k_0+1,n+1} = f^{-1} \left(\left[\frac{k_0}{2^n} + \frac{1}{2^{n+1}}, \frac{k_0}{2^n} + \frac{2}{2^{n+1}} \right] \right) = f^{-1} \left(\left[\frac{k_0}{2^n} + \frac{1}{2^{n+1}}, \frac{k_0}{2^n} + \frac{1}{2^n} \right] \right).$$

Consequently, $E_{k_0,n} = E_{k,n+1} \cup E_{k+1,n+1} = E_{2k_0,n+1} \cup E_{2k_0+1,n+1}$. If $\omega \in E_{2k_0,n+1}$ then $\varphi_{n+1}(\omega) = \frac{2k_0}{2^{n+1}}$ and $\varphi_{n+1}(\omega) - \varphi_n(\omega) = \frac{2k_0}{2^{n+1}} - \frac{k_0}{2^n} = 0$. Alternatively, if $\omega \in E_{2k_0+1,n+1}$ then $\varphi_{n+1}(\omega) = \frac{2k_0+1}{2^{n+1}}$ and $\varphi_{n+1}(\omega) - \varphi_n(\omega) = \frac{2k_0+1}{2^{n+1}} - \frac{k_0}{2^n} = \frac{1}{2^{n+1}} > 0$. Consequently, if $\omega \in E_{k_0,n}$ then $\varphi_{n+1}(\omega) - \varphi_n(\omega) \ge 0$.

Second, if $k_0 = n2^n$ then $E_{k_0,n} = f^{-1}([n,\infty])$. Now, if $\omega \in f^{-1}([n+1,\infty])$ then $\varphi_{n+1}(\omega) = n + 1$ and $\varphi_n(\omega) = n$. Consequently, $\varphi_{n+1}(\omega) - \varphi_n(\omega) = 1 > 0$. If $\omega \in f^{-1}([n, n+1])$ then $\varphi_n(\omega) = n$ and $\varphi_{n+1}(\omega) = \frac{k}{2^{n+1}}$ if $\omega \in f^{-1}([\frac{k}{2^{n+1}}, \frac{k}{2^{n+1}} + \frac{1}{2^{n+1}}))$. Setting the lower bound of the interval equal to n gives $k = n2^{n+1}$ and $\varphi_{n+1}(\omega) = n$ if $\omega \in f^{-1}([n, n + \frac{1}{2^{n+1}}))$, giving $\varphi_{n+1}(\omega) - \varphi_n(\omega) = 0$. If $\omega \in f^{-1}([n + \frac{1}{2^{n+1}}, n + \frac{2}{2^{n+1}}))$ then $\varphi_{n+1}(\omega) = \frac{n2^{n+1}+1}{2^{n+1}}$ and consequently $\varphi_{n+1}(\omega) - \varphi_n(\omega) = \frac{1}{2^{n+1}} > 0$. Continuing in this fashion for subsequent sub-intervals of [n, n + 1] gives $\varphi_{n+1}(\omega) - \varphi_n(\omega) \ge 0$.

2. From item 1, we have that $\varphi_1(\omega) \leq \varphi_2(\omega) \leq \cdots \leq f(\omega)$ for all $\omega \in \Omega$. Hence, $\lim_{n \to \infty} \varphi_n(\omega) = \sup_{n \in \mathbb{N}} \varphi_n(\omega)$. But $0 \leq f(\omega) - \varphi_n(\omega) \leq \frac{1}{2^n}$ and taking limits as $n \to \infty$ we have $f(\omega) = \lim_{n \to \infty} \varphi_n(\omega) = \sup_{n \in \mathbb{N}} \varphi_n(\omega)$.

Definition 3.3. Let $f : (\mathbb{X}, \mathcal{F}, \mu) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be a non-negative measurable function. The integral of f with respect to μ is given by

$$\int_{\mathbb{X}} f d\mu := \sup_{\varphi} \int_{\mathbb{X}} \varphi(x) d\mu := \sup_{\varphi} I_{\mu}(\varphi) \in [0, \infty],$$
(3.5)

where the sup is taken over all simple functions φ which are non-negative satisfying $\varphi(x) \leq f(x)$ for all $x \in \mathbb{X}$.

Remark 3.3. If f is a non-negative simple function $\int_{\mathbb{X}} f d\mu = I_{\mu}(f)$.

Theorem 3.4. (Beppo-Levi Theorem) Let $(\mathbb{X}, \mathcal{F}, \mu)$ be a measure space and $\{f_j\}_{j \in \mathbb{N}}$ be an increasing sequence of non-negative measurable functions $f_j : (\mathbb{X}, \mathcal{F}) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$. Then $f = \sup_{j \in \mathbb{N}} f_j$ is a non-negative measurable function and

$$\int_{\mathbb{X}} f d\mu := \int_{\mathbb{X}} \sup_{j \in \mathbb{N}} f_j d\mu = \sup_{j \in \mathbb{N}} \int_{\mathbb{X}} f_j d\mu.$$

Proof. That f is a non-negative measurable function follows from Theorem 1.20. Note that if g and h are non-negative measurable functions, we have by definition that

$$\int_{\mathbb{X}} g d\mu := \sup_{\varphi} \int_{\mathbb{X}} \varphi d\mu \text{ where } \varphi \leq g, \ \varphi \text{ a simple function.}$$

But since $g \leq h$,

$$\int_{\mathbb{X}} g d\mu \leq \sup_{\varphi} \int_{\mathbb{X}} \varphi d\mu = \int_{\mathbb{X}} h d\mu \text{ where } \varphi \leq h.$$

Now, $f_j \leq f := \sup_{j \in \mathbb{N}} f_j$. By the monotonicity of integrals, which we just established,

$$\int_{\mathbb{X}} f_j d\mu \le \int_{\mathbb{X}} f d\mu.$$

Taking sup on both sides gives $\sup_{j \in \mathbb{N}} \int_{\mathbb{X}} f_j d\mu \leq \int_{\mathbb{X}} f d\mu$.

Now, we establish the reverse inequality, i.e., $\sup_{j\in\mathbb{N}}\int_{\mathbb{X}}f_jd\mu \geq \int_{\mathbb{X}}fd\mu$. Let $\varphi(x)$ be a simple function such that $\varphi \leq f$. If we can show that

$$I_{\mu}(\varphi) = \int_{\mathbb{X}} \varphi d\mu \le \sup_{j \in \mathbb{N}} \int_{\mathbb{X}} f_j d\mu$$
(3.6)

we will have the desired inequality since we can take sup over all simple functions on both sides of (3.6) to give

$$\sup_{\varphi} \int_{\mathbb{X}} \varphi d\mu := \int_{\mathbb{X}} f d\mu \leq \sup_{j \in \mathbb{N}} \int_{\mathbb{X}} f_j d\mu.$$

Let φ be a simple nonnegative function such that $\varphi \leq f$. Since $f(x) := \sup_{j \in \mathbb{N}} f_j(x)$, for every $x \in \mathbb{X}$ and $\epsilon \in (0, 1)$, there exists $N_{(x,\epsilon)}$ such that

$$f_j(x) \ge \epsilon \varphi(x)$$
 whenever $j \ge N_{(x,\epsilon)}$.

Now, if $A_j = \{x : f_j(x) \ge \epsilon \varphi(x)\}$ we note that the sets A_j increase as $j \to \infty$ since $f_1 \le f_2 \cdots$. Furthermore, these sets are measurable by measurability of f_j and φ . By definition of A_j

$$\epsilon I_{A_j}(x)\varphi(x) \le I_{A_j}(x)f_j(x) \le f_j(x).$$
(3.7)

Since φ is a simple function it has a standard representation $\varphi(x) = \sum_{i=0}^{m} y_i I_{B_i}(x)$ and

$$\epsilon I_{A_j}(x) \sum_{i=0}^m y_i I_{B_i}(x) = \epsilon \sum_{i=0}^m y_i I_{B_i \cap A_j}(x).$$

Thus, the integral of the simple function in this expression is given by $\epsilon \sum_{i=0}^{m} y_i \mu(B_i \cap A_j)$. By monotonicity of integrals and using (3.7) we have

$$\epsilon \sum_{i=0}^{m} y_i \mu(B_i \cap A_j) \le \int_{\mathbb{X}} f_j d\mu \le \sup_{j \in \mathbb{N}} \int_{\mathbb{X}} f_j d\mu.$$

Since $\varphi \leq f$, the collection $\{A_j\}$ grows to X as $j \to \infty$. Thus, by the fact that μ is continuous from below

$$\mu(B_i \cap A_j) \uparrow \mu(B_i \cap \mathbb{X}) = \mu(B_i) \text{ as } j \to \infty$$

and

$$\epsilon \sum_{i=0}^{m} y_i \mu(B_i) = \epsilon \int_{\mathbb{X}} \varphi d\mu \le \sup_{j \in \mathbb{N}} \int_{\mathbb{X}} f_j d\mu.$$

Now, just let ϵ be arbitrarily close to 1 to finish the proof.

Remark 3.4. 1. If we take $f_j = \varphi_j$ where φ_j are non-negative simple functions and $f = \sup_j \varphi_j$, then

$$\int_{\mathbb{X}} f d\mu = \sup_{j \in \mathbb{N}} \int_{\mathbb{X}} \varphi_j d\mu.$$

Note that sup can be replaced with $\lim_{j\to\infty}$.

2. If $E \in \mathcal{F}$, then $I_E(x)f(x)$ is a non-negative measurable function if $f \ge 0$. We define

$$\int_{E} f d\mu = \int_{\mathbb{X}} I_{E} f d\mu.$$
(3.8)

Theorem 3.5. Let $(\mathbb{X}, \mathcal{F}, \mu)$ be a measure space and $f, g : (\mathbb{X}, \mathcal{F}, \mu) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be numerical non-negative measurable functions. Then

1. $\int_{\mathbb{X}} I_A d\mu = \mu(A) \text{ for all } A \in \mathcal{F},$

2.
$$\int_{\mathbf{X}} afd\mu = a \int_{\mathbf{X}} fd\mu \text{ for } a \ge 0,$$

3.
$$\int_{\mathbb{X}} (f+g)d\mu = \int_{\mathbb{X}} fd\mu + \int_{\mathbb{X}} gd\mu,$$

4. If $E, F \in \mathcal{F}$ and $E \subseteq F$, then $\int_E f d\mu \leq \int_F f d\mu$.

Proof. 1. $\int_{\mathbb{X}} I_A d\mu = I_{\mu}(I_A) = \mu(A)$. 2. If a > 0, let φ_n be an increasing sequence of measurable non-negative simple functions converging to f (such sequence exists by Theorem 3.3). Then, $a\varphi_n(\omega)$ is an increasing sequence converging to af. By Theorem 3.4 and the fact that $I_{\mu}(a\varphi_n) = aI_{\mu}(\varphi_n)$

$$\int_{\mathbb{X}} afd\mu = \lim_{n \to \infty} \int_{\mathbb{X}} a\varphi_n d\mu = a \lim_{n \to \infty} \int_{\mathbb{X}} \varphi_n(\omega) d\mu = a \int_{\mathbb{X}} fd\mu$$

3. Let φ_n, ψ_n be non-negative increasing simple functions converging to f and g. Then

 $\varphi_n + \psi_n$ is an increasing sequence converging to f + g. Again, by Theorem 3.4

$$\int_{\mathbf{X}} (f+g)d\mu = \lim_{n \to \infty} \int_{\mathbf{X}} (\varphi_n + \psi_n)d\mu$$
$$= \lim_{n \to \infty} \int_{\mathbf{X}} \varphi_n d\mu + \lim_{n \to \infty} \int_{\mathbf{X}} \psi_n d\mu$$
$$= \int_{\mathbf{X}} f d\mu + \int_{\mathbf{X}} g d\mu.$$

4. $fI_E \leq fI_F$ therefore

$$\int_{E} f d\mu = \int_{\mathbb{X}} f I_{E} d\mu \leq \int_{\mathbb{X}} f I_{F} d\mu = \int_{F} f d\mu.$$

Corollary 3.1. Let $\{f_j\}_{j\in\mathbb{N}}$ be a sequence of measurable non-negative numerical functions $(f_j: (\mathbb{X}, \mathcal{F}, \mu) \to (\bar{\mathbb{R}}, \bar{\mathcal{B}}))$. Then, $\sum_{j=1}^{\infty} f_j$ is measurable and

$$\int_{\mathbb{X}} \left(\sum_{j=1}^{\infty} f_j \right) d\mu = \sum_{j=1}^{\infty} \int_{\mathbb{X}} f_j d\mu$$

Proof. Let $S_m = \sum_{j=1}^m f_j$, $S = \lim_{m \to \infty} \sum_{j=1}^m f_j = \sum_{j=1}^\infty f_j$ and note that $0 \le S_1 \le S_2 \le \cdots$. Then, by Theorem 3.5.3 we have that

$$\int_{\mathbb{X}} S_m d\mu = \sum_{j=1}^m \int_{\mathbb{X}} f_j d\mu.$$

Taking limits as $m \to \infty$ and using Theorem 3.4, we have

$$\lim_{m \to \infty} \int_{\mathbb{X}} S_m d\mu = \lim_{m \to \infty} \sum_{j=1}^m \int_{\mathbb{X}} f_j d\mu = \sum_{j=1}^\infty \int_{\mathbb{X}} f_j d\mu = \int_{\mathbb{X}} S d\mu = \int_{\mathbb{X}} \left(\sum_{j=1}^\infty f_j \right) d\mu.$$

Theorem 3.6. (Fatou's Lemma): Let $\{f_j\}_{j\in\mathbb{N}}$ be a sequence of measurable non-negative numerical functions $(f_j : (\mathbb{X}, \mathcal{F}, \mu) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}}))$. Then, $f := \liminf_{n \to \infty} f_j$ is measurable and

$$\int_{\mathbb{X}} f d\mu \le \liminf_{j \to \infty} \int_{\mathbb{X}} f_j d\mu.$$

Proof. Let $g_n = \inf\{f_n, f_{n+1}, \dots\}$ for $n = 1, 2, \dots$, and note that $g_1 \leq f_1, g_1 \leq f_2, \dots$ Also, $g_2 \leq f_2, g_2 \leq f_3 \dots$ Thus, $g_n \leq f_j$ for all $n \leq j$. Furthermore, $g_1 \leq g_2 \leq \dots$ Now, recall that $f := \liminf_{j \to \infty} f_j := \sup_{n \in \mathbb{N}} \inf_{j \geq n} f_j$ and

$$\lim_{n \to \infty} g_n = \liminf_{j \to \infty} f_j := f.$$

Also, $\int_{\mathbb{X}} g_n d\mu \leq \int_{\mathbb{X}} f_j d\mu$ for all $n \leq j$ and

$$\int_{\mathbb{X}} g_n d\mu \le \liminf_{j \to \infty} \int_{\mathbb{X}} f_j d\mu.$$

Since the sequence $g_n \uparrow \liminf_{j \to \infty} f_j$, by Theorem 3.4

$$\lim_{n \to \infty} \int_{\mathbb{X}} g_n d\mu = \int_{\mathbb{X}} f d\mu \le \liminf_{j \to \infty} \int_{\mathbb{X}} f_j(\omega) d\mu.$$

3.4 Integral of functions

Let $f : (\mathbb{X}, \mathcal{F}, \mu) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be a measurable numerical function and $f^+ = \max\{f, 0\}$ and $f^- = -\min\{f, 0\}.$

Definition 3.4. Let $f : (\mathbb{X}, \mathcal{F}, \mu) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be a measurable numerical function such that $\int_{\mathbb{X}} f^+ d\mu < \infty$ and $\int_{\mathbb{X}} f^- d\mu < \infty$. In this case, we say that f is μ -integrable and we write

$$\int_{\mathbb{X}} f d\mu := \int_{\mathbb{X}} f^+ d\mu - \int_{\mathbb{X}} f^- d\mu.$$

We note that $\int_{\mathbb{X}} f d\mu \in \mathbb{R}$ and denote by $\mathcal{L}_{\mathbb{R}}$ the set of integrable real functions and $\mathcal{L}_{\mathbb{R}}$ the set of integrable numerical functions. A non-negative function f is said to be integrable if, and only if, $\int f d\mu < \infty$. If $(\mathbb{X}, \mathcal{F}, \mu) := (\mathbb{R}^n, \mathcal{B}^n, \lambda^n)$ we call $\int_{\mathbb{R}^n} f d\lambda^n$ the Lebesgue integral.

Theorem 3.7. Let $f : (\mathbb{X}, \mathcal{F}, \mu) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be a measurable function. Then,

(1)
$$f \in \mathcal{L}_{\bar{\mathbb{R}}} \iff$$
 (2) $|f| \in \mathcal{L}_{\bar{\mathbb{R}}} \iff$ (3) there exist $0 \leq g \in \mathcal{L}_{\bar{\mathbb{R}}}$ such that $|f| \leq g$

Proof. $((1) \implies (2))$ Since, $|f| = f^+ + f^-$ and since integrability of f implies $\int_{\mathbb{X}} f^+ d\mu < \infty$ and $\int_{\mathbb{X}} f^- d\mu < \infty$ we have $\int_{\mathbb{X}} |f| d\mu = \int_{\mathbb{X}} f^+ d\mu + \int_{\mathbb{X}} f^- d\mu < \infty$. $((2) \implies (3))$ Just take g = |f|. $((3) \implies (1))$ Since $f^+ \leq |f| \leq g$ and $f^- \leq |f| \leq g$ we have by the monotonicity of the integral of non-negative functions and the integrability of g that $f^+, f^- \in \mathcal{L}_{\bar{\mathbb{R}}}$. Hence,

$$f \in \mathcal{L}_{\bar{\mathbb{R}}}$$
.

Theorem 3.8. Let $f, g : (\mathbb{X}, \mathcal{F}, \mu) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be measurable functions such that $f, g \in \mathcal{L}_{\overline{\mathbb{R}}}$ and $a \in \mathbb{R}$. Then,

- 1. $af \in \mathcal{L}_{\bar{\mathbb{R}}}$ and $\int_{\mathbb{X}} afd\mu = a \int_{\mathbb{X}} fd\mu$,
- 2. $(f+g) \in \mathcal{L}_{\mathbb{R}}$ and $\int_{\mathbb{X}} (f+g)d\mu = \int_{\mathbb{X}} fd\mu + \int_{\mathbb{X}} gd\mu$,
- 3. $\max\{f,g\}, \min\{f,g\} \in \mathcal{L}_{\mathbb{R}},$
- 4. if $f \leq g$ then $\int_{\mathbb{X}} f d\mu \leq \int_{\mathbb{X}} g d\mu$.

Proof. Homework. Use Theorems 3.7 and 3.5.

Remark 3.5. Note that

$$\left|\int_{\mathbb{X}} f d\mu\right| \leq \left|\int_{\mathbb{X}} f^{+} d\mu\right| + \left|\int_{\mathbb{X}} f^{-} d\mu\right| = \int_{\mathbb{X}} f^{+} d\mu + \int_{\mathbb{X}} f^{-} d\mu = \int_{\mathbb{X}} (f^{+} + f^{-}) d\mu = \int_{\mathbb{X}} |f| d\mu.$$

Theorem 3.9. Let $f : (X, \mathcal{F}, \mu) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be a measurable function such that $0 \leq f \in \mathcal{L}_{\overline{\mathbb{R}}}$ and

$$m(E) = \int_E f d\mu \text{ for all } E \in \mathcal{F}.$$

Then, m is a measure on \mathcal{F} .

Proof. Since $f \ge 0$, $m(E) \ge 0$. If $E = \emptyset$, then $fI_E = 0$ and

$$m(\emptyset) = \int_{\emptyset} f d\mu = \int_{\mathbb{X}} f I_{\emptyset} d\mu = \int_{\mathbb{X}} 0 d\mu = 0.$$

Now, let $\{E_j\}_{j\in\mathbb{N}}$ be a disjoint collection of sets in \mathcal{F} such that $\bigcup_{j=1}^{\infty} E_j = E$ and let $f_n(x) = \sum_{j=1}^n f(x) I_{E_j}(x)$. By Theorem 3.5.3 $\int_{\mathbb{X}} f_n d\mu = \sum_{j=1}^n \int_{\mathbb{X}} f I_{E_j} d\mu$. Thus, $\int_{\mathbb{X}} f_n d\mu = \sum_{j=1}^n m(E_j)$.

Note that $f_1 \leq f_2 \leq \ldots$ and converges to fI_E . Hence, by Theorem 3.4

$$m(E) = \int_{\mathbb{X}} fI_E d\mu = \lim_{n \to \infty} \int_{\mathbb{X}} f_n d\mu = \lim_{n \to \infty} \sum_{j=1}^n m(E_j) = \sum_{j=1}^\infty \lambda(E_j).$$

Remark 3.6. *m* is called the measure with density function f with respect to μ and denoted by $m = f\mu$. If m has a density with respect to μ it is traditional in mathematics to write $dm/d\mu$ for the the density function. We note that with a little more work we can recognize f as the Radon-Nikodým derivative of m with respect to the measure μ .

3.5 Lebesgue's convergence theorems

Theorem 3.10 (Lebesgue's Monotone Convergence Theorem). Let $f_n : (\mathbb{X}, \mathcal{F}, \mu) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ for $n \in \mathbb{N}$ be integrable functions such that $f_1 \leq f_2 \leq \cdots$ and $f := \lim_{n \to \infty} f_n := \sup_{n \in \mathbb{N}} f_n$. Then,

$$f \in \mathcal{L}(\mu) \iff \sup_{n \in \mathbb{N}} \int_{\mathbb{X}} f_n d\mu < \infty.$$

In this case,

$$\sup_{n\in\mathbb{N}}\int_{\mathbb{X}}f_nd\mu=\int\sup_{n\in\mathbb{N}}f_nd\mu.$$

Proof. Since $f_n \in \mathcal{L}(\mu)$ and $f_1 \leq f_2 \leq \cdots$ we have that $0 \leq f_n - f_1 \in \mathcal{L}(\mu)$ forms an increasing sequence of nonnegative measurable functions. Hence, by Theorem 3.4

$$0 \le \sup_{n \in \mathbb{N}} \int_{\mathbb{X}} (f_n - f_1) d\mu = \int_{\mathbb{X}} \sup_{n \in \mathbb{N}} (f_n - f_1) d\mu.$$
(3.9)

Now, suppose $f \in \mathcal{L}(\mu)$ and note that from equation (3.9)

$$\sup_{n \in \mathbb{N}} \int_{\mathbb{X}} f_n d\mu - \int_{\mathbb{X}} f_1 d\mu = \int_{\mathbb{X}} (f - f_1) d\mu \text{ or}$$
$$\sup_{n \in \mathbb{N}} \int_{\mathbb{X}} f_n d\mu = \int_{\mathbb{X}} f_1 d\mu + \int_{\mathbb{X}} (f - f_1) d\mu$$
$$= \int_{\mathbb{X}} f_1 d\mu + \int_{\mathbb{X}} f d\mu - \int_{\mathbb{X}} f_1 d\mu = \int_{\mathbb{X}} f d\mu < \infty.$$

If $\sup_{n \in \mathbb{N}} \int_{\mathbb{X}} f_n d\mu < \infty$, then from equation (3.9) we have $\int_{\mathbb{X}} (f - f_1) d\mu < \infty$ and since f_1 is integrable $f = (f - f_1) + f_1$ is integrable. Therefore,

$$\int f d\mu = \int (f - f_1) d\mu + \int f_1 du = \sup_{n \in \mathbb{N}} \int_{\mathbb{X}} f_n d\mu < \infty.$$

In the context of a measure space (X, \mathcal{F}, μ) , we will call N a null set if $N \in \mathcal{F}$ and $\mu(N) = 0$. If a certain property $\mathcal{P}(x)$ that depends on $x \in X$ holds for all $x \in X$ except $x \in N_{\mathcal{P}} \subseteq N$, where N is a null set, we say that the property is true almost everywhere (ae) or almost surely (as). Note the set $N_{\mathcal{P}}$ where the property does not hold need not be a measurable set.

Theorem 3.11. (Markov's Inequality) Let $(\mathbb{X}, \mathcal{F}, \mu)$ be a measure space and $f \in \mathcal{L}_{\bar{\mathbb{R}}}(\mu)$. Then, for all $E \in \mathcal{F}$ and a > 0

$$\mu\left(\{|f| \ge a\} \cap E\right) \le \frac{1}{a} \int_E |f| d\mu.$$

Proof. Note that, $aI_{\{|f|\geq a\}\cap E} = aI_{\{|f|\geq a\}}I_E \leq |f|I_E$ and consequently, integrating both sides, $a\mu(\{|f|\geq a\}\cap E) \leq \int_E |f|d\mu$. Therefore,

$$\mu(\{|f| \ge a\} \cap E) \le \frac{1}{a} \int_E |f| d\mu.$$

Note that if $E = \mathbb{X}$ we have $\mu(\{|f| \ge a\}) \le \frac{1}{a} \int_{\mathbb{X}} |f| d\mu$. When $(\mathbb{X}, \mathcal{F}, \mu) = (\Omega, \mathcal{F}, P)$ a probability space and f := X a random variable, the last result is commonly stated as

$$P(\{|X| \ge a\}) \le \frac{1}{a} E_P(|X|).$$

Theorem 3.12. Let $(\mathbb{X}, \mathcal{F}, \mu)$ be a measure space and $f \in \mathcal{L}_{\mathbb{R}}(\mu)$. Then,

- 1. if N is a null set $\int_N f d\mu = 0$,
- 2. $\int_{\mathbb{X}} |f| d\mu = 0 \iff |f| = 0$ a.e.

Proof. 1. Let $f_j = \min\{|f|, j\}$ and note $0 \le f_1 \le f_2 \le \cdots$ with $\lim_{j\to\infty} f_j = |f|$. Hence, by Theorem 3.4

$$0 \le \left| \int_{N} f d\mu \right| = \left| \int_{\mathbb{X}} I_{N} f d\mu \right| \le \int_{\mathbb{X}} I_{N} |f| d\mu$$
$$= \lim_{j \to \infty} \int_{\mathbb{X}} I_{N} f_{j} d\mu = \lim_{j \to \infty} \int_{\mathbb{X}} I_{N} \min\{|f|, j\} d\mu \le \lim_{j \to \infty} \int_{\mathbb{X}} j I_{N} d\mu$$
$$= \lim_{j \to \infty} j \int_{\mathbb{X}} I_{N} d\mu = \lim_{j \to \infty} j \mu(N) = 0.$$

2. (\Leftarrow) $\int_{\mathbb{X}} |f| d\mu = \int_{\{|f|=0\}} |f| d\mu + \int_{\{|f|\neq 0\}} |f| d\mu = \int_{\{|f|\neq 0\}} |f| d\mu = 0$ by item 1. (\Rightarrow) Note that by the fact that μ is a measure

$$\begin{split} \mu(\{|f|>0\}) &= & \mu\left(\cup_{i\in\mathbb{N}}\{|f|\geq 1/i\}\right) \leq \sum_{i\in\mathbb{N}} \mu(\{|f|\geq 1/i\}) \\ &\leq & \sum_{i\in\mathbb{N}} i \int_{\mathbb{X}} |f|d\mu = 0 \\ & \text{ by Markov's Inequality and the assumption that } \int_{\mathbb{X}} |f|d\mu = 0. \end{split}$$

A direct consequence of this Theorem is that functions that are equal almost everywhere have the same integral. **Remark 3.7.** 1. If $f, g \ge 0$ are measurable and f = g as then $\int_{\mathbb{X}} f d\mu = \int_{\{x:f(x)\neq g(x)\}} f d\mu + \int_{\{x:f(x)=g(x)\}} f d\mu$. But by Theorem 3.12.1, the first integral is equal to zero. Consequently, $\int_{\mathbb{X}} f d\mu = \int_{\{x:f(x)=g(x)\}} f d\mu = \int_{\{x:f(x)=g(x)\}} g d\mu = \int_{\{x:f(x)\neq g(x)\}} g d\mu + \int_{\{x:f(x)=g(x)\}} g d\mu = \int_{\mathbb{X}} g d\mu$.

If f ∈ L_{R̄} and f = g ae then f^{+,-} = g^{+,-} ae. Using the previous remark on f^{+,-} we have
 ∫_X f^{+,-}dμ = ∫_X g^{+,-}dμ. Hence, ∫_X fdμ = ∫_X gdμ.
 If f is measurable and 0 ≤ g ∈ L_{R̄} with |f| ≤ g ae, then

$$f^{+,-} \leq |f| \leq g \ ae$$

Hence, $\int_{\mathbb{X}} f^{+,-} d\mu \leq \int_{\mathbb{X}} g d\mu$. So, f is integrable.

Theorem 3.13. (Lebesgue Dominated Convergence Theorem) Let $(\mathbb{X}, \mathcal{F}, \mu)$ be a measure space and $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of integrable functions such that $|f_n| \leq g$ for all n and some integrable nonnegative function g. If $\lim_{n\to\infty} f_n(x) = f(x)$ exists all then f is integrable and

$$\lim_{n \to \infty} \int_{\mathbb{X}} f_n d\mu = \int_{\mathbb{X}} \lim_{n \to \infty} f_n d\mu := \int_{\mathbb{X}} f d\mu.$$

Proof. We start by observing that since the f_n are measurable, the set

 $N = \{x : \lim_{n \to \infty} f_n \text{ does not exist}\}\$

is measurable and $\mu(N) = 0$. Thus, we proceed by taking $N = \emptyset$ as it does not contribute to the integrals.

For any $\epsilon > 0$ there exists $N_{(\epsilon,x)}$ such that for all $n > N_{(\epsilon,x)}$

$$\begin{split} |f| &= |f - f_n + f_n| \leq |f_n| + |f - f_n| \\ &\leq g + |f - f_n| \text{ by the bound assumption on the theorem statement} \\ &\leq g + \epsilon. \end{split}$$

Therefore, $\int f d\mu < \infty$ provided $g \in \mathcal{L}(\mu)$. Also, $|f_n| \leq g \iff -g \leq f_n \leq g$. Hence, $f_n + g \geq 0$. By Fatou's Lemma,

$$\int \liminf_{n \to \infty} (f_n + g) d\mu = \int (f + g) d\mu \le \liminf_{n \to \infty} \int (f_n + g) d\mu$$
$$= \liminf_{n \to \infty} \int f_n d\mu + \int g d\mu.$$

Therefore,

$$\int f d\mu \le \liminf_{n \to \infty} \int f_n d\mu.$$
(3.10)

Also, $g - f_n \ge 0$ and again by Fatou's Lemma,

$$0 \leq \int \liminf_{n \to \infty} (g - f_n) d\mu = \int g d\mu - \int f d\mu$$
$$\leq \liminf_{n \to \infty} \int (g - f_n) d\mu$$
$$= \int g d\mu + \liminf_{n \to \infty} - \int f_n d\mu$$
$$= \int g d\mu - \limsup_{n \to \infty} \int f_n d\mu.$$

The first inequality together with the last equality imply that

$$\int f d\mu \ge \limsup_{n \to \infty} \int f_n d\mu.$$
(3.11)

Combining (3.10) and (3.11) completes the proof.

We now consider a measurable function that is indexed by a parameter $\theta \in (a, b)$ for a < b. As such, we define $f(x, \theta) : (\mathbb{X}, \mathcal{F}, \mu) \times (a, b) \to (\mathbb{R}, \mathcal{B})$ where f is measurable for all $\theta \in (a, b)$.

Theorem 3.14. Let $f(x,\theta) : (\mathbb{X}, \mathcal{F}, \mu) \times (a, b) \to (\mathbb{R}, \mathcal{B})$ where f is measurable and $f \in \mathcal{L}(\mu)$ for all $\theta \in (a, b)$. Also, assume that $f(x, \theta)$ is continuous for every $x \in \mathbb{X}$ and $|f(x, \theta)| \leq g(x)$ for all $(x, t) \in \mathbb{X} \times (a, b)$ and some nonnegative integrable function g. Then, the function $h : (a, b) \to \mathbb{R}$ given by

$$h(\theta) := \int_{\mathbb{X}} f(x,\theta) d\mu$$

is continuous.

Proof. The function h is well defined because of integrability of $f(x,\theta)$. It suffices to show that for any sequence $\theta_n \in (a,b)$ such that $\theta_n \to \theta$ we have $h(\theta_n) \to h(\theta)$. By continuity of $f(x,\theta)$ for every x we have $f(x,\theta_n) \to f(x,\theta)$ and $|f(x,\theta_n)| \leq g(x)$ for all $x \in \mathbb{X}$. By Lebesgue's Dominated Convergence Theorem,

$$\lim_{n \to \infty} h(\theta_n) = \int_{\mathbb{X}} \lim_{n \to \infty} f(\theta_n, x) d\mu = \int_{\mathbb{X}} f(\theta, x) d\mu = h(\theta).$$

Theorem 3.15. Let $f(x,\theta) : (\mathbb{X}, \mathcal{F}, \mu) \times (a, b) \to (\mathbb{R}, \mathcal{B})$ where f is measurable and $f \in \mathcal{L}(\mu)$ for all $\theta \in (a, b)$. Also, assume that $f(x, \theta)$ is differentiable on (a, b) for every $x \in \mathbb{X}$ and $|\frac{d}{d\theta}f(x,\theta)| \leq g(x)$ for all $(t,x) \in (a,b) \times \mathbb{X}$ and some nonnegative integrable function g. Then, the function $h : (a, b) \to \mathbb{R}$ given by

$$h(\theta) := \int_{\mathbb{X}} f(x,\theta) d\mu$$

is differentiable and its derivative is given by

$$\frac{d}{d\theta}h(\theta) = \int_{\mathbb{X}} \frac{d}{d\theta}f(x,\theta)d\mu$$

Proof. Recall that $\theta, \theta_n \in (a, b)$ with $\theta_n \to \theta$ and $\theta_n \neq \theta$.

$$\frac{df}{d\theta}(x,\theta) = \lim_{n \to \infty} \frac{f(x,\theta_n) - f(x,\theta)}{\theta_n - \theta}$$

for all $x \in \mathbb{X}$ and consequently $\frac{df}{d\theta}(x,\theta)$ is measurable. By the Mean Value Theorem, $f(x,\theta_n) - f(x,\theta) = \frac{df}{d\theta}(x,\theta_{z,n})(\theta_n - \theta)$ with $\theta_{z,n} = \lambda \theta_n + (1-\lambda)\theta$, $\lambda \in (0,1)$, $\theta_{z,n} \in (a,b)$. Consequently,

$$\left|\frac{f(x,\theta_n) - f(x,\theta)}{\theta_n - \theta}\right| = \left|\frac{df}{d\theta}(x,\theta_{z,n})\right| \le g(x)$$

so that $\left|\frac{f(x,\theta_n)-f(x,\theta)}{\theta_n-\theta}\right|$ is integrable. Thus,

$$\frac{h(\theta_n) - h(\theta)}{\theta_n - \theta_0} = \int_{\mathbb{X}} \frac{f(x, \theta_n) - f(x, \theta)}{\theta_n - \theta} d\mu.$$

Hence, by the Lebesgue's Dominated Convergence Theorem

$$\lim_{n \to \infty} \frac{h(\theta_n) - h(\theta)}{\theta_n - \theta} = \frac{d}{d\theta} h(\theta) = \int_{\mathbb{X}} \lim_{n \to \infty} \frac{f(x, \theta_n) - f(x, \theta)}{\theta_n - \theta} d\mu = \int_{\mathbb{X}} \frac{df}{d\theta}(x, \theta) d\mu.$$

3.6 \mathcal{L}^p spaces

Definition 3.5. The collection of measurable functions $f : (\mathbb{X}, \mathcal{F}, \mu) \to (\mathbb{R}, \mathcal{B})$ such that $\int_{\mathbb{X}} |f|^p d\mu < \infty$ for $p \in [1, \infty)$ is denoted by $\mathcal{L}^p(\mu)$ or $\mathcal{L}^p(\mathbb{X}, \mathcal{F}, \mu)$.

Let $f, g \in \mathcal{L}^p(\mathbb{X}, \mathcal{F}, \mu)$ and define $s : (\mathbb{X}, \mathcal{F}, \mu) \to (\mathbb{R}, \mathcal{B})$ as s(x) = f(x) + g(x) for all $x \in \mathbb{X}$. Then, $|s(x)| \le |f(x)| + |g(x)| \le 2 \max\{|f(x)|, |g(x)|\}$ and

$$|s(x)|^{p} \leq 2^{p} \max\{|f(x)|, |g(x)|\}^{p} = 2^{p} \max\{|f(x)|^{p}, |g(x)|^{p}\} \leq 2^{p} (|f(x)|^{p} + |g(x)|^{p}).$$

Consequently, $\int_{\mathbb{X}} |s|^p d\mu \leq 2^p (\int_{\mathbb{X}} |f|^p d\mu + \int_{\mathbb{X}} |g|^p d\mu) < \infty$. Also, if $a \in \mathbb{R}$ and $m : (\mathbb{X}, \mathcal{F}, \mu) \to (\mathbb{R}, \mathcal{B})$ as m(x) = af(x) for all $x \in \mathbb{X}$ we have $|m(x)|^p = |a|^p |f(x)|^p$ and $\int_{\mathbb{X}} |m|^p d\mu = |a|^p \int_{\mathbb{X}} |f|^p d\mu < \infty$. Lastly, if we take $\theta(x) = 0$ for all $x \in \mathbb{X}$ to be the null vector in $\mathcal{L}^p(\mathbb{X}, \mathcal{F}, \mu)$, then $\mathcal{L}^p(\mathbb{X}, \mathcal{F}, \mu)$ is a vector space.

If $f \in \mathcal{L}^p(\mathbb{X}, \mathcal{F}, \mu)$ we define the function $\|\cdot\|_p : \mathcal{L}^p(\mathbb{X}, \mathcal{F}, \mu) \to [0, \infty)$ as $\|f\|_p = (\int_{\mathbb{X}} |f|^p d\mu)^{1/p}$ and prove Hölder's Inequality.

Theorem 3.16. (Hölder's Inequality) If $1 , <math>p^{-1} + q^{-1} = 1$, $f \in \mathcal{L}^p$, $g \in \mathcal{L}^q$, then $fg \in \mathcal{L}$ and $\int |fg| d\mu \leq ||f||_p ||g||_q$.

Proof. If $||f||_p = 0$ then, by Theorem 3.12 |f| = 0 ae, so |fg| = 0 ae. Hence, $\int |fg|d\mu = 0$ and the inequality holds. Likewise for $||g||_q = 0$. So, assume $||f||_p$, $||g||_q \neq 0$. Let $x = f/||f||_p$, $y = g/||g||_q$ and note that $||x||_p = 1$ and $||y||_q = 1$. It suffices to prove $\int |xy|d\mu \leq 1$.

Now, note that for any a, b > 0 and $0 < \alpha < 1$,

$$a^{\alpha}b^{1-\alpha} \le \alpha a + (1-\alpha)b.$$

To see this, divide by b to obtain $(\frac{a}{b})^{\alpha} \leq \alpha \frac{a}{b} + (1 - \alpha)$. It suffices to show $u^{\alpha} \leq \alpha u + (1 - \alpha)$, for u > 0.

The inequality holds for u = 1. Now, $\frac{d}{du}u^{\alpha} = \alpha u^{\alpha-1} = \alpha \frac{1}{u^{1-\alpha}}$. Since $\alpha \in (0,1)$ we have that $u^{1-\alpha} < 1$ if u < 1. Consequently, in this case, $u^{\alpha-1} > 1$ and $\frac{d}{du}u^{\alpha} > \alpha$. Also, using the same arguments, if u > 1 we have that $\frac{d}{du}u^{\alpha} < \alpha$. By the Mean Value Theorem, for $\lambda \in (0,1)$

$$u^{\alpha} - 1 = \alpha(\lambda u + (1 - \lambda))^{\alpha - 1}(u - 1) < \alpha(u - 1) \implies u^{\alpha} < 1 - \alpha + \alpha u \text{ if } u > 1.$$

Also,

$$u^{\alpha} - 1 = \alpha(\lambda u + (1 - \lambda))^{\alpha - 1}(u - 1) < \alpha(u - 1) \implies u^{\alpha} < 1 + \alpha u - \alpha, \text{ if } u < 1.$$

Thus, $u^{\alpha} \leq \alpha u + (1 - \alpha)$ for u > 0.

Now, let $\alpha = 1/p$, $a(\omega) = |x(\omega)|^p$, $b(\omega) = |y(\omega)|^q$ and $1 - \alpha = 1/q$. Then,

$$(|x(\omega)|^p)^{1/p}(|y(\omega)|^q)^{1/q} \le \alpha |x(\omega)|^p + (1-\alpha)|y(\omega)|^q, \text{ or}$$
$$|x(\omega)y(\omega)| \le \alpha |x(\omega)|^p + (1-\alpha)|y(\omega)|^q.$$

Thus, integrating both sides of the inequality we obtain $\int |xy| d\mu \leq \alpha ||x||_p + (1-\alpha) ||y||_q = 1$.

Theorem 3.17. (Minkowski-Riez Inequality) For $1 \le p < \infty$, if f and g are in \mathcal{L}^p we have $\|f + g\|_p \le \|f\|_p + \|g\|_p$.

Proof. By the triangle inequality

$$\begin{split} \|f+g\|_{p}^{p} &= \int |f+g||f+g|^{p-1}d\mu \leq \int \left(|f||f+g|^{p-1}+|g||f+g|^{p-1}\right)d\mu \\ &= \int |f||f+g|^{p-1}d\mu + \int |g||f+g|^{p-1}d\mu, \text{ and if } p = 1 \text{ the proof is complete.} \\ &\text{ If } p > 1, \text{ by Hölder's Inequality} \\ &\leq \|f\|_{p}\||f+g|^{p-1}\|_{q} + \|g\|_{p}\||f+g|^{p-1}\|_{q}, \end{split}$$

where 1/p + 1/q = 1 which implies $1/q = 1 - 1/p \implies q = \frac{p}{p-1}$. Thus,

$$||f + g||_p^p \le ||f||_p |||f + g|^{p/q}||_q + ||g||_p |||f + g|^{p/q}||_q = (||f||_p + ||g||_p) |||f + g|^{p/q}||_q.$$
(3.12)

Now,

$$\begin{aligned} \||f+g|^{p/q}\|_q &= \left(\int (|f+g|^{p/q})^q d\mu\right)^{1/q} = \left(\int |f+g|^p d\mu\right)^{1/q} \\ &= \left(\int |f+g|^p d\mu\right)^{\frac{p-1}{p}} = \|f+g\|_p^{p-1} \end{aligned}$$

Using this in inequality (3.12) we obtain $||f + g||_p^{p-(p-1)} = ||f + g||_p \le ||f||_p + ||g||_p$.

- **Remark 3.8.** 1. The Minkowski-Riez Inequality and the fact that $a \in \mathbb{R}$, $||af||_p = |a|||f||_p$ and $||f||_p \ge 0$ shows that $||\cdot||_p$ has almost all of the properties of a norm. The exception is that $||f||_p = 0$ does not imply that f(x) = 0 for all $x \in \mathbb{X}$. It only implies that f(x) = 0 almost everywhere.
 - 2. f,g ∈ L^p(X, F, μ) are taken to be equivalent if they differ at most on a set of μ-measure zero (null set), i.e., f ~ g if {x : f(x) ≠ g(x)} is a null set. Then, for every f ∈ L^p(X, F, μ) we can define an equivalence class (reflexive, symmetric and transitive) of L^p functions induced by f, which will be denoted by [f]_p. The space of all equivalence classes [f]_p of functions f ∈ L^p is denoted by L^p with norm ||[f]_p||_p := inf{||g||_p : g ∈ L^p and g ~ f}. (L^p, ||f_[p]||_p) is a norm vector space and in what follows we will dispense with these technicalities and identify [f]_p with f.

A commonly encountered case, treated in the next theorem, has p = 2 and X, Y : $(\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$ being random variables such that $X, Y \in \mathcal{L}^2_{\mathbb{R}}(\Omega, \mathcal{F}, P)$.

Theorem 3.18. Let $X, Y : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$ be random variables such that $X, Y \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$.

1.
$$XY \in \mathcal{L}(\Omega, \mathcal{F}, P)$$
 and $|\int_{\Omega} XYdP| \leq \left(\int_{\Omega} X^2 dP\right)^{1/2} \left(\int_{\Omega} Y^2 dP\right)^{1/2}$,

- 2. If $X \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$ then $X \in \mathcal{L}(\Omega, \mathcal{F}, P)$ and $\left(\int_{\Omega} X dP\right)^2 \leq \int_{\Omega} X^2 dP$,
- 3. $\mathcal{L}^2(\Omega, \mathcal{F}, P)$ is a vector space.

Proof. 1. This is just a special case of Hölder's Inequality with p = q = 2. 3. follows from the comments after Definition 3.5. 2. Let $X \in \mathcal{L}^2$ and note that $I_{\Omega} \in \mathcal{L}^2$ with $\int_{\Omega} I_{\Omega} dP = \int_{\Omega} dP$. Then,

$$\left| \int_{\Omega} X I_{\Omega} dP \right| \leq \left(\int_{\Omega} X^2 dP \right)^{1/2} \left(\int_{\Omega} dP \right)^{1/2}.$$

Since $\int_{\Omega} dP = 1$, we have

$$\left| \int_{\Omega} X dP \right| \le \left(\int_{\Omega} X^2 dP \right)^{1/2} \text{ or } \left(\int_{\Omega} X dP \right)^2 \le \int_{\Omega} X^2 dP.$$

Remark 3.9. If $X \in \mathcal{L}^2$ we define $V_P(X) = \int_{\Omega} (X - E_P(X))^2 dP = \int_{\Omega} X^2 dP - (\int_{\Omega} X dP)^2$ and call it the variance of X (under P).

Theorem 3.19. Let X be a random variable defined on the probability space (Ω, \mathcal{F}, P) taking values in $(\mathbb{R}, \mathcal{B})$ and $h : (\mathbb{R}, \mathcal{B}) \to (\mathbb{R}, \mathcal{B})$ be measurable.

- 1. $f := h \circ X$ is integrable in (Ω, \mathcal{F}, P) if, and only if, h is integrable in $(\mathbb{R}, \mathcal{B}, P_X)$.
- 2. $E(h(X)) := \int_{\Omega} f dP = \int_{\mathbb{R}} h dP_X.$

Proof. First, let h be a non-negative simple function. Then we have that $f(\omega) = \sum_{j=1}^{m} y_j I_{A_j}(\omega)$ where $A_j \in \mathcal{F}$. Consequently,

$$I_P(f) = \int_{\Omega} f dP = \sum_{j=0}^m y_j P(A_j) = \sum_{j=0}^m y_j P(X^{-1}(B_j)) \text{ where } B_j = \{x \in \mathbb{R} : h(x) = y_j\}$$
$$= \sum_{j=0}^m y_j (P \circ X^{-1})(B_j) = \sum_{j=0}^m y_j P_X(B_j) = \int_{\mathbb{R}} h dP_X = I_{P_X}(h).$$

Second, let $h \ge 0$. Then, by Theorem 3.3 there exists a sequence of increasing non-negative simple function ϕ_n such that $\phi_n \to h$ as $n \to \infty$. Hence, if we define $f_n(\omega) = \phi_n(X(\omega)) = (\phi_n \circ X)(\omega)$, it is a sequence of increasing simple function that converges to f.

$$\begin{split} \int_{\Omega} f dP &= \int_{\Omega} (h \circ X) dP = \int_{\Omega} \lim_{n \to \infty} (\phi_n \circ X) dP \\ &= \lim_{n \to \infty} \int_{\Omega} (\phi_n \circ X) dP \text{ by Beppo-Levi's Theorem} \\ &= \lim_{n \to \infty} \int_{\mathbb{R}} \phi_n dP_X \text{ by the first part of the argument} \\ &= \int_{\mathbb{R}} h dP_X. \end{split}$$

This proves 2. for simple and non-negative h. If h takes values in \mathbb{R} , consider |h| and let ϕ_n be a sequence of increasing non-negative simple function such that $\phi_n \to |h|$ as $n \to \infty$. Then, we have from above that

$$\int_{\Omega} |f| dP = \int_{\mathbb{R}} |h| dP_X.$$

But from Remark 3.5, if |h| is integrable in $(\mathbb{R}, \mathcal{B}, P_X)$ then h is integrable in $(\mathbb{R}, \mathcal{B}, P_X)$, establishing 1. Now, for arbitrary h we can prove the rest of part 2 by applying the same arguments to h^+ and h^- and using the fact that $h = h^+ - h^-$.

Clearly, taking h(x) = x in the previous theorem gives $E_P(X) := \int_{\Omega} X dP = \int_{\mathbb{R}} x dP_X(x)$ where in the last integral we emphasize that the "variable" in integration is taking values in \mathbb{R} .

Definition 3.6. The density of a probability measure P_X associated with a random variable X defined on a probability space (Ω, \mathcal{F}, P) is a non-negative Borel measurable function f_X that satisfies

$$P_X((-\infty,a]) = \int_{(-\infty,a]} f_X d\lambda = \int_{\mathbb{R}} I_{(-\infty,a]} f_X d\lambda$$

where λ is Lebesgue measure on \mathbb{R} .

Theorem 3.20. f_X is a density $\iff \int_{\mathbb{R}} f_X d\lambda = 1$, f_X is unique almost everywhere.

Proof. $(\implies) f_X$ a density implies $F_X(a) = P_X((-\infty, a]) = \int_{(-\infty, a]} f_X d\lambda$. $\lim_{a\to\infty} P_X((-\infty, a]) = 1 = \lim_{a\to\infty} \int_{(-\infty, a]} f_X d\lambda$, where the first equality follows from definition 2.5 and continuity of probability measures.

(\Leftarrow) Suppose f_X is a non-negative Borel measurable function such that $\int f_X d\lambda = 1$. For all $A \in \mathcal{B}$, we put

$$P_X(A) = \int_A f_X d\lambda = \int_{\mathbb{R}} I_A f_X d\lambda.$$

By Theorem 3.9, P_X is a measure on \mathcal{B} with $P_X(\mathbb{R}) = 1$, by assumption. Taking $A = (-\infty, a]$,

$$P_X((-\infty,a]) = \int_{(-\infty,a]} f_X d\lambda$$

and f_X is a density for F_X .

Now, suppose g_X is another density for F_X . Then, $P_X(A) = \int_A g_X d\lambda = \int_{\mathbb{R}} g_X I_A d\lambda$. Let $A_n = \{x : g_X(x) \ge f_X(x) + 1/n\}$. For all $n \in \mathbb{N}$, $\int_{A_n} g_X d\lambda \ge \int_{A_n} (f_X + \frac{1}{n}) d\lambda = \int_{A_n} f_X d\lambda + \frac{1}{n} \lambda(A_n)$. Since $\int_{A_n} f_X d\lambda = \int_{A_n} g_X d\lambda$ it must be that $\lambda(A_n) = 0$.

Note that $A_1 \subseteq A_2 \subseteq \dots$ $\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n = A = \{x : g_X(x) > f_X(x)\}$ and $\lambda(A) = \lim_{n\to\infty} \lambda(A_n) = 0$. Similarly, we have $\lambda(B) = 0$ for $B = \{x : g_X(x) < f_X(x)\}$. So, $\lambda(\{x : g_X = f_X\}) = 1$.

Theorem 3.21. Let $X : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$ be a random variable with density f_X and $h : (\mathbb{R}, \mathcal{B}) \to (\mathbb{R}, \mathcal{B})$ be a measurable function such that $\int_{\Omega} |h \circ X| dP < \infty$, i.e., $f = h \circ X$ is integrable. Then,

$$\int_{\Omega} (h \circ X) dP = \int_{\mathbb{R}} h dP_X = \int_{\mathbb{R}} h(x) f_X(x) d\lambda(x)$$

Proof. Homework.