
Remark 4.2. 1. It follows directly from Theorem 4.3 that a finite collection of random

variables {Xi}mi=1 is independent if, and only if,

P (\i2J{! : Xi(!)  xi}) =
Y

i2J

P ({! : Xi(!)  xi}), for all J ⇢ {1, · · · ,m}.

2. If Xi has a density {Xi}mi=1 are independent if, and only if,

P (\i2J{! : Xi(!)  xi}) =
Y

i2J

Z

(�1,xi]

fXid�.

4.1 Random elements

The most common cases where we deal with random elements occur when the co-domain of

the element is endowed with a metric, so that the co-domain is a metric space.

Definition 4.5. Let X : (⌦,F , P ) ! (T, T = �(O)), where O are the open sets in T . Then,

X is a random element if

X
�1(B) 2 F for all B 2 T .

In this definition, we can call T the collection of Borel sets of T . The following examples

include definitions.

Example 4.1. Let X : (⌦,F , P ) ! (Rk
,B(Rk)) where k 2 N. Then X is a random vector

if X�1(B) 2 F for all B 2 B(Rk) and d : Rk⇥Rk ! [0,1) is d(x, y) =
⇣Pk

i=1(xi � yi)2
⌘1/2

is the metric on Rk.

Example 4.2. Let X : (⌦,F , P ) ! (R1
,B(R1)) where R1 = ⇥1

n=1R and B(R1) = �(C)

with C = {C : C = ✓
�1
i (B), B 2 Bi

, ✓i(x) = (X1, · · · , Xi) : R1 ! Ri
, i 2 N}. Then X

is a random sequence if X
�1(B) 2 F for all B 2 B(R1) and d : R1 ⇥ R1 ! [0,1) is

d(x, y) =
P

1

i=1
1
2i

⇣ Pi
j=1 |xj�yj |

1+
Pi

j=1 |xj�yj |

⌘1/2

is the metric on R1.

In Example 1.3-3 we argued that if X(!) : (R,B) ! (R,B) is continuous, it is measurable.

Below is a more general result for arbitrary metric spaces.
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Theorem 4.4. Let f : (X1, �(O1)) ! (X2, �(O2)) where (Xj, �(Oj)) are metric spaces. If f

is continuous, f is measurable.

Proof. f
�1(O2) ⇢ O1 by continuity. But O1 ⇢ �(O1). Thus, by Theorem 1.17 f is measur-

able ⌅

Theorem 4.5. Let f : (X,F) ! (X1,F1) and g : (X1,F1) ! (X2,F2) be measurable

functions. Let (g � f) : (X,F) ! (X2,F2). Then, (g � f) is F � F2 measurable.

Proof. Homework. ⌅

Remark 4.3. 1. Let X 2 Rk be a random vector and f : Rk ! R be measurable. Then,

h : (⌦,F , P ) ! (R,B) with h(!) = f(X(!)) = (f �X)(!) is a random variable since

compositions of measurable functions are measurable by Theorem 4.5. In particular the

result follows if f is continuous. That is, real valued continuous functions of random

vectors are random variables.

2. In 1, if f(X) = ⇡i(X) = Xi and X is random vector then Xi is a random variable for

i = 1, . . . , k.

Theorem 4.6. X 2 Rk is a random vector () Xi is a random variable, where Xi is the

ith component of X.

Proof. ( (= ) Suppose Xi is a random variable for i = 1, . . . , k. Let Rk = I1 ⇥ · · · ⇥ Ik,

where Ii = [ai, bi) are intervals in R. Then,

X
�1(Rk) = {! : Xi(!) 2 [ai, bi) 8 i}

= {! : X�1
i ([ai, bi)) 8 i} = \k

i=1X
�1
i (Ii).

Since Xi is a random variable, X�1
i (Ii) 2 F . Furthermore, since F is a �-algebra, it is closed

under intersections, and X
�1(Rk) 2 F . The other direction of the equivalence follows from

the previous remark. ⌅
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Remark 4.4. 1. Theorem 4.6 extends to X = {X1, X2, . . . }. That is, X is a random

sequence if, and only if, each Xi is a random variable. Furthermore, X is a random sequence

if, and only if, (X1 . . . Xk) is random vector for any k.

2. X
�1((�1, a1]⇥ · · ·⇥ (�1, ak]) 2 F and we write P (X�1((�1, a1]⇥ · · ·⇥ (�1, ak])) =

P �X�1(⇥k
i=1(�1, ai]) = PX(⇥k

i=1(�1, ai]).

Also, if there exists a non-negative Borel measurable function fX : Rk ! R that satisfies

PX(⇥k
i=1(�1, ai]) =

Z

C(a)

fXd�
k
,

where C(a) = ⇥k
i=1(�1, ai] and a = (a1 . . . ak)T , we call fX the “joint density” of X. Natu-

rally, the joint distribution function associated with X is

FX(a) : Rk ! [0, 1],

where FX(a) = P (C(a)) for a 2 Rk. We can write C(a) = \k
i=1{! : Xi(!)  ai}. That

{! : Xi(!)  ai} is an element of F follows from Theorem 4.6.

Theorem 4.7. Consider two random variables X1, X2 : (⌦,F , P ) ! (R,B). X1 and X2 are

independent if, and only if, one of the following holds:

a) P ({X1 2 A1} \ {X2 2 A2}) := P (X 2 A1, X 2 A2) = P (X1 2 A1)P (X2 2 A2), for all

A1, A2 2 B,

b) P (X1 2 A1, X2 2 A2) = P (X1 2 A1)P (X2 2 A2), for all A1 2 A1, A2 2 A2, where

A1,A2 are ⇡ systems which generate B,

c) f(X1) and g(X2) are independent for each pair (f, g) of measurable functions,

d) E(f(X1), g(X2)) = E(f(X1))E(g(X2)) for each pair of (f, g) of bounded measurable

(or non-negative measurable) functions.
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Proof. First, note that X1 and X2 independent means that �(X1) = X
�1
1 (B) and �(X2) =

X
�1
2 (B) are independent. That is, for all A1, A2 2 B,

P (X�1
1 (A1) \X

�1
2 (A2)) = P (X�1

1 (A1))P (X�1
2 (A2))

() P (X1 2 A1, X2 2 A2) = P (X1 2 A1)P (X2 2 A2).

[a) =) b)] Since A1 generates B and A2 generates B, A1 ⇢ B and A2 ⇢ B, and if a) is true

for all A1 2 B, A2 2 B, then b) is true.

[b) =) a)] Let C1 = {A 2 B : P (X1 2 A,X2 2 A2) = P (X1 2 A)P (X2 2 A2) for a

given A2 2 A2}. From the proof of Theorem 4.2, C1 is a Dynkin system. A1 ✓ C1 and

�(A1) = �(A1) = B ✓ C1. Analogously, C2 = {A 2 B2 : P (X1 2 A1, X2 2 A) = P (X1 2

A1)P (X2 2 A) for a given A1 2 A1} is such that �(A2) = �(A2) = B ✓ C2. Consequently,

b) =) a).

[c) =) a)] The identity function is measurable, therefore take f(x) = g(x) = x

[a) =) c)] For concreteness, let f : (R,B) ! (Mf ,Mf ) and g : (R,B) ! (Mg,Mg).

f measurable implies that for all M 2 Mf , f
�1(M) 2 B. But X1 a random variable

implies that X
�1
1 (f�1(M)) 2 F which we can write as (X�1

1 � f
�1)(M) 2 F . In addition,

X
�1
1 (f�1(M)) := (X�1

1 �f�1)(M) 2 X
�1
1 (B). Analogously, X�1

2 (g�1(M 0)) = X
�1
2 �g�1(M 0) 2

X
�1
2 (B), for all M 0 2 Mg. But by a) X�1

1 (B) and X
�1
2 (B) are independent. Therefore f(X1)

and g(X2) are independent.

[d) =) a)] Let f = IA1 and g = IA2 . Then,

f(X1) =

(
1 if X1 2 A1

0 if X1 62 A1

and g(X2) =

(
1 if X2 2 A2

0 if X2 62 A2.

with E(f(X1)) = P (X1 2 A1) and E(g(X2)) = P (X2 2 A2). By d)

E(f(X1)g(X2)) = P ({X1 2 A1} \ {X2 2 A2}) = P (X1 2 A1)P (X2 2 A2).

Hence, d) =) a).
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[a) =) d)] From the implication [d) =) a)] we see that if f, g are indicator functions

in d) E(f(X1)g(X2)) = P ({X1 2 A1} \ {X2 2 A2}), which by independence a) is P (X1 2

A1)P (X2 2 A2) = E(f(X1))E(g(X2)).

Now, suppose f and g are simple functions of X1 and X2. Then,

f(X1) =

kfX

i=0

a
f
i I{X12A

f
i )}

and E(f(X1)) =

kfX

i=0

a
f
i P (X1 2 A

f
i ),

g(X2) =

kgX

i=0

a
g
i I{X22A

g
i )}

and E(g(X2)) =

kgX

i=0

a
g
iP (X2 2 A

g
i )

Consequently,

E(f(X1)g(X2)) = E

0

@
kfX

i=0

kgX

j=0

a
f
i a

g
jI{X12A

f
i }\{X22A

g
j }

1

A

=

kfX

i=0

kgX

j=0

a
f
i a

g
jP (X1 2 A

f
i )P (X2 2 A

g
j ) by independence

= E(f(X1))E(g(X2)) (4.4)

Now, let f be a measurable non-negative function such that {fn}n2N are simple functions

increasing to f and g is non-negative and simple. Then,

E(f(X1)g(X2)) = E

⇣
lim
n!1

fn(X1)g(X2)
⌘

= lim
n!1

E(fn(X1)g(X2)) by Lebesgue’s Monotone Convergence Theorem

= lim
n!1

E(fn(X1))E(g(X2)) by equation (4.4)

= E(f(X1))E(g(X2)) by Lebesgue’s Monotone Convergence Theorem
(4.5)

Now, let f be non-negative and let {gn}n2N be non-negative simple functions increasing to
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g measurable and non-negative. Then,

E(f(X1)g(X2)) = E

⇣
f(X1) lim

n!1

gn(X2)
⌘

= lim
n!1

E(f(X1)gn(X2))

= lim
n!1

E(f(X1))E(gn(X2)) by equation (4.5)

= E(f(X1))E(g(X2))

Finally, let f = f
+ � f

� be bounded and measurable and g bounded and non-negative.

E(f(X1)g(X2)) = E([f+(X1)� f
�(X1)]g(X2))

= E(f+(X1)g(X2))� E(f�(X1)g(X2))

= E(f+(X1))E(g(X2))� E(f�(X1))E(g(X2))

= E(f(X1))E(g(X2)).

To complete the proof, repeat the last argument for g = g
+ � g

�. ⌅
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Chapter 5

Convergence of random variables

5.1 Convergence almost surely and in probability

Since random variables are measurable functions from a probability space (⌦,F , P ) to (R,B),

i.e., X : (⌦,F , P ) ! (R,B), the most natural way to define convergence of a sequence

{Xn}n2N is pointwise. In this case, we say that the sequence Xn converges to X for some

! 2 ⌦ if

lim
n!1

Xn(!) = X(!).

That X(!) is a random variable follows from Theorem 1.20. If the limit holds for all ! 2 ⌦

we say that Xn converges to X on ⌦ and write Xn ! X on ⌦. A weaker convergence concept

requires

P

⇣
{! : lim

n!1

Xn(!) = X(!)}
⌘
= 1.

Note that {! : lim
n!1

Xn(!) = X(!)} must be an event ( 6= ⌦) for the statement to make sense.

In this case we say that Xn converges to X almost surely (or almost everywhere) and we

write Xn
as! X (or Xn

ae! X). Alternatively, we can require the the existence of a set N 2 F

with P (N) = 0 where if ! 2 N
c

lim
n!1

Xn(!) = X(!).
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Note that since N is an event, N c is an event and P (N c) = 1 since P (N) = 0 and P (⌦) = 1.

Hence, we give the following definition.

Definition 5.1. (Convergence as) Let {Xn}n2N be a sequence of random variables defined

on the probability space (⌦,F , P ). Then, if there exists N 2 F with P (N) = 0 such that

lim
n!1

Xn(!) exists for all ! 2 N
c, we denote this limit by X(!) and say that lim

n!1

Xn(!) =

X(!) almost surely (as) and write Xn
as! X.

The limit statement in the definition is equivalent to stating that for all ✏ > 0 there exists

N(✏) 2 N such that for all n � N(✏),

P ({! : |Xn(!)�X(!)| > ✏}) = 0.

Letting En(✏) = {! : |Xn(!)�X(!)| > ✏}, we see that

P

✓
[
j�n

Ej(✏)

◆

X

j�n

P (Ej(✏)) by sub-additivity of P

= 0 since P (Ej(✏)) = 0 for j � n.

Recall that \1

n=1 [
j�n

Ej(✏) = lim sup
n!1

En(✏), and

P

✓
lim sup
n!1

En(✏)

◆
= lim

n!1

P

✓
[
j�n

Ej(✏)

◆
by continuity of P

= 0.

Hence, Xn
as! X is often stated as P

✓
lim sup
n!1

{! : |Xn(!)�X(!)| > ✏}
◆

= 0 for all ✏ > 0.

What follows is an example of a sequence of random variables that converges to 0 as.

Example 5.1. Let (⌦ = [0, 1],B[0,1],�) where � is Lebesgue measure.

Xn(!) =

(
n if 0  !  1/n

0 if 1/n < !  1

Let N = {0} and note that �(N) = 0. If ! 2 N
c then Xn(!) ! 0 as n ! 1, but Xn(!) 6! 0

everywhere on ⌦ since at ! = 0, Xn(!) ! 1.
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An even less demanding convergence concept is that of convergence in probability (con-

vergence ip or convergence in measure im), which is given in the following definition.

Definition 5.2. Let {Xn}n2N be a sequence of random variables and X be a random variable

defined in the same probability space (⌦,F , P ). We say that Xn
p! X if for all ✏ > 0

lim
n!1

P ({! : |Xn(!)�X(!)| > ✏}) = 0.

Alternatively, we can state that for all ✏ > 0 and � > 0 there exists N(✏, �) 2 N such that

for all n � N(✏, �), P ({! : |Xn(!)�X(!)| > ✏}) < �.

Theorem 5.1. Let {Xn}n2N be a sequence of random variables and X be a random variable

defined in the same probability space (⌦,F , P ). Then, Xn
as! X =) Xn

p! X.

Proof. Let En(✏) = {! : |Xn(!) � X(!)| > ✏} for any ✏ > 0. Xn
as! X implies that there

exists a natural number N(✏) such that for all n � N(✏) we have P (En(✏)) = 0. Hence, if

we define E(✏) = {! :
P

1

n=1 IEn(✏) < 1}, then

P (E(✏)) = P

⇣
lim inf
n!1

E
c
n(✏)

⌘
= P

✓✓
lim sup
n!1

En(✏)

◆c◆
= 1.

This implies that

P

✓
lim sup
n!1

En(✏)

◆
= 0 = P

⇣
lim
n!1

[1

m=nEm(✏)
⌘

= lim
n!1

P ([1

m=nEm(✏)) by continuity of P

� lim
n!1

P (En(✏)).

Consequently, limn!1 P (En(✏)) = 0. ⌅

The following theorem, known as the Borel-Cantelli Lemma is the main device used to

establish almost sure convergence.
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Theorem 5.2. (Borel-Cantelli Lemma) Let {En}n2N be a sequence of events. If

1X

n=1

P (En) < 1

then P

✓
lim sup
n!1

En

◆
= 0.

Proof.

P

✓
lim sup
n!1

En

◆
= P

⇣
lim
n!1

[m�nEm

⌘

= lim
n!1

P ([m�nEm) by continuity of P

 lim sup
n!1

1X

m=n

P (Em) by sub-additivity of P

= 0 since
1X

n=1

P (En) < 1 implies
1X

m=n

P (Em) ! 0 as n ! 1.

⌅

Theorem 5.3. Let {Xn}n2N be a sequence of random variables and X be a random variable

defined in the same probability space (⌦,F , P ).

1. Xn
p! X () Xr �Xs

p! 0 as n, r, s ! 1 (Cauchy in probability)

2. Xn
p! X () each subsequence Xnk

contains a further subsequence {Xnk(i)
} as! X.

Proof. 1. ( =) ) |Xr � Xs| = |Xr � X + X � Xs|  |Xr � X| + |X � Xs|. For all ✏ > 0,

{! : |Xr � Xs| > ✏} ⇢ {! : |Xr � X| + |X � Xs| > ✏} ⇢ {! : |Xr � X| > ✏/2} [ {! :

|Xs �X| > ✏/2}. Consequently,

P ({! : |Xr �Xs| > ✏})  P ({! : |Xr �X| > ✏/2}) + P ({! : |Xs �X| > ✏/2}). (5.1)

Taking limits on both sides of the inequality as r, s ! 1 and given that Xn
p! X we have

that P ({! : |Xr �Xs| > ✏}) ! 0.
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( (= ) Let {Xn(j)}j2N be a subsequence of {Xn}n2N. If Xn(j)
as! X, then by equation (5.1)

P ({! : |Xn �X| > ✏})  P ({! : |Xn �Xn(j)| > ✏/2}) + P ({! : |Xn(j) �X| > ✏/2}).

Using the fact that {Xn}n2N is Cauchy in probability P ({! : |Xn � Xn(j)| > ✏/2}) ! 0

as n, n(j) ! 1. Also, since Xn(j)
as! X implies Xn(j)

p! X and we have that P ({! :

|Xn(j) � X| > ✏/2}) ! 0 as n(j) ! 1. Thus, it suffice to show that there exists a

subsequence {Xn(j)}j2N such that Xn(j)
as! X. We will construct such sequence.

Let n(1) = 1 and define

n(j) = inf{N : N > n(j � 1), P
��

! : |Xr �Xs| > 2�j
 �

< 2�j
, for all r, s � N}.

It is possible to define {n(j)} because of the assumption that {Xn}n2N is Cauchy in proba-

bility.. Also, by construction, n(1) < n(2) < . . . so that n(j) ! 1. Consequently,

P ({! : |Xn(j)+1 �Xn(j)| > 2�j}) < 2�j

and
P

1

j=1 P ({! : |Xn(j)+1 �Xn(j)| > 2�j}) <
P

1

j=1 2
�j

< 1. By the Borel-Cantelli Lemma

P

✓
lim sup
j!1

{! : |Xn(j)+1 �Xn(j)| > 2�j}
◆

= 0

or

P

✓
lim inf
j!1

{! : |Xn(j)+1 �Xn(j)|  2�j}
◆

= 1.

Now, ! 2 lim infj!1{! : |Xn(j)+1 �Xn(j)|  2�j} means that ! 2 {! : |Xn(j)+1 �Xn(j)| 

2�j} for all j sufficiently large (j � J). Hence,

X

j�J

|Xn(j)+1(!)�Xn(j)(!)| 
X

j�J

2�j = 2 · 2�J

Hence, for all K > J , |Xn(K) �Xn(J)| 
P

j�J |Xn(j)+1 �Xn(j)|  2 · 2�J . Thus, as J ! 1,

|Xn(K) � Xn(J)| ! 0 establishing that {Xn(j)} is a Cauchy sequence of real numbers with
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probability 1. Since R is complete, i.e., every Cauchy sequence in R has a limit in R,

limj!1 Xnj(!) exists with probability 1. Hence, Xnj(!) ! X(!) = lim
j!1

Xnj(!) as.

2. ( =) ) Choose a subsequence {Xn(j)}. Then, since Xn
p! X, Xn(j)

p! X and Xn(j) is

Cauchy in probability by part 1. Hence, there exists Xn(j(i))
as! X.

( (= ) Suppose not. If Xn 6 p! X then there exists Xn(j) and ✏, � > 0 such that

P ({! : |Xn(j) �X| > ✏}) � �. (5.2)

But every Xn(j) has a subsequence Xn(j(i))
as! X and hence Xn(j(i))

p! X, which contradicts

equation (5.2). ⌅

The following theorem is often called Slutsky’s Theorem. It shows that limits in proba-

bility and continuous functions can be interchanged.

Theorem 5.4. (Slutsky’s Theorem) If Xn, X are random elements defined on the same

probability space and Xn
p! X, g : RK ! RL continuous, then g(Xn)

p! g(X).

Proof. Recall that g is continuous at X if and only if for all ✏ > 0 there exists �✏,X > 0

such that whenever |Xn,k �Xk| < �✏,X for k = 1, ..., K, |gl(Xn)� gl(X)| < ✏ for l = 1, ..., L.

Let An,k = {! : |Xn,k � Xk| < �✏,X} and An = {! : |gl(Xn) � gl(X)| < ✏} for all l.

Note that by continuity \K
k=1An,k ⇢ An, which implies that P (\K

k=1An,k)  P (An). Thus,

1�P (An)  1�P (\K
k=1An,k) which implies that P (Ac

n)  P ((\K
k=1An,k)c) = P ([K

k=1A
c
n,k) 

PK
k=1 P (Ac

n,k). Since Xn
p! X, P (Ac

n,k) ! 0 and therefore P (Ac
n) ! 0 or P (An) ! 1. ⌅

Theorem 5.5. Let Xn, X be defined in the same probability space such that Xn
p! X and

E(Xn), E(X) < 1. If there exist a random variable 0  Y 2 L such that |Xn(!)|  Y (!)

for all n, then E(Xn) ! E(X).

Proof. Since Xn
p! X, then Theorem 5.3 says that every subsequence Xnk

has a further

subsequence Xnk(i)

as! X. By Lebesgue’s Dominated Convergence Theorem

E(Xnk(i)
) ! E(X).
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Consequently, E(Xnk
) ! E(X). Hence, E(Xn) ! E(X). (This is so because to show

E(Xn) ! E(X), it suffices to show that every convergent subsequence E(Xnk
) is such that

E(Xnk
) ! E(X)). ⌅

Remark 5.1. 1. The following results follow directly from Theorem 5.3.

Xn
p! X, Yn

p! Y =) Xn + Yn
p! X + Y

Xn
p! X, Yn

p! Y =) XnYn
p! XY .

2. If E(Xn) = µn < 1, V (Xn) = �
2
n < 1. By Markov’s Inequality

P ({! : |Xn � µn| � ✏})  �
2
n/✏

2
.

In particular, if E(Xt) = µ and V (Xt) = �
2, letting

Xn =
1

n

nX

t=1

(Xt � µ),

we have E(Xn) = 0,

V (Xn) = E(X2
n) =

1

n2

nX

t=1

E(Xt � µ)2 +
1

n2

X

t 6=⌧

E(Xt � µ)(Xt � µ).

If Xt, X⌧ are independent (uncorrelated), E(X2
n) = �

2
/n. Then,

P ({! : |Xn| � ✏})  �
2

n✏2
.

Taking limits on both sides,

lim
n!1

P ({! : |Xn| � ✏}) = 0.

5.2 Convergence in Lp

Definition 5.3. Let X, Y 2 Lp(⌦,F , P ) and define dp(X, Y ) := kX�Y kp = (E (|X � Y |p))1/p

for p 2 [1,1). We say that a sequence {Xn}n2N 2 Lp(⌦,F , P ) converges to X 2 Lp(⌦,F , P )

in Lp, denoted by Xn
L
p

! X, if dp(Xn, X) ! 0 as n ! 1.
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The limit X in Definition 5.3 is not unique, only almost everywhere unique. If X and Y

are such that Xn
L
p

! X and Xn
L
p

! Y , then by the Minkowski-Riez Inequality

kX � Y kp = kX �Xn +Xn � Y kp  kX �Xnkp + kXn � Y kp.

Taking limits as n ! 1 we have kX � Y kp = 0, which implies that X and Y are equal

almost everywhere. We note that dp is a (semi) metric on Lp(⌦,F , P ), induced by the (semi)

norm kXkp = (E(|X|p))1/p.

A sequence {Xn}n2N in Lp(⌦,F , P ) is said to be Lp-Cauchy if for all ✏ > 0 there exists

N(✏) such that for all n,m � N(✏) we have dp(Xn, Xm) < ✏. Note that if Xn
L
p

! X we have

kXn �Xmkp = kXn �X +X �Xmkp  kXn �Xkp + kX �Xmkp.

Hence, as n,m ! 1 we obtain dp(Xn, Xm) ! 0, showing that convergent sequences in Lp

are Lp-Cauchy. The next theorem shows that every Lp-Cauchy sequence converges to an

element in Lp, i.e., Lp is a complete (Banach) space.

Theorem 5.6. (Riez-Fisher Theorem) The spaces Lp(⌦,F , P ) for p 2 [1,1) are complete.

Proof. Consider a Lp-Cauchy sequence {Xn}n2N ✓ Lp(⌦,F , P ). We need to show that this

sequence converges to a limit X in Lp(⌦,F , P ). That is, there exists X 2 Lp(⌦,F , P ) such

that

kXn �Xkp :=
✓Z

|Xn �X|pdP
◆1/p

! 0 as n ! 1.

Since {Xn}n2N is Lp-Cauchy , we can find 1 < n(1) < n(2) < · · · such that

kXn(k+1) �Xn(k)kp 
1

2k
for k = 1, 2, · · · (5.3)

Now, note that if we set Xn(0) := 0 we have that Xn(k+1) =
Pk

j=0(Xn(j+1) � Xn(j)) are the

partial sums of the series
P

1

j=0(Xn(j+1)�Xn(j)). Recall that this series converges absolutely if

the monotone sequence
Pk

j=0 |Xn(j+1)�Xn(j)| converges, and in this case the series converges,

that is,
Pk

j=0(Xn(j+1) �Xn(j)) converges.
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By Minkowski’s Inequality and Beppo-Levi’s Theorem

k
1X

j=0

|Xn(j+1) �Xn(j)|kp 
1X

j=0

kXn(j+1) �Xn(j)kp

 kXn(1)kp +
1X

j=1

1

2j
= kXn(1)kp + 1 < 1 since Xn(1) is in Lp

.

Consequently, k
P

1

j=0 |Xn(j+1) �Xn(j)|kpp < 1 and we have that (
P

1

j=0 |Xn(j+1) �Xn(j)|)p <

1 almost surely (almost surely real valued) and
P

1

j=0(Xn(j+1) � Xn(j)) is almost surely

(absolutely) convergent.

Letting X =
P

1

j=0(Xn(j+1) �Xn(j)) we have that

kX �Xn(k)kp = k
1X

j=k

|Xn(j+1) �Xn(j)|kp


1X

j=k

kXn(j+1) �Xn(j)kp ! 0 as k ! 1.

Finally, since

kXn �Xkp  kXn �Xn(k)kp + kXn(k) �Xkp.

and {Xn}n=1,2,··· is Cauchy we have the desired result. ⌅

A complete inner product space is called a Hilbert space. L2 is a Hilbert space but Lp

for p 6= 2 is not, because the Parallelogram Law is not satisfied.

Point-wise convergence of a sequence {Xn}n2N of random variables in Lp(⌦,F , P ) does

not imply convergence in Lp. That is,

lim
n!1

Xn(!) = X(!) for all ! 2 ⌦ ; Xn
L
p

! X.

However, by Lebesgue’s Dominated Convergence Theorem, if there exist 0  Y 2 Lp(⌦,F , P )

such that |Xn|  Y for all n and limn!1 Xn(!) = X(!) exists almost everywhere, then

|Xn �X|p  (|Xn|+ |X|)p  2pY p
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and X 2 Lp
P and Xn

L
p

! X.

The next theorem shows that convergence in Lp
P implies convergence in probability.

Theorem 5.7. Let X,Xn, n = 1, 2, . . . be random variables defined in the same probability

space. If Xn
L
p

! X, then Xn
p! X.

Proof. First note that if h : R ! [0,1), we have h(X) � aIh(X)�a. Then, E(h(X)) �

aP (h(X) � a) which implies that P (h(X) � a)  E(h(X))
a . Now, choose h(x) = |x|p and set

x = |Xn �X|. Then, {! : |Xn �X| � a} = {! : |Xn �X|p � a
p}. Then,

P ({! : |Xn �X| � a}) = P ({! : |Xn �X|p � a
p})  E(|Xn �X|p)

ap
.

Taking limits on both sides completes the proof.⌅

5.3 Convergence in distribution

Let (R,B, d) be a metric space with d(x, y) = |x� y| for all x, y 2 R and P, Pn for n 2 N be

probability measures defined on B.

Definition 5.4. The sequence of probability measures {Pn}n2N converges weakly to the mea-

sure P , denoted by Pn
w! P if

Z

R

fdPn !
Z

R

fdP as n ! 1

for all f : R! R that are continuous with |f |  C < 1.

We note that if Fn and F are the distribution functions associated with Pn and P , we

can say that
Z

R

fdPn !
Z

R

fdP ()
Z

R

f(x)dFn(x) !
Z

R

f(x)dF (x)

and we say that Fn
w! F .
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