Definition 5.5. The sequence of probability measures {P,},en converges generally to the

measure P, denoted by P, = P if
P,(E) — P(E) asn — oo for all E € B such that P(OE) = 0,
where OE = E N E¢ is the boundary of E and E is the closure of E.

Theorem 5.8. The following convergence statements are equivalent:

w

1. P, — P,

2. limsupP,(FE) < P(E) if E € B is closed,

n—o0

3. liminfP,(FE) > P(FE) if E € B is open,

n—o0

4. P, = P.

Proof. (1. = 2.) Let z € R and define |z — F| = inf{|lx —y| : y € E}, E(e) = {z :
|z — E| <&} fore >0, f(z) = Ig(z),

1, if x <0
glx)=< 1—z, if0<2x<1
0, ifx>1

and f.(z) = g (L|z — E|). Note that if z € E(¢) then 1|z — E| <1 and f.(z) > 0. Also, if

e} 0 then E(e) | E. Since g is bounded and continuous, so is f.. Now,

/IRfdPn—/RIEPn—Pn(E) S/RfsdPn. (5.4)

The inequality follows because if x € F, e~z — F| = 0 and f.(z) = g(0) = 1 = Ig(x), but
if z ¢ F then e 'z — E| > 0 and f.(z) = g(e !z — E|) > 0 = Ig(z). Then, taking limits
on both sides of equation (5.4) gives

limsupP, (E <11msup/ f-dP, —/fEdP

n—oo n—0o0



where the last equality follows from the fact that f. is continuous and bounded on R and

the assumption that 1) holds. But

| £ap < | TegdP = P(BE) (5.5)

where the inequality follows from the fact that if x € E(e) then e '|z — E| < 1 and conse-
quently 0 < fo(x) <1 =1Igq). If x ¢ E(e) then f.(x) =0 = Ig). Consequently, combining
equations (5.4 and (5.5) we obtain limsup P,(F) < P(E(¢)). Given that if¢ L 0, E(¢) | E,

n—o0
by continuity of probability measure we have limsup P, (F) < P(E).
n—o0
(2. = 3.) If F is open, then E° is closed. Thus, from 2) limsup P,(E°) < P(E°). But

n—oo

since P,(E) =1— P,(E) and P(E°) =1 — P(FE) we have

I+limsup (—P,(F)) < 1-P(F) <= 1-liminfP,(E) < 1-P(E) <= liminfP,(F) > P(FE).

n—oo n—oo n—oo

It is evident from this argument that (3. = 2.).
(3. = 4.) The interior of E, denoted by int(FE), is open and int(E) = E — OF. Since, 2.

and 3. are equivalent and int(E) is open and E is closed we have

limsupP,(E) < limsupP,(F) < P(FE), (5.6)
n—oo n—oo

liminfP,(£) > liminfP,(int(E)) > P(int(E)). (5.7)
n—oo n—o0

But if P(OF) = 0 then P(E) = P(int(E)) = P(E) and P,(FE) — P(E) whenever P(OE) =
0, 1ie., P,=— P.

(4. = 1.) Let f be bounded and continuous with |f| < C' and define
D={deR:P{x: f(zx)=d}) >0}

Now, choose {y;}*_, such that yo = —C < y; <--- <y = C. d € D implies P(f~'({d})) >
0. Since f is a function, for any two d # d’ such that d,d’ € D we have f~1({d})nf~t{d'}) =

0, and since P < 1, there can be at most countably many elements in D. Suppose {y;}* , & D
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and B;={r € R:y; < f(x) <yip1} for i =0,1,--- , k — 1. Then,

OBi={zcR:y=fx)}U{r cR:y1 = f(2)} = fF ) U F Hyisr)

and P(0B;) = 0 since {y;}F, € D. Since, int(B;) = B; — dB; we have that P(B;) =
P(int(B;)) and by 4) P,(B;) — P(B;) — 0. Consequently,

> yiPu(Bi)) = > y:iP(B;) (5.8)
=0 i=0
Now,
k—1 k—1 h—1
: : B =0 =0 i=0
k—1
S upm) - [ sap
i=0 R
k—1 k—1
< 20513}_1(%—&-1 —yi) + z;szn(Bz-) — Z;‘%P(BZ)

By equation (5.8) and the fact that {y;}%_, are arbitrary we have the result. B

Recall that with a random variable X : (Q, F, P) — (R, B) we can associate a distribution

function Fx(x): R — [0, 1] with the following properties:
(i) Fx is non-decreasing,
(ii) Fx is right-continuous,
(iii) limgeo Fix(z) =1, lim,, o Fx(x) = 0.
Let C'(Fx) = {x € R: Fx is continuous at x} and note that C'(Fx )¢ is a countable set.

Definition 5.6. Let F,,, F'x be distribution functions associated with random variables X,,, X

withn =1,2,.... We say that X,, converges in distribution to X and write X, END'S if
F,.(z) = Fx(x), for all z € C(Fx).

In this case, we write F,, => F'x and say that F},, converges generally to Fx.
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Theorem 5.9. The following statements are equivalent:
1. P, 5 P,
2. P,— P,
3. F, = F,
4. F, = F.

Proof. We have proved that 1. and 2. are equivalent. In addition, by construction 1. and 3.
are equivalent, so we need only show that 2 and 4 are equivalent.

(2. = 4.) Since P, = P we have, in particular, that
Po((=00,2]) = P((—00, z])

for all # € R such that P({z}) = 0. But this means that F,, = F.

(4. = 2.) We need to prove that P, = P, but since by Theorem we have that
P, = P is equivalent to ligicngn(E) > P(E) if E € B is open, this is what we will
establish. Since E is an open set in R it can be written as F = U2, Z;, where 7y, = (ay, by,)
are component intervals (disjoint). Let ¢ > 0 and for each Z, choose Z; = (aj},b,] a sub-
interval such that a}, b, are points of continuity of F and P(Z;) < P(Z;)+2 *e. The existence
of these intervals is assured by the fact that F' has at most countable many discontinuities.

Now,

n—oo

liminf P, (E) = lim inf E P,(Z)
n—oo
k=1

> Z lirrlr_1> glan(Ik) by Fatou’s Lemma
k=

n—oo

> liminfP,(Z}).
k=1
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But by 4. we have that P,(Z;) = F,(b},) — Fu.(a,,) — F(b,) — F(a},) = P(Z},). Hence,
liminfP,(E) > Y P(T;) = Y (P(Tx) —27%) = P(E) —¢.
k=1 —

n—00
k=1

Since € is arbitrary the proof is complete. B

Remark 5.2. 1. Convergence in distribution says nothing about X, (w), rather it focuses
on F,, as n — oo. For example, let X, = (—1)"Z where Z ~ N(0,1). Then, let

fz(z) = (2m) 2 exp{—32?} for all x € R. Forn odd,

Folz)=P{{w: X,(w) <z})=P{w:—-Z<z})=PHw: Z > —x})

:1—P({w:Z<—x}):1—/ fz(y)dy

(700,7I)

= /[—x,oo) fz(y)dy = / fz(y)dy = Fz(z).

(—o0,]
The next to last equality follows from fz(z) = fz(—=z). For n even it is obvious that
F.(x) = Fz(x). Hence, F,(x) = Fz(z), for all n and trivially F,(x) — Fz(x) for all
z € R.
However, if B, = {w : | X,(w) — Z(w)| < €}, then By ={w: | — Z(w) — Z(w)| < €} =
{w:|Z] <¢/2}, By =Q,.... Hence, there is no limit for {P(E,)}ne12.. and X,, /> Z
(neither does X, =3 Z). This shows that convergence in distribution is a very weak

mode of convergence relative to the ones we have seen so far.

2. Contrary to other modes of convergence, here there is no need to have the random

variables defined in the same probability space.

Theorem 5.10. (Continuous Mapping Theorem) Let {X,},en be a sequence of random
variables and X be a random variable such that X, 4 X asn — oco. Leth:R — R be

continuous at every point of a set C' such that P({w : X(w) € C}) = 1. Then,

h(X,) % h(X).

93



Proof. For any closed set G let E, = {w : h(X,(w)) € G} = {w : X,(w) € (G} =
X1 (h7Y@G)). Note that P(E,) = P(X ' (h"Y@))) = P,(h"(G)) and

n n

hY(G) C B (G) € hH(G) U Ce. (5.9)

The first set containment follows from the fact that every set is a subset of its closure. For

the second set containment, note that

Now, (h-1(G)NC) = (YG)U R Y G))P)NC = (h"1(G)NC) U ([h1(@)]” N C), where
[h=1(G))” is the derived set of A~ (G) [ If » € [h~1(G)]P there exists a sequence {,, } e €
hY(G) < {h(z,)}.~ € G such that x, — x. Furthermore, if z € C, then if z,, — x
we have that h(z,) — h(x) and h(z) € G since G is closed. But z € [h~}(G)]” implies

r ¢ h1(G) < h(z) ¢ G. Hence, [h"1(G)]"NC =0 and h~1(G) C h~Y{(G) U C*.

Consequently,

limsup P(E,) = limsup P,(h~(G)) < limsup P,(h~1(G))

n—o0 n—oo n—oo
< Px (h’il(G)> )
where the last inequality follows from part 2 of Theorem . Since Px(C¢) = 0, we have
from (5.9) that Py (h—l(G)) < Py(h'(G)) and we have

limsup P,(h~ (@) < Px(h™Y(Q)).

n—oo

Repeating the argument in the opposite direction completes the proof.

Theorem 5.11. Let D be dens in R. Suppose Fp : D — [0, 1] satisfies:

IThe collection of its limit points. B
2A set S is dense in R if S = R where S = {x € R: SN B(x,¢) # 0 for all € > 0} is the closure of the set
S and B(z,e) ={y € R: |y — z| < €}
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1. Fp is non-decreasing on D.
2. lim, , o, Fp(z) =0, lim, o Fp(x) =1 forz € D.
Now, for all z € R define

F(z):= inf Fp(y)= lim Fp(y).

y>z,yeD ylz,yeD

Then, F' is a right continuous distribution function. Thus, any two right continuous functions

that coincide on a dense set D, coincide on R.

Proof. Let x € R. Since D is dense in R, for all § > 0 there exists ' € D such that
x' € B(x,d). Take 2’ > x and note that by right-continuity and monotonicity of Fp, there

exists € > 0 such that

Fp(a')— lim Fp(y) = Fp(a') — F(z) <e = Fp(2') < F(x)+e¢ (5.10)

ylz,yeD

For y € (x,2), and since by definition F(y) = inf,~, .cp Fp(z)
F(y) < Fp(«'). (5.11)

Thus, equations (5.10) and (5.11) give F(y) < F(x) + € for all y € (x,2’). Consequently, as

y |z, limy), F(y) < F(x). But monotonicity of F' gives

lim F(y) > F(x).

Yz

Thus, the last two inequalities give F'(z) = lim,, F'(y), establishing right-continuity of F.
[

The next theorem establishes uniqueness of weak limits of distribution functions.

Theorem 5.12. If F,, = F and F,, = G, then FF =G.
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Proof. By De Morgan’s Laws C'(F)°UC(G)¢ = (C(F)NC(G))* =R —(C(F)NC(G)), which
implies that C(F)NC(G) =R — (C(F)*UC(G)°), where C(F)°UC(G)° is a countable set.
Now, if x € C(F)NC(G), F.(z) — F(z) and F,(x) — G(x), hence F = G in C(F)NC(G),
since limits are unique. But note that C'(F) N C(G) is dense in R. To see this, let C' C R,
C' countable. For each z € R (z € C or not), B(z,¢€) contains uncountable many points.
Hence, for all # € R, the set (R — C) N B(z; €) is nonempty for all € > 0, so x € R — C. Thus
R-CC(R-C)UC=RCR—C. Thus, F and G coincide on a dense set of R. But since
any two distribution functions coinciding on a dense set of R coincide everywhere, F' = GG

VreR N

Theorem 5.13. Let X,,,Y,,, W,, X, Y be random variables defined on (92, F, P).

3. X, Ly = X, L ¢ where ¢ is a constant
4. X, A X, Y, A a, W, 2 b where a,b are constant, then Y, X, + W, LoaX + b, if
a # 0.
Proof. 1. A, = {w : |X, =Y, <€}, By, ={w: X, <z}, C, ={w : Y, < x+ €},
D, ={w:Y, >z —¢} for any ¢ > 0 and x € C(Fy). Then,
Fx,(r) = P{{w:X,(w)<z})=P(B,) =P(B,NA,)+ P(B,NA?)
1—Fx, (x) = P(B;)=P(B,NA,)+ P(B;.NA).

Now, B,NA, ={w: X, <zand | X, -V, <e} ={w: X, <zand X,, —e <Y, <

XptetC{w:Yo<z+e}=C, B-NA,={w: X, >zand X, —e <Y, < X, +€} C

{w:z—e<Y,} = D,. Thus,
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1. Fx,(z) = P(B,) < P(Cy,) + P(AS) = Fy, (v +€) + P(A5)

2.1~ Fy,(v) = P(BS) < P(D,) + P(A5) = 1 - Fy,(x — ) + P(AS), or Fy,(2) >
Fy, (@ —¢) - P(A2).
That is,
Fy (2 —¢) = P(A5) < Fx, (2) < By, (2 + ) + P(A),

Since z € C(Fy) and P(A%) — 0 as n — oo we have that as € — 0,
Fy(z) <liminf Fx, (z) < limsup Fy, (z) < Fy(x).

Hence, lim Fx, (z) exists and lim Fx, () = Fy (z).
2. Inl. let Y, = X.
B {w: | Xn— >l ={w: X, >cteor X, <c—e}={w: X, >c+e}U{w: X, <c—e¢}
and

PAw: | X, —c>€})=P{w: X, >c+e}) + Pw: X, <c—¢€})

=1—Fyx, (c+e)+ Fx,(c—e).

Since X, 5 ¢, F.(z) =0 for all z < ¢ and F.(xz) = 1, for all z > ¢. Hence, lim,,_,,, P({w :
| X, — | > €}) =0.
4. W —=b=Y, X, + W, =Y, X,, —b =Y, X,, + W,, — (Y, X,, + b) 2 0 by assumption. By
1. it suffices to show that Y, X, + b A aX +b. Y, X, +b—(aX, +b) = (Y, —a)X,. If

(Y, —a)X, 20, then it suffices to show that aX,, + b aX +b. Now, let G, = F,x,, 0,

that is

Gn(r) = Pw:aX,+b<z})=P{w:aX, <z —0b})
:P({M:Xnﬂx_b})

a
Py (x—b)'
a
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Then, Fx, (=2) — Fx(£2) for =2 € O(Fx). Fx(=2) = P({w: X < =8}) = P(aX +b <
x) = Fuxip(x). So, aX, +b 24X +b. We now show that (Y, —a)X, = C, X, 0. Let
¢>0.If —¢,c € C(Fx), P(|X,| > ¢) = P(|X| > ¢). That is, Ve > 0, 3N, such that n > N,
—e < P(|X,| >¢) = P(|X| >c¢) <eor P(|X| >¢c)—e < P(|X,| >¢) < P(|X]| >¢) +e
Choose ¢ such that P(|X,| > ¢) < 4, then P(|X,| > ¢) < § + €. Since Y, —a 5 0 and
P(|X,|>¢)<d+e€ C,X, 50 1
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Chapter 6

Laws of large numbers

We first discuss the notion of “tail equivalence” of a sequence of random variables. Here, the
Borel-Cantelli Lemma is very useful. Recall that it says that if {E,},cn is a sequence of

events with > >°  P(E,) < oo, then P (lim sup En) =0.

n—oo

Definition 6.1. Two sequences of random variables { X, }new and {Y, tnen are tail equivalent
of
P ({2 Xu() £ Valw)}) = 3 Pl Xu(w) — Yalw) £ 0)) = ZP
n—1 n=1
where A, = {w : X, (w) — Y, (w) # 0}.
Theorem 6.1. Suppose { X, }nen and {Y, }new are tail equivalent. Then,

1. 3 (X, —Y,) converges almost surely,
2. %% X, converges as <= Y 'Y, converges as,

3. If there exists a,, — oo and if there exists a random variable X such that a* Z?Zl X; =

X, then a' Y70 V; 3 X

Proof. 1. By tail equivalence and the Borel-Cantelli Lemma P (lim sup An> = 0. Now,

n—o0

recall that

limsup A, =N>2, Uy A, =002, C.

n—o0
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Consequently,

(limsup Ap)® = (M2, Cn ) = UL, CF = Uz, (Unioy Am )

n—o0

=Uy, N AT =liminf A7.

n—oo

Thus,

P (hm inf{w: X, (w) = Yn(w)}>

n—o0

P <lim inf Ai) =1-P (lim sup An)

n—00 n—00

=P <liminf{w c Xp(w) =Y, (w) = O}) = 1.

n—oo
Note that iminfAS = {w: > 7 14, (w) < oo}. Thus, P({w: > 7 I4,(w) < o0}) =
n—o0
1. Hence, there exists a set of w’s which occurs with probability 1, and in this set
Xn(w) = Y, (w) for all but finitely many n. That is, for w € {w: > 7 I4,(w) < oo}

there are only finitely many n for which I{x, w2y, (w}(w) = 1. That is, there exists

N(w) such that for all n > N(w), I{x, (w)#v, ()} (w) = 0. Hence, in this same set,

) S N(w)
D> Xo(w) =) Va(w) =Y (Xy(w) = Ya(w)) < oo with probability 1 (w.p.1).
n=1 n=1 n=1

Hence, Y7 (X, (w) — Y, (w)) converges almost surely.

Do Yalw) = 3000 Xa(w) 42207 Ya(w)=3200 Xa(w) = 3207, Xalw) =300 (Xa(w)—
Y, (w)). But both terms on the right-hand side of the last equality converge almost

surely. Hence, >~ Y, (w) < oo as.

= =Y 5~ X)) + o YK (w)
= o D050 = K)o D5 = X + 3K
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As n — oo the last term converges as to X(w) by assumption. The second term
converges to zero since Y;(w) and X;(w) are tail equivalent (and by 1), and the first
term goes to 0 as a, — oo. Hence, i > Yi(w) B X(w).

[
The following concepts and notation will be useful.

Definition 6.2. Let { X, }new be a sequence of random variables defined on (S, F, P) and

{Sn}nen be a sequence in (0,00). We write,

1. X,, = Oy(sy) if for all e > 0 and n € IN, there exists B, > 0 such that

P <{w: ’X’;i“’)’ > Be}> <e

2. Xp = 0p(Sn) sz—: 50.

Theorem 6.2. (General Law of Large Numbers) Suppose { X, }new s a sequence of inde-
pendent random variables defined on (2, F, P) and S, = Z?:1 X;. If

1. Z?:l P{w: |Xj(w)| >n})— 0 asn — oo,
2. > i1 E(X: Iux,|<ny) — 0 as n — oo,
then S;L_n B %Z?:I E(Xj]{w:\Xj\gn}) £> 0.

Proof. Let T, ;(w) = Xj(w)l{w|x;j<ny and S;, = >0 Tn;. Note that {w : X;(w) #
Thj(w)} = {w @ [Xj(w)] > n} and by assumption » 37 | P({w : Tp;(w) # X;(w)}) — 0

as n — 0o. Note also that

2 X = T
j=1 j=1

<Y X =Tyl
=1

Thus, for all € > 0,

n

{w:|S, =S| >¢€} C {w : Z | X; — T, > e} CU_{w: [Xj(w) =T, ;(w)] > €/n}.

Jj=1
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Consequently,

n n

P({w: |8y =S| >e}) <Y P({w: |X;() = Ty(w)| > ¢/n}) =Y P({w:1X;] > n}).

Jj=1 J=1
Taking limits on both sides as n — oo, we have that S, — S/, % 0 since by assumption 1
2o Pw : [X] > n}) — 0.
Now, since { X}, },—12.... is an independent sequence E (T, x — E(Thx))(Ths — E(Thi))) =
0 and consequently V/(S) = >>7_, V(T,,;) < 77, E(Ty ;). Note also that for given n

B(Ty:;) = / X3 T x;<nydP < nz/dP = n?.
Q Q

Consequently, since V(S!)) exists for every n, and by Chebyshev’s Inequality,

I _ E(S / 1 "
P ({w : ‘S”—(S”) = 6}) < V(Sn) < _ZE(X;[{W:|XJ,|<”}).
7j=1

n n2e2 n2e2 4

Taking limits on both sides as n — oo and by the assumption that # Z;”Zl E (X ng{w:l Xj|<n}) —

0, we have % — %S;‘) 2 0. Now, since
Sh S! S, S 9 S!
Sp(B)oS 8 5o p(5)
n n n n n n

we can immediately conclude that 5= — E (%) = 0,(1). Finally, from the definition of S/,

we have that % - %Z?:l E(Xjluwx;|<n}) = 0p(1). W

We now provide examples where conditions 1 and 2 in the statement of Theorem
hold.

Example 6.1. Let {X, },—12.. be an independent and identically distributed sequence of

goon

random variables with E(X,,) = u, E(X?) < C < co. Then, we verify condition 1 by noting

that the identical distribution assumption and Markov’s Inequality

3 P(X > ) = nP(] > 0) < n 258 L) <

n2

=1
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Taking limits on both sides as n — oo gives lim, o Y5 P(|X;| > n) = 0. For condition

2, note that by the identical distribution assumption

1

~E(X?) <
B(X) <

=1Q

1 — 1
n2 ZE(Xf]{IXjISn}) = gE(X%]{lXﬂgn}) <

J=1

Again, taking limits on both sides as n — oo gives lim,,_ . #Z?ﬂ E(Xf]{‘xj‘gn}) = 0.

Finally, observe that

> i E(Xi1x;1<ny)
n

= E(X1]{|X1|§n}) — E(Xl) = U

as n — oo by Lebesgque’s dominated convergence theorem. Thus, %Sn L

Example 6.2. Let {X,}new be an independent and identically distributed sequence with
E(]X1]) < C < o0 and let E(X;) = p. For condition 1, note that

ZP(|Xj| >n) =nP(|X1] > n) = E(nlgx|sn))-

j=1

But since nlyyx,>ny < | X1 |l{wx1|>n}, we have that

Y PUX] > n) < E(1 Xl wixif>n))

j=1

Consequently, limy, oo 37 P(1X;| > n) <limy oo E(|X1| e:x,5n))- And since E(|X1]) <
C; lim,, 00 E(|X1|I{w:|X1|>n}) = 0.

For condition 2, note that by the identical distribution assumption

1 1
3 2B (X Ty i<m) = - F (X} wixi<n)
j=1
1

= — (B (X s 1<evmy) + B (X leymei,i<ny) ) Jor any € € (0,1)

Since E(X?I{w:‘xj‘gﬁ}) =/ X;I{w:|Xj|§e\/ﬁ}dP < ne* |, dP = ne*, we have
I & 1
5 2 B (G wixien) <€+ B (1K1 weymzix,<n)
j=1

1
<+ EE(”’XJU{WWS\XJ-@}))

< €+ E(1X Iwem<ix; 1)
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Taking limits on both sides as n — oo, and noting that E(|X,|) < C, we have that

lim E(|Xj’[{w:e\/ﬁS|Xj|}) =0.

n—oo
And, since € can be made arbitrarily small, lim,,_, . n—12 23;1 E(X;I{w:‘xj‘gn}) = 0. Conse-

quently, % — E(X1 1w x,|<n}) 20. Lastly, note that

n—oo

lim (/ deP—/XJﬂXﬂgn}dp) :/dep— lim [ X1 7{jx, <y dP = E(X1)=E(X)) = 0
Q Q Q n—oo Jo

by the previous example. Hence,

Sn Sn
; — E(Xl) = 7 -+ E(le{\Xl\Sn}) — E(X1]{|X1|§n}) — E(Xl) = 0p(1) + 0(1) = Op(l).

Example 6.3. Suppose {X,}n—12.. is an independent and identically distributed sequence

geee

with im xP(|X;| > x) = 0. For condition 1, given the identically distributed assumption,

T—00

we have
n

> P(IX;] > n) =nP(IX;[ >n) —» 0
j=1
by assumption. For condition 2, note that

1 & 1 1
=Y BE(X2Lix.1<mt) = —E(X?Ir01x.1<n :—/ 2dF
anZI (X5 Twixs1<my) = —E(X T 1<) = ot X, (2)
2 i 2 [
= —/ / sds | dFx, (x) = —/ s (/ dFx, (:c)) ds
n Jz|<n 0 nJo s<|z|<n

n

2 " s(P(1x,] < n) — P(X| < 8))ds

3

s(1 = P(|X1] >n) — 1+ P(|X;] > s))ds

3

s(P(|X1] > s) — P(|X1] > n))ds

3

1 n
7(s)ds —2P(| X1| > n)ﬁ/ sds, where 7(s) = sP(|X1]| > s)
0

3

7(s)ds — 2P (| X1| > n)ﬁ—

3

— T T

Sk 3l 303w 3w 3

(s)ds — nP(|X)| > n) = %/OHT(s)ds ~r(n).
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Since, T(n) — 0 as n — oo, we have that for all € > 0 there exists N, such that if n > N,

T(n) < e. Consequently,

1/”()d 1/Ne<>d+1/n<>d<1/N€<>d+
— T(S S = — T(S)AS — T(S)AS — T(S)AS €.
n Jo n Jo n Jn. —nJy

Taking limits on both sides asn — oo gives L [ 7(s)ds — 0. Then, %= — E(X11|x,1<n) 50.

The following is called Markov’s Law of Large Numbers.

Theorem 6.3. (Markov’s LLN) Let { X, }nen be a sequence of independent random variables

with E(X,) = . If for some 6 > 0 we have ) WZT—W < oo,

n=1
Sy — S i i =0
n n — 7 .
Proof. Exercise. B

We call Theorem a Weak Law of Large Numbers (WLLN). A stronger result for
independent and identically distributed random sequences is Kolmogorov’s Strong LLN. We

state it without proof.

Theorem 6.4. (Kolmogorov’s SLLN) Let {X,},>1 be a sequence of 11D random variables

and set S, = > " | X;. There exists a real number C' such that
STL as

— = C <= E(|Xi]) < c.

n

In this case, C' = E(X}).
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