
Definition 5.5. The sequence of probability measures {Pn}n2N converges generally to the

measure P , denoted by Pn =) P if

Pn(E) ! P (E) as n ! 1 for all E 2 B such that P (@E) = 0,

where @E = Ē \ Ec is the boundary of E and Ē is the closure of E.

Theorem 5.8. The following convergence statements are equivalent:

1. Pn
w! P ,

2. lim sup
n!1

Pn(E)  P (E) if E 2 B is closed,

3. lim inf
n!1

Pn(E) � P (E) if E 2 B is open,

4. Pn =) P .

Proof. (1. =) 2.) Let x 2 R and define |x � E| = inf{|x � y| : y 2 E}, E(") = {x :

|x� E| < "} for " > 0, f(x) = IE(x),

g(x) =

8
<

:

1, if x  0
1� x, if 0  x  1
0, if x � 1

and f"(x) = g
�
1
" |x� E|

�
. Note that if x 2 E(") then 1

" |x � E| < 1 and f"(x) > 0. Also, if

" # 0 then E(") # E. Since g is bounded and continuous, so is f". Now,

Z

R

fdPn =

Z

R

IEPn = Pn(E) 
Z

R

f"dPn. (5.4)

The inequality follows because if x 2 E, "�1|x� E| = 0 and f"(x) = g(0) = 1 = IE(x), but

if x /2 E then "
�1|x � E| > 0 and f"(x) = g("�1|x � E|) � 0 = IE(x). Then, taking limits

on both sides of equation (5.4) gives

lim sup
n!1

Pn(E)  lim sup
n!1

Z

R

f"dPn =

Z

R

f"dP
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where the last equality follows from the fact that f" is continuous and bounded on R and

the assumption that 1) holds. But
Z

R

f"dP 
Z

R

IE(")dP = P (E(")) (5.5)

where the inequality follows from the fact that if x 2 E(") then "
�1|x � E| < 1 and conse-

quently 0 < f"(x)  1 = IE("). If x /2 E(") then f"(x) = 0 = IE("). Consequently, combining

equations (5.4) and (5.5) we obtain lim sup
n!1

Pn(E)  P (E(")). Given that if " # 0, E(") # E,

by continuity of probability measure we have lim sup
n!1

Pn(E)  P (E).

(2. =) 3.) If E is open, then E
c is closed. Thus, from 2) lim sup

n!1

Pn(Ec)  P (Ec). But

since Pn(Ec) = 1� Pn(E) and P (Ec) = 1� P (E) we have

1+lim sup
n!1

(�Pn(E))  1�P (E) () 1�lim inf
n!1

Pn(E)  1�P (E) () lim inf
n!1

Pn(E) � P (E).

It is evident from this argument that (3. =) 2.).

(3. =) 4.) The interior of E, denoted by int(E), is open and int(E) = E � @E. Since, 2.

and 3. are equivalent and int(E) is open and Ē is closed we have

lim sup
n!1

Pn(E)  lim sup
n!1

Pn(Ē)  P (Ē), (5.6)

lim inf
n!1

Pn(E) � lim inf
n!1

Pn(int(E)) � P (int(E)). (5.7)

But if P (@E) = 0 then P (Ē) = P (int(E)) = P (E) and Pn(E) ! P (E) whenever P (@E) =

0, i.e., Pn =) P .

(4. =) 1.) Let f be bounded and continuous with |f | < C and define

D = {d 2 R : P ({x : f(x) = d}) > 0}.

Now, choose {yi}ki=0 such that y0 = �C < y1 < · · · < yk = C. d 2 D implies P (f�1({d})) >

0. Since f is a function, for any two d 6= d
0 such that d, d0 2 D we have f�1({d})\f�1({d0}) =

;, and since P  1, there can be at most countably many elements in D. Suppose {yi}ki=0 * D
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and Bi = {x 2 R : yi  f(x) < yi+1} for i = 0, 1, · · · , k � 1. Then,

@Bi = {x 2 R : yi = f(x)} [ {x 2 R : yi+1 = f(x)} = f
�1(yi) [ f

�1(yi+1)

and P (@Bi) = 0 since {yi}ki=0 * D. Since, int(Bi) = Bi � @Bi we have that P (Bi) =

P (int(Bi)) and by 4) Pn(Bi)� P (Bi) ! 0. Consequently,
k�1X

i=0

yiPn(Bi) !
k�1X

i=0

yiP (Bi). (5.8)

Now,
����
Z

R

fdPn �
Z

R

fdP

���� 

�����

Z

R

fdPn �
k�1X

i=0

yiPn(Bi)

�����+

�����

k�1X

i=0

yiPn(Bi)�
k�1X

i=0

yiP (Bi)

�����

+

�����

k�1X

i=0

yiP (Bi)�
Z

R

fdP

�����

 2 max
0ik�1

(yi+1 � yi) +

�����

k�1X

i=0

yiPn(Bi)�
k�1X

i=0

yiP (Bi)

����� .

By equation (5.8) and the fact that {yi}ki=0 are arbitrary we have the result. ⌅

Recall that with a random variable X : (⌦,F , P ) ! (R,B) we can associate a distribution

function FX(x) : R ! [0, 1] with the following properties:

(i) FX is non-decreasing,

(ii) FX is right-continuous,

(iii) limx!1 FX(x) = 1, limx!�1 FX(x) = 0.

Let C(FX) = {x 2 R : FX is continuous at x} and note that C(FX)c is a countable set.

Definition 5.6. Let Fn, FX be distribution functions associated with random variables Xn, X

with n = 1, 2, . . . . We say that Xn converges in distribution to X and write Xn
d! X if

Fn(x) ! FX(x), for all x 2 C(FX).

In this case, we write Fn =) FX and say that Fn converges generally to FX .
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Theorem 5.9. The following statements are equivalent:

1. Pn
w! P ,

2. Pn =) P ,

3. Fn
w! F ,

4. Fn =) F .

Proof. We have proved that 1. and 2. are equivalent. In addition, by construction 1. and 3.

are equivalent, so we need only show that 2 and 4 are equivalent.

(2. =) 4.) Since Pn =) P we have, in particular, that

Pn((�1, x]) ! P ((�1, x])

for all x 2 R such that P ({x}) = 0. But this means that Fn =) F .

(4. =) 2.) We need to prove that Pn =) P , but since by Theorem 5.8 we have that

Pn =) P is equivalent to lim inf
n!1

Pn(E) � P (E) if E 2 B is open, this is what we will

establish. Since E is an open set in R it can be written as E = [1

k=1Ik where Ik = (ak, bk)

are component intervals (disjoint). Let ✏ > 0 and for each Ik choose I 0

k = (a0k, b
0

k] a sub-

interval such that a0k, b0k are points of continuity of F and P (Ik)  P (I 0

k)+2�k
✏. The existence

of these intervals is assured by the fact that F has at most countable many discontinuities.

Now,

lim inf
n!1

Pn(E) = lim inf
n!1

1X

k=1

Pn(Ik)

�
1X

k=1

lim inf
n!1

Pn(Ik) by Fatou’s Lemma

�
1X

k=1

lim inf
n!1

Pn(I 0

k).
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But by 4. we have that Pn(I 0

k) = Fn(b0k)� Fn(a0k) ! F (b0k)� F (a0k) = P (I 0

k). Hence,

lim inf
n!1

Pn(E) �
1X

k=1

P (I 0

k) �
1X

k=1

�
P (Ik)� 2�k

✏
�
= P (E)� ✏.

Since ✏ is arbitrary the proof is complete. ⌅

Remark 5.2. 1. Convergence in distribution says nothing about Xn(!), rather it focuses

on Fn, as n ! 1. For example, let Xn = (�1)nZ where Z ⇠ N(0, 1). Then, let

fZ(x) = (2⇡)�1/2 exp{�1
2x

2} for all x 2 R. For n odd,

Fn(x) = P ({! : Xn(!)  x}) = P ({! : �Z  x}) = P ({! : Z � �x})

= 1� P ({! : Z < �x}) = 1�
Z

(�1,�x)

fZ(y)dy

=

Z

[�x,1)

fZ(y)dy =

Z

(�1,x]

fZ(y)dy = FZ(x).

The next to last equality follows from fZ(z) = fZ(�z). For n even it is obvious that

Fn(x) = FZ(x). Hence, Fn(x) = FZ(x), for all n and trivially Fn(x) ! FZ(x) for all

x 2 R.

However, if En = {! : |Xn(!)� Z(!)| < ✏}, then E1 = {! : |� Z(!)� Z(!)| < ✏} =

{! : |Z| < ✏/2}, E2 = ⌦, . . . . Hence, there is no limit for {P (En)}n=1,2,... and Xn 6 p! Z

(neither does Xn
as! Z). This shows that convergence in distribution is a very weak

mode of convergence relative to the ones we have seen so far.

2. Contrary to other modes of convergence, here there is no need to have the random

variables defined in the same probability space.

Theorem 5.10. (Continuous Mapping Theorem) Let {Xn}n2N be a sequence of random

variables and X be a random variable such that Xn
d! X as n ! 1. Let h : R ! R be

continuous at every point of a set C such that P ({! : X(!) 2 C}) = 1. Then,

h(Xn)
d! h(X).
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Proof. For any closed set G let En = {! : h(Xn(!)) 2 G} = {! : Xn(!) 2 h
�1(G)} =

X
�1
n (h�1(G)). Note that P (En) = P (X�1

n (h�1(G))) = Pn(h�1(G)) and

h
�1(G) ✓ h�1(G) ✓ h

�1(G) [ C
c
. (5.9)

The first set containment follows from the fact that every set is a subset of its closure. For

the second set containment, note that

h�1(G) = (h�1(G) \ C) [ (h�1(G) \ C
c) ✓ (h�1(G) \ C) [ C

c

Now, (h�1(G) \ C) = (h�1(G) [ [h�1(G)]D) \ C = (h�1(G) \ C) [ ([h�1(G)]D \ C), where

[h�1(G)]D is the derived set of h�1(G).1 If x 2 [h�1(G)]D there exists a sequence {xn}n2N 2

h
�1(G) () {h(xn)}nN 2 G such that xn ! x. Furthermore, if x 2 C, then if xn ! x

we have that h(xn) ! h(x) and h(x) 2 G since G is closed. But x 2 [h�1(G)]D implies

x /2 h
�1(G) () h(x) /2 G. Hence, [h�1(G)]D \ C = ; and h�1(G) ✓ h

�1(G) [ C
c.

Consequently,

lim sup
n!1

P (En) = lim sup
n!1

Pn(h
�1(G))  lim sup

n!1

Pn(h�1(G))

 PX

⇣
h�1(G)

⌘
,

where the last inequality follows from part 2 of Theorem 5.8. Since PX(Cc) = 0, we have

from (5.9) that PX

⇣
h�1(G)

⌘
 PX(h�1(G)) and we have

lim sup
n!1

Pn(h
�1(G))  PX(h

�1(G)).

Repeating the argument in the opposite direction completes the proof.

⌅

Theorem 5.11. Let D be dense2 in R. Suppose FD : D ! [0, 1] satisfies:
1
The collection of its limit points.

2
A set S is dense in R if S̄ = R where S̄ = {x 2 R : S \B(x, ✏) 6= ; for all ✏ > 0} is the closure of the set

S and B(x, ✏) = {y 2 R : |y � x| < ✏}.
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1. FD is non-decreasing on D.

2. limx!�1 FD(x) = 0, limx!1 FD(x) = 1 for x 2 D.

Now, for all x 2 R define

F (x) := inf
y>x,y2D

FD(y) = lim
y#x,y2D

FD(y).

Then, F is a right continuous distribution function. Thus, any two right continuous functions

that coincide on a dense set D, coincide on R.

Proof. Let x 2 R. Since D is dense in R, for all � > 0 there exists x
0 2 D such that

x
0 2 B(x, �). Take x

0
> x and note that by right-continuity and monotonicity of FD, there

exists ✏ > 0 such that

FD(x
0)� lim

y#x,y2D
FD(y) = FD(x

0)� F (x)  ✏ =) FD(x
0)  F (x) + ✏ (5.10)

For y 2 (x, x0), and since by definition F (y) = infz>y,z2D FD(z)

F (y)  FD(x
0). (5.11)

Thus, equations (5.10) and (5.11) give F (y)  F (x) + ✏ for all y 2 (x, x0). Consequently, as

y # x, limy#x F (y)  F (x). But monotonicity of F gives

lim
y#x

F (y) � F (x).

Thus, the last two inequalities give F (x) = limy#x F (y), establishing right-continuity of F .

⌅

The next theorem establishes uniqueness of weak limits of distribution functions.

Theorem 5.12. If Fn =) F and Fn =) G, then F = G.
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Proof. By De Morgan’s Laws C(F )c[C(G)c = (C(F )\C(G))c = R� (C(F )\C(G)), which

implies that C(F )\C(G) = R� (C(F )c [C(G)c), where C(F )c [C(G)c is a countable set.

Now, if x 2 C(F )\C(G), Fn(x) ! F (x) and Fn(x) ! G(x), hence F = G in C(F )\C(G),

since limits are unique. But note that C(F ) \ C(G) is dense in R. To see this, let C ⇢ R,

C countable. For each x 2 R (x 2 C or not), B(x, ✏) contains uncountable many points.

Hence, for all x 2 R, the set (R�C)\B(x; ✏) is nonempty for all ✏ > 0, so x 2 R� C. Thus

R�C ✓ (R�C)[C = R ✓ R� C. Thus, F and G coincide on a dense set of R. But since

any two distribution functions coinciding on a dense set of R coincide everywhere, F = G

8x 2 R. ⌅

Theorem 5.13. Let Xn, Yn,Wn, X, Y be random variables defined on (⌦,F , P ).

1. Xn � Yn
p! 0, Yn

d! Y =) Xn
d! Y

2. Xn
p! X =) Xn

d! X

3. Xn
d! c =) Xn

p! c where c is a constant

4. Xn
d! X, Yn

d! a, Wn
p! b where a, b are constant, then YnXn + Wn

d! aX + b, if

a 6= 0.

Proof. 1. An = {! : |Xn � Yn| < ✏}, Bn = {! : Xn  x}, Cn = {! : Yn  x + ✏},

Dn = {! : Yn > x� ✏} for any ✏ > 0 and x 2 C(FY ). Then,

FXn(x) = P ({! : Xn(!)  x}) = P (Bn) = P (Bn \ An) + P (Bn \ A
c
n)

1� FXn(x) = P (Bc
n) = P (Bc

n \ An) + P (Bc
n \ A

c
n).

Now, Bn \ An = {! : Xn  x and |Xn � Yn| < ✏} = {! : Xn  x and Xn � ✏ < Yn <

Xn + ✏} ⇢ {! : Yn  x + ✏} = Cn. B
c
n \ An = {! : Xn > x and Xn � ✏ < Yn < Xn + ✏} ⇢

{! : x� ✏ < Yn} = Dn. Thus,
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1. FXn(x) = P (Bn)  P (Cn) + P (Ac
n) = FYn(x+ ✏) + P (Ac

n)

2. 1 � FXn(x) = P (Bc
n)  P (Dn) + P (Ac

n) = 1 � FYn(x � ✏) + P (Ac
n), or FXn(x) �

FYn(x� ✏)� P (Ac
n).

That is,

FYn(x� ✏)� P (Ac
n)  FXn(x)  FYn(x+ ✏) + P (Ac

n).

Since x 2 C(FY ) and P (Ac
n) ! 0 as n ! 1 we have that as ✏ ! 0,

FY (x)  lim inf FXn(x)  lim supFXn(x)  FY (x).

Hence, limFXn(x) exists and limFXn(x) = FY (x).

2. In 1. let Yn = X.

3. {! : |Xn� c| > ✏} = {! : Xn > c+ ✏ or Xn < c� ✏} = {! : Xn > c+ ✏}[{! : Xn < c� ✏}

and

P ({! : |Xn � c| > ✏}) = P ({! : Xn > c+ ✏}) + P ({! : Xn < c� ✏})

= 1� FXn(c+ ✏) + FXn(c� ✏).

Since Xn
d! c, Fc(x) = 0 for all x < c and Fc(x) = 1, for all x � c. Hence, limn!1 P ({! :

|Xn � c| > ✏}) = 0.

4. Wn � b = YnXn +Wn � YnXn � b = YnXn +Wn � (YnXn + b)
p! 0 by assumption. By

1. it suffices to show that YnXn + b
d! aX + b. YnXn + b � (aXn + b) = (Yn � a)Xn. If

(Yn � a)Xn
p! 0, then it suffices to show that aXn + b

d! aX + b. Now, let Gn = FaXn+b,

that is

Gn(x) = P ({! : aXn + b  x}) = P ({! : aXn  x� b})

= P

✓
{! : Xn  x� b

a
}
◆

= FXn

✓
x� b

a

◆
.
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Then, FXn(
x�b
a ) ! FX(

x�b
a ) for x�b

a 2 C(FX). FX(
x�b
a ) = P ({! : X  x�b

a }) = P (aX + b 

x) = FaX+b(x). So, aXn + b
d! aX + b. We now show that (Yn � a)Xn = CnXn

p! 0. Let

c > 0. If �c, c 2 C(FX), P (|Xn| > c) ! P (|X| > c). That is, 8✏ > 0, 9N✏ such that n � N✏,

�✏  P (|Xn| > c) � P (|X| > c)  ✏ or P (|X| > c) � ✏  P (|Xn| > c)  P (|X| > c) + ✏.

Choose c such that P (|Xn| > c) < �, then P (|Xn| > c) < � + ✏. Since Yn � a
p! 0 and

P (|Xn| > c) < � + ✏, CnXn
p! 0. ⌅
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Chapter 6

Laws of large numbers

We first discuss the notion of “tail equivalence” of a sequence of random variables. Here, the

Borel-Cantelli Lemma is very useful. Recall that it says that if {En}n2N is a sequence of

events with
P

1

n=1 P (En) < 1, then P

✓
lim sup
n!1

En

◆
= 0.

Definition 6.1. Two sequences of random variables {Xn}n2N and {Yn}n2N are tail equivalent

if
1X

n=1

P ({! : Xn(!) 6= Yn(!)}) =
1X

n=1

P ({! : Xn(!)� Yn(!) 6= 0}) =
1X

n=1

P (An) < 1,

where An = {! : Xn(!)� Yn(!) 6= 0}.

Theorem 6.1. Suppose {Xn}n2N and {Yn}n2N are tail equivalent. Then,

1.
P

1

n=1(Xn � Yn) converges almost surely,

2.
P

1

n=1 Xn converges as ()
P

1

n=1 Yn converges as,

3. If there exists an ! 1 and if there exists a random variable X such that a�1
n

Pn
j=1 Xj

as!

X, then a
�1
n

Pn
j=1 Yj

as! X.

Proof. 1. By tail equivalence and the Borel-Cantelli Lemma P

✓
lim sup
n!1

An

◆
= 0. Now,

recall that

lim sup
n!1

An = \1

n=1 [1

m=n Am = \1

n=1Cn.
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Consequently,

(lim sup
n!1

An)
c = (\1

n=1Cn)
c = [1

n=1C
c
n = [1

n=1([1

m=nAm)
c

= [1

n=1 \1

m=n A
c
m = lim inf

n!1

A
c
n.

Thus,

P

⇣
lim inf
n!1

{! : Xn(!) = Yn(!)}
⌘
= P

⇣
lim inf
n!1

A
c
n

⌘
= 1� P

✓
lim sup
n!1

An

◆

= P

⇣
lim inf
n!1

{! : Xn(!)� Yn(!) = 0}
⌘
= 1.

Note that lim inf
n!1

A
c
n = {! :

P
1

n=1 IAn(!) < 1}. Thus, P ({! :
P

1

n=1 IAn(!) < 1}) =

1. Hence, there exists a set of !’s which occurs with probability 1, and in this set

Xn(!) = Yn(!) for all but finitely many n. That is, for ! 2 {! :
P

1

n=1 IAn(!) < 1}

there are only finitely many n for which I{Xn(!) 6=Yn(!}(!) = 1. That is, there exists

N(!) such that for all n > N(!), I{Xn(!) 6=Yn(!)}(!) = 0. Hence, in this same set,

1X

n=1

Xn(!)�
1X

n=1

Yn(!) =
N(!)X

n=1

(Xn(!)� Yn(!)) < 1 with probability 1 (w.p.1).

Hence,
P

1

n=1(Xn(!)� Yn(!)) converges almost surely.

2.
P

1

n=1 Yn(!) =
P

1

n=1 Xn(!)+
P

1

n=1 Yn(!)�
P

1

n=1 Xn(!) =
P

1

n=1 Xn(!)�
P

1

n=1(Xn(!)�

Yn(!)). But both terms on the right-hand side of the last equality converge almost

surely. Hence,
P

1

n=1 Yn(!) < 1 as.

3.

1

an

nX

j=1

Yj(!) =
1

an

nX

j=1

[Yj(!)�Xj(!) +Xj(!)]

=
1

an

nX

j=1

(Yj(!)�Xj(!)) +
1

an

nX

j=1

Xj(!)

=
1

an

N�1X

j=1

(Yj(!)�Xj(!)) +
1

an

nX

j=N

(Yj(!)�Xj(!)) +
1

an

nX

j=1

Xj(!).
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As n ! 1 the last term converges as to X(!) by assumption. The second term

converges to zero since Yj(!) and Xj(!) are tail equivalent (and by 1), and the first

term goes to 0 as an ! 1. Hence, 1
an

Pn
j=1 Yj(!)

as! X(!).

⌅

The following concepts and notation will be useful.

Definition 6.2. Let {Xn}n2N be a sequence of random variables defined on (⌦,F , P ) and

{sn}n2N be a sequence in (0,1). We write,

1. Xn = Op(sn) if for all ✏ > 0 and n 2 N, there exists B✏ > 0 such that

P

✓⇢
! :

|Xn(!)|
sn

> B✏

�◆
< ✏

2. Xn = op(sn) if Xn
sn

p! 0.

Theorem 6.2. (General Law of Large Numbers) Suppose {Xn}n2N is a sequence of inde-

pendent random variables defined on (⌦,F , P ) and Sn =
Pn

j=1 Xj. If

1.
Pn

j=1 P ({! : |Xj(!)| > n}) ! 0 as n ! 1,

2. 1
n2

Pn
j=1 E(X2

j I{!:|Xj |n}) ! 0 as n ! 1,

then Sn
n � 1

n

Pn
j=1 E(XjI{!:|Xj |n})

p! 0.

Proof. Let Tn,j(!) = Xj(!)I{!:|Xj |n} and S
0

n =
Pn

j=1 Tn,j. Note that {! : Xj(!) 6=

Tn,j(!)} = {! : |Xj(!)| > n} and by assumption
Pn

j=1 P ({! : Tn,j(!) 6= Xj(!)}) ! 0

as n ! 1. Note also that

|Sn � S
0

n| =

�����

nX

j=1

Xj �
nX

j=1

Tn,j

����� 
nX

j=1

|Xj � Tn,j|.

Thus, for all ✏ > 0,

{! : |Sn � S
0

n| > ✏} ✓
(
! :

nX

j=1

|Xj � Tn,j| > ✏

)
✓ [n

j=1{! : |Xj(!)� Tn,j(!)| > ✏/n}.
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Consequently,

P ({! : |Sn � S
0

n| > ✏}) 
nX

j=1

P ({! : |Xj(!)� Tn,j(!)| > ✏/n}) =
nX

j=1

P ({! : |Xj| > n}) .

Taking limits on both sides as n ! 1, we have that Sn � S
0

n
p! 0 since by assumption 1

Pn
j=1 P ({! : |Xj| > n}) ! 0.

Now, since {Xn}n=1,2,··· is an independent sequence E ((Tn,k � E(Tn,k))(Tn,l � E(Tn,l))) =

0 and consequently V (S 0

n) =
Pn

j=1 V (Tn,j) 
Pn

j=1 E(T 2
n,j). Note also that for given n

E(T 2
n,j) =

Z

⌦

X
2
j I{!:|Xj |n}dP  n

2

Z

⌦

dP = n
2
.

Consequently, since V (S 0

n) exists for every n, and by Chebyshev’s Inequality,

P

✓⇢
! :

����
S
0

n � E(S 0

n)

n

���� > ✏

�◆
 V (S 0

n)

n2✏2
 1

n2✏2

nX

j=1

E
�
X

2
j I{!:|Xj |<n}

�
.

Taking limits on both sides as n ! 1 and by the assumption that 1
n2

Pn
j=1 E

�
X

2
j I{!:|Xj |<n}

�
!

0, we have S0
n
n � E(S0

n)
n

p! 0. Now, since

Sn

n
� E

✓
S
0

n

n

◆
=

Sn

n
� S

0

n

n
+

S
0

n

n
� E

✓
S
0

n

n

◆

we can immediately conclude that Sn
n � E

⇣
S0
n
n

⌘
= op(1). Finally, from the definition of S 0

n

we have that Sn
n � 1

n

Pn
j=1 E(XjI{!:|Xj |n}) = op(1). ⌅

We now provide examples where conditions 1 and 2 in the statement of Theorem 6.2

hold.

Example 6.1. Let {Xn}n=1,2,... be an independent and identically distributed sequence of

random variables with E(Xn) = µ, E(X2
n)  C < 1. Then, we verify condition 1 by noting

that the identical distribution assumption and Markov’s Inequality

nX

j=1

P (|Xj| > n) = nP (|X1| > n)  n
E(X2

1 )

n2
=

1

n
E(X2

1 ) 
C

n
.
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Taking limits on both sides as n ! 1 gives limn!1

Pn
j=1 P (|Xj| > n) = 0. For condition

2, note that by the identical distribution assumption

1

n2

nX

j=1

E(X2
j I{|Xj |n}) =

1

n
E(X2

1I{|X1|n}) 
1

n
E(X2

1 ) 
C

n
.

Again, taking limits on both sides as n ! 1 gives limn!1
1
n2

Pn
j=1 E(X2

j I{|Xj |n}) = 0.

Finally, observe that
Pn

j=1 E(XjI{|Xj |n})

n
= E(X1I{|X1|n}) ! E(X1) = µ

as n ! 1 by Lebesgue’s dominated convergence theorem. Thus, 1
nSn

p! µ.

Example 6.2. Let {Xn}n2N be an independent and identically distributed sequence with

E(|X1|)  C < 1 and let E(X1) = µ. For condition 1, note that
nX

j=1

P (|Xj| > n) = nP (|X1| > n) = E(nI{!:|X1|>n}).

But since nI{!:|X1|>n}  |X1|I{!:|X1|>n}, we have that
nX

j=1

P (|Xj| > n)  E(|X1|I{!:|X1|>n})

Consequently, limn!1

Pn
j=1 P (|Xj| > n)  limn!1 E(|X1|I{!:|X1|>n}). And since E(|X1|) <

C, limn!1 E(|X1|I{!:|X1|>n}) = 0.

For condition 2, note that by the identical distribution assumption

1

n2

nX

j=1

E
�
X

2
j I{!:|Xj |n}

�
=

1

n
E
�
X

2
j I{!:|Xj |n}

�

=
1

n

�
E
�
X

2
j I{!:|Xj |✏

p
n}

�
+ E

�
X

2
j I{!:✏

p
n|Xj |n}

��
for any ✏ 2 (0, 1)

Since E(X2
j I{!:|Xj |✏

p
n}) =

R
⌦ X

2
j I{!:|Xj |✏

p
n}dP  n✏

2
R
⌦ dP = n✏

2, we have

1

n2

nX

j=1

E
�
X

2
j I{!:|Xj |n}

�
 ✏

2 +
1

n
E
�
|Xj||Xj|I{!:✏pn|Xj |n}

�

 ✏
2 +

1

n
E(n|Xj|I{!:✏pn|Xj |n}))

 ✏
2 + E(|Xj|I{!:✏pn|Xj |}

)
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Taking limits on both sides as n ! 1, and noting that E(|X1|) < C, we have that

lim
n!1

E(|Xj|I{!:✏pn|Xj |}
) = 0.

And, since ✏ can be made arbitrarily small, limn!1
1
n2

Pn
j=1 E(X2

j I{!:|Xj |n}) = 0. Conse-

quently, Sn
n � E(X1I{!:|X1|n})

p! 0. Lastly, note that

lim
n!1

✓Z

⌦

X1dP �
Z

⌦

X1I{|X1|n}dP

◆
=

Z

⌦

X1dP� lim
n!1

Z

⌦

X1I{|X1|n}dP = E(X1)�E(X1) = 0

by the previous example. Hence,

Sn

n
� E(X1) =

Sn

n
+ E(X1I{|X1|n})� E(X1I{|X1|n})� E(X1) = op(1) + o(1) = op(1).

.

Example 6.3. Suppose {Xn}n=1,2,... is an independent and identically distributed sequence

with lim
x!1

xP (|X1| > x) = 0. For condition 1, given the identically distributed assumption,

we have
nX

j=1

P (|Xj| > n) = nP (|Xj| > n) ! 0

by assumption. For condition 2, note that

1

n2

nX

j=1

E(X2
j I{!:|Xj |n}) =

1

n
E(X2

1I{!:|Xj |n}) =
1

n

Z

|x|n

x
2
dFX1(x)

=
2

n

Z

|x|n

 Z
|x|

0

sds

!
dFX1(x) =

2

n

Z n

0

s

✓Z

s<|x|n

dFX1(x)

◆
ds

=
2

n

Z n

0

s(P (|X1|  n)� P (|X1| < s))ds

=
2

n

Z n

0

s(1� P (|X1| > n)� 1 + P (|X1| � s))ds

=
2

n

Z n

0

s(P (|X1| � s)� P (|X1| > n))ds

=
2

n

Z n

0

⌧(s)ds� 2P (|X1| > n)
1

n

Z n

0

sds, where ⌧(s) = sP (|X1| > s)

=
1

n

Z n

0

⌧(s)ds� 2P (|X1| > n)
1

n

n
2

2

=
1

n

Z n

0

⌧(s)ds� nP (|X1| > n) =
1

n

Z n

0

⌧(s)ds� ⌧(n).
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Since, ⌧(n) ! 0 as n ! 1, we have that for all ✏ > 0 there exists N✏ such that if n > N✏,

⌧(n)  ✏. Consequently,

1

n

Z n

0

⌧(s)ds =
1

n

Z N✏

0

⌧(s)ds+
1

n

Z n

N✏

⌧(s)ds  1

n

Z N✏

0

⌧(s)ds+ ✏.

Taking limits on both sides as n ! 1 gives 1
n

R n

0 ⌧(s)ds ! 0. Then, Sn
n �E(X1I|X1|n)

p! 0.

The following is called Markov’s Law of Large Numbers.

Theorem 6.3. (Markov’s LLN) Let {Xn}n2N be a sequence of independent random variables

with E(Xn) = µn. If for some � > 0 we have
P

1

n=1
E|Xn�µn|

1+�

n1+� < 1,

Sn �
1

n

nX

i=1

µi
p! 0.

Proof. Exercise. ⌅

We call Theorem 6.2 a Weak Law of Large Numbers (WLLN). A stronger result for

independent and identically distributed random sequences is Kolmogorov’s Strong LLN. We

state it without proof.

Theorem 6.4. (Kolmogorov’s SLLN) Let {Xn}n�1 be a sequence of IID random variables

and set Sn =
Pn

i=1 Xi. There exists a real number C such that

Sn

n

as! C () E(|X1|) < 1.

In this case, C = E(X1).
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