Chapter 7 Conditional expectation

7.1 Inner product spaces

There are several ways to introduce the notion of conditional expectation. We begin by introducing inner-product spaces and motivate a definition of conditional expectation by using the Projection Theorem.

Definition 7.1. A real vector space X is called an inner-product space if for all $x, y \in X$, there exists a function $\langle x, y \rangle$, called an inner-product, such that for all $x, y, z \in X$ and $a \in \mathbb{R}^{[1]}$

- 1. $\langle x, y \rangle = \langle y, x \rangle$
- 2. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- 3. $\langle ax, y \rangle = a \langle x, y \rangle, a \in \mathbb{R}$
- 4. $\langle x, x \rangle \geq 0$, for all x
- 5. $\langle x, x \rangle = 0 \iff x = \theta$, where θ is the null vector in X.

The following theorem shows that a general version of the Cauchy-Schwarz Inequality holds for inner-product spaces.

¹If the vector space X is associated with a complex field, property 1 becomes $\langle x, y \rangle = \overline{\langle y, x \rangle}$, where for $x \in \mathbb{C}$, \overline{x} is the complex conjugate of x, and in property 3 $a \in \mathbb{C}$.

Theorem 7.1. Let X be an inner-product space and $x, y \in X$. Then,

$$|\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}.$$

Proof. Let $y \neq \theta$ and note that for all $a \in \mathbb{R}$,

$$0 \leq \langle x - ay, x - ay \rangle = \langle x, x \rangle - 2a \langle x, y \rangle + a^2 \langle y, y \rangle$$

$$\leq \langle x, x \rangle - \frac{\langle x, y \rangle^2}{\langle y, y \rangle} \text{ by letting } a = \langle x, y \rangle / \langle y, y \rangle.$$

The last inequality is equivalent to $\langle x, y \rangle^2 \leq \langle x, x \rangle \langle y, y \rangle$ or $|\langle x, y \rangle| = \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}$. Lastly, if $y = \theta$ then the inequality holds with equality and $\langle x, \theta \rangle = 0$.

It can be easily shown that the function $\|\cdot\| : \mathbb{X} \to [0,\infty)$ defined as $\|x\| = \langle x, x \rangle^{1/2}$ is a norm on \mathbb{X} . Thus, every inner-product space can be taken to be a normed space with this induced norm. Another important property in inner-product spaces is the Parallelogram Law, which is given in the next theorem.

Theorem 7.2. In an inner-product space $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$.

Proof. $||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle y, y \rangle + 2 \langle x, y \rangle$ and $||x - y||^2 = \langle x - y, x - y \rangle = \langle x, x \rangle + \langle y, y \rangle - 2 \langle x, y \rangle$. Hence, we obtain

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}.$$

Example 7.1. Let $x, y \in \mathbb{R}^n$ and define $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$. It can be easily shown that $\langle x, y \rangle$ is an inner-product for \mathbb{R}^n and $\langle x, x \rangle^{1/2} = ||x|| = (\sum_{i=1}^n x_i^2)^{1/2}$ is a norm.

Example 7.2. Consider the space $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ of random variables $X : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$ such that $\int_{\Omega} X^{2} dP < \infty$. By Theorem 3.18.1 $XY \in \mathcal{L}(\Omega, \mathcal{F}, P)$ and by Theorem 3.18.3 $\mathcal{L}^{2}(\Omega, \mathcal{F}, P) \text{ is a vector space. Now, define } \langle X, Y \rangle = E(XY) = \int_{\Omega} XYdP. \text{ Using the properties of integrals, conditions 1-4 in Definition 7.1 are easily verified. However, condition 5 does not hold. Whereas it is true that <math>X(\omega) = 0$ for all ω , the null vector in $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$, gives $\langle X, X \rangle = \int_{\Omega} X^{2}(\omega)dP = 0, \int_{\Omega} X^{2}(\omega)dP = 0$ does not imply $X(\omega) = 0$ for all ω . This is true since a random variable Z that takes non-zero values in sets of measure zero and is equal to 0 elsewhere will be such that $\int_{\Omega} Z^{2}(\omega)dP = 0$. If we treat any two variables X and Z in $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ as being identical if they differ only in a set of measure zero, that is if $P(\{\omega : X(\omega) \neq Z(\omega)\}) = 0$, then condition 5 is met and $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ is an inner product space with $||X||_{2} = \left(\int_{\Omega} X^{2}dP\right)^{1/2}$. We know from the Riez-Fisher Theorem that $\mathcal{L}^{2}(\Omega, \mathcal{F}, P)$ is a Hilbert space.

Theorem 7.3. Let $\{X_n\}_{n=1,2,\ldots}$ and $\{Y_n\}_{n=1,2,\ldots}$ be sequences in a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$. Let $X_n \to X$ in that $\|X_n - X\| \to 0$ as $n \to \infty$ and $Y_n \to Y$. Then, $\langle X_n, Y_n \rangle \to \langle X, Y \rangle$.

Proof. By the Cauchy-Schwarz inequality (Theorem 7.1), $|\langle X, Y \rangle| \leq ||X|| ||Y||$. Therefore,

$$\begin{aligned} |\langle X, Y \rangle - \langle X_n, Y_n \rangle| &= |\langle X, Y_n \rangle - \langle X_n, Y_n \rangle + \langle X, Y \rangle - \langle X, Y_n \rangle - \langle X_n, Y \rangle + \langle X_n, Y_n \rangle \\ &+ \langle X_n, Y \rangle - \langle X_n, Y_n \rangle| \\ &= |\langle X - X_n, Y_n \rangle + \langle X - X_n, Y - Y_n \rangle + \langle X_n, Y - Y_n \rangle| \\ &\leq |\langle X - X_n, Y_n \rangle| + |\langle X - X_n, Y - Y_n \rangle| + |\langle X_n, Y - Y_n \rangle| \\ &\leq ||X - X_n|| ||Y_n|| + ||X - X_n|| ||Y - Y_n|| + ||X_n|| ||Y - Y_n||. \end{aligned}$$

By convergence, $||X - X_n||, ||Y - Y_n|| \to 0$ and since $||X_n||, ||Y_n|| < \infty$ for all $n, |\langle X, Y \rangle - \langle X_n, Y_n \rangle| \to 0$, as $n \to \infty$.

Definition 7.2. Let S be a closed subset of a Hilbert space \mathcal{H} . The distance from $Y \in \mathcal{H}$ to S is denoted by

$$d(Y,S) = \inf\{\|Y - X\| : X \in S\}.$$

If $Y \in S$, d(Y, S) = 0.

Theorem 7.4. (Projection Theorem): Let S be a closed subspace of a Hilbert space \mathcal{H} and $Y \in \mathcal{H}$. There exists a unique $X \in S$ such that $||Y - X|| := \inf\{||Y - X'|| : X' \in S\}$. Furthermore, $\langle Y - X, s \rangle = 0$, for all $s \in S$.

Proof. First, consider existence of X. If $Y \in S$, put X = Y. If $Y \notin S$, we would like to obtain $X \in S$ such that $||Y - X|| = \inf_{X' \in S} \{||Y - X'||\} = \delta > 0.$

Let $\{X_i\}_{i\in\mathbb{N}} \in S$ such that $||X_i - Y|| \to \delta$. Now, if X_i and Y are in a Hilbert space, we have by the Parallelogram Law

$$||(X_j - Y) + (Y - X_i)||^2 + ||(X_j - Y) - (Y - X_i)||^2 = 2||X_j - Y||^2 + 2||Y - X_i||^2$$

and

$$||X_j - X_i||^2 = 2||X_j - Y||^2 + 2||Y - X_i||^2 - 4||Y - \frac{X_i + X_j}{2}||^2.$$

For all i, j the vector $\frac{X_i+X_j}{2} \in S$ (since S is a subspace). Therefore, by definition of δ , $\|Y - \frac{X_i+X_j}{2}\| \ge \delta$ and we obtain $\|X_j - X_i\|^2 \le 2\|X_j - Y\|^2 + 2\|Y - X_i\|^2 - 4\delta^2$. Since $\|X_i - Y\|^2 \to \delta^2$ by continuity of inner product (Theorem 7.3), $\|X_j - X_i\|^2 \to 0$ as $i, j \to \infty$. Hence, $\{X_i\}$ is a Cauchy sequence. Since S is closed, $\{X_i\}$ converges to $\tilde{X} \in S$. Furthermore, $\delta \le \|Y - \tilde{X}\| \le \|Y - X_i\| + \|X_i - \tilde{X}\| \le \delta$. Hence, $\tilde{X} = X$ which we wanted to show existed.

Now, consider the proof of $\langle Y - X, s \rangle = 0$ for all $s \in S$. Suppose there exists $s \in S$ such that $\langle Y - X, s \rangle \neq 0$. Without loss of generality assume that ||s|| = 1 and that $\langle Y - X, s \rangle = \delta \neq 0$ and define $s_1 \in S$ such that $s_1 = X + \delta s$. Then,

$$||Y - s_1||^2 = ||Y - X - \delta s||^2 \text{by definition of } s_1$$

= $||Y - X||^2 - \langle Y - X, \delta s \rangle - \langle \delta s, Y - X \rangle + \delta^2 ||s||^2$
= $||Y - X||^2 - \delta^2 - \delta^2 + \delta^2$
= $||Y - X||^2 - \delta^2 < ||Y - X||^2$

Hence, if $\langle Y - X, s \rangle \neq 0$, then X is not the minimizing element of S and it must be that for all $s \in S$, $\langle Y - X, s \rangle = 0$.

Lastly, let's prove uniqueness. For all $s \in S$, the theorem of Pythagoras says that $\|Y - s\|^2 = \|Y - X + X - s\|^2 = \|Y - X\|^2 + \|X - s\|^2$. (Note that $\langle Y - X, X - s \rangle = 0$ due to the fact that $\langle Y - X, s \rangle = 0$, $\forall s \in S$). Hence, $\|Y - s\| > \|Y - X\|$ for $s \neq X$.

As a matter of terminology, we call any two elements X and Y of a Hilbert space orthogonal if $\langle X, Y \rangle = 0$.

7.2 Conditional expectation for random variables in $\mathcal{L}^2(\Omega, \mathcal{F}, P)$

Now consider the Hilbert space \mathcal{L}^2 composed of all random variables defined on (Ω, \mathcal{F}, P) and for precision denote this space by $\mathcal{L}^2(\Omega, \mathcal{F}, P)$. Let X be a random vector taking values in \mathbb{R}^n defined in the same probability space with $\sigma(X) \subseteq \mathcal{F}$. Then, $\mathcal{L}^2(\Omega, \sigma(X), P) \subseteq \mathcal{L}^2(\Omega, \mathcal{F}, P)$ is a Hilbert space with the same inner product. Furthermore, $\mathcal{L}^2(\Omega, \sigma(X), P)$ is a closed subspace of $\mathcal{L}^2(\Omega, \mathcal{F}, P)$. We now define conditional expectation.

Definition 7.3. Let $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$. The conditional expectation of Y given X is the unique element $\hat{Y} \in \mathcal{L}^2(\Omega, \sigma(X), P)$ such that

$$E((Y - \hat{Y})s) = 0$$
, for all $s \in \mathcal{L}^2(\Omega, \sigma(X), P)$.

We write $\hat{Y} = E(Y|X)$ or $\hat{Y} = E(Y|\sigma(X))$.

Recall that if $X : (\Omega, \mathcal{F}, P) \to (\mathbb{R}^n, \mathcal{B}^n)$ is a random vector, then $X^{-1}(\mathcal{B}^n) \subseteq \mathcal{F}$ is a σ algebra and we wrote $X^{-1}(\mathcal{B}^n) = \sigma(X)$, the σ -algebra generated by X. Consider a random
variable $Y : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$. It is legitimate to ask when Y is measurable (a random
variable) with respect to $\sigma(X)$.² The following theorem provides a useful characterization.

²More generally, for $\mathcal{G} \subset \mathcal{F}$ a σ -algebra, we say that X is \mathcal{G} -measurable if for all $B \in \mathcal{B}$, $X^{-1}(B) \in \mathcal{G}$. There may be many of these \mathcal{G} 's. The intersection of all of them, i.e. $\sigma(X) := \bigcap_{i \in I} \mathcal{G}_i$ is called the σ -algebra generated by X.

Theorem 7.5. Let $X : (\Omega, \mathcal{F}, P) \to (\mathbb{R}^n, \mathcal{B}^n)$ be a random vector and $Y : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$ be a random variable. Y is $\sigma(X)$ -measurable if, and only if, there exists $f : (\mathbb{R}^n, \mathcal{B}^n) \to (\mathbb{R}, \mathcal{B})$ such that Y = f(X) and f is \mathcal{B}^n -measurable.

Proof. (\Leftarrow) We want to show that for every $B \in \mathcal{B}$ we have $Y^{-1}(B) \in \sigma(X)$. But $Y^{-1}(B) = X^{-1}(f^{-1}(B))$ and by measurability of $f, f^{-1}(B) \in \mathcal{B}^n$ and since X is a random vector $X^{-1}(f^{-1}(B)) \in \sigma(X)$. Thus, Y is $\sigma(X)$ -measurable.

 (\implies) Suppose $Y^{-1}(B) \in \sigma(X)$ for all $B \in \mathcal{B}$. First, assume that Y is simple. Then, for $k \in \mathbb{N}$ we have $Y = \sum_{i=1}^{k} a_i I_{A_i}$ for a_i distinct and A_i pairwise-disjoint. In this case, $Y^{-1}(\{a_i\}) = A_i$ and by assumption $A_i \in \sigma(X)$. Hence there exists $B_i \in \mathcal{B}^n$ such that $X^{-1}(B_i) = A_i$ (definition of $\sigma(X)$). Let $f(x) = \sum_{i=1}^{k} a_i I_{B_i}(x)$, then Y = f(X), $f \mathcal{B}^n$ measurable. Thus, the implication is proved for every Y simple that is $\sigma(X)$ -measurable.

If $Y: (\Omega, \mathcal{F}, P) \to [0, \infty)$ then, by Theorem 3.3, there exist $Y_n(\omega)$ simple such that

$$Y(\omega) = \lim_{n \to \infty} Y_n(\omega), \ 0 \le Y_n(\omega) \le Y_{n+1}(\omega).$$

Each Y_n is $\sigma(X)$ -measurable and $Y_n = f_n(X)$ from the first part of the proof. Now, set $f(x) = \limsup_{n \to \infty} f_n(x)$ and note $Y = \lim_{n \to \infty} Y_n = \lim_{n \to \infty} f_n(X)$.

Given that $(\limsup_{n\to\infty} f_n)(X) = \limsup_{n\to\infty} f_n(X)$, by Theorem 1.20, f(x) is \mathcal{B}^n measurable. For general Y, write $Y = Y^+ - Y^-$ which reduces to the preceding case.

Remark 7.1. 1. An equivalent way to think of Definition 7.3 using the previous theorem is to write

$$E(Y|X) = \underset{s \in \mathcal{L}^{2}(\Omega, \sigma(X), P)}{\operatorname{arg inf}} \|Y - s\| = \operatorname{arg inf}_{f \in F} \|Y - f(X)\|.$$

where F is the set of Borel measurable functions from \mathbb{R}^n to \mathbb{R} .

2. Since $\hat{Y} = E(Y|X)$ is $\sigma(X)$ -measurable, by Theorem 7.5, there exists $f : \mathbb{R}^n \to \mathbb{R}$ which is Borel measurable such that E(Y|X) = f(X) and f is unique. Hence, we can write E[(Y - f(X))g(X)] = 0, for all $g : \mathbb{R}^n \to \mathbb{R}$ Borel measurable such that $\int g^2 dP < \infty$.

We can free the concept of conditional expectation from a particular set of random variables (or element) that produces $\sigma(X)$ and speak more generally of conditioning on a σ -algebra $\mathcal{G} \subset \mathcal{F}$, that is a sub- σ -algebra of \mathcal{F} .

Definition 7.4. $Y : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$ be a random variable with $\int Y^2 dP < \infty$. Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Then $E(Y|\mathcal{G})$ is the unique $\hat{Y} \in \mathcal{L}^2(\Omega, \mathcal{G}, P)$ such that

$$E((Y - \hat{Y})s) = E([Y - E(Y|\mathcal{G})]s) = 0,$$

for all measurable $s \in \mathcal{L}^2(\Omega, \mathcal{G}, P)$.

Remark 7.2. 1. The definition gives $E(Ys) = E(sE(Y|\mathcal{G}))$.

- 2. Since $s = 1 \in \mathcal{L}^2(\Omega, \mathcal{G}, P), E(Y) = E(E(Y|\mathcal{G})).$
- 3. If $U, V \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$, then $E(U + \alpha V | \mathcal{G})$ satisfies $E((U + \alpha V)s) = E(E(U + \alpha V | \mathcal{G})s)$. But,

$$E((U + \alpha V)s) = E(Us) + \alpha E(Vs)$$
$$= E(E(U|\mathcal{G})s) + \alpha E(E(V|\mathcal{G})s)$$
$$= E([E(U|\mathcal{G}) + \alpha E(V|\mathcal{G})]s).$$

Hence, $E(U + \alpha V | \mathcal{G}) = E(U | \mathcal{G}) + \alpha E(V | \mathcal{G})$. That is $E(\cdot | \mathcal{G})$ is a linear function.

Theorem 7.6. Assume that $Z := \begin{pmatrix} Y \\ X \end{pmatrix}$ is a random vector defined on (Ω, \mathcal{F}, P) taking values in \mathbb{R}^2 and having density f.

1. Y and X have densities on $(\mathbb{R}, \mathcal{B})$ given by $f_Y(y) = \int_{\mathbb{R}} f(y, x) d\lambda(x)$ and $f_X(x) = \int_{\mathbb{R}} f(y, x) d\lambda(y)$.

2. For every $x \in \mathbb{R}$ such that $f_X(x) \neq 0$ we have that $f_{Y|X=x}(y) = \frac{f(y,x)}{f_X(x)}$ is a density on \mathbb{R} .

3.
$$E(Y|X) = h(X)$$
 where $h(x) = \int_{\mathbb{R}} y f_{Y|X=x}(y) d\lambda(y)$.

Proof. 1. Let $E \in \mathcal{B}$. Then,

$$P(Y \in E) = P(Z \in E \times \mathbb{R}) = \int_{E \times \mathbb{R}} f(y, x) d\lambda^2(y, x)$$
$$= \int_E \int_{\mathbb{R}} f(y, x) d\lambda(y) d\lambda(x) = \int_E f_Y(y) d\lambda(y)$$

with $f_Y(y) = \int_{\mathbb{R}} f(y, x) d\lambda(x)$. Therefore, $P(Y \in E) = \int_{\mathbb{R}} I_E f_Y(y) d\lambda(y)$ and f_Y is a density for Y.

2. $\int_{\mathbb{R}} f_{Y|X=x}(y) d\lambda(y) = \int_{\mathbb{R}} \frac{f(y,x)}{f_X(x)} d\lambda(y) = 1.$

3. Let $h(x) = \int_{\mathbb{R}} y f_{Y|X=x}(y) d\lambda(y)$ and consider any bounded Borel measurable function $g: (\mathbb{R}, \mathcal{B}) \to (\mathbb{R}, \mathcal{B})$. Then,

$$\begin{split} E(h(X)g(X)) &= \int_{\mathbb{R}} h(x)g(x)f_X(x)d\lambda(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} yf_{Y|X=x}(y)d\lambda(y)g(x)f_X(x)d\lambda(x) \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}} y\frac{f(y,x)}{f_X(x)}d\lambda(y)g(x)f_X(x)d\lambda(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} yf(y,x)d\lambda(y)g(x)d\lambda(x) \\ &= E(Yg(X)) \end{split}$$

Consequently,

$$E(h(X)g(X)) - E(Yg(X)) = E((Y - h(X))g(X)) = 0$$

which gives E(Y|X) = h(X).

Theorem 7.7. Let Y be a random variable in $\mathcal{L}^2(\Omega, \mathcal{F}, P)$ and S be a closed subspace of $\mathcal{L}^2(\Omega, \mathcal{F}, P)$. Then,

1. there exists a unique function $P_S : \mathcal{L}^2(\Omega, \mathcal{F}, P) \to S$ such that $(\mathcal{I} - P_S) : \mathcal{L}^2(\Omega, \mathcal{F}, P) \to S^{\perp}$ where S^{\perp} is the orthogonal complement of S^{3} .

³The orthogonal complement of a subset S of an inner-product space is the set of all vectors in the space that are orthogonal to S.

- 2. $||Y||^2 = ||P_S(Y)||^2 + ||(I P_S)(Y)||^2$,
- 3. $P_S(Y_n) \to P_S(Y)$ if $||Y_n Y|| \to 0$ as $n \to \infty$,
- 4. if S_1, S_2 are closed subspaces of $\mathcal{L}^2(\Omega, \mathcal{F}, P)$ such that $S_1 \subseteq S_2 \implies P_{S_1}(P_{S_2}(Y)) = P_{S_1}(Y)$.

Proof. 1. By the Projection Theorem, for each $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$ there exists a unique $\hat{Y} \in S$. Thus, we write the function $P_S(Y) = \hat{Y}$. In addition $E\{(Y - P_S(Y))s\} = 0$ for all $s \in S$. That is, $Y - P_S(Y)$ is orthogonal to the subspace S. Any $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$ can be written as $Y - P_S(Y) + P_S(Y) = Y$ or $Y = (\mathcal{I} - P_S)(Y) + P_S(Y)$ where \mathcal{I} is the identity operator in $\mathcal{L}^2(\Omega, \mathcal{F}, P)$ and $\mathcal{I} - P_S$ projects Y onto the orthogonal complement of S.

2. Note that

$$||Y||^{2} = ||Y - P_{S}Y + P_{S}Y||^{2}$$

= $||Y - P_{S}(Y)||^{2} + ||P_{S}(Y)||^{2}$ by Pythagoras' theorem
= $||(\mathcal{I} - P_{S})(Y)||^{2} + ||P_{S}(Y)||^{2}.$

3. Note that $||P_S(Y_n) - P_S(Y)||^2 = ||P_S(Y_n - Y)||^2$. By the last equality in part 2.,

$$||Y_n - Y||^2 = ||(\mathcal{I} - P_S)(Y_n - Y)||^2 + ||P_S(Y_n - Y)||^2$$
$$= ||(\mathcal{I} - P_S)(Y_n - Y)||^2 + ||P_S(Y_n) - P_S(Y)||^2.$$

Consequently,

$$||P_S(Y_n) - P_S(Y)||^2 = ||Y_n - Y||^2 - ||(\mathcal{I} - P_S)(Y_n - Y)||^2 \le ||Y_n - Y||^2.$$

Hence, if $||Y_n - Y|| \to 0$ as $n \to \infty$, then $||P_S(Y_n) - P_S(Y)||^2 \to 0$ as $n \to \infty$. 4. $Y = P_{S_2}(Y) + (\mathcal{I} - P_{S_2})(Y)$ and $P_{S_1}(Y) = P_{S_1}(P_{S_2}(Y)) + P_{S_1}((\mathcal{I} - P_{S_2})(Y))$. In the last term, the argument of P_{S_1} is an element of the orthogonal complement of S_2 . That is $\langle (\mathcal{I} - P_{S_2})(Y), s \rangle = 0$ for every $s \in S_2$. But since $S_1 \subseteq S_2$, it must be that $\langle (\mathcal{I} - P_{S_2})(Y), s_1 \rangle = 0$ for all $s_1 \in S_1$. Thus, $(\mathcal{I} - P_{S_2})(Y) \in S_1^{\perp}$ and consequently $P_{S_1}((\mathcal{I} - P_{S_2})(Y)) = 0$. In Theorem 7.7, if we take the closed subspace of $\mathcal{L}^2(\Omega, \mathcal{F}, P)$ to be $\mathcal{L}^2(\Omega, \mathcal{G}, P)$ for \mathcal{G} a sub σ -algebra of \mathcal{F} , we write $E(Y|\mathcal{G})$ for $P_S(Y)$. In particular, we have:

1.
$$||Y||^2 = ||E(Y|\mathcal{G})||^2 + ||Y - E(Y|\mathcal{G})||^2$$
,

2.
$$E(Y_n|\mathcal{G}) \to E(Y|\mathcal{G}) \text{ if } Y_n \xrightarrow{\mathcal{L}^2} Y,$$

3. if $\mathcal{G} \subseteq \mathcal{H}$ then $E(E(Y|\mathcal{G})|\mathcal{H}) = E(Y|\mathcal{H})$.

7.3 Conditional expectation for random variables in $\mathcal{L}(\Omega, \mathcal{F}, P)$

It is desirable to extend the concept of conditional expectation to random variables Y: $(\Omega, \mathcal{F}, P) \rightarrow (\mathbb{R}, \mathcal{B})$ such that $Y \in \mathcal{L}$. The word extend is justified, since by the Cauchy-Schwarz Inequality (or Rogers-Hölder Inequality with p = q = 2)

$$E(|XY|) \le ||X||_2 ||Y||_2.$$

Taking Y = 1 almost everywhere, we have $E(|X|)^2 \leq E(X^2)$. Hence, if $E(X^2) < C$ then E|X| < C. Consequently, $\mathcal{L}^2 \subseteq \mathcal{L}$.

For this purpose, recall that $Y \in \mathcal{L}(\Omega, \mathcal{F}, P)$ if $Y^+ = \max\{Y(\omega), 0\}$ and $Y^- = -\min\{Y(\omega), 0\}$ are such that $E(Y^+)$, $E(Y^-) < \infty$ and, in this case, we define $E(Y) = E(Y^+) - E(Y^-)$. If $Y \ge 0$, then $Y^- = 0$ and $Y = Y^+$. We first consider $Y \in \mathcal{L}_+(\Omega, \mathcal{F}, P)$. As in Definition 3.4 we allow $Y(\omega) = \infty$. The next theorem provides the basis for extending our definition of conditional expectation to random variables in \mathcal{L} .

- **Theorem 7.8.** i) Let $Y \in \mathcal{L}_{+}(\Omega, \mathcal{F}, P)$ and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . There exists a unique element $E(Y|\mathcal{G})$ of $\mathcal{L}_{+}(\Omega, \mathcal{G}, P)$ such that $E([Y - E(Y|\mathcal{G})]X) = 0$ for all $X \in \mathcal{L}_{+}(\Omega, \mathcal{G}, P)$.
 - ii) If $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$ then the conditional expectation $E(Y|\mathcal{G})$ in i) is the same as $E(Y|\mathcal{G})$ in Definition 7.3 with $\sigma(X) = \mathcal{G}$.

iii) If $Y \leq Y'$ then $E(Y|\mathcal{G}) \leq E(Y'|\mathcal{G})$.

Proof. i) We first consider the existence $E(Y|\mathcal{G})$. Let $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$ and $Y \ge 0$. In this case, define $E(Y|\mathcal{G})$ as in Definition 7.3. Now, for $X \in \mathcal{L}_+(\Omega, \mathcal{G}, P)$ let

$$X_n(\omega) = \min\{X(\omega), n\} = \begin{cases} X(\omega), & \text{if } X(\omega) \le n, \\ n, & \text{if } X(\omega) > n, \end{cases}$$

and note that

$$X_n^2(\omega) = \begin{cases} X^2(\omega), & \text{if } X(\omega) \le n \\ n^2, & \text{if } X(\omega) > n \end{cases}.$$

Hence,

$$\int_{\Omega} X_n^2 dP = \begin{cases} \int_{\Omega} X^2 dP \le n^2 \int_{\Omega} dP = n^2 < \infty, & \text{if } X(\omega) \le n \\ n^2 \int_{\Omega} dP = n^2 < \infty, & \text{if } X(\omega) > n \end{cases}$$

so that $X_n \in \mathcal{L}^2$.

Now, $0 \leq X_1(\omega) \leq X_2(\omega) \leq \cdots \leq X(\omega)$ and $X_n(\omega) \to X(\omega)$ almost everywhere as $n \to \infty$. Then, by Beppo-Levi's Theorem, we have that

$$E\left(\lim_{n\to\infty} YX_n\right) = E(YX) = \lim_{n\to\infty} E(YX_n) = \lim_{n\to\infty} E(E(Y|\mathcal{G})X_n)$$

The last equality follows from the fact that $EY^2 < \infty$, $EX_n^2 < \infty$ and Definition 7.3. Now, again by Beppo-Levi's Theorem, we have

$$E(YX) = \lim_{n \to \infty} E(E(Y|\mathcal{G})X_n) = E(E(Y|\mathcal{G})X), \text{ for all } X \in \mathcal{L}_+(\Omega, \mathcal{G}, P).$$

If $Y \in \mathcal{L}_+(\Omega, \mathcal{F}, P)$ then let $Y_m(\omega) = \min\{Y(\omega), m\}$ and from the argument above $Y_m \in \mathcal{L}^2$. Hence,

$$\lim_{n \to \infty} E(Y_m X_n) = \lim_{n \to \infty} E(E(Y_m | \mathcal{G}) X_n) = E(E(Y_m | \mathcal{G}) \lim_{n \to \infty} X_n)$$
$$= E(E(Y_m | \mathcal{G}) X).$$

Now, since $Y_m \ge 0$, then $E(Y_m | \mathcal{G})$ as defined in Definition 7.3 is such that $E(Y_m | \mathcal{G}) \ge 0$. To see this, consider $Z = I_{\{E(Y_m | \mathcal{G}) < 0\}}$ and note that $E(Z^2) = P(E(Y_m | \mathcal{G}) < 0), E(Y_m Z) =$ $E(E(Y_m|\mathcal{G})Z) = E(E(Y_m|\mathcal{G})I_{\{E(Y_m|\mathcal{G})<0\}})$. Now, since $Y_m \ge 0$ and Z = 1 or Z = 0 we have that $E(Y_mZ) \ge 0$. But the right-hand side of the last equality is less than 0 if $E(Y_m|\mathcal{G}) < 0$, so it must be that $E(Y_m|\mathcal{G}) \ge 0$ if $Y_m \ge 0$. Hence, $E(Y_m|\mathcal{G})$ is increasing with m, and by Beppo-Levi's Theorem we have

$$\lim_{n \to \infty} \lim_{m \to \infty} E(Y_m X_n) = E(YX) = \lim_{m \to \infty} E(E(Y_m | \mathcal{G})X) = E\left(\lim_{m \to \infty} E(Y_m | \mathcal{G})X\right).$$

Now, since $E(YX) = E\left(\left(\lim_{m \to \infty} E(Y_m | \mathcal{G})\right) X\right)$ or $E\left(\left(Y - \lim_{m \to \infty} E(Y_m | \mathcal{G})\right) X\right) = 0$ for all $X \in \mathcal{L}_+(\Omega, \mathcal{G}, P)$, we define

$$E(Y|\mathcal{G}) = \lim_{m \to \infty} E(Y_m|\mathcal{G}) \tag{7.1}$$

for $Y \in \mathcal{L}^+(\Omega, \mathcal{F}, P)$.

r

We now consider uniqueness of $E(Y|\mathcal{G})$. Let U and V be two versions of $E(Y|\mathcal{G})$ and let $\wedge_n = \{\omega : U < V \leq n\}$. Since U and V are versions of $E(Y|\mathcal{G})$ we know that U and V are \mathcal{G} -measurable. Consequently, $\{\omega : U \leq n\} \in \mathcal{G}$, $\{\omega : V \leq n\} \in \mathcal{G}$ and $\wedge_n = \{\omega : U < V \leq n\} \in \mathcal{G}$.

Note that $E(YI_{\wedge_n}) = E(UI_{\wedge_n}) = E(VI_{\wedge_n})$ since $U = V = E(Y|\mathcal{G})$. Furthermore, $0 \leq UI_{\wedge_n} \leq VI_{\wedge_n} \leq n$ and if $P(\wedge_n) > 0$ $(\wedge_n \neq \emptyset)$, $UI_{\wedge_n} < VI_{\wedge_n}$ which implies that $E(UI_{\wedge_n}) < E(VI_{\wedge_n})$, which contradicts $E(UI_{\wedge_n}) = E(VI_{\wedge_n})$. Therefore, $P(\wedge_n) = 0$ for all n. Now, note that $\wedge_1 \subseteq \wedge_2 \subseteq \wedge_3 \subseteq \cdots \subseteq \{U < V\}$. Now $\lim_{n \to \infty} \bigcup_{i=1}^n \wedge_i = \{U < V\}$ and $P\left(\lim_{n \to \infty} \bigcup_{i=1}^n \wedge_i\right) = \lim_{n \to \infty} P\left(\bigcup_{i=1}^n \wedge_i\right) \leq \lim_{n \to \infty} \sum_{i=1}^n P(\wedge_i)$. Thus, $P(\{U < V\}) = 0$. Repeating the argument for $\Gamma_n = \{\omega : V < U \leq n\}$ we conclude that $P(\{V < U\}) = 0$. Hence, it must be that U and V coincide with probability 1.

ii) The proof follows from the first part of the argument in item i).

iii) If $Y \leq Y'$ then $Y_m \leq Y'_m$ for all m and $E(Y_m | \mathcal{G}) \leq E(Y'_m | \mathcal{G})$ and consequently

$$\lim_{m \to \infty} E(Y_m | \mathcal{G}) \le \lim_{m \to \infty} E(Y'_m | \mathcal{G}) \iff E(Y | \mathcal{G}) \le E(Y' | \mathcal{G})$$

We now consider conditional expectations for random variables in $\mathcal{L}(\Omega, \mathcal{F}, P)$.

Theorem 7.9. Let $Y \in \mathcal{L}(\Omega, \mathcal{F}, P)$ and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . There exists a unique element $E(Y|\mathcal{G})$ in $\mathcal{L}(\Omega, \mathcal{G}, P)$ such that

$$E((Y - E(Y|\mathcal{G}))X) = 0$$
, for all bounded \mathcal{G} -measurable X.

 $E(Y|\mathcal{G})$ coincides with those in Definition 7.3 and Theorem 7.8 when $Y \in \mathcal{L}^2$ and $Y \in \mathcal{L}_+$. In addition, (i) if $Y \ge 0$, then $E(Y|\mathcal{G}) \ge 0$ and (ii) $E(Y|\mathcal{G})$ is a linear in Y.

Proof. We first consider existence of the conditional expectation. Since $Y \in \mathcal{L}$, we can write $Y = Y^+ - Y^-$ and $Y^+, Y^- \in \mathcal{L}$. Now, Y^+ and Y^- are such that

$$E\left((Y^+ - E(Y^+|\mathcal{G}))X\right) = 0, \text{ for all } X \in \mathcal{L}_+(\Omega, \mathcal{G}, P) \text{ and}$$
$$E\left((Y^- - E(Y^-|\mathcal{G}))X\right) = 0, \text{ for all } X \in \mathcal{L}_+(\Omega, \mathcal{G}, P).$$

Define $E(Y|\mathcal{G}) = E(Y^+|\mathcal{G}) - E(Y^-|\mathcal{G})$ and note that for $X \in \mathcal{L}_+(\Omega, \mathcal{G}, P)$

$$E(YX) = E((Y^+ - Y^-)X) = E(Y^+X) - E(Y^-X)$$
$$= E(E(Y^+|\mathcal{G})X) - E(E(Y^-|\mathcal{G})X) \text{ by Theorem 7.8}$$
$$= E((E(Y^+|\mathcal{G}) - E(Y^-|\mathcal{G})))X) = E(E(Y|\mathcal{G})X).$$

We now establish uniqueness of $E(Y|\mathcal{G})$. Suppose U and V are two versions of $E(Y|\mathcal{G})$ and let $\wedge = \{U < V\}$. Then, since U and V are \mathcal{G} -measurable, then $\wedge \in \mathcal{G}$. Therefore I_{\wedge} is \mathcal{G} -measurable.

$$E(YI_{\wedge}) = E(E(Y|\mathcal{G})I_{\wedge}) = E(UI_{\wedge}) = E(VI_{\wedge}).$$

But, if $P(\wedge) > 0$, then $E(UI_{\wedge}) < E(VI_{\wedge})$, a contradiction. Thus, $P(\wedge) = 0$. A similar reverse argument gives P(V < U) = 0.

Now, for any X that is bounded and \mathcal{G} -measurable consider

$$E(YX) = E(Y(X^+ - X^-)) = E(YX^+) - E(YX^-)$$
$$= E(X^+ E(Y|\mathcal{G})) - E(X^- E(Y|\mathcal{G}))$$

using the definition of conditional expectation in this proof.

$$= E((X^+ - X^-)E(Y|\mathcal{G})) = E(XE(Y|\mathcal{G})).$$

The proofs of items (i) and (ii) are left as exercises. \blacksquare

Remark 7.3. Note that if X and Y are independent random variables defined on the same probability space, then by Theorem [4.7], if f is a bounded measurable function E(Yf(X)) = E(Y)E(f(X)). Now, $E(Yf(X)) = E(E(Y|\sigma(X))f(X))$ and consequently

$$E(Y)E(f(X)) = E(E(Y|\sigma(X))f(X)),$$

taking f(X) = 1 gives $E(Y) = E(Y|\sigma(X))$.

Lebesgue's monotone and dominated convergence theorems hold for conditional expectations.

Theorem 7.10. $Y_n(\omega) : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B})$ and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} .

- a) If $Y_n \ge 0$, $Y_1 \le Y_2 \le Y_3 \le \dots$ with $Y_n \xrightarrow{as} Y$ as $n \to \infty$, then $\lim_{n\to\infty} E(Y_n|\mathcal{G}) = E(Y|\mathcal{G})$ a.s.
- b) If $Y_n \xrightarrow{as} Y$ and $|Y_n| \leq Z$ for some $Z \in \mathcal{L}(\Omega, \mathcal{F}, P)$, then $\lim_{n \to \infty} E(Y_n | \mathcal{G}) = E(Y | \mathcal{G})$ a.s.

Proof. Left as an exercise. \blacksquare

We now give an example where conditional expectation is taken to belong to a specific class of measurable functions.

Example 7.3. Let $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$ and let X be a random vector defined on the same probability space. Assume that for every component of X_k , for $k = 1, \dots, K$ of X we have $X_k \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$. Now, consider the following class of functions

$$F = \{f : f(x) = \sum_{k=1}^{K} a_k x_k \text{ where } f \text{ is } \sigma(X) \text{-measurable and } a_k \in \mathbb{R}\}.$$

Using Definition 7.3 or item 1 in Remark 30

$$E(Y|X) = \underset{a_1,\dots,a_K}{\operatorname{argmin}} \int \left(Y - \sum_{k=1}^k a_k X_k\right)^2 dP = \underset{a_1,\dots,a_K}{\operatorname{argmin}} O(a_1,\dots,a_K).$$

Now,

$$O(a_1, \dots, a_K) = \int (Y^2 - 2Y \sum_{k=1}^K a_k X_k + (\sum_{i=1}^K a_k X_k)^2) dP$$

= $\int Y^2 dP - 2 \sum_{k=1}^K a_k \int X_k Y dP + \sum_{k=1}^K a_k^2 \int X_k^2 dP$
+ $\sum_{k=1}^K \sum_{k \neq l} a_k a_l \int X_k X_l dP$
= $\sigma^2 - 2 \sum_{k=1}^K a_k E(X_k Y) + \sum_{k=1}^K a_k^2 \int X_k^2 dP + \sum_{k=1}^K \sum_{jk \neq l} a_k a_l E(X_k X_l).$

Now, taking derivatives with respect to a_k we have $\frac{\partial}{\partial a_k}O(a_1, \ldots, a_K) = -2E(X_kY) + 2a_kE(X_k^2) + 2\sum_{k \neq l} a_l E(X_kX_l)$ for $k = 1, \ldots, K$. Alternatively, using matrices

$$\frac{\partial}{\partial a}O(a_1,\ldots,a_K) = -2\begin{bmatrix} E(X_1Y)\\\vdots\\E(X_KY)\end{bmatrix} + 2\begin{bmatrix} E(X_1^2) & E(X_1X_2) & \ldots & E(X_1X_K)\\E(X_2X_1) & E(X_2^2) & \ldots & E(X_2X_K)\\\vdots\\E(X_KX_1) & E(X_KX_2) & \ldots & E(X_K^2)\end{bmatrix} \begin{bmatrix} a_1\\\vdots\\a_K\end{bmatrix}$$
$$= -2b + 2Aa$$

Choosing $a := \hat{a}$ such that $\frac{\partial}{\partial a}O(\hat{a}_1, \dots, \hat{a}_K) = 0$ we have $\hat{a} = A^{-1}b$ if A is invertible. Invertibility of A follows positive definiteness of A, which also assures that $\hat{f}(x) = \sum_{k=1}^{K} \hat{a}_k x_k$ corresponds to a minimum.