
Chapter 8

Central limit theorems

8.1 Characteristic functions

We will start with the definition of a characteristic function. To this end recall that by a

complex number x we mean an ordered pair of real numbers. The set of all complex numbers

is denoted by C. Thus, if x = (x1, x2) is a complex number, we say that x1 is the real part

of x and x2 is the imaginary part of x. If x, y 2 C we define x + y = (x1 + y1, x2 + y2) and

xy = (x1y1 � x2y2, x1y2 + x2y1). We write x = y if, and only if, x1 = y1 and x2 = y2. The

complex number (0, 1) is denoted by i and is called the imaginary unit. Given the definition

of product of complex numbers, i2 = �1 (or i
2 = (�1, 0)).

Every complex number x can be written as x = x1+ ix2. To see this, let x1 = (x1, 0) and

x2 = (x2, 0). Then, ix2 = (0, 1)(x2, 0) = (0, x2) and x1+ix2 = (x1, 0)+(0, x2) = (x1, x2) = x.

The complex number x̄ = x1� ix2 is called the complex conjugate of x and xx̄ = (x2
1+x

2
2, 0).

The “absolute value” of a complex number is defined by |x| = (x2
1 + x

2
2)

1/2 and if x 6= (0, 0)

then x
�1 = (x1/(x2

1 + x
2
2),�x2/(x2

1 + x
2
2)) so that x

�1
x = (1, 0).

If x = x1 + ix2 we define e
x = e

x1+ix2 := e
x1(cos(x2) + i sin(x2)) (Euler’s formula). This

definition gives the following desirable properties of complex exponentials,

e
x
e
y = e

x+y
, e

x 6= 0, |eix2 | = | cos(x2) + i sin(x2)| = (cos(x2)
2 + sin(x2)

2)1/2 = 1.

If X1, X2 : (⌦,F , P ) ! (R,B) are random variables, we say that X = X1+ iX2 is a complex
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valued random variable and its distribution FX is defined as usual in terms of the joint

distribution of X1 and X2, i.e.,

FX(x1, x2) = P ({! : X1(!)  x1} \ {! : X2(!)  x2}) = PX ((�1, x1]⇥ (�1, x2]) .

Since, |X| = (X2
1 + X

2
2 )

1/2 we have that E(|X|2) = E(X2
1 ) + E(X2

2 ). Thus, if X1, X2 2

L2(⌦,F , P ) then E(|X|2) < 1. Also, we naturally write E(X) = E(X1) + iE(X2).

Note that algebraically |X| is the Euclidean norm for vectors in R2 and, therefore, it is

a convex function. By Jensen’s Inequality, for any Borel measurable convex function g and

integrable random variable Z we have that g(E(Z))  E(g(Z)). Consequently, |E(X)| 

E(|X|).

Definition 8.1. The characteristic function of a random variable X : (⌦,F , P ) ! (R,B)

with distribution FX is the complex valued function

�X(t) := E(eitX) for t 2 R.

Remark 8.1. 1. By definition (or Euler’s formula) e
itx = cos(tx) + i sin(tx). Hence,

�X(t) = E(cos(tX) + i sin(tX)) =

Z

⌦

cos(tX)dP + i

Z

⌦

sin(tX)dP

=

Z

R

cos(tX)dPX + i

Z

R

sin(tX)dPX

=

Z

R

cos(tx)dFX(x) + i

Z

R

sin(tx)dFX(x).

2. |�X(t)| = |E(eitX)|  E(|eitX |) = E(| cos(tX)+i sin(tX)|) = E
�
(cos2(tX) + sin2(tX))1/2

�
=

1. Hence, E(eitX) always exists and �X(0) = 1.
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3. Now, for h 2 R

|�X(t+ h)� �X(t)| = |E
�
e
i(t+h)X

�
� E

�
e
itX
�
| = |E(eitX+ihX � e

itX)|

= |E(eitX(eihX � 1))|

 E
�
|eitX ||eihX � 1|

�

 E
�
|eihX � 1|

�
=

Z

R

|eihX � 1|dPX .

Now, eihx � 1 = cos(hx)� 1 + i sin(hx) and

|eihx � 1| =
�
(cos(hx)� 1)2 + sin2(hx)

�1/2
= (2(1� cos(hx)))1/2  2.

Hence, as |h| ! 0, |eihx�1| ! 0. Consequently, by Lebesgue’s Dominated Convergence

Theorem,
R
R
|eihX � 1|dPX ! 0 as |h| ! 0. Thus, �X(t) is uniformly (the bound is

independent of t) continuous.

4. Let Y = X�µ
� , for µ 2 R and � > 0. Then,

�Y (t) = E(eitY ) = E(eit(
X�µ

� )) = E(e
�itµ
� e

itX
� )

= e
�

itµ
� E(e

itX
� ) = e

�
itµ
� �X

✓
t

�

◆
.

5. The characteristic function of �X is ��X(t) = E(ei(�t)X) = �X(�t).

�X(�t) =

Z

R

cos(�tX)dPX + i

Z

R

sin(�tX)dPX

=

Z

R

cos(tX)dPX � i

Z

R

sin(tX)dPX , because cos(x) is even and sin(x) is odd.

= �̄X(t), the complex conjugate of �X(t).

Since the imaginary part of a complex number x is (x � x̄)/2 and �X(t) � �̄X(t) =

i 2
R
R
sin(tX)dPX , �X(t) is real valued if, and only if,

R
R
sin(tX)dPX = 0. In this case,

�X and X have the same characteristic function.
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6. If there exists a density fX associated with PX , e.g.,

FX(x) =

Z

(�1,x]

fXd�

such that fX is even, then

�X(t) =

Z

R

e
itx
fX(x)dx =

Z 0

�1

e
itx
fX(x)dx+

Z
1

0

e
itx
fX(x)dx

changing variables in the first integral by setting �y = x,

=

Z 0

1

e
�ity

fX(�y)(�1)dy +

Z
1

0

e
itx
fX(x)dx

=

Z
1

0

e
�itx

fX(x)dx+

Z
1

0

e
itx
fX(x)dx

=

Z
1

0

(e�itx + e
itx)fX(x)dx

=

Z
1

0

(cos(tx)� i sin(tx) + cos(tx) + i sin(tx))fX(x)dx

= 2

Z
1

0

cos(tx)fX(x)dx.

Hence, symmetric densities give real-valued characteristic functions.

7. If X and Y are independent, then �X+Y (t) is E(eit(X+Y )) = E(eitX)E(eitY ) = �X(t)�Y (t).

8. Let {Xj}j=1,2,...,n be a sequence of IID random variables and Sn =
Pn

j=1 Xj.

E(eitSn) =
nY

j=1

E(eitXj) = (�X1(t))
n
.

Theorem 8.1. Let �X(t) be a characteristic function. If E(|X|s) < 1 for s = 1, 2, · · ·

d
s

dts
�X(t) =

Z

R

(iX)seitXdPX = E((iX)seitX).

Proof. For h 6= 0 consider

�X(t+ h)� �X(t)

h
=

1

h

�
E(ei(t+h)X)� E(eitX)

�

=
1

h

✓Z

R

e
i(t+h)X

dPX �
Z

R

e
itX

dPX

◆

=

Z

R

e
i(t+h)X � e

itX

h
dPX .
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Then, for x 6= 0

e
i(t+h)x � e

itx

h
= x

cos(x(t+ h))� cos(tx)

hx
+ ix

sin(x(t+ h))� sin(tx)

hx
.

Taking limits on both sides as h ! 0 we have that

d

dt
e
itx = lim

h!0

e
i(t+h)x � e

itx

h
= �x sin(tx) + ix cos(tx) = ix(cos(tx) + i sin(tx)) = ixe

itx
.

In addition, |ixeitx| = (x2 sin2(tx) + x
2 cos2(tx))1/2 = |x|. Hence, if

R
R
|X|dPX < 1 we have

by Theorem 3.15
d

dt
�X(t) =

Z

R

(iX)eitXdPX = E((iX)eitX).

For s = 2, 3, · · · use the same argument with integrands (ix)s�1
e
itx. ⌅

An immediate consequence of this theorem is that ds

dts�X(0) = i
s
E(Xs).

Theorem 8.2. For x 2 R we have
�����e

ix �
nX

k=0

(ix)k

k!

�����  min

⇢
|x|n+1

(n+ 1)!
,
2|x|n
n!

�
.

Proof. Note that for n � 0, x > 0 and integration by parts (Riemann-Stieltjes integrals)
Z x

0

e
is(x� s)nds =

Z x

0

e
is
d

✓
�(x� s)n+1

n+ 1

◆

= �e
is (x� s)n+1

n+ 1
|x0 �

Z x

0

✓
�(x� s)n+1

(n+ 1)

◆
de

is

=
x
n+1

n+ 1
+ i

Z x

0

(x� s)n+1

n+ 1
e
is
ds. (8.1)

For n = 0,
R x

0 e
is
ds = x+ i

R x

0 (x� s)eisds. By Taylor’s Theorem with remainder in Cauchy

form at x = 0

e
ix = 1 + ix+ i

2

Z x

0

(x� s)eisds

= 1 + ix+ i
2

✓
x
2

2!
+

i

2!

Z x

0

(x� s)2eisds

◆
using equation (8.1) with n = 1.
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Repeated substitution of the integral inside the parenthesis gives

e
ix = 1 + ix+

(ix)2

2!
+ · · ·+ (ix)n

n!
+

i
n+1

n!

Z x

0

(x� s)neisds

=
nX

k=0

(ix)k

k!
+

i
n+1

n!

Z x

0

(x� s)neisds. (8.2)

Hence, �����e
ix �

nX

k=0

(ix)k

k!

����� =
����
i
n+1

n!

Z x

0

(x� s)neisds

���� .

But,
����
Z x

0

(x� s)neisds

���� 
Z x

0

(x� s)n|eis|ds =
Z x

0

(x� s)nds = �(x� s)n+1

n+ 1
|x0 =

x
n+1

n+ 1
.

Thus, �����e
ix �

nX

k=0

(ix)k

k!

����� 
|in+1|
n!

x
n+1

(n+ 1)
=

x
n+1

(n+ 1)!
.

Now, from equation (8.1)
Z x

0

e
is(x� s)n�1

ds� x
n

n
=

i

n

Z x

0

(x� s)neisds.

Multiplying by in

(n�1)! , we get

i
n

(n� 1)!

Z x

0

e
is(x� s)n�1

ds� (ix)n

n!
=

i
n+1

n!

Z x

0

(x� s)neisds.

Hence, using equation (8.2)

i
n

(n� 1)!

Z x

0

e
is(x� s)n�1

ds� (ix)n

n!
= e

ix �
nX

k=0

(ix)k

k!

and consequently �����e
ix �

nX

k=0

(ix)k

k!

����� 
|in|

(n� 1)!

x
n

n
+

x
n

n!
= 2

x
n

n!
.

Hence, combining the two bounds we have
�����e

ix �
nX

k=0

(ix)k

k!

�����  min

⇢
x
n+1

(n+ 1)!
, 2

x
n

n!

�
.
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A similar argument applies for x < 0 to give,
�����e

ix �
nX

k=0

(ix)k

k!

�����  min

⇢
|x|n+1

(n+ 1)!
, 2

|x|n
n!

�
.

If x = 0 the two sides of the weak inequality coincide. ⌅

Remark 8.2. 1. Suppose X is a random variable such that E(|X|k) < 1 for k = 1, 2, . . . , n.

Then,
������X(t)�

nX

k=0

(it)k

k!
E(Xk)

����� =

�����E(eitX)� E

 
nX

k=0

(it)k

k!
X

k

!�����  E

 �����e
itX �

nX

k=0

(itX)k

k!

�����

!

 E

✓
min

⇢
2|tX|n
n!

,
|tX|n+1

(n+ 1)!

�◆
.

Note that,

E

✓
min

⇢
2|tX(!)|n

n!
,
|tX(!)|n+1

(n+ 1)!

�◆

Z

⌦

2|t|n
n!

|X(!)|ndP = 2
|t|n
n!

E(|X|n).

Hence, in this context there is no need to assume that E(|X|n+1) exists, only E(|X|n).

2. In the case where E(|X|n) exist and, if for all t

lim
n!1

|t|nE(|X|n)
n!

= 0

we have �X(t) =
P

1

k=0
(it)k

k! E(Xk).

3. Different bounds can be obtained for the E
⇣
min

n
2|tX(!)|n

n! ,
|tX(!)|n+1

(n+1)!

o⌘
= E (min {g(!), h(!)}).

In particular, for any ✏ > 0 and A = {! : |X(!)| > ✏}

E

✓
min

⇢
2|tX(!)|n

n!
,
|tX(!)|n+1

(n+ 1)!

�◆

Z

g(!)IAdP +

Z
h(!)IAcdP

 2
|t|n
n!

Z

A

|X(!)|ndP +
|t|n+1

(n+ 1)!
✏

Z
|X(!)|ndP

or

E

✓
min

⇢
2|tX(!)|n

n!
,
|tX(!)|n+1

(n+ 1)!

�◆
=

Z
g(!)IAdP +

Z
h(!)IAcdP

 2
|t|n
n!

Z

A

|X(!)|ndP +
|t|n+1

(n+ 1)!
✏
n+1

3. If X ⇠ N(µ, �2) then E(eitX) = e
iµt��2

2 t2.
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The characteristic function for a random vector X 2 Rd is defined as follows.

Definition 8.2. The characteristic function of a random vector X : (⌦,F , P ) ! (Rd
,Bd)

with distribution FX is the complex valued function

�X(t) := E(eit
TX) for t 2 Rd

.

Remark 8.3. If X ⇠ N(µ,⌃) where µ 2 Rd and ⌃ is a d ⇥ d matrix, the characteristic

function �X(t) is given by E(eit
TX) = e

itTµ� 1
2 t

T⌃t
.

It follows directly from the definition of a characteristic function � that if F = G where

F and G are distribution functions, then � associated with F is identical to the � associated

with G. That is, if two distributions coincide, so do their characteristic functions. The next

theorem establishes that if two characteristic functions are the same they are associated with

the same distribution function.

Theorem 8.3. Let F and G be two distributions with the same characteristic function. That

is, Z

R

e
itx
dF (x) =

Z

R

e
itx
dG(x) for all t 2 R.

Then, F = G.

Proof. Let F (x)�G(x) = D(x). We need to show that
Z

R

e
itx
dD(x) = 0 for all t 2 R (8.3)

implies D(x) = 0. We first note that D(x) is the difference between two distributions

functions, i.e., two bounded monotone increasing functions. Hence, D(x) is of bounded

variation on R.1. Now, equation (8.3) holds for any trigonometric polynomial

T (x) =
nX

v=�n

ave
i(�v)x

1
See Natanson (1955, The Theory of Functions of a Real Variable, Frederick Ungar Publishing Co., New

York) Theorem 5, p. 239.
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for � 2 R. Consequently, (8.3) also holds for any function which is the uniform limit of a

trigonometric polynomial T (x). Hence, by Weierstrass approximation theorem it also holds

for any continuous periodic function h(x).2

Let g be a continuous function that vanishes outside a bounded interval I, and choose

m > 0 sufficiently large so that I ⇢ (�m,m]. Define hm as a continuous periodic function

of periods 2m such that hm(x) = g(x) for �m < x  m. Then, equation (8.3) holds for

hm. Since D is of bounded variation it is possible to choose m sufficiently large so that the

variation of D(x) for |x| > m is arbitrarily small. Hence, the integral

Z

R

hm(x)dD(x) !
Z

R

g(x)dD(x) as m ! 1.

Thus, Z

R

g(x)dD(x) =

Z

I

g(x)dD(x) = 0

for every continuous function that is zero outside of I. By the uniform boundedness of g

(continuous on a bounded interval) it follows that

Z b

a

g(x)dD(x) =

Z

I

gdD(x) = 0

provided that a and b are points of continuity of D and that g is continuous for a  x  b.

But then, D(x) must be a constant on its continuity points. Hence, G(x) = F (x) for

x 2 C(F ) \ C(G). But since when F and G coincide on their points of continuity they

coincide everywhere, and the proof is complete. ⌅

The next theorem gives an explicit representation of F in terms of �.

Theorem 8.4. For a, b 2 C(F ) such that a < b,

F (b)� F (a) = lim
T!1

1

2⇡

Z T

�T

e
�ita � e

�itb

it
�(t)dt.

2
See Natanson (1955) Theorem 4, p. 111.
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If
R
R
�(t)dt < 1 the distribution function F has a density f and

f(x) =
1

2⇡

Z

R

e
�itx

�(t)dt.

Proof. Let �(t) =
R
R
e
itx
dF (x). We first prove that for every a, b, a < b, points of continuity

of F , we have F (b) � F (a) = 1
2⇡ limT!1

R T

�T
e�ita

�e�itb

it �(t)dt. Note that even though t = 0

belongs to [�T, T ] the integral is well defined because e�ita
�e�itb

it ! b� a as t ! 0.
Z T

�T

e
�ita � e

�itb

2⇡it
�(t)dt =

Z T

�T

e
�ita � e

�itb

2⇡it

✓Z
1

�1

e
itx
dF (x)

◆
dt

=

Z
1

�1

✓Z T

�T

e
�ita+itx � e

�itb+itx

2⇡it
dt

◆
dF (x),

where the last equality follows from the fact that we can interchange the order of integration.

Now,
Z T

�T

1

2⇡it
(eit(x�a) � e

it(x�b))dt

=

Z T

�T

1

2⇡it
(cos(t(x� a)) + i sin(t(x� a))� cos(t(x� b))� i sin(t(x� b)))dt

=

Z 0

�T

[·]dt+
Z T

0

[·]dt.

If t = �⌧ ,
Z 0

�T

[·]dt =
Z 0

�T

� 1

2⇡i⌧
(cos(⌧(x� a)) + i sin(⌧(x� a))� cos(⌧(x� b))� i sin(⌧(x� b)))(�1)d⌧

=

Z T

0

1

2⇡it
(� cos(t(x� a)) + i sin(t(x� a)) + cos(t(x� b))� i sin(t(x� b)))dt.

Consequently,
Z T

�T

e
�it(x�a) � e

�it(x�b)

2⇡it
�(t)dt = 2

Z T

0

1

2⇡it
(i sin(t(x� a))� i sin(t(x� b)))dt

=
1

⇡

Z T

0

1

t
(sin(t(x� a))� sin(t(x� b)))dt.

Taking limits on both sides as T ! 1 requires that we investigate the value of
Z T

0

1

t
sin(t(x� a))dt and

Z T

0

1

t
sin(t(x� b))dt as T ! 1.
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Since
R T

0
1
t sin(t)dt is bounded for T > 0 and approaches ⇡/2 as T ! 13 we obtain

Z
1

0

sin(↵t)

t
dt =

8
><

>:

⇡/2, ↵ > 0

0, ↵ = 0

�⇡/2 ↵ < 0

.

Now, consider the following cases: (1) x < a < b; (2) a < x < b; (3) a < b < x; (4) x = a < b;

(5) x = b. Then, we obtain

case (1): limT!1

R T

�T [·]dt !
1
⇡ (�

⇡
2 )�

1
⇡ (�

⇡
2 ) = 0,

case (2): limT!1

R T

�T [·]dt !
1
⇡ (

⇡
2 )�

1
⇡ (�

⇡
2 ) = 1,

case (3): limT!1

R T

�T [·]dt !
1
⇡ (

⇡
2 )�

1
⇡ (

⇡
2 ) = 0,

case (4): limT!1

R T

�T [·]dt ! 0� 1
⇡ (�

⇡
2 ) =

1
2 ,

case (5): limT!1

R T

�T [·]dt !
1
⇡ (

⇡
2 )� 0 = 1

2 .

Consequently,

lim
T!1

Z T

�T

e
�it(x�a) � e

�it(x�b)

2⇡it
�(t)dt =

8
><

>:

0 x < a or x > b

1
2 x = a or x = b

1 if a < x < b.

By Lebesgue’s dominated convergence theorem

lim
T!1

Z T

�T

e
�ita � e

�itb

2⇡it
�(t)dt =

Z
1

�1

✓
1

2
I{x=a} +

1

2
I{x=b} + Ia<x<b

◆
dF (x)

=
1

2
(F (a)� F (a�)) +

1

2
(F (b)� F (b�)) + (F (b)� F (a))

= F (b)� F (a),

where the second equality comes from
Z

1

�1

1

2
I{x=a}dF (x) =

1

2
(F (a)� F (a�))

and Z
1

�1

1

2
I{x=b}dF (x) =

1

2
(F (b)� F (b�)).

3
See Apostol, T.,1974, Mathematical Analysis. Addison Wesley Publishing Company, p. 286.
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The last equality follows because a, b are points of continuity of F .

For the last statement in the enunciation of the theorem, note that by the same argu-

ment used to establish uniform continuity of characteristic functions we have that f(x) =

1
2⇡

R
R
e
�itx

�(t)dt is continuous and therefore integrable on [a, b]. Hence,
Z b

a

f(x)dx =

Z b

a

1

2⇡

Z

R

e
�itx

�(t)dtdx

=
1

2⇡

Z

R

�(t)

Z b

a

e
�itx

dxdt = lim
T!1

1

2⇡

Z T

�T

�(t)

Z b

a

e
�itx

dxdt

= lim
T!1

1

2⇡

Z T

�T

�(t)
e
�ita � e

�itb

it
dt = F (b)� F (a)

for all a, b 2 C(F ). Hence, f is the density of F . ⌅

Remark 8.4. Gil-Pelaez (1951, Biometrika) has shown that if x 2 C(F )

F (x) =
1

2
+

1

2⇡

Z
1

0

e
itx
�(�t)� e

�itx
�(t)

it
dt.

8.2 A central limit theorem for independent random vari-
ables

Theorem 8.5. Let {Xj}j=1,2,··· be a sequence of IID random variables with E(Xj) = µ,

V (Xj) = �
2 and Sn =

Pn
j=1 Xj.

n
�1
Sn � µ

�
p
n

=
n
�1(Sn � nµ)

�
p
n

=
Sn � nµp

n�

d! Z ⇠ N(0, 1).

Proof. Without loss of generality take E(Xj) = 0 and V (Xj) = 1 (otherwise, define Yj =

Xj�µ
� and note that E(Yj) = 0, V (Yj) = 1). Then,

Sn � nµp
n�

=
Snp
n
,

and by the fact that {Xj}j=1,2,··· is IID we have

� Snp
n
(t) = E

⇣
e
it Snp

n

⌘
= E

⇣
e
it

X1p
n

⌘
· · ·E

⇣
e
itXnp

n

⌘
=
⇣
E(eit

X1p
n )
⌘n

=

✓
�X1

✓
tp
n

◆◆n

.
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Since E(X1) = 0, E(X2
1 ) = 1,

������X1

✓
tp
n

◆
� 1� itp

n
E(X1)�

✓
itp
n

◆2 1

2!
E(X2

1 )

�����  E

 
min

(
| tX1p

n |
3

3!
,

2| tX1p
n |

2

2

)!

�����X1

✓
tp
n

◆
� 1 +

1

2

t
2

n

����  E

✓
min

⇢
|tX1|3
6n3/2

,
|tX1|2
n

�◆

=
1

n
E

✓
min

⇢
|tX1|3
6n1/2

, |tX1|2
�◆

Now, min
n

|tX1|
3

6n1/2 , |tX1|2
o

 |tX1|2 2 L, since E(X2
1 ) = 1. Also, min

n
|tX1|

3

6n1/2 , |tX1|2
o


|tX1|

3

6n1/2 ! 0 as n ! 1. Thus, by Lebesgue’s Dominated Convergence Theorem,

E

✓
min

⇢
|tX1|3
6n1/2

, |tX1|2
�◆

! 0,

and lim
n!1

n

����X1

⇣
t

p
n

⌘
� 1 + 1

2
t2

n

���! 0.

Now, note that for i = 1, 2, . . . , n and ai, bi 2 C with |ai|, |bi|  1, |
Qn

i=1 ai �
Qn

i=1 bi| 
Pn

i=1 |ai � bi|. Then,
�����X1

✓
tp
n

◆n

�
✓
1� 1

2

t
2

n

◆n����  n

�����X1

✓
tp
n

◆
�
✓
1� 1

2

t
2

n

◆����! 0.

Since
⇣
1� 1

2
t2

n

⌘n
! e

�
1
2 t

2 we see that � Snp
n
(t) ! �(t) = e

�
1
2 t

2 . Then, by Theorem 8.3 it must

be that Z ⇠ N(0, 1). ⌅

Remark 8.5. We observe that if the sequence of random variables {Xt}t2N is heterogeneously

distributed with µt = E(Xt) and V (Xt) = �
2
t < 1, then

E

✓
Sn

n

◆
= E

✓Pn
t=1 Xt

n

◆
=

1

n

nX

t=1

µt,

V

✓
Sn

n

◆
= V

✓Pn
t=1 Xt

n

◆
=

1

n2

nX

t=1

V (Xt) =
1

n2

nX

t=1

E(Xt � µt)
2 =

s
2
n

n2
.

Let Ytn = Xt�µt

sn
and note that E(Ytn) = 0 and V (Ytn) = E(Y 2

tn) =
1
s2n
E(Xt � µt)2. Then,

1
n

Pn
t=1(Xt � µt)q

s2n
n2

=

Pn
t=1(Xt � µt)

sn
=

nX

t=1

Xt � µt

sn
=

nX

t=1

Ytn.
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Theorem 8.6. Let {Ytn}t=1,2,...,n be an independent triangular array of random variables

with E(Ytn) = 0, �2
tn := V (Ytn) =

1
s2n
E(Xt � µt)2 with

Pn
t=1 �

2
tn = 1. Then, if

lim
n!1

nX

t=1

Z

|Ytn|>✏

Y
2
tndP = 0

for all ✏ > 0, we have that Sn =
Pn

t=1 Ytn
d! N(0, 1).

Proof. We must show that |�Sn(�)�e
�

1
2�

2 | =
���
Qn

t=1 �Ytn(�)�
Qn

t=1 e
�

1
2�

2�2
tn

���! 0 as n ! 1,

since
Pn

t=1 �
2
tn = 1. Now,

|�Sn(�)� e
�

1
2�

2 | =

�����

nY

t=1

�Ytn(�)�
nY

t=1

(1� 1

2
�
2
�
2
tn) +

nY

t=1

(1� 1

2
�
2
�
2
tn)�

nY

t=1

e
�

1
2�

2�2
tn

�����



�����

nY

t=1

�Ytn(�)�
nY

t=1

(1� 1

2
�
2
�
2
tn)

�����+

�����

nY

t=1

(1� 1

2
�
2
�
2
tn)�

nY

t=1

e
�

1
2�

2�2
tn

�����

= T1n + T2n.

For all z 2 C with |z|  1/2, |ez � 1� z|  |z|2. To see this, note that

|ez � 1� z| =

�����

1X

j=0

z
j

j!
� 1� z

����� =

�����

1X

j=2

z
j

j!

����� =

�����z
2

1X

j=0

z
j

(j + 2)!

�����  |z|2
1X

j=0

|z|j
(j + 2)!

.

But |z|  1/2, so
P

1

j=0
|z|j

(j+2)! 
P

1

j=0
1
2j

1
(j+2)! <

1
2

P
1

j=0
1
2j = 1.

Also, note that by Lindeberg’s condition

�
2
tn = E(I{Ytn✏}Y

2
tn) + E(I{Ytn>✏}Y

2
tn)  ✏

2 + E(I{Ytn>✏}Y
2
tn) ! ✏

2

as n ! 1. Since ✏ can be made arbitrarily small lim
n!1

max
1tn

�
2
tn = 0.

Letting z = �1
2�

2
�
2
tn and taking n to be sufficiently large we can make |z|  1/2. Hence,

T1n 
Pn

t=1 |�Ytn(�)� (1� 1
2�

2
�
2
tn)|. Using item 3 in Remark 8.2, for n = 2, we have

�����Ynt(�)�
✓
1� 1

2
�
2
�
2
tn

◆����  E

✓
min

⇢
|�Ytn|3

3!
, |�Ytn|2

�◆

 �
2
E(Y 2

tnI{|Ytn|>✏}) +
1

6
|�|3✏E(Y 2

tn).
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Thus,

nX

t=1

|�Ytn(�)� (1� 1

2
�
2
�
2
tn)|  �

2
nX

t=1

E(Y 2
tnI{|Ytn|>✏}) +

1

6
|�|3✏

nX

t=1

�
2
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= �
2

nX

t=1
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1

6
|�|3✏ ! ✏

1

6
|�|3, as n ! 1,

since
Pn

t=1 E
�
|Ytn|2I{|Ytn|>✏}

�
! 0 by Lindeberg’s condition. Now, for T2n we have

T2n =

�����

nY

t=1

e
�

1
2�

2�2
tn �
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(1� 1

2
�
2
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����� 
nX

t=1
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2
�
2
�
2
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1

4
�
4

nX
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(�2
tn)

2

 1
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�
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tn

| {z }
=1

=
1

4
�
4

✓
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�
2
tn

◆
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completing the proof. ⌅

Remark 8.6. We observe that

lim
n!1

nX

t=1

E(|Ytn|2+�) = 0 for some � > 0 =) lim
n!1

nX

t=1

Z

|Ytn|>✏

Y
2
tndP = 0,

for all ✏ > 0. This is easily verified by noting that

E|Ytn|2+� � E
�
I|Ytn|>✏|Ytn|2+�

�
for all ✏ > 0

� ✏
�
E(I|Ytn|>✏|Ytn|2).

Hence,
Pn

t=1 E(|Ytn|2+�) � ✏
�
Pn

t=1 E(I|Ytn|>✏|Ytn|2). Letting n ! 1, we have, for fixed ✏,

lim
n!1

nX

t=1

E(|Ytn|2+�) = 0 =) lim
n!1

nX

t=1

E(I|Ytn|>✏|Ytn|2) = 0.

The requirement that limn!1

Pn
t=1 E(|Ytn|2+�) = 0 is called Lyapounov’s condition. Note

that

nX

t=1

E(|Ytn|2+�) =
nX

t=1

E

����
Xt � µt

sn

����
2+�

=
nX

t=1

E|Xt � µt|2+�

s2+�
n

=
1

s2+�
n

nX

t=1

E|Xt � µt|2+�
.
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and E|Xt + (�µt)|2+�  21+�(E|Xt|2+� + | � µt|2+�). This inequality is a special case of

Loéve’s cr-Inequality, which states that for m finite, r > 0

E(|
mX

t=1

Xt|r)  cr

mX

t=1

E|Xt|r, where cr =

(
1 if r  1

m
r�1 if r > 1

So, E|Xt � µt|2+�  21+�
E|Xt|2+� + 21+�|µt|2+�. If E|Xt|2+� and |µt|2+�

< C uniformly in t,

then
Pn

t=1 E|Xt�µt

sn
|2+�  nC

s2+�
n

= C
s2n
n s�n

< C
0
< 1, if infn s2n

n > 0.

Consequently, we have that if s2n
n > 0 uniformly in n and E|Xt|2+�, |µt|2+�

< 1 uniformly

in t, Liapounov’s condition holds. By consequence, Lindeberg’s condition holds.

Theorem 8.7. (Lévy’s Continuity Theorem) Let {Fn}n2N be a sequence of distribution func-

tions in R with Fn =) F (Fn converges pointwise to F for every point of continuity of

F ), where F is any non-negative, bounded, non-decreasing, right-continuous function. Let

{�n}n2N be the sequence of characteristic functions for Fn. If

�n(t) ! �(t) where �(t) is continuous at t = 0,

F is a distribution function and � is its characteristic function.

Proof. See Billingsley (1986, Probability and Measure, Chapter 5). ⌅

The following theorem allows the use of the central limit theorems we studied to obtain

the asymptotic distribution of random vectors. It os known in Statistics as the Cramér-Wold

device.

Theorem 8.8. Let {Xn}n=0,1,2,··· be a sequence of random vectors taking values in RK. Then,

for any � 2 RK

�
T
Xn

d! �
T
X0 , Xn

d! X0.

Proof. If Xn
d! X0

�tTXn
(x) = E(eixt

TXn) = �Xn(xt) ! �X0(xt) = �tTX0
(x)
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which shows that �
T
Xn

d! �
T
X0.

If �T
Xn

d! �
T
X0 then

�Xn(x) = E(eix
TXn) = �xTXn

(1) ! �xTX0
(1) = �X0(x)

which shows that Xn
d! X0. ⌅
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