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We propose a plug-in estimator for a distribution function of two independent, but

heterogeneously distributed random variables, where one variable has a density and the

other has only a distribution. No restrictive assumptions are imposed on the distribution

function, and only mild smoothness conditions on the density are required. We show

that the proposed estimator is asymptotically unbiased. Bibliography: 10 titles.

1 Introduction

Estimation of a distribution function associated with the sum of independent, but possibly het-

erogeneously distributed random variables has been an enduring topic of interest in probability

and statistics. This results from the fact that sums of independent random variables emerge in

various applied fields, including reliability theory, actuarial sciences, medicine and economics,
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and ancillary components of statistical models (see, for example, [1]–[6]).

In this paper, we propose an estimator for a distribution function of two independent ran-

dom variables. We suppose that X and Z are independent random variables, where X has a

distribution function F and Z has a density f . We consider the estimation of the distribution

function H of X +Z at t ∈ R based on two independent random samples {Xi}ni=1 and {Zj}nj=1.

From [7, Theorem 11.1] it follows that

H(t) := FX+Z(t) =

∫

R

F (t− x)f(x)dx. (1.1)

Equation (1.1) suggests the plug-in estimator

Ĥ(t) :=

∫

R

F̂ (t− x)f̂(x)dx,

where F̂ and f̂ are estimators for F and f based on {Xi}ni=1 and {Zj}nj=1. The plug-in estimation

of the integrands of a convolution was first proposed in [2] in the case where both X and Z have

a common density (see also [4]). Here, we relax assumptions required in the extant literature as

follows:

(a) F is not necessarily absolutely continuous and can have jump discontinuities,

(b) We require the only condition f ∈ L1(R) and a mild smoothness condition on f are

required.

We construct an estimator for F̂ (x) that belongs to the class of estimators proposed in [9] in

the case where f̂(x) is the Rosenblatt–Parzen kernel density estimator. Here, x is not necessarily

a point of continuity of f , but x is required to be a Lebesgue point of f (see [8, Theorem 5.6.2]).

Using properties of f̂(x) and F̂ (x), we obtain bounds on the absolute value of the bias of Ĥ(t)

and show that these bounds approach zero as n → ∞. To obtain this result, a stronger local

Hölder type condition is imposed on f .

An interesting particular case of our general setting, where X and Z have the same distribu-

tion, i.e., f is a density associated with F , and f̂ , F̂ are estimators based on the single random

sample {Xi}ni=1 (see [2] for motivation).

2 The Main Results

2.1. Estimator for F (x) and its bias representation. Let {Xi}ni=1 be a random sample

of observations on the random variable X with distribution function given by F . The following

estimator of F (x) was proposed in [9]:

F̂ (x) =
1

n

n∑
i=1

U
(Xi − x

h

)
,

where x ∈ R, h > 0 is a bandwidth, U is known and satisfies the following assumptions.

Assumption 2.1. U is continuous on R, lim
x→−∞U(x) = 1, lim

x→∞U(x) = 0, and U(0) = 1.

Here, we add the requirement U(0) = 1 to the assumptions made by [9], which allows us

to eliminate the impact of a possible jump discontinuity at x given by F (x) − lim
ε↓0

F (x − ε) :=
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F (x)− F (x−) for ε > 0 on the convergence rate of the estimator. We set

ϕU (N) := max{ sup
z<−N

|U(z)− 1|, sup
z>N

|U(z)|}, N > 0,

ω−(x, ε) := ω−(F, x, ε) = F (x−)− F (x− ε),

ω+(x, ε) := ω+(F, x, ε) = F (x+ ε)− F (x), ε > 0.

Since F is a distribution function, it is everywhere right continuous, and we have

lim
N→∞

ϕU (N) = 0, lim
ε→0

ω−(x, ε) = lim
ε→0

ω+(x, ε) = 0, x ∈ R. (2.1)

We note two links between the continuity moduli of F and H. First,

ω+(H, s, ε) = H(s+ ε)−H(s) =

∫

R

[F (s− x+ ε)− F (s− x)]f(x)dx

=

∫

R

ω+(F, s− x, ε)f(x)dx,

which shows that the right continuity modulus of H behaves better than that of F . Second,

taking t ∈ (y − ε, y) and letting t ↑ y, from the dominated convergence theorem we have

H(t)−H(y − ε) =

∫

R

[F (t− x)− F (y − x− ε)]f(x)dx

→
∫

R

[F ((y − x)−)− F (y − x− ε)]f(x)dx =

∫

R

ω−(F, y − x, ε)f(x)dx.

Thus,

ω−(H, y, ε) =

∫

R

ω−(F, y − x, ε)f(x)dx.

For the Riemann–Stieltjes integral we use the notation∫

(a,b]

g(t)dF (t) or

∫

[a,b)

g(t)dF (t)

instead of
b∫

a

g(t)dF (t)

to account for possible jumps of F at points a or b.

Theorem 2.1. Suppose that U satisfies Assumption 2.1. Then

(a) For all x ∈ R and δ ∈ (0, 1)

|EF̂ (x)− F (x)| =
∣∣∣∣∣
∫

R

U
(y − x

h

)
dF (y)− F (x)

∣∣∣∣∣ � ϕU (h
δ−1)

+ ‖U‖C [ω−(x, hδ) + ω+(x, h
δ)] + ω−(x, hδ), h > 0. (2.2)
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(b) If, in addition, U satisfies

U(z) :=

{
1 z < −u,

0, z > u
(2.3)

for some u > 0, then the term ϕU (h
δ−1) in Equation (2.2) can be omitted for all 0 < h <

u−1/(1−δ).

Proof. (a) Splitting integrals, we have

∫

R

U
(y − x

h

)
dF (y)− F (x) =

{ ∫

(−∞,x−ε)

+

∫

[x−ε,x)

+

∫

[x,x]

+

∫

(x,x+ε]

+

∫

(x+ε,∞)

}
U
(y − x

h

)
dF (y)

−
{ ∫

(−∞,x−ε)

+

∫

[x−ε,x)

+

∫

[x,x]

}
dF (y) =

∫

(−∞,x−ε)

[
U
(y − x

h

)
− 1
]
dF (y)

+

∫

[x−ε,x)

[
U
(y − x

h

)
− 1
]
dF (y) + (U(0)− 1)(F (x)− F (x−)) +

∫

(x,x+ε]

U
(y − x

h

)
dF (y)

+

∫

(x+ε,∞)

U
(y − x

h

)
dF (y). (2.4)

By Assumption 2.1, the terms in Equation (2.4) are bounded as follows:

∣∣∣∣∣
∫

(−∞,x−ε)

[
U
(y − x

h

)
− 1
]
dF (y)

∣∣∣∣∣ � sup
z<−ε/h

|U(z)− 1|F (x),

∣∣∣∣∣
∫

[x−ε,x)

[
U
(y − x

h

)
− 1
]
dF (y)

∣∣∣∣∣ � (‖U‖C + 1)ω−(x, ε),

(U(0)− 1)(F (x)− F (x−)) = 0,
∣∣∣∣∣

∫

(x,x+ε]

U
(y − x

h

)
dF (y)

∣∣∣∣∣ � ‖U‖Cω+(x, ε),

∣∣∣∣∣
∫

(x+ε,∞)

U
(y − x

h

)
dF (y)

∣∣∣∣∣ � sup
z>ε/h

|U(z)|(1− F (x)).

These bounds and Equation (2.4) imply

∣∣∣∣∣
∫

R

U
(y − x

h

)
dF (y)− F (x)

∣∣∣∣∣ � ϕU

( ε
h

)
+ (‖U‖C + 1)ω−(x, ε) + ‖U‖Cω+(x, ε).

Selecting ε = hδ, we complete the proof of (a). Assertion (b) immediately follows from (a) if

hδ−1 > u.
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Remark 2.1. Let δ ∈ (0, 1). If h → 0 as n → ∞, the asymptotic unbiasedness of F̂ (x)

follows from the fact that ϕU (h
δ−1), ω+(x, h

δ), ω−(x, hδ) → 0. Unlike [9], x is not required to

be a point of continuity of F .

2.2. Estimator for f(x) and its bias representation. By [8, Theorem 5.6.2], if f ∈
Lloc
1 (R), then

f(x) = lim
r↓0

1

2r

∫

(x−r,x+r)

f(y)dy

for almost every x ∈ R. In this case, x is called a Lebesgue point of f . Setting

gx(t) :=
1

2
(f(x+ t) + f(x− t))− f(x),

it is easy to see that if x is a Lebesgue point of f , then

lim
r↓0

1

r

r∫

0

gx(t)dt = 0

and if

γx(ε) := sup
0<r�ε

1

r

∣∣∣∣∣
r∫

0

gx(t)dt

∣∣∣∣∣, lim
ε→0

γx(ε) = 0 a.e. (2.5)

For a given random sample {Zj}nj=1 associated with Z we estimate f(x) by using the Rosen-

blatt kernel estimator:

f̂(x) =
1

nh

n∑
j=1

K
(Zj − x

h

)
,

where K is a known kernel and h > 0 is a bandwidth. We make the following assumption on K.

Assumption 2.2. The function K ∈ L1(R) is even and, on [0,∞), nonnegative, nonincreas-

ing, right continuous, and has the locally Riemann integrable derivative K ′. In addition,∫

R

K(t)dt = 1.

It is evident from Assumption 2.2 that

K(r)
r

2
�

r∫

r/2

K(t)dt � K
(r
2

)r
2

which implies

lim
r→∞K(r) = lim

r→∞ rK(r) = 0. (2.6)

Definition 2.1. (a) If suppK = [−a, a] for some a > 0, then for ε > 0 we set h(ε) = ε/a.

(b) If suppK is not compact, then from Equation (2.6) the set {h > 0 : K(ε/h)ε/h � 2ε2} is

not empty and we set

h(ε) = sup

{
h > 0 :

ε

h
K
( ε
h

)
� 2ε2,

∞∫

ε/h

K(t)dt � ε

}
.
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By the right continuity of K, we observe that, in Definition 2.1 (b),

1

h(ε)
K
( ε

h(ε)

)
� 2ε,

∞∫

ε/h(ε)

K(t)dt � ε. (2.7)

In addition, h(ε) → 0 as ε → 0.

Precursors of the following theorem can be found in [10, Theorem 6] in the functional-

theoretical setting and without estimates for the convergence rate.

Theorem 2.2. Let K satisfy Assumption 2.2, and let x be a Lebesgue point of f . Then for

ε > 0

(a) if suppK is not compact, then

|Ef̂(x)− f(x)| =
∣∣∣∣∣
∫

R

K(z)f(x+ h(ε)z)dz − f(x)

∣∣∣∣∣ � γx(ε) + ε(1 + f(x)),

(b) if suppK = [−a, a], then |Ef̂(x)− f(x)| � γx(ε).

Proof. (a) Let h := h(ε). Consider the difference

Ef̂(x)− f(x) =
1

h

∫

R

K
(y − x

h

)
f(y)dy −

∫

R

f(x)K(y)dy =
1

h

∞∫

0

K
( r
h

)
(f(x+ r)− f(x))dr

+
1

h

0∫

−∞
K
( r
h

)
(f(x+ r)− f(x))dr =

2

h

∞∫

0

K
( r
h

)
gx(r)dr =

2

h

( ε∫

0

+

∞∫

ε

)
K
( r
h

)
gx(r)dr.

Put

G(t) =

t∫

0

gx(s)ds.

Integrating by parts, we find

1

h

ε∫

0

K
( r
h

)
gx(r)dr =

1

h

ε∫

0

K
( r
h

)
dG(r) =

1

h
K
( ε
h

)
G(ε)−

ε∫

0

G(r)
1

h2
K ′(r)dr. (2.8)

All the integrals in the above equation exist and integration by parts is valid because K ′ is
Riemann integrable and G is continuous. Since rK(r) � 1/2, we have

∣∣∣ ε
h
K
( ε
h

)G(ε)

ε

∣∣∣ � 1

2
γx(ε). (2.9)

For the second term on the right-hand of (2.8) we have

∣∣∣ 1
h2

ε∫

0

G(r)K ′
( r
h

)
dr
∣∣∣ � γx(ε)

ε∫

0

r

h2

∣∣∣K ′
( r
h

)∣∣∣dr = −γx(ε)

ε/h∫

0

sK ′(s)ds
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= γx(ε)
(
− ε

h
K
( ε
h

)
+

ε/h∫

0

K(s)ds
)
� 1

2
γx(ε). (2.10)

Equations (2.8) and (2.10) imply

∣∣∣1
h

ε∫

0

K
( r
h

)
gx(r)dr

∣∣∣ � γx(ε). (2.11)

Furthermore, using the monotonicity of K and Equation (2.7), we find

∣∣∣1
h

∞∫

ε

K
( r
h

)
gx(r)dr

∣∣∣ �
∞∫

ε

∣∣∣f(x+ r)

2

∣∣∣1
h
K
( r
h

)
dr +

∞∫

ε

∣∣∣f(x− r)

2

∣∣∣1
h
K
( r
h

)
dr

+ f(x)

∞∫

ε

1

h
K
( r
h

)
dr � 1

2h
K
( ε
h

)( ∞∫

ε

|f(x+ r)|dr +
∞∫

ε

|f(x− r)|dr
)

+ f(x)

∞∫

ε/h

K(s)ds � ε(‖f‖L1 + f(x)) = ε(1 + f(x)). (2.12)

This bound and Equation (2.11) prove Assertion (a).

(b) If suppK = [−a, a], then, instead of (2.12), we have

1

h

∞∫

ε

K
( r
h

)
gx(r)dr =

∞∫

ε/h

K(s)gx(sh)ds = 0

for h(ε) = ε/a, and the conclusion follows from Equation (2.11).

2.3. Estimator for H(t). For given random samples {Xi}ni=1 and {Zj}nj=1 on X and Z

we propose the following plug-in estimator for H(t):

Ĥ(t) =

∫

R

F̂ (t− x)f̂(x)dx =
1

n2h

n∑
i,j=1

∫

R

U
(Xi − t+ x

b

)
K
(Zj − x

h

)
dx,

where b, h > 0 are bandwidths and U and K satisfy Assumptions 2.1 and 2.2 respectively. We

prove two theorems that give bounds for the absolute value of the bias of Ĥ(t). The first theorem

deals with the general case where two independent random samples on X and Z are available.

The second one considers the case where f is a density associated with F and there is a common

random sample {Xi}ni=1 that must be used in the construction of f̂ and F̂ . The second case is

more involved as the estimators f̂ and F̂ are not independent since a common sample is used in

their construction. Thus, we start by establishing the following auxiliary lemma that is useful

in the second case.
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Lemma 2.1. For ε > 0 we set

Γ(ε) :=

∫

R

γx(ε)dx.

If Assumptions 2.1 and 2.2 hold, U satisfies (2.3), and suppK = [−a, a] for some a > 0, then

∣∣∣∣∣
1

h

∫

R

E
(
U
(X − t+ x

h

)
K
(X − x

h

))
dx− F

( t
2

)∣∣∣∣∣ � Γ(ε) (2.13)

for all

h �

⎧⎪⎪⎨
⎪⎪⎩

t− 2x

2max{u, a} , x < t/2,

2x− t

u+ a
, x > t/2

, (2.14)

as in Definition 2.1.

Proof. Let

I :=
1

h

∫

R

E
(
U
(X − t+ x

h

)
K
(X − x

h

))
dx.

If, making the change of variable, we get

I =
1

h

∫

R

( ∫

R

U
(y − t+ x

h

)
K
(y − x

h

)
f(y)dy

)
dx

=

∫

R

( ∫

R

U
(
z +

2x− t

h

)
K(z)f(x+ hz)dy

)
dx.

Thus, we write

I − F
( t
2

)
=

∫

x> t
2

( ∫

R

U
(
z +

2x− t

h

)
K(z)f(x+ hz)dz

)
dx

+

∫

x< t
2

( ∫

R

U
(
z +

2x− t

h

)
K(z)f(x+ hz)dz

)
dx−

∫

x< t
2

f(x)dx. (2.15)

For x > t/2 the inner integral equals

a∫

−a

U
(
z +

2x− t

h

)
K(z)f(x+ hz)dz

and we can use the inequality h � (2x− t)/u+ a (see (2.14)). Then z � −a implies z +

(2x− t)/h � −a+ u+ a = u, so that the above integral vanishes and its integral over (t/2,∞)

also vanishes.
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Now, we show that the remaining terms in Equation (2.15) are bounded by Γ(ε):

∫

x< t
2

( ∫

R

U
(
z +

2x− t

h

)
K(z)f(x+ hz)dz

)
dx−

∫

x< t
2

f(x)dx

=

∫

x< t
2

( ∫

R

[
U
(
z +

2x− t

h

)
− 1
]
K(z)f(x+ hz)dz

)
dx

+

∫

x< t
2

( ∫

R

K(z)f(x+ hz)dz − f(x)

)
dx. (2.16)

We put N = max{u, a} and recall that K(z) = 0 for z > N, so that

∫

z>N

[
U
(
z +

2x− t

h

)
− 1
]
K(z)f(x+ hz)dz = 0. (2.17)

For x < t/2 the range of h is limited by Equation (2.14): h � (t− 2x)/2N. Then z < N implies

z + (2x− t)/h � N − 2N = −N � −u, so

∫

z<N

[
U
(
z +

2x− t

h

)
− 1
]
K(z)f(x+ hz)dz = 0. (2.18)

Equations (2.17) and (2.18) show that the first integral on the right-hand of (2.16) vanishes.

For the remaining part of Equation (2.16), Theorem 2.2 (b) gives

∣∣∣∣∣
∫

x< t
2

( ∫

R

K(z)f(x+ hz)dz − f(x)

)
dx

∣∣∣∣∣ �
∫

R

γx(ε)dx = Γ(ε).

The lemma is proved.

We provide a bound for the absolute value of the bias of Ĥ(t) in the case where two inde-

pendent random samples are available, whereas X and Z have different distributions.

Theorem 2.3. Let {Xi}ni=1 and {Zj}nj=1 be independent random samples. If suppK =

[−a, a] for a > 0, U satisfies Equation (2.3), and Assumptions 2.1 and 2.2 hold, then

|EĤ(t)−H(t)| � (1 + ‖U‖C)Γ(ε) +
∫

R

Ω(t− x, b)f(x)dx, (2.19)

where Ω(x, h) = ‖U‖C [ω−(x, hδ) + ω+(x, h
δ)] + ω−(x, hδ).

Proof. We write

Ĥ(t) =

∫

R

F̂ (t− x)f̂(x)dx =

∫

R

1

n

n∑
i=1

U
(Xi − t+ x

b

) 1

nh

n∑
j=1

K
(Zj − x

h

)
dx
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=
1

n2h

n∑
i=1

n∑
j=1

∫

R

U
(Xi − t+ x

b

)
K
(Zj − x

h

)
dx.

Taking expectations and using the fact that {Xi}ni=1 and {Zj}nj=1 are independent random

samples, we get

E(Ĥ(t)) = E

( ∫

R

U
(X − t+ x

b

)1
h
K
(Z − x

h

)
dx

)

=

∫

R

E
(
U
(X − t+ x

b

))1
h
E
(
K
(Z − x

h

))
dx.

Then

|E(Ĥ(t))−H(t)| =
∣∣∣∣∣
∫

R

E
(
U
(X − t+ x

b

))1
h
E
(
K
(Z − x

h

))
dx−

∫

R

F (t− x)f(x)dx

∣∣∣∣∣

=

∣∣∣∣∣
∫

R

[
E
(
U
(X − t+ x

b

))1
h
E
(
K
(Z − x

h

))
− F (t− x)f(x)

]
dx

∣∣∣∣∣

=

∣∣∣∣∣
∫

R

[
E
(
U
(X − t+ x

b

))(1
h
E
(
K
(Z − x

h

))
− f(x)

)

+
(
E
(
U
(X − t+ x

b

))
− F (t− x)

)
f(x)

]
dx

∣∣∣∣∣

�
∫

R

∣∣∣E
(
U
(X − t+ x

b

))∣∣∣
∣∣∣1
h
E
(
K
(Z − x

h

))
− f(x)

∣∣∣dx

+

∫

R

∣∣∣E
(
U
(X − t+ x

b

))
− F (t− x)

∣∣∣f(x)dx.

Since U satisfies Equation (2.3) and suppK = [−a, a] for a > 0, from Theorem 2.1 (b) and

Theorem 2.2 (b) we have

|E(Ĥ(t))−H(t)| �
∫

R

γx(ε)
∣∣∣E
(
U
(X − t+ x

b

))∣∣∣dx+

∫

R

Ω(t− x, b)f(x)dx.

Since
∣∣∣E
(
U
(
X−t+x

b

))∣∣∣ � F (t− x) + Ω(t− x, b) and noting that Ω(x, h) �
∥∥∥U
∥∥∥
C
+ 1, we get

|E(Ĥ(t))−H(t)| �
∫

R

γx(ε)(F (t− x) + Ω(t− x, b))dx+

∫

R

Ω(t− x, b)f(x)dx

� (1 + ‖U‖C)
∫

R

γx(ε)dx+

∫

R

Ω(t− x, b)f(x)dx = (1 + ‖U‖C)Γ(ε) +
∫

R

Ω(t− x, b)f(x)dx.

The theorem is proved.
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Remark 2.2. Suppose that f satisfies a local Hölder type condition, i.e., |f(x+ t)−f(x)| �
c(x)|t|α for all |t| � ε0 and x ∈ R, where c(x) is an integrable nonnegative function on R and

α ∈ (0, 1). Then for t ∈ (0, ε0)

∣∣∣∣∣
f(x+ t) + f(x− t)

2
− f(x)

∣∣∣∣∣ �
∣∣∣∣∣
f(x+ t)− f(x)

2

∣∣∣∣∣+
∣∣∣∣∣
f(x− t)− f(x)

2

∣∣∣∣∣ � c(x)tα.

Then

γx(ε) = sup
0<h�ε

1

h

∣∣∣∣∣
h∫

0

(f(x+ t) + f(x− t)

2
− f(x)

)
dt

∣∣∣∣∣

� c(x) sup
0<h�ε

1

h

h∫

0

tαdt = c(x) sup
0<h�ε

1

h

hα+1

(α+ 1)
= c(x)

εα

α+ 1
, ε � ε0.

Hence

Γ(ε) =

∫

R

γx(ε)dx � εα

α+ 1

∫

R

c(x)dx = O(εα).

Consequently, under the additional assumption that f satisfies a local Hölder type condition,

Ĥ(t) is asymptotically unbiased.

We now provide a bound for the absolute value of the bias of Ĥ(t) when f is a density

associated with F and estimation is based on a single random sample {Xi}ni=1.

Theorem 2.4. Let f be a density associated with F , and let f̂ and F̂ be constructed by

using the same random sample {Xi}ni=1. If suppK = [−a, a] for a > 0, U satisfies (2.3), and

Assumptions 2.1 and 2.2 hold, then

|EĤ(t)−H(t)| � 1

n
[F (t/2) + Γ(ε)] + (1 + ‖U‖C)Γ(ε) +

∫

R

Ω(t− x, h(ε))f(x)dx (2.20)

for sufficiently small ε > 0.

Proof. By Lemma 2.1, for sufficiently small h

∣∣∣∣∣
1

nh

∫

R

E
[
U
(X − t+ x

h

)
K
(X − x

h

)]
dx
∣∣∣ � 1

n

(
F
( t
2

)
+ Γ(ε)

)
. (2.21)

As in the proof of Theorem 2.3,

∣∣∣∣∣
1

h

∫

R

EU
(X − t+ x

h

)
EK

(X − x

h

)
dx−

∫

R

F (t− x)f(x)dx

∣∣∣∣∣

�
∣∣∣∣∣
∫

R

EU
(X − t+ x

h

)[1
h
EK

(X − x

h

)
− f(x)

]
dx

∣∣∣∣∣
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+

∣∣∣∣∣
∫

R

[
EU

(X − t+ x

h

)
− F (t− x)

]
f(x)dx

∣∣∣∣∣

�
∫

R

[F (t− x) + Ω(t− x, h)]γε(x)dx+

∫

R

Ω(t− x, h)f(x)dx

� (‖U‖C + 1)Γ(ε) +

∫

R

Ω(t− x, h)f(x)dx.

The theorem follows from Equation (2.21) and the last bound.

As in the case of Theorem 2.3, the asymptotic unbiasedess of Ĥ(t) in this case follows from

the assumption that f satisfies a local Hölder type condition.
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