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In this paper we propose a new nonparametric kernel-based estimator for a density function f which
achieves bias reduction relative to the classical Rosenblatt–Parzen estimator. Contrary to some existing
estimators that provide for bias reduction, our estimator has a full asymptotic characterisation including
uniform consistency and asymptotic normality. In addition, we show that bias reduction can be achieved
without the disadvantage of potential negativity of the estimated density – a deficiency that results from
using higher order kernels. Our results are based on imposing global Lipschitz conditions on f and defining
a novel corresponding kernel. A Monte Carlo study is provided to illustrate the estimator’s finite sample
performance.
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1. Introduction

Let f denote the density associated with a real random variable X and let {Xj }nj=1 be a random
sample of size n of X. We call a kernel any function K on ! such that

∫ +∞

−∞
K(t) dt = 1. (1)

The Rosenblatt–Parzen estimator for the density f evaluated at x ∈ ! is given by fR(x) =
(1/n)

∑n
j=1(1/hn)K((Xj − x)/hn), where 0 < hn is a bandwidth sequence such that hn → 0

as n → ∞. Let B(fR(x)) = E(fR(x)) − f (x) denote the bias of fR(x) at x. It is well known
(Parzen 1962; Pagan and Ullah 1999; Fan andYao 2003) that if f has its rth derivative bounded
and continuous at x an interior point in the support of f and the kernel is of order r , that is,
K satisfies

∫ +∞
−∞ K(t)tj dt = 0 for j = 1, . . . , r − 1 then Bias(fR(x)) = O(hr

n). Bias reduction
through higher order kernels (Granovsky and Müller 1991; Jones and Foster 1993) can be incon-
venient in that for r > 2, K can no longer be nonnegative everywhere and therefore fR(x) may
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220 K. Mynbaev and C. Martins-Filho

be negative. There exist other approaches to bias reduction in density estimation (Jones, Linton,
and Nielsen 1995; DiMarzio and Taylor 2004) but the asymptotic properties of these estimators
have not been fully developed.
In this paper, we propose a new nonparametric kernel-based density estimator for which reduc-

tion in the order of the bias, relative to the Rosenblatt–Parzen estimator, is attained by imposing
global Lipschitz conditions on f . The use of our estimator and higher order Lipschitz conditions
seems desirable for the following reasons: (a) in a sense to be made precise in Section 2, r-times
differentiability of f is stronger than r-times Lipschitz smoothness; (b) we provide a full asymp-
totic characterisation of our estimator, including results on its uniform consistency, asymptotic
normality and convergence rates. We emphasise that this is the main theoretical advantage of our
estimator. Its rates of convergence are true for all bandwidths and sample sizes. By contrast, rates
of convergence for higher order kernels and local polynomial estimators are valid only asymp-
totically; (c) our estimator is nonnegative, given a suitable choice of the seed kernel. In fact, the
Cauchy kernel assures nonnegativity of the estimator (Section 2.2).
The rest of the paper is organised as follows. Section 2 provides a brief discussion of Lipschitz

conditions, discusses the properties of the new kernels we propose and defines our estimator. In
Section 3, the main asymptotic properties of our estimator are obtained. Section 4 contains a small
Monte Carlo study that gives some evidence on the small sample performance of our estimator
relative to the Rosenblatt–Parzen and local quadratic estimators. Sections 5 provides a conclusion
and gives directions for future work.

2. Lipschitz conditions, associated kernels and a new nonparametric density estimator

2.1. Lipschitz conditions

The properties of nonparametric density estimators are traditionally obtained by assumptions on
the smoothness of the underlying density. Smoothness can be regulated by finite differences,
which can be defined as forward, backward or centred. The corresponding examples of finite first-
order differences for a function f (x) are f (x + h) − f (x), f (x) − f (x − h) and f (x + h) −
f (x − h), where h ∈ !. Here, we focus on centered even-order differences because the resulting
kernels are symmetric. LetCl

2k = (2k)!/(2k − l)!l!, l = 0, . . . , 2k, k ∈ {1, 2, . . .} be the binomial
coefficients, ck,s = (−1)s+kCs+k

2k , s = −k, . . . , k and

!2k
h f (x) =

k∑

s=−k

ck,sf (x + sh), h ∈ !. (2)

We say that a function f : ! → ! satisfies the Lipschitz condition of order 2k if for any x ∈ !
there existH(x) > 0 and ε(x) > 0 such that |!2k

h f (x)| ≤ H(x)h2k for all h such that |h| ≤ ε(x).
The following theorem shows that H(x) and ε(x) can be obtained for the Gaussian and Cauchy
densities.

Theorem 1 (a) Let f (x) = e−(1/2)x2/(2π)1/2, then for any small ε ∈ (0, 1) there exists a
constant cε > 0 such that

|!2k
h f (x)| ≤ cεe−(1−ε)x2/2h2k for |h| ≤ ε(1+ |x|). (3)

(b) Let f (x) = (π(1+ x2))−1, then there exist ε ∈ (0, 1) and a constant c > 0 such that

|!2k
h f (x)| ≤ ch2kf k+1(x) for |h| ≤ ε(1+ |x|). (4)
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Proof (a) We prove the statement for f (t) = e−(1/2)t2 . For any twice differentiable function f

one has f (y) = f (x) + f (1)(x)(y − x) +
∫ y

x
(y − t)f (2)(t) dt , hence for h > 0

|!2
hf (x)| = |f (x − h) − 2f (x) + f (x + h)|

=
∣∣∣∣

∫ x+h

x

(x + h − t)f (2)(t) dt +
∫ x−h

x

(x − h − t)f (2)(t) dt
∣∣∣∣

=
∣∣∣∣

∫ x+h

x

(x + h − t)f (2)(t) dt +
∫ x

x−h

(t − x + h)f (2)(t) dt
∣∣∣∣

≤ sup
|x−t |≤h

|f (2)(t)|
(∫ x+h

x

(x + h − t) dt +
∫ x

x−h

(t − x + h) dt
)

= h2 sup
|x−t |≤h

|f (2)(t)|.

(5)

The case for h < 0 leads straightforwardly to the same bound. We now prove that

!2
h

(
!
2(k−1)
h f (x)

)
= !2k

h f (x). (6)

Observe that the left-hand side of Equation (6) can be written as

!2
h

(
!
2(k−1)
h f (x)

)
=

k−1∑

s=−k+1
(−1)s+k−1Cs+k−1

2(k−1)f (x + sh − h)

− 2
k−1∑

s=−k+1
(−1)s+k−1Cs+k−1

2(k−1)f (x + sh)

+
k−1∑

s=−k+1
(−1)s+k−1Cs+k−1

2(k−1)f (x + sh + h)

=
k−1∑

s=−k

(−1)s+kCs+k
2(k−1)f (x + sh) + 2

k−1∑

s=−k+1
(−1)s+kCs+k−1

2(k−1)f (x + sh)

+
k∑

s=−k+2
(−1)s+kCs+k−2

2(k−1)f (x + sh)

= C0
2(k−1)f (x − kh) −

(
C1
2(k−1) + 2C0

2(k−1)
)
f (x + (−k + 1)h)

+
k−2∑

−k+2
(−1)s+k

(
Cs+k
2(k−1) + 2Cs+k−1

2(k−1) + Cs+k−2
2(k−1)

)
f (x + sh)

−
(
2C2k−2

2(k−1) + C2k−3
2(k−1)

)
f (x + (k − 1)h) + C2k−2

2(k−1)f (x + kh).

Noting that C1
2(k−1) + 2C0

2(k−1) = C1
2k , 2C

2k−2
2(k−1) + C2k−3

2(k−1) = C2k−1
2k and Cs+k

2(k−1) + 2Cs+k−1
2(k−1) +

Cs+k−2
2(k−1) = Cs+k

2k proves Equation (6). Using Equations (5) and (6) we have,

|!2k
h f (x)| ≤ h2 sup

|x−t |≤|h|
|!2(k−1)

h f (2)(t)| ≤ · · · ≤ h2k sup
|x−t |≤k|h|

|f (2k)(t)|. (7)

Iff (t) = e−t2/2, thenf (2k)(t) = P2k(t)f (t)whereP2k is a polynomial of degree 2k.We can bound
the polynomial by the exponential function, so that for any ε ∈ (0, 1) there exists a constant cε > 0
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222 K. Mynbaev and C. Martins-Filho

such that
|f (2k)(t)| ≤ cεe−(1−ε)t2/2. (8)

Let |h| ≤ ε(1+ |x|) and consider two cases. First, suppose that |x| ≥ 1. Then, |h| ≤ 2ε|x|, so that
|x − t | ≤ k|h| implies |t | = |x + t − x| ≥ |x| − |t − x| ≥ |x| − 2εk|x|. Assuming that 2εk < 1,
from Equation (8) we have

sup
|x−t |≤k|h|

|f (2k)(t)| ≤ cεe−(1−ε)(1−2εk)2x2/2 if |h| ≤ ε(1+ |x|). (9)

Second, suppose that |x| < 1. Since the function on the right-hand side of Equation (8) is bounded
from above by cε for any t and the function e−(1−ε)x2/2 is bounded away from zero for |x| < 1,

sup
|x−t |≤k|h|

|f (2k)(t)| ≤ cε ≤ c̃εe−(1−ε)x2/2 if |h| ≤ ε(1+ |x|).

The last inequality together with Equation (9) and (7) proves Equation (3).
(b) We prove the statement for f (t) = (1+ t2)−1. By induction it is easy to show that, for

any natural n, f (n)(t) = Pn(t)f
n+1(t) where Pn is a polynomial of order n. Indeed, f (1)(t) =

−2t (1+ t2)−2 = P1(t)f
2(t). Suppose the formula is true for some n > 1, then

f (n+1)(t) = P (1)
n (t)f n+1(t) + Pn(t)(n + 1)f n(t)f (1)(t)

= [P (1)
n (t)(1+ t2) − 2(n + 1)tPn(t)]f n+2(t) = Pn+1(t)f

n+2(t).

Since |P2k(t)| =
∣∣∣
∑2k

j=0 aj t
j
∣∣∣ ≤ ∑2k

j=0 |aj |(1+ t2)j/2 ≤ c(1+ t2)k by Equation (7) it follows
that

|!2k
h f (x)| ≤ h2k sup

|x−t |≤k|h|
|f (2k)(t)| ≤ ch2k sup

|x−t |≤k|h|
f k+1(t). (10)

Let |h| ≤ ε(1+ |x|)where ε = 1/(4k) and suppose |x| ≥ 1.As above,we have |t | ≥ |x|(1− 2εk)

= |x|/2. Then, f (t) ≤ 4/(4+ x2) ≤ f (x) and Equation (4) follows from Equation (10). Now,
suppose |x| ≤ 1, then 2f (x) ≥ 1. Since f (t) ≤ 1 we have from Equation (10) that |!2k

h f (x)| ≤
ch2k ≤ ch2kf k+1(x)2k+1, which completes the proof. !

We note that Equation (7) shows that boundedness of f (2k)(x) implies a Lipschitz condition
of order 2k. A full description of the relationships between smoothness requirements in terms of
derivatives and Lipschitz conditions can be found in Besov, Il’in, and Nikol’skiĭ (1978). We now
turn to the definition of a family of kernels that will be used in constructing the new estimator we
propose.

2.2. Kernels and the proposed estimator

For a kernel K and natural number k we define the set {Mk(x)}k=1,2,3,... where

Mk(x) = − 1
ck,0

k∑

|s|=1

ck,s

|s| K
(x

s

)
. (11)

In this context we call K a seed kernel for Mk . The main impetus for the definition of Mk(x)

is that it allows us to express the bias of our proposed estimator in terms of higher order finite
differences of the density f (Theorem 3). Let λk,s = (−1)s+1(k!)2/(k + s)!(k − s)!, s = 1, . . . , k
and since−(ck,s/ck,0) = −(ck,−s/ck,0) = λk,s , s = 1, . . . , k, Equation (11) can also be written as
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Mk(x) = ∑k
s=1(λk,s/s)(K(x/s) + K(−(x/s))). It follows by construction thatMk is symmetric,

that is Mk(x) = Mk(−x), x ∈ !. Since the coefficients ck,s satisfy
∑k

|s|=0 ck,s = (1− 1)2k = 0,
we have

− 1
ck,0

k∑

|s|=1
ck,s = 1 or

k∑

s=1
λk,s = 1

2
. (12)

It is therefore the case that Equations (1) and (12) imply that

∫ +∞

−∞
Mk(x) dx =

k∑

s=1

λk,s

s

(∫ +∞

−∞
K

(x

s

)
dx +

∫ +∞

−∞
K

(
−x

s

)
dx

)
= 1,

which establishes that every Mk(x) is a kernel for all k. The following theorem gives some
properties of the family {Mk(x)}k=1,2,... based on the seed kernel K .

Theorem 2 Let G(x) = K(x) + K(−x) and M∞(x) = ∑∞
s=1((−1)s+1/s)G(x/s). Suppose

that the derivative K(1) exists and is bounded in some neighbourhood (−δ, δ) of the origin.
Then, we have:

(a) the series M∞(x) absolutely converges at any x (= 0. At x = 0 it converges conditionally to
M∞(0) = 2K(0) ln 2,

(b) Suppose, additionally, that K is bounded and continuous in ! and denote

‖G‖∞ = sup
x∈!

|G(x)| and ‖G(1)‖∞,δ = sup
x∈(−δ,δ)

|G(1)(x)|.

For all k > m ≥ [|x|/δ + 1] (integer part) one has the estimate of the rate of convergence

|Mk(x) − M∞(x)| ≤ ||λk,m−1| − 1| ‖ G ‖∞

m−1∑

s=1

1
s

+ 2 ‖ G ‖∞
1
m

+
(
2max{‖ G(1) ‖∞,δ |x|, ‖ G ‖∞}+ ‖ G(1) ‖∞,δ |x|

) ∞∑

s=m

1
s2

(13)

which implies locally uniform convergence of Mk to M∞ and continuity of M∞.
(c) Let G be differentiable everywhere and fix x > 0. If fx(λ) = (1/λ)G(x/λ) has a nega-

tive derivative (dfx/dλ)(λ) for all λ ≥ 1, then (k/(k + 1))G(x) > Mk(x) > 0 for all k.
Consequently, when Mk(x) → M∞(x) we have 0 ≤ M∞(x) ≤ G(x).

(d) If G is infinitely differentiable, then so is M∞.

Proof (a) The statement about conditional convergence at x = 0 follows from G(0) = 2K(0)
and ln 2 = ∑∞

s=1(−1)s+1/s. Now, fix x (= 0. For all large s, we have [−x/s, x/s] ⊂ (−δ, δ) and
by the mean value theorem there exists θs ∈ [−x/s, x/s] such thatG(x/s) = K(1)(θs)2x/s. This
implies absolute convergence | ∑∞

s=m((−1)s+1/s)G(x/s)| ≤ c
∑∞

s=m 1/s2.
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224 K. Mynbaev and C. Martins-Filho

(b) We start by establishing two properties of the coefficients λk,s . Since Ck
2k ≥ Ck+1

2k ≥ · · · ≥
C2k
2k = 1, one has

1 ≥ |λk,1| ≥ |λk,2| ≥ · · · ≥ |λk,k| = 1
Ck
2k

. (14)

Furthermore, from (−1)s+1λk,s = ((k − s + 1) · · · k)/((k + 1) · · · (k + s)) = ((1− (s − 1))/k) · · ·
(1− (1/k))1/((1+ (1/k)) · · · (1+ (s/k))) we see that for any fixed s

(−1)s+1λk,s ↑ 1 as k → ∞. (15)

To prove convergenceMk → M∞, we take arbitrary 1 < m < k < ∞ and splitMk andM∞ as

Mk(x) =
(

m−1∑

s=1
+

k∑

s=m

)
λk,s

s
G

(x

s

)
= Sk,m + Rk,m,

M∞(x) =
(

m−1∑

s=1
+

∞∑

s=m

)
(−1)s+1

s
G

(x

s

)
= S∞,m + R∞,m.

Let x ≥ 0 and take, without loss of generality,m ≥ [x/δ + 1] inR∞,m so that δ > x/m. Rearrange
∞∑

s=m

(−1)s+1
s

G
(x

s

)
=

∞∑

s=0

1
m + 2s

(
G

(
x

m + 2s

)
− G

(
x

m + 2s + 1

))

+
∞∑

s=0
G

(
x

m + 2s + 1

) (
1

m + 2s
− 1

m + 2s + 1

)
.

For each s in the first sum, there exists a point θs ∈ [x/(m + 2s + 1), x/(m + 2s)] such that

G

(
x

m + 2s

)
− G

(
x

m + 2s + 1

)
= G(1)(θs)

m + 2s
m + 2s + 1

.

The last two equations imply that

|R∞,m| =
∣∣∣∣∣

∞∑

s=m

(−1)s+1
s

G
(x

s

)∣∣∣∣∣

≤
∞∑

s=0

( ‖ G(1) ‖∞,δ x

(m + 2s)(m + 2s + 1)
+ ‖ G ‖∞

(m + 2s)(m + 2s + 1)

)

≤ 2max{‖ G(1) ‖∞,δ x, ‖ G ‖∞}
∞∑

s=0

1
(m + 2s)(m + 2s + 1)

≤ 2max{‖ G(1) ‖∞,δ x, ‖ G ‖∞}
∞∑

s=m

1
s2

. (16)

Note that Equations (14) and (15) imply that

|Sk,m − S∞,m| ≤
m−1∑

s=1

|λk,s − (−1)s+1|
s

G
(x

s

)

≤ |λk,m−1 − (−1)m|‖G‖∞

m−1∑

s=1

1
s

→ 0 as k → ∞. (17)
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For s between m and k there are points τs ∈ [0, x/s] such that G(x/s) = G(0) + G(1)(τs)x/s.
Thus,

Rk,m = G(0)
k∑

s=m

λk,s

s
+ x

k∑

s=m

λk,s

s2
G′(τs).

Because of Equation (14) | ∑k
s=m(λk,s/s

2)G(1)(τs)| ≤ ‖G(1)‖∞,δ

∑∞
s=m 1/s2. In the series∑k

s=m λk,s/s the terms have alternating signs and monotonically declining absolute values. By
the Leibniz theorem | ∑k

s=m λk,s/s| ≤ |λk,m|/m ≤ 1/m. Therefore

|Rk,m| ≤ |G(0)|
m

+ x‖G′‖∞,δ

∞∑

s=m

1
s2

. (18)

Combining Equations (16)–(18) yields Equation (13). Also, Equations (13) and (14) show that
one can choose first a largem and then a large k to make the expression on the right-hand side of
Equation (13) arbitrarily small. Finally,M∞ is continuous as a locally uniform limit of continuous
functions.
(c) Pairing the terms inMk gives

Mk(x) =
[k/2]−1∑

l=0

[
λk,2l+1
2l + 1

G

(
x

2l + 1

)
+ λk,2l+2
2l + 2

G

(
x

2l + 2

)]
+ Rk

=
[k/2]−1∑

l=0
[λk,2l+1fx(2l + 1) + λk,2l+2fx(2l + 2)] + Rk,

where λk,2l+1 are all positive and Rk = 0, if k is even, and Rk = (λk,k/k)G(x/k), if k is odd.
Further, by the assumed negativity of dfx(λ)/dλ one has fx(2l + 1) > fx(2l + 2) for all l ≥ 0,
so that

Mk(x) =
[k/2]−1∑

l=0
λk,2l+1

[
fx(2l + 1) − 1− (2l + 1)/k

1+ (2l + 2)/k
fx(2l + 2)

]
+ Rk

>

[k/2]−1∑

l=0
λk,2l+1fx(2l + 2)

(
1− 1− (2l + 1)/k

1+ (2l + 2)/k

)
+ Rk > Rk ≥ 0.

Similarly, Mk(x) = (k/(k + 1))G(x) + ∑[(k−1)/2]
l=1 [λk,2lfx(2l) + λk,2l+1fx(2l + 1)] + Rk where

all λk,2l are negative, Rk = 0, if k is odd, and Rk = (λk,k/k)G(x/k), if k is even. Hence,

Mk(x) <
k

k + 1
G(x) +

[(k−1)/2]∑

l=1
λk,2lfx(2l + 1)

(
1− 1− (2l/k)

1+ (2l + 1)/k

)
+ Rk

<
k

k + 1
G(x) + Rk ≤ k

k + 1
G(x).

(d) If u(1)
n (x) are continuous, then convergence of a series

∑
un(x) in addition to uniform

convergence of the series of derivatives
∑

u(1)
n (x) are sufficient for (

∑
un(x))(1) = ∑

u(1)
n (x).

SinceG(1) is locally bounded,
∑∞

s=1(−1)s+1s−2G(1)(x/s) converges locally uniformly.Therefore,
M∞ is differentiable and M

(1)
∞ (x) = ∑∞

s=1(−1)s+1/s2G(1)(x/s). Uniform convergence implies
also continuity ofM(1)

∞ . This type of argument applies to all higher order derivatives. !
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We note that (dfx/dλ)(λ) < 0 for λ ≥ 1 if, and only if, G(x/λ) + G′(x/λ)(x/λ) > 0 for
λ ≥ 1. For the Gaussian and Cauchy densities this is true if x < 1. It is worth pointing out that
the negativity of the derivative in (c) is only a sufficient condition forMk > 0 for all k.1
We are now ready to define a new family of alternative estimators which are similar to the

Rosenblatt–Parzen estimator with the exception that K is replaced by Mk . Hence, we put for
k = 1, 2, . . .

f̂k(x) = 1
n

n∑

j=1

1
hn

Mk

(
Xj − x

hn

)
= 1

n

n∑

j=1
wj,

where wj = (1/hn)Mk((Xj − x)/hn). Given the independent and identically distributed (IID)
assumption (maintained everywhere), we have

E(f̂k(x)) = 1
n

n∑

j=1
E(wj ) = E(w1), (19)

and

V (f̂k(x)) = 1
n2

n∑

j=1
V (wj ) = 1

n
V (w1) = 1

n
(E(w2

1) − (E(w1))
2). (20)

The next theorem reveals the main idea underlying our definition of the family {Mk}k=1,2,....

Theorem 3 For any hn > 0 B(f̂k(x)) = −(1/ck,0)
∫ +∞
−∞ K(t)!2k

hnt
f (x)dt .

Proof From Equation (19), we haveE(f̂k(x)) = Ew1 = (1/hn)
∫ +∞
−∞ Mk((t − x)/hn)f (t)dt =∫ +∞

−∞ Mk(t)f (x + hnt)dt . Substitution of Equation (11) and change of variables give

E(f̂k(x)) = − 1
ck,0

k∑

|s|=1
ck,s

∫ +∞

−∞
K(t)f (x + shnt)dt. (21)

Hence, from Equations (2) and (1) we get

B(f̂k(x)) = − 1
ck,0

∫ +∞

−∞
K(t)

k∑

|s|=1
ck,sf (x + shnt)dt − f (x)

∫ +∞

−∞
K(t)dt

= − 1
ck,0

∫ +∞

−∞
K(t)

k∑

|s|=0
ck,sf (x + shnt)dt = − 1

ck,0

∫ +∞

−∞
K(t)!2k

hnt
f (x)dt. (22)

!

3. Asymptotic properties

In this section, we give an asymptotic characterisation of the estimator we propose. We start by
providing conditions under which the estimator is asymptotically (uniformly) unbiased. We note
that Theorems 4 and 5 are general and do not rely on specific properties of the family of kernels
{Mk}k=1,2,....

Theorem 4 Given a kernel K satisfying (1) and a random sample {Xj }nj=1 we have,

(a) If f (x) is bounded and continuous in ! then limn→∞ B(f̂k(x)) = 0 for all x ∈ !.
(b) If f (x) is bounded and uniformly continuous in ! then limn→∞ supx∈R |Bias(f̂k(x))| = 0.
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Proof (a) From Equations (21) and (1), boundedness and continuity of f (x) we have by
the dominated convergence theorem E(f̂k(x)) → −(1/ck,0)

∑k
|s|=1 ck,sf (x). The desired prop-

erty follows from Equation (12). (b) Using Equations (21), (12) and (1), we get B(f̂k(x)) =
−(1/ck,0)

∑k
|s|=1 ck,s

∫ +∞
−∞ K(t)[f (x + shnt) − f (x)]dt . Hence, for any δ > 0

|B(f̂k(x))| ≤ c

k∑

|s|=1

[∫

|shnt |≤δ

|K(t)[f (x + shnt) − f (x)]|dt

+
∫

|shnt |>δ

|K(t)[f (x + shnt) − f (x)]|dt
]

≤ c

k∑

|s|=1

[

sup
|y|≤δ, x∈!

|f (x + y) − f (x)|
∫

!
|K(t)|dt + 2 sup

x∈!
|f (x)|

∫

|shnt |>δ

|K(t)|dt
]

.

To make the right-hand side expression small, we can choose first a small δ and then a
small hn. !

We state the next theorem without proof since it follows closely the proof of Theorem 2.8 in
Pagan and Ullah (1999) with their kernel K replaced by our kernelMk .

Theorem 5 If the characteristic function φK of K is integrable and nh2n → ∞, then

lim
n→∞

E

(
sup
x∈!

|f̂k(x) − E(f̂k(x))|
)

= 0.

Note that if the conditions from Theorems 4 (b) and 5 are combined, we can write

E

(
sup
x∈!

|f̂k(x) − f (x)|
)

≤ E

(
sup
x∈!

|f̂k(x) − E(f̂k(x))|
)

+ sup
x∈!

|B(f̂k(x))| → 0,

establishing by the use of Markov’s inequality that f̂k(x) is uniformly consistent. In the next
theorem, we provide the order of decay for the bias and variance of our estimator.

Theorem 6 Suppose that (a) f (x) is bounded and continuous, (b) there exist functionsH2k(x) >

0 and ε2k(x) > 0 such that

|!2k
h f (x)| ≤ H2k(x)h2k for all |h| ≤ ε2k(x) (23)

and (c)
∫ ∞
−∞ |K(t)|t2kdt < ∞. Then, for all x ∈ ! and 0 < hn ≤ ε2k(x)

|B(f̂k(x))| ≤ ch2kn (H2k(x) + ε−2k
2k (x)), (24)

where the constant c does not depend on x or hn. Suppose additionally that (d) K is bounded,
the set {t : |K(t)| > 1} is bounded and there exist functions H2(x) > 0 and ε2(x) > 0 such that

|!2
hf (x)| ≤ H2(x)h2 for all |h| ≤ ε2(x). (25)

Then, for all x ∈ ! and 0 < hn ≤ min{ε2k(x), ε2(x)}

V (f̂k(x)) = 1
nhn

{
f (x)

∫ ∞

−∞
M2

k (t)dt + R2(x, hn) − hn[f (x) + R2k(x, hn)]2
}

, (26)

where the residuals satisfy

|R2(x, hn)| ≤ c1h
2
n(H2(x) + ε−2

2 (x)), |R2k(x, hn)| ≤ c2h
2k
n (H2k(x) + ε−2k

2k (x)) (27)

with constants c1 and c2 independent of x and hn.
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Proof Condition (c) implies for any N > 0
∫

|t |>N

|K(t)|dt ≤
∫

|t |>N

|K(t)|| t

N
|2kdt ≤ N−2k

∫ ∞

−∞
|K(t)|t2kdt. (28)

Using Equation (22) and conditions (a) and (b) we have

|B(f̂k(x))| ≤ c1

(∫

|hnt |≤ε2k(x)

+
∫

|hnt |>ε2k(x)

)
|K(t)!2k

hnt
f (x)|dt

≤ c2

[
H2k(x)

∫

|hnt |≤ε2k(x)

|K(t)|(hnt)
2kdt + sup

x∈!
|f (x)|

∫

|hnt |>ε2k(x)

|K(t)|dt
]

.

It remains to apply Equation (28) and condition (c) to obtain Equation (24).
Now we proceed with the derivation of Equation (26). According to Equation (20), we need to

evaluate E(w2
1) and (Ew1)

2. By Equations (19) and (24),

E(w1) = E(f̂k(x)) = f (x) + R2k(x, hn) where R2k satisfies Equation (27). (29)

Now,E(w2
1) = (1/h2n)

∫
M2

k ((t − x)/hn)f (t)dt = (1/hn)
∫

M2
k (t)f (x + hnt)dt and by symme-

try ofMk we have
∫

M2
k (t)f (x + hnt)dt − f (x)

∫
M2

k (t)dt =
(∫ ∞

0
+

∫ 0

−∞

)
M2

k (t)f (x + hnt)dt

− 2
∫ ∞

0
M2

k (t)f (x)dt

=
∫ ∞

0
M2

k (t)!2
hnt

f (x)dt.

Using Equation (25) the same way we applied Equation (23) to obtain Equation (24), we get
∫

M2
k (t)f (x + hnt)dt = f (x)

∫
M2

k (t)dt + R2(x, hn), (30)

where the residual R2(x, hn) satisfies Equation (27). In this argument, we used the fact that
∫ ∞
−∞

K2(t)t2dt = (
∫
t :|K(t)|>1 +

∫
t :|K(t)|<1)K

2(t)t2dt ≤ c l({t : |K(t)| > 1}) +
∫ ∞
−∞ t2|K(t)|dt < ∞,

where l({t : |K(t)| > 1}) denotes the measure of the set {t : |K(t)| > 1}. As a result∫ ∞
−∞ M2

k (t)t2dt < ∞. Note that Equation (26) is a consequence of Equation (20) and Equations
(29) and (30). !

We note that the order of the bias for our estimator is similar to that attained by a Rosenblatt–
Parzen estimator constructed with a kernel of order 2k for k = 1, 2, . . . . The advantage of our
estimator in this case results from the fact that it can be constructed to be nonnegative and, as
observed from Theorem 1, boundedness of f (2k) implies a Lipschitz condition of order 2k. In
addition, if x is fixed and f (x) (= 0 then Equation (26) can be (for small hn) simplified to

V (f̂k(x)) = 1
nhn

{
f (x)

∫ ∞

−∞
M2

k (t)dt + f (x)O(hn)

}
(31)

which is of order similar to that of a Rosenblatt–Parzen estimator.
It is also instructive to compare the results in Theorem 6 with those obtained for the nonpara-

metric density estimator fJ (x) = fR(x)(1/nhn)
∑n

j=1(1/fR(Xj ))K((Xj − x)/hn) proposed by
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Jones et al. (1995). The fact that fR(Xj ) appears in the denominator creates theoretical difficulties
for the analysis of the bias of fJ (x). In particular, the expressions for the bias obtained by Jones
et al. (1995) ignore terms of order O((nhn)

−1) and o(h4n), and as a result the expression for the
bias is valid only asymptotically. Unlike their expressions, our results hold for all bandwidths hn.
The same comments apply to the variance of fJ (x).
Certain seed kernels may not satisfy condition (c) in Theorem 6. One example is the Cauchy

kernel which has been considered above. In the next theorem, we show that the Cauchy kernel
can produce undesirable results when attempting to reduce bias.

Theorem 7 Let K be a Cauchy seed kernel and, for a given k, let H2k and ε2k be Lipschitz
parameters as implied by Theorem 1 - (b) : H2k(x) = cKk+1(x), ε2k(x) = ε(1+ |x|). Denote
q0 = (2k + 1)/2, take any q > q0 and letp = q/(q − 1),α = (2k/q) − (1/p). Then, there exists
a small h0 > 0 such that

|B(f̂k(x))| ≤ c(H2k(x)ε2k(x)(2k+1)/p|h|α + |h|ε2k(x)−1) for |h| ≤ h0. (32)

Since α < 1 can be made arbitrarily close to 1 by selecting q close to q0 we have |B(f̂k(x))| =
O(hα

n) irrespective of the choice of k.

Proof We have (1/p) + (1/q) = 1 and by Hölder’s inequality
∫

|ht |≤ε2k(x)

|K(t)!2k
ht f (x)|dt =

∫

|ht |≤ε2k(x)

K(t)|!2k
ht f (x)|(1/p)+(1/q)dt

≤
(∫

|ht |≤ε2k(x)

|!2k
ht f (x)|dt

)1/p (∫

|ht |≤ε2k(x)

K(t)q |!2k
ht f (x)|dt

)1/q
.

(33)

Applying Equation (23) we can bind the right-hand expression by

(H2k(x)|h|2k)1/p
(∫

|ht |≤ε2k(x)

t2kdt
)1/p

(H2k(x)|h|2k)1/q
(∫

|ht |≤ε2k(x)

K(t)q t2kdt
)1/q

. (34)

Here, ∫

|t |≤ε2k(x)/|h|
t2kdt = 2

∫ ε2k(x)/|h|

0
t2kdt = c(ε2k(x)/|h|)2k+1. (35)

The condition for convergence of
∫ ∞
−∞ K(t)q t2kdt is 2q − 2k > 1 and it is satisfied by our choice

of q. Hence, Equations (33)–(35) lead to
∫

|ht |≤ε2k(x)

|K(t)!2k
ht f (x)|dt ≤ cH2k(x)|h|2k−(2k+1)/p(ε2k(x))(2k+1)/p

= cH2k(x)|h|α(ε2k(x))(2k+1)/p. (36)

Furthermore,
∫

|ht |>ε2k(x)

|K(t)!2k
ht f (x)|dt ≤ c sup

x∈!
|f (x)|

∫

|ht |>ε2k(x)

K(t)dt. (37)

Since ε2k(x) = ε(1+ |x|) ≥ ε, K(t) can be estimated by c1t
−2 in the domain of interest for all

|h| ≤ h0 where h0 is sufficiently small. Hence,
∫

|t |>ε2k(x)/|h|
K(t)dt ≤ c1

∫

|t |>ε2k(x)/|h|

dt
t2

= c2
|h|

ε2k(x)
. (38)

Equations (36)–(38) prove Equation (32).

Do
wn

lo
ad

ed
 B

y:
 [
Un

iv
er

si
ty

 o
f 

Co
lo

ra
do

, 
Bo

ul
de

r 
ca

mp
us

] 
At

: 
22

:3
3 

12
 F

eb
ru

ar
y 

20
10



230 K. Mynbaev and C. Martins-Filho

The exponent α satisfies α = (2k/q) − 1+ (1/q) = (2k + 1/q0)(q0/q) − 1 = 2(q0/q)

− 1 < 1 and can be made arbitrarily close to 1 by selecting q > q0 close to q0. !

TheCauchy density declines at infinity too slowly, and this slow decay is inherited by our kernel
Mk . As a result, the reduction in bias achieved through an increase in the Lipschitz smoothness
is limited, even when that smoothness and, correspondingly, the order k of the kernelMk is very
high. We have also verified this in Monte Carlo simulations. Better estimation results have been
obtained (Section 4) using the Gaussian density as a seed but in this case Mk is not necessarily
nonnegative. Other seed kernels, for which Mk is nonnegative, may exist but we have failed to
find one.
In many instances there is an interest in integration of bias and variance expressions over the

range of the random variable X. In this case, it is necessary to investigate the convergence of
integrals involving x before omitting terms of higher order in hn. This is done in the following
theorem, where we denote the mean squared error by MSE(f̂k(x)) = V (f̂k(x)) + B(f̂k(x))2 and
the integrated MSE by IMSE =

∫
!MSE(f̂k(x))dx.

Theorem 8 Let assumptions (a)–(d ) of Theorem 6 be satisfied. Then,

(1) Ifhn → 0 andn → ∞ in such away thatnhn → ∞, thenMSE(f̂k(x)) → 0. If, additionally,
f, H2, H2k, ε

−1
2 and ε−1

2k are bounded, then supx∈! MSE(f̂k(x)) → 0.
(2) Suppose that H2k, ε

−2k
2k ∈ L2(!), f, H2, ε

−2
2 ∈ L1(!), then IMSE is bounded by a function

of the form φ(h) = c1/(nh) + c2h
4k . The optimal hn resulting from the minimisation of φ is

of order hopt - n−1/(4k+1).

Proof (1) The first statement follows fromEquations (24) and (31). The second is an implication
of Equations (24), (26) and (27).

(2) Replacing V (f̂k(x)) and B(f̂k(x)) in IMSE by their approximations (24) and (26), we get an
approximation for IMSE, which we denote by

AIMSE=
∫

!

{
1
nh

{
f (x)

∫

!
M2

k (t)dt + R2(x, h) − h[f (x) + R2k(x, h)]2
}

+ R2
2k(x, h)

}
dx.

Under the conditions imposed, the integrals in x are finite. f ∈ L2(!) because f ∈ L1(!) ∩
L∞(!). Since all terms of higher order in h can be omitted for small h, we have AIMSE ≤
c1/(nh) + c2h

4k = φ(h). !

Note that for the optimal hn we have nhn → ∞, nh2n → ∞, like in the classical treatment
of the Rosenblatt–Parzen estimator. By Theorem 1, for the Gaussian density all conditions of
Theorem8 are satisfied.We now establish the asymptotic normality of our estimator under suitable
normalisation.

Theorem 9 Suppose that f is continuous and bounded, f (x) > 0, there exist functionsH2(x) >

0 and ε2(x) > 0 such that Equation (25) holds, and for some δ > 0,
∫
! |K(t)|2+δ(t)dt < ∞. If

nhn → ∞, then

(nhn)
1/2

(
f̂k(x) − E(f̂k(x))

)
d→ N

(
0, f (x)

∫

!
M2

k (t)dt
)

. (39)

If additionally,
nh4k+1

n −→ 0, (40)
then

(nhn)
1/2(f̂k(x) − f (x))

d→ N

(
0, f (x)

∫

!
M2

k (t)dt
)

. (41)
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Proof Normalising f̂k(x) − E(f̂k(x)) by its standard deviation, we obtain by Equations (19)
and (20)

Sn ≡ f̂k(x) − E(f̂k(x))

V (f̂k(x))1/2
= 1

n

n∑

j=1

wj − E(wj )

(V (w1)/n)1/2
=

n∑

j=1
Xnj .

HereXnj = (wj − E(wj ))/(nV (w1))
1/2, E(Xnj ) = 0, V (Xnj ) = 1/n, V (Sn) = 1. Recall that

Xi are IID and therefore so areXnj . Using the notation in theLindeberg–FellerTheorem (Davidson
1994) µnj = 0, σnj = 1/n, σn = 1 and maxj σnj /σn → 0, n → ∞. Let Fnj be the distribution
function of Xnj . All Fnj coincide with Fn1 and the Lindeberg function takes the form

λ ≡ 1
σ 2n

n∑

j=1

∫

|x|>ε

x2dFnj (x) = n

∫

|x|>ε

x2dFn1(x) ≤ n

εδ

∫
|x|2+δdFn1(x)

= n

εδ
E(|Xn1|2+δ) = nE(|w1 − E(w1)|2+δ)

εδ(nV (w1))1+δ/2 .

Here by Minkowski’s and Hölder’s inequality E(|w1 − E(w1)|2+δ) ≤ 22+δE(|w1|2+δ). In
addition, by a result similar to Equation (30) we have

E(|w1 − E(w1)|2+δ) ≤
(
2
hn

)2+δ ∫

!

∣∣∣∣Mk

(
s − x

hn

)∣∣∣∣
2+δ

f (s)ds

= 2
(
2
hn

)1+δ ∫

!
|Mk|2+δ(t)f (x + hnt)dt - 2

(
2
hn

)1+δ

f (x)

×
∫

!
|Mk|2+δ(t)dt.

By Equation (31) V (w1) = nV (f̂k(x)) - (1/hn)f (x)
∫
! M2

k (t)dt . Consequently,

λ ≤ (nhn)
−δ/222+δf (x)

∫
! |Mk|2+δ(t)dt

εδ(f (x)
∫
! M2

k (t)dt)1+δ/2 = O((nhn)
−δ/2) → 0.

By the Lindeberg–Feller Theorem Sn
d→ N(0, 1). Since nhnV (f̂k(x)) → f (x)

∫
! M2

k (t)dt , the
equation (nhn)

1/2(f̂k(x) − E(f̂k(x))) = (nhnV (f̂k(x)))1/2Sn implies Equation (39). Finally,
since (nhn)

1/2(f̂k(x) − f (x)) = (nhn)
1/2(f̂k(x) − E(f̂k(x))) + (nhn)

1/2(E(f̂k(x)) − f (x)) we
see that Equation (41) is true if lim(nhn)

1/2(E(f̂k(x)) − f (x)) = 0. By Equation (24) this follows
from Equation (40). !

4. Monte Carlo study and example

In this section, we perform a small Monte Carlo study to implement our proposed estimator
and illustrate its finite sample performance. In addition, we provide an example that shows that
the negativity problem of density estimators based on higher order kernels (or local polynomial
estimators) can be severe while our proposed estimator is everywhere positive.

4.1. Monte Carlo study

We implement our estimator and for comparison purposes we also include the Rosenblatt–
Parzen estimator and the local quadratic estimator of Lejeune and Sarda (1992), which is given
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by f̂LS(x) = (1/nhn)
∑n

i=1 W((Xi − x)/hn), where W(u) = ( 32 − 1
2u

2)K(u) and K(u) is the
Gaussian kernel. We note that W(u) is a fourth-order kernel, and consequently, f̂LS(x) can be
negative as all other density estimators obtained using different higher order kernels.
We consider simulated data from five different densities. The first four were proposed

in Marron and Wand (1992) and are examples of normal mixtures. They are: (1) Gaussian
(f1(x) ≡ N(0, 1)), (2) Bimodal (f2(x) ≡ 1

2N(−1, 4/9) + 1
2N(1, 4/9)), (3) Separated-Bimodal

(f3(x) ≡ 1
2N(−1.5, 1/4) + 1

2N(1.5, 1/4)) and (4) Trimodal (f4(x) ≡ (9/20)N(−6/5, 9/25) +
9
20N(6/5, 9/25) + 1

10N(0, 1/16)). The fifth density is given by

f5(x) =






1
c
exp

(−(x + 2)2

2

)
if x ≤ −1,

1
c
exp

(−(x − 2)2

2

)
if x ≥ 1 ,

1
2c
exp(−1/2)(x2 + 1) if −1 < x < 1,

where c = 2F1(1)
√
2π + 4

3 exp(−1/2), F1(a) =
∫ a

−∞ f1(x)dx. It is easy to verify that f (2)
5 (x) is

not continuous for all x, but it does satisfy a Lipschitz condition of order 2 for all x.
For each of these densities 1000 samples of size n = 200, 400 and 600 were generated.2 In

our first set of simulations five estimators were obtained for each sample: f̂k(x) for k = 2, 4, 8,
f̂R(x) and f̂LS(x). The bandwidths for each estimator (say f̂E(x)) were selected by minimising
integrated squared error I (f̂E) =

∫
(f̂E(x) − f (x))2dx for each simulated sample. In practice,

this bandwidth is infeasible given that f (x) is unknown. However, in the context of a Monte
Carlo study it is desirable since estimation performance is not impacted by the noise introduced
through a data-driven bandwidth selection. See Jones and Signorini (1997) for an approach that
is similar to ours. Table 1 provides average absolute bias (B) and average MSE for each estimator
and each density considered for n = 200, 400, respectively.3
In our second set of simulations, we consider the performance of f̂2(x), f̂R(x) and f̂LS(x) based

on data-driven bandwidths obtained from the minimisation of a suitably defined cross-validation

Table 1. Five estimators with optimal bandwidth (hn). Average bias (×103) (B), mean squared error (×103) (MSE).

f1(x) f2(x) f3(x) f4(x) f5(x)

Estimators B MSE B MSE B MSE B MSE B MSE

n = 200
f̂R 6.637 0.317 7.644 0.437 8.710 0.645 8.919 0.529 14.020 0.324
f̂LS 5.239 0.251 6.079 0.403 6.784 0.544 8.126 0.523 13.285 0.269
f̂2 5.493 0.250 6.403 0.410 7.038 0.551 8.292 0.521 13.453 0.279
f̂4 5.109 0.235 5.839 0.407 6.936 0.539 8.097 0.536 10.294 0.159
f̂8 4.936 0.216 5.744 0.403 6.999 0.557 8.045 0.547 12.316 0.231

n = 400
f̂R 4.975 0.184 5.959 0.271 6.674 0.393 6.839 0.344 8.700 0.128
f̂LS 3.727 0.132 4.629 0.236 4.996 0.313 5.759 0.334 7.820 0.098
f̂2 3.908 0.135 4.845 0.243 5.195 0.321 6.010 0.333 7.926 0.102
f̂4 3.762 0.134 4.348 0.225 5.225 0.308 5.638 0.329 7.618 0.127
f̂8 3.779 0.125 4.240 0.230 4.940 0.302 5.560 0.331 7.280 0.087
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function. Thus, we define

hCV ≡ argmin
h

1
n2h

n∑

i=1

n∑

j=1
G ∗ G

(
Xi − Xj

h

)
− 2

1
n(n − 1)h

n∑

i=1

n∑

j=1,j (=i

G

(
Xi − Xj

h

)
,

whereG ∗ G(u) =
∫

G(u − t)G(t)du. For f̂2(x), f̂R(x) and f̂LS(x),G(u) is, respectively,M2(u),
K(u), andW(u). Given thatK(u) is a Gaussian kernel we can easily obtain through Fourier trans-
form methods the convolutions W ∗ W(u) = (1/2

√
2π) exp(− 1

4u
2)(u4/64− 7x2/16+ 27/16)

and M2 ∗ M2(u) = 16/(9
√
2
√
2π) exp(− 1

4u
2) − 8/(9

√
5
√
2π) exp(− 1

10u
2) + 4/(3

√
2π) exp

(− 1
16u

2). Table 2 provides average absolute bias (B) and average MSE for each estimator and
each density considered for n = 200 and 400.
We first discuss the results in Table 1. We observe the following general regularities. First, as

predicted by our asymptotic results, for all densities considered, the average absolute bias and
average MSE of our estimators f̂k(x) for k = 2, 4, 8 fall as the sample size increases. Second,
as suggested in Theorem 6, increases in the values of k reduce average absolute bias and MSE,
but this is not verified for all experiments. Specifically, when the sample size is small (n = 200)
bias does not fall with k for some of the densities that are more difficult to estimate, i.e. f3 and
f5. Reductions in average MSE due to increases in k are much less pronounced. Third, density
functions with larger curvature (in increasing order of curvature f1, f2, f3, f4 and f5) are more
difficult to estimate both in terms of bias and MSE for all estimators considered. Our proposed
estimators (f̂2, f̂4, f̂8) and the local quadratic estimator (f̂LS) outperform the Rosenblatt–Parzen
estimator both in terms of bias and MSE. For k = 2, the case where the smallest bias reductions
are attained, bias can be reduced by as much as 20% relative to the Rosenblatt–Parzen estimator.
Additionally, the magnitude of bias reduction produced by our estimator increases with sample
size.We observe that f̂2, the estimator we propose that is more directly comparable with the local
quadratic estimator, and f̂LS perform very similarly both in terms of bias andMSE. In summary, all
of the asymptotic characterisations provided in Section 3 seem to accurately predict the behaviour
of our estimators in reasonably small sample sizes.
In Table 2, we observe that the MSE of all estimators across all densities increases when the

bandwidth is selected by cross validation for n = 200 and 400. This is not surprising, as additional
noise is introduced in computing f̂R, f̂LS and f̂2. Interestingly, there is not a significant change in
bias between the results in Tables 1 and 2 for n = 200 or 400.As in Table 1 f̂2 and f̂LS outperform
f̂R in both bias andMSE. It is worth noting that with estimated bandwidths f̂2 seems to outperform

Table 2. Three estimators with cross validation bandwidth (hCV ). Average bias (×103) (B), mean squared error
(×103) (MSE).

f1(x) f2(x) f3(x) f4(x) f5(x)

Estimators B MSE B MSE B MSE B MSE B MSE

n = 200
f̂R 6.580 0.484 7.500 0.613 8.782 0.839 9.148 0.706 14.159 0.326
f̂LS 5.214 0.693 6.188 1.308 6.918 0.977 8.932 1.861 15.276 0.360
f̂2 5.356 0.406 6.978 0.579 7.040 0.742 8.329 0.709 13.616 0.284

n = 400
f̂R 4.788 0.272 5.867 0.348 6.437 0.486 6.914 2.049 8.546 0.128
f̂LS 3.810 0.325 4.465 0.454 4.661 0.574 5.238 0.518 8.788 0.134
f̂2 3.682 0.215 4.724 0.321 4.955 0.443 5.997 0.410 7.870 0.102
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f̂LS in terms of MSE for all densities and for both n = 200 and 400. However, in terms of bias,
the estimators continue to perform rather similarly, with the exception of the density f5, where
our estimator outperforms f̂LS. This might be due to the fact that f5 satisfies an order 2 Lipschitz
condition but does not have a continuous second derivative.We note that the bias of f̂2 was smaller
relative to that f̂LS in the case for f5 in Table 1, but the difference was of smaller magnitude.

4.2. Example

We apply our estimator with k = 3 based on a Gaussian seed kernel and a Rosenblatt–Parzen
estimator constructed with an order 6 kernel given by W(u) = 1

8 (15− 10u2 + u4)K(u) to a
sample of 600 realisations from aDickey–Fuller statistic.4 Bandwidths for both density estimators
are obtained via cross-validation and the estimated densities evaluated at the sample points are
shown in Figure 1. The figure shows that our estimator is everywhere positive but the higher order

Figure 1. Estimated Dickey–Fuller density using order 6 kernel and f̂3.

Figure 2. Estimated Dickey–Fuller density using order 4 kernel and f̂2.
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kernel estimator is negative at a number of points in which it is evaluated. It is important to note
that when the same sample of Dickey–Fuller statistics is treated with f̂2 (k = 2) and f̂LS (order
four kernel) the estimated densities are rather similar and f̂LS is everywhere positive (Figure 2).

5. Summary

In this paper, we attain reduced bias for nonparametric kernel density estimation by defining a new
kernel-based estimator that explores the theory of finite differences. The main characteristic of
the proposed estimator is that bias reduction may be achieved relative to the classical Rosenblatt–
Parzen estimator without the disadvantage of potential negativity (depending on the seed kernel)
of the estimated density – a deficiency that results from using higher order kernels to attain
bias reduction. Contrary to other popular approaches for bias reduction, e.g. Jones et al. (1995)
and DiMarzio and Taylor (2004) we provide a full asymptotic characterisation of our estimator.A
smallMonteCarlo study reveals that our estimator performswell relative to theRosenblatt–Parzen
estimator and the promised bias reduction is obtained in fairly small samples. Future work should
provide seed kernelsK that assure nonnegativity ofMk and are different from the Cauchy kernel.
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Notes

1. We have several examples and graphical illustrations for which Mk > 0 with the Cauchy seed, but we have been
unable to establish this fact analytically.

2. Results for samples of size n = 600 are not reported but are available upon request from the authors.
3. As expected from asymptotic theory, when n = 600 bias andMSE for all estimators across all densities are reduced.
4. See Fuller (1976), Dickey and Fuller (1979) and Pagan and Ullah (1999).
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