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a b s t r a c t

Nonparametric prediction of a random variable Y conditional on the value of an explana-
tory variable X is a classical and important problem in Statistics. The problem is signif-
icantly complicated if there are heterogeneously distributed measurement errors on the
observed values of X used in estimation and prediction. Carroll et al. (2009) have recently
proposed a kernel deconvolution estimator and obtained its consistency. In this paper we
use the kernels proposed inMynbaev andMartins-Filho (2010) to define a class of deconvo-
lution estimators for prediction that contains their estimator as one of its elements. First,
we obtain consistency of the estimators under much less restrictive conditions. Specifi-
cally, contrary to what is routinely assumed in the extant literature, the Fourier transform
of the underlying kernels is not required to have compact support, higher-order restric-
tions on the kernel can be avoided and fractional smoothness of the involved densities is
allowed. Second, we obtain asymptotic normality of the estimators under the assumption
that there are two types of measurement errors on the observed values of X . It is apparent
from our study that even in this simplified setting there are multiple cases exhibiting dif-
ferent asymptotic behavior. Our proof focuses on the case where measurement errors are
super-smooth andwe use it to discuss other possibilities. The results of a Monte Carlo sim-
ulation are provided to compare the performance of the estimator using traditional kernels
and those proposed in Mynbaev and Martins-Filho (2010).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Nonparametric prediction of a random variable Y conditional on the value of an explanatory variable X is a classical and
important problem in Statistics. In a recent paper, [5] – further referred to as CDH – consider the problem of predicting
the random variable Y via the estimation of µ(t) = E(Y |T = t). In their setting, T is an observed ‘‘future’’ explanatory
variable generated by T = X + UF where X is the true unobserved explanatory variable and UF is a measurement error.
The prediction problem is complicated by the fact that ‘‘past’’ observations {(Yj,Wj)}nj=1 are such that Wj = Xj + Uj with
measurement errors Uj that are different from UF . Moreover, the Uj themselves may have different distributions. In this
context, CDH have suggested a kernel deconvolution estimator for µ(t) and obtained its consistency.

I We thank two referees and an Associate Editor for helpful and stimulating comments. The second author thanks I4-Basis for financial support.⇤ Corresponding author at: Department of Economics, University of Colorado, Boulder, CO 80309-0256, USA.
E-mail addresses: kairat_mynbayev@yahoo.com (K. Mynbaev), carlos.martins@colorado.edu, c.martins-filho@cgiar.org (C. Martins-Filho).
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0047-259X/© 2015 Elsevier Inc. All rights reserved.
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In this paper, we make a number of contributions to the asymptotic characterization of the CDH estimator. First, using
a family of kernels proposed in [24], we define a class of kernel deconvolution estimators that contains the CDH estimator.
Viewing the CDHestimator as amember of this class is illuminating aswe are able to obtain consistency of its elements under
conditions that aremuch less stringent than those required by Carroll et al. [5]. In particular, the assumption that the Fourier
transform (usually, the characteristic function) of the underlying kernel is compactly supported, which is prevalent in the
deconvolution estimation literature, is entirely relaxed. We describe the properties and show how to construct these non-
compactly supported Fourier transforms of kernels K that satisfy

R

R
|K(x)|dx < 1. In addition, we lift two other assump-

tions used by CDH: (i) we do not require that the underlying kernels be of higher-order (r) to obtain a suitable bound for the
bias of the estimators; and (ii) wemake no assumptions on the smoothness of the underlying regression g(x) ⌘ E(Y |X = x),
nor do we require the density of X to be continuously differentiable of order r . We only require fractional smoothness of the
density fT of T . This is accomplished simply by restricting fT and µ to belong to suitably defined Besov spaces.

The second contribution of this paper is to establish the asymptotic normality of the elements in our new class of ker-
nel deconvolution estimators. Asymptotic normality of kernel deconvolution estimators for density and regression has
been obtained in various contexts. For density estimators see, inter alia, [31,13,14,21,15,7,28] and [29]. For regression, see
[18,16,10] and [19]. In addition, nonparametric deconvolution estimation of density and regression under heterogeneous
measurement errors has been considered by Delaigle and Meister [11,12] and Meister [22].

However, there is no asymptotic distributional result for the CDH estimator. This is unfortunate as applied researchers
will be interested in not only reporting point estimates for their forecast, but also constructing suitably chosen confidence
bands. In our study of asymptotic normality, we focus on the case where the error distributions are super-smooth.1 In this
case, for deconvolution density estimators, asymptotic normality was proved by Zhang [31] and [13]. However, in these
papers the estimator is normalized by a random quantity whose asymptotic behavior is not clear. van Es and Uh [29]
derived an explicit (nonstochastic) asymptotic characterization of the normalizing quantity in terms of the sample size
n and bandwidth h used in kernel estimation. Their result was obtained under a specific restriction on the Fourier transform
of the kernel, which was shown to be essential in [28].

Our method of proof shows that nonparametric deconvolution prediction estimators in our proposed class (including
the CDH estimator), despite being much more complex than the deconvolution density estimator considered by van Es and
Uh [29], can be studied using their main ideas. Our errors’ structure has the super-smooth property assumed by [29] and
we adopt the condition they impose on the (seed) kernel and its Fourier transform (see our Assumption 3.3). However, our
work is significantly complicated by the need to account for measurement error heterogeneity, a feature they avoid. The
Cauchy boundary effect, discovered in [28], also manifests itself in our work. Our asymptotic normality study reveals that
there are many different cases to be considered for super-smooth errors, and a comprehensive approach demands a much
longer article. Here, we develop a framework that allows us to address the peculiarities of the estimators we propose, as
well as the CDH estimator, in a subset of such cases and sheds light on how other cases could be handled.

Lastly, we conduct a Monte Carlo study to shed light on the finite sample performance of the CDH estimator relative to
other estimators in the class constructedwith the kernels proposed in [24]. The simulation results seem to indicate improved
performance, measured by mean squared error, when the kernels proposed in Mynbaev and Martins-Filho are used.

The remainder of the paper is organized as follows. Section 2 is devoted to establishing the consistency of estimators in
the class and Section 3 covers asymptotic normality of our estimators. The two convergences require somewhat different
approaches and conditions. In particular, while in Section 2 we dispense with the assumption that the Fourier transform
of the kernel has compact support, in Section 3 we have to impose it, for the method of [29] to apply. Section 4 describes
the Monte Carlo study and discusses the results. Section 5 contains some summary remarks. All proofs are relegated to an
Appendix.

2. Consistency

Throughout the paper we adopt the following notation. For p � 1, Lp denotes the space of p-integrable functions g on R
with norm kgkp = �R

R
|g(x)|pdx�1/p. F and F �1 denote the Fourier transform and its inverse, whenever it exists. Thus, if

g 2 L1, Fg(t) = R

R
eitxg(x)dx for t 2 R. Furthermore, if g is bounded and continuous for some x 2 R and Fg(t) 2 L1, then

F �1
Fg (x) ⌘ g(x) = 1

2⇡

R

R
e�itxFg(t)dt . If g is a density function, Fg is called a characteristic function and we write Fg = �g .

The letter c , with or without subscripts, denotes various inconsequential constants.

2.1. The CDH model and estimator

Let {Yj,Wj}nj=1 be a sample of independent observations from Yj = g(Xj) + "j and Wj = Xj + Uj. Wj represents a version
of Xj which is contaminated by the unobserved error Uj. The unobserved Xj have a common density denoted by fX , the
measurement errors Uj are heterogeneously distributed with known densities denoted by fUj and {Xj,Uj, "j}nj=1 are assumed

1 See [17] for a typology of error distributions and examples.
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to be mutually independent. {"j}nj=1 are unobserved independent disturbances assumed to have zero means. Out-of-sample
observations on X are also observed with error and are generated by T = X + UF . X , UF and "j are independent and the
density fUF of UF is assumed to be known.

Let fTY denote the joint density of T and Y , fT denote the marginal density of T and dT (x) = R

yfTY (x, y)dy. Then,
nonparametric prediction of Y is attained by estimating

µ(x) ⌘ E(Y |T = x) = dT (x)
fT (x)

.

To define the CDH estimator µ̃(x), first let

 j(t) =
�fUj

(�t)
n
P

k=1

�

�

�

�fUk
(t)

�

�

�

2
. (2.1)

We call a kernel any integrable function K on R such that
R

R
K(t)dt = 1 and let

KT ,j,h(x) = 1
2⇡

Z

R

e�itxFK (t)�fUF

✓

t
h

◆

 j

✓

t
h

◆

dt

where h > 0 is a bandwidth. For this integral and for (2.6) to exist we assume that K is such that for each h > 0

FK (t)�UF

✓

t
h

◆

 j

✓

t
h

◆

2 L1 \ L2, for j = 1, . . . , n. (2.2)

The estimator of fT is defined by f̃T (x) = 1
h

Pn
j=1 KT ,j,h

⇣

x�Wj
h

⌘

. For notational simplicitywe keep only the variable parameters
n and j (T is fixed and it is well understood that the bandwidth h depends on n, i.e., h = hn). Therefore, we write

f̃T (x) =
n

X

j=1

fn,j(x), fn,j(x) ⌘ 1
2⇡h

Z

R

exp
✓

it
Wj � x

h

◆

FK (t)�fUF

✓

t
h

◆

 j

✓

t
h

◆

dt. (2.3)

The estimator of dT is defined by d̃T (x) = 1
h

Pn
j=1 YjKT ,j,h

⇣

x�Wj
h

⌘

. Using the notation in (2.3) we write

d̃T (x) =
n

X

j=1

dn,j(x), where dn,j(x) = Yjfn,j(x). (2.4)

and

µ̃(x) = d̃T (x)
f̃T (x)

=

n
P

j=1
dn,j(x)

n
P

j=1
fn,j(x)

. (2.5)

For this model CDH have established, under their assumptions (4.1)–(4.4), that for each x such that fT (x) > 0, µ̃(x) =
µ(x) + Op

✓

⇣

v(h)
n

⌘1/2 + hr
◆

, provided that as n ! 1, h ! 0 and v(h)/n ! 0, where

v(h) = n
h

Z

�

�

�

�

�K (t)�fUF

✓

t
h

◆

�

�

�

�

2 � n
X

k=1

�

�

�

�

�fUk

✓

t
h

◆

�

�

�

�

2

dt. (2.6)

Here, r represents the order of the kernel K and the number of bounded derivatives that fX and g are assumed to possess.
Their proof relies on Taylor’s Theorem and establishing

(a) Ef̃T (x) =
Z

K(z)fT (x � hz)dz, (b) Ed̃T (x) =
Z

K(z)dT (x � hz)dz, (2.7)

and

(a) V (f̃T (x)) = O(v(h)/n), (b) V (d̃T (x)) = O(v(h)/n). (2.8)
Our Lemmas 1 and 2 (see the Appendix) establish (2.7) and (2.8). We provide full proofs to make explicit what assumptions
from CDH we are able to omit without loss. In particular, for the order of the variances we extract from their conditions
(4.1)–(4.4) only.

Assumption 2.1. supj max
n

�

�fWj

�

�

1 ,
�

�fUj

�

�

1 , EY 2
j

o

< 1.

It follows from (2.8)(b) that if v(h)/n = O(1) and
R

K(z)dT (x � hz)dz = O(1), then d̃T (x) = Op(1).
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2.2. A class of estimators for µ(x)

In this section we start by defining a class of estimators for µ(x) using the family of kernels {Mk}k=1,2,... introduced
by Mynbaev and Martins-Filho [24]. We need a series of definitions that support the construction of the class and the
consistency result we obtain for its elements.

Let Cl
2k = (2k)!

(2k�l)!l! for l = 0, 1, . . . , 2k be the binomial coefficients. For a kernel K and a natural number k, [24] define a
class of kernels

Mk(x) = � 1
Ck
2k

k
X

|l|=1

(�1)lC l+k
2k

1
|l|K

⇣x
l

⌘

,

and call K a seed kernel for Mk. The kernels {Mk}k=1,2,... define a class of estimators indexed by k, and in this context we
define

µ̂k(x) = d̂T ,k(x)

f̂T ,k(x)
for k = 1, 2, . . .

where

f̂T ,k(x) =
n

X

j=1

fn,j,k(x), fn,j,k(x) ⌘ 1
2⇡h

Z

R

exp
✓

it
Wj � x

h

◆

FMk(t)�fUF

✓

t
h

◆

 j

✓

t
h

◆

dt (2.9)

and

d̂T ,k(x) =
n

X

j=1

dn,j,k(x), dn,j,k(x) ⌘ Yjfn,j,k(x). (2.10)

We note that

FMk(t) =
k

X

l=1

�k,l(FK (tl) + FK (�tl)) =
k

X

l=1

2�k,lFK (tl) (2.11)

where �k,l = (�1)l+1(k!)2/(k+ l)!(k� l)! and the second equality holds if K is symmetric. Also, if K is symmetric and k = 1
we have µ̃(x) = µ̂1(x). Thus, the CDH estimator is a member of the class of estimators we consider.

2.3. Main results

The properties of nonparametric deconvolution estimators are traditionally obtained by imposing assumptions on the
smoothness of the relevant underlying densities and regressions. As pointed out by Mynbaev and Martins-Filho [24],
smoothness can be controlled by finite differences, which can be forward, backward or centered.2 A centered even-order
difference of a function f is defined by

�2k
h f (x) = (�1)k

k
X

l=�k

(�1)lC l+k
2k f (x + lh), h 2 R.

TheMk is designed in such a way as to have the following integral representation for the bias [24, equation (22)]

Ef̂T ,k(x) � fT (x) = (�1)k+1

Ck
2k

Z

K(t)�2k
�ht fT (x)dt. (2.12)

Next we describe the smoothness characteristic to be used with this representation and the function spaces that contain µ
and fT . A forward even-order difference is defined by

�̃2k
h f (x) = (�1)k

k
X

l=�k

(�1)lC l+k
2k f (x + kh + lh).

The Sobolev space Wr
p (R), where 1  p  1 and r is a positive integer, is defined as the set of functions on R with

an absolutely continuous derivative f (r�1) and finite norm kf kWr
p

= �

�f (r)
�

�

p + kf kp. In this norm, the first part
�

�f (r)
�

�

p

2 See [3,27] for comprehensive treatments.
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characterizes smoothness of f . Now let 1  p  1, 1  q  1, r > 0 (r can take positive fractional values). We need
Besov spaces Br

p,q(R), for which the smoothness characteristic is defined by

kf kbrp,q =

8

>

<

>

:

Z

R

2

6

4

⇣

R

R

�

��̃2k
h f (x)

�

�

p
dx
⌘1/p

|h|r

3

7

5

q

dh
|h|

9

>

=

>

;

1/q

.

Here, k is any positive integer satisfying 2k > r and in case p = 1 and/or q = 1 the integral(s) is (are) replaced by sup.
The norm in Br

p,q(R) is defined by kf kBrp,q = kf kbrp,q + kf kp. All these norms with different k are equivalent to one another
by Theorem 2.5.13(i) in [27]. With a translation operator ⌧h defined by (⌧hf )(x) = f (x + h) it is easy to see that �̃2k

h f (x) =
�2k

h [(⌧khf )(x)]. Therefore, for a smoothness characteristic, the centered even-order difference can be used and we write

kf kbrp,q =
8

<

:

Z

R

"

�R

R

�

��2k
h f (x)

�

�

p dx
�1/p

|h|r
#q

dh
|h|

9

=

;

1/q

.

We will also need a Zygmund space Zr(R) which, by definition, is precisely a Besov space Br1,1(R). By Corollary 2.8.2(i) in
[27] the multiplication by a function µ 2 Z⇢(R) is bounded in Br

p,q(R) if ⇢ > r . That is,

kµf kBrp,q  c kµkZ⇢ kf kBrp,q . (2.13)

Direct verification that f 2 Br
p,q(R) in practice may be difficult. Relationships between different functional spaces may

simplify this task. For example, for a natural r one has Wr
p (R) ⇢ Br

p,1(R), see section 6.2 in [25].
The following assumption restricts the density fT and µ to belong to suitably indexed Besov and Zygmund spaces. In

addition, a restriction is placed on the seed kernel used to construct the class {Mk}k=1,2,.... As will be transparent in the
remarks following Theorem 1, Assumption 2.2 is much less demanding than those required in [5].

Assumption 2.2. fT 2 Br1,q with some r > 0 and 1  q  1, µ 2 Z⇢(R) with some ⇢ > r and for a seed kernel K

✓

Z

|K(t)|q0 |t|(r+1/q)q0
dt
◆q0

< 1 (2.14)

where 1/q + 1/q0 = 1.

We now state our main result regarding consistency.

Theorem 1. If Assumption 2.1–2.2 hold, for all x such that fT (x) > 0, we have

1. µ̂k(x) � µ(x) = Op



hr +
⇣

Pk
l=1 v(hl)/n

⌘1/2
�

,

2. if h ! 0 and v(h)/n ! 0 as n ! 1, µ̂k(x) � µ(x) = op(1) for all k = 1, 2, . . . .

The conclusions of Theorem 1 are basically those of Theorem 4.1 in CDH (take k = 1), but there are important differences
in our assumptions.

Remarks. 1. Since EY 2
j = Eg2(Xj) + E"2j , Assumption 2.1 implies supj E"2j < 1 as in condition (4.1) in CDH.

2. The part of their condition (4.2), on the order of the kernel (the seed kernel in our case), is substantially relaxed by our
lighter requirement (2.14).
3. One of the requirements in condition (4.3) in CDH is that the regression g and fX have r bounded derivatives. We impose
no smoothness on g . Regarding fX , we note that given T = X + UF and independence of X and UF , the density of T is
fT (x) = fX ⇤ fUF (x), the convolution of fX and fUF . Since fUF 2 L1 and fX has r bounded derivatives, fT (x) has bounded
derivatives of order r . We, in turn, require only fractional smoothness of fT , i.e., fT 2 Br1,q for r > 0 and µ slightly smoother
than fX , i.e., ⇢ > r .

2.4. Asymptotic behavior of v(h)/n

The consistency of µ̂k(x) depends on v(h)/n ! 0 as n ! 1. The standard approach in the nonparametric deconvolution
literature to verify that v(h)/n ! 0 is to assume thatFK has compact support. For example, this is assumed in condition (4.2)
in CDH. In what follows, we relax the requirement that FK is compactly supported and show that v(h) is finite for positive
h or v(h)/n ! 0, with a suitably chosen h. To our knowledge, this is the first general study of the asymptotic behavior
of v(h)/n. The applicability of our result extends beyond the model we consider to various nonparametric deconvolution
estimators. We start with the following assumption.
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Assumption 2.3. For any compact set K ⇢ R, sups2K �n(s) < 1, where �n(s) = n
�

�

�

�fUF (s)
�

�

�

2

Pn
k=1

�

�

�

�fUk
(s)

�

�

�

2 . In addition, �n(s) has a

majorant P in the neighborhood of infinity such that:
(a) for some positive c1, c2 one has�n(s)  c2P(s) for all |s| � c1,
(b) P(s) = P(�s) and for some c3 > 0, P(s)  c3P 0(s) holds for all s � c1,
(c)

R 1
c1

exp(�P(s))
⇣

1 + �

�P (1)(s)
�

�

2
⌘

ds < 1,
(d) J(h) ⌘ R 1

P(c1)
exp

⇥�P(hP�1(t))
⇤

dt < 1 for all 0 < h < 1.

The inverse of P in (d) exists because from (b) it follows that P is strictly increasing on [c1, 1), with P�1 defined on
[P(c1), 1). �n(s)  c2P(s) and P(s)  c3P 0(s) can be replaced by their consequence �n(s)  cP (1)(s) and still provide
enough structure for our applications. For transparency, we prefer to keep the two inequalities. Examples of functions P
are P(s) = exp(s↵) and iterated exponential functions P1(s) = es, P2(s) = P1(P1(s)), . . . , Pn(s) = P1(Pn�1(s)). Iterated
exponential functions form a scale that covers all imaginable errors. Note that J(h) is monotonic and therefore it is bounded
from above when h is bounded away from zero.

Remark. Assumption 2.3 has been developed with growing �n in mind, because the case of a bounded �n is simpler. If
�K 2 L2 and there is a constant c such that |�n(t)|  c for all large n, then it is easy to see that

|v(h)| =
�

�

�

�

Z

|�K (ht)|2�n(t)dt
�

�

�

�

 c
1
h

Z

|�K (ht)|2d(ht) = c k�Kk2
L2 /h. (2.15)

This bound can be made more precise with the help of Theorem 2 in [23]. Namely, if (a) |�K (t)|2 is even and integrable, (b)
there exists a bounded continuous � such that |�n(t)|  �(t) for all large n and the limit M(�) = limr!1 1

2r

R r
�r �(t)dt

exists, then for any " > 0 there exists h0 such that for h � h0 one has |v(h)|  (M(�) + ") k�Kk2
L2 /h. This bound is more

precise than (2.15) becauseM(�)  sup�. In particular, if � is integrable, thenM(�) = 0.

Theorem 2. Under Assumption 2.3,
1. There exists a function K such that K 2 L1 and

R

K(x)dx = 1, the support of FK is not compact and v(h) < 1 for all
0 < h < 1.

2. The kernel K from part 1 satisfies v(h)/n = o(1) with suitably chosen h = hn.
Theorem 2 is an existence result. It shows that there exist a rich profusion of well behaved kernels K with Fourier transforms
that are not compactly supported for which v(h)/n = o(1). We note that the computation of kernel deconvolution
estimators does not require per se a kernel. Rather, what is needed is a Fourier transform which can be associated with a
well behaved K . We now give an example of how Theorem 2 can be used when the measurement errors are super-smooth.
The example relies on Assumptions 3.1 and 3.2 in Section 3.

Example. Under Assumptions 3.1 and 3.2 in Section 3, we have

�n(t) ⇠ A2
3 |t|2a3 exp ��2µ3 |t|�3�

�A2
1 |t|2a1 exp ��2µ1 |t|�1� + (1 � �)A2

2 |t|2a2 exp ��2µ2 |t|�2�

⇠ A2
3

(1 � �)A2
2

|t|2(a3�a2) exp
�

2µ2 |t|�2 � 2µ3 |t|�3� .

For any " > 0, this is dominated by P(t) = exp
�

c |t|�2�, where c = 2µ2 + " (increasing c2, we can achieve c1 = 1).
Conditions (b) and (c) from Assumption 2.3 are satisfied given Assumption 3.1(2):

P (1)(s) = P(s)c�2s�2�1 � c�2P(s), s � 1,
Z 1

1
exp

⇥� exp
�

cs�2
�⇤

n

1 + ⇥

exp
�

cs�2
�

c�2s�2�1⇤2
o

ds < 1.

As for (d), we note that P�1(t) = [(ln t)/c]1/�2 and P(c1) = ec . Thus,

J(h) =
Z 1

ec
exp

⇣

�exp
⇣

c
�

�h [(ln t)/c]1/�2
�

�

�2
⌘⌘

dt =
Z 1

ec
exp

��exp
�

h�2 ln t
��

dt =
Z 1

ec
exp

⇣

�th
�2
⌘

dt.

Since exp
⇣

th�2
⌘

grows faster than any positive power of t , by L’Hôpital’s rule the last integral converges for any 0 < h < 1.
By Theorem 2 we can put

FK (s) = exp
��exp

�

c |s|�2 /2
��

, |s| � 1, FK (s) = 1 � as2, |s| < 1.
a is defined from the sewing condition 1� a = FK (1�0) = FK (1+0) = exp (�exp (c/2)), i.e., a = 1� exp (�exp (c/2)).
It is unnecessary to impose a sewing condition for F (1)

K at s = ±1 because all that is needed is the existence of F (1)
K almost

everywhere and its square-integrability.
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3. Asymptotic normality

In this section we give sufficient conditions for the estimators µ̂k(x) for k = 1, 2, . . . to converge in distribution. We
consider the case of only two different types of measurement errors for the ‘‘past’’ observations on X but allow for the
measurement error for the ‘‘future’’ observation on X to differ from both. By imposing conditions on the parameters of
the measurement error distributions we are able to obtain asymptotic normality of all µ̂k(x) under suitable centering and a
non-randomnormalization that depends only on n and h. The practical relevance of amodel with two types ofmeasurement
error is discussed in [6] and [5] where empirical applications are given. The following assumption describes the restrictions
we will place on the measurement errors.

Assumption 3.1. (1) There are only two different measurement errors,

{Uj}mj=1 are identically distributed as the random variable V1,

{Uj}nj=m+1 are identically distributed as the random variable V2. (3.1)

The out-of-sample error is denoted V3 = UF . �j denotes the characteristic function of Vj and all three errors are assumed
super-smooth:

�j(t) = (1 + o(1))Aj |t|aj exp(�µj |t|�j), j = 1, 2, 3; |t| ! 1, (3.2)

where �j and µj are positive, Aj and aj are real and Aj 6= 0. All error densities are assumed symmetric and therefore their
characteristic functions are real and symmetric (although this symmetry condition is not critical).
(2) �1 > �2 > max{1, �3}.
Part (2) of Assumption 3.1 excludes a number of cases and we now comment on what is left out. Regarding the past errors,
in the super-smooth case we have the following possibilities: the cases �1 7 �2, µ1 7 µ2, a1 7 a2, A1 7 A2 can be
combined giving a total of 34 combinations. Some of these combinations are trivial. For example, if �1 > �2, then, because
of the dominance of the exponential functions, the relationships between the remaining parameters do not matter. Some
combinations can be reduced to others by changing notation. For instance, the case�1 = �2,µ1 > µ2 is the same as�1 = �2,
µ1 < µ2 up to the notation. Still, by assuming (I) �1 > �2, we leave out at least the cases

(II) �1 = �2, µ1 > µ2, (III) �1 = �2, µ1 = µ2, a1 < a2,
(IV) �1 = �2, µ1 > µ2, a1 = a2, A1 6= A2.

Case (I) is subdivided further as

(Ia) �1 > �2 > �3, (Ib) �1 > �3 � �2, (Ic) �3 � �1 > �2.

We exclude (Ib) and (Ic). Further, the analysis of the estimators µ̂k, k = 1, 2, . . . in light of [28] shows that under condition
(Ia) the cases

(i) �2 > 1, (ii) �2 = 1 and (iii) 0 < �2 < 1

are conceptually different. Part (2) of Assumption 3.1 is an intersection of (Ia) and (i).
A full treatment of all possibilities requires a much longer article and the development of alternative methods to handle

the asymptotics. However, our results cover a number of interesting situations. For example, inmeta-analysis [30,11], where
samples are obtained by combining data from different studies, it may be unrealistic to assume that V1 and V2 come from
the same distribution (heterogeneity) or even the same family of distributions (�1 6= �2). For linear regression models this
possibility is considered by Cheng and Riu [9] (Section 3) where, in our notation, V1 and V2 are allowed to have different
variances and come from arbitrary families of distributions. Another setting where our results are applicable occurs when
the sample used in estimation combines groups of observations subject to differentmeasurement error. See, for example, [2]
where variables of interest in medicine (blood pressure, cardiac stroke volume) are measured with different instruments or
techniques and are subject to non-homogeneous contamination.

In many instances [20,26] it is common to assume that the measurement errors come from the same family of
distributions with possibly different parameters. For example, when normality (centered at 0) is assumed, in our typology,
we have �1 = �2 and cases II, III or IV. In this case the change in the asymptotic representation of the product �3 j (see Eq.
(3.5)) would lead to drastic changes in the proof of the asymptotic normality. Finally, note that an informal classification,
based on similarity of asymptotic distributions, would be preferable to the formal classification that utilizes relationships
between parameters.

Assumption 3.2. The ratio �n = m/n stabilizes at some value � 2 (0, 1): limn!1 �n = �.
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The situation when one error type prevails in the limit would not be interesting, as then the classical Nadaraya–Watson
estimator would likely perform better than the CDH estimator, see [5, Remark 3.1]. As a result of Assumption 3.2, the
numbersm, n � m and n tend to infinity at the same rate.

To reflect the eternal presence of two past error types, we split (2.3) and (2.4) as

f̂T ,k(x) = f̂ IT ,k(x) + f̂ IIT ,k(x), d̂T ,k(x) = d̂IT ,k(x) + d̂IIT ,k(x)

where

f̂ IT ,k(x) =
m
X

j=1

fn,j,k(x), f̂ IIT ,k(x) =
n

X

j=m+1

fn,j,k(x),

d̂IT ,k(x) =
m
X

j=1

dn,j,k(x), d̂IIT ,k(x) =
n

X

j=m+1

dn,j,k(x). (3.3)

The asymptotic behavior of the product �3 j at infinity is of crucial importance for asymptotic calculations. By (2.1) and
Assumption 3.1 for j = 1, . . . ,m we have

(�3 j)(t) = �3(t)�1(�t)
m |�1(t)|2 + (n � m) |�2(t)|2
(�1 > �2 implies �1(t)/�2(t) = o(1), |t| ! 1)

= (1 + o(1))
1

n � m
�3(t)�1(�t)

|�2(t)|2
(applying (3.2))

= 1 + o(1)
n � m

A1A3

A2
2

|t|a1+a3�2a2 exp(2µ2 |t|�2)
exp(µ1 |t|�1 + µ3 |t|�3) . (3.4)

Similarly, for j = m + 1, . . . , n

(�3 j)(t) = �3(t)�2(�t)
m |�1(t)|2 + (n � m) |�2(t)|2

= 1 + o(1)
n � m

�3(t)
�2(t)

= 1 + o(1)
n � m

A3

A2
|t|a3�a2 exp(µ2 |t|�2)

exp(µ3 |t|�3) . (3.5)

In general, each of the possibilities
�

�(�3 j)(t)
�

� ! 1,
�

�(�3 j)(t)
�

� ! const 6= 0,
�

�(�3 j)(t)
�

� ! 0, |t| ! 1,

for the first set of errors (j = 1, . . . ,m) can be combined with similar possibilities for the second set (j = m + 1, . . . , n).
From (3.4), (3.5) and Assumption 3.1 one has

�

�(�3 j)(t)
�

� ! 0, j = 1, . . . ,m,
�

�(�3 j)(t)
�

� ! 1, j = m + 1, . . . , n.

Our method applies to all other combinations of 0 and 1 but we have no results for the case
�

�(�3 j)(t)
�

� ! const 6= 0. The
next assumption is taken from [29].

Assumption 3.3. The kernel K in (2.3) is symmetric and its Fourier transform FK is supported on [�1, 1]. With some
constants A (real) and ↵ (nonnegative) FK satisfies

FK (1 � t) = At↵ + o(t↵), t # 0.

Two of the most used kernels in nonparametric deconvolution estimation satisfy this condition. They are the sinc
kernel K(x) = sin x

⇡x (where ↵ = 0, A = 1) with FK (t) = I[�1,1](t) (an indicator of the segment [�1, 1]) and K(x) =
48 cos x
⇡x4

⇣

1 � 15
x2

⌘

� 144 sin x
⇡x5

⇣

2 � 5
x2

⌘

(where ↵ = 3, A = 8) with FK (t) = (1� t2)3I[�1,1](t), which we use in our simulations.
Owing to this assumption, the symmetry of FK , �3,  j and from (2.9), (2.11) we have

fn,j,k(x) =
k

X

l=1

2�k,l
⇡hl

Z 1

0
cos

✓

t
Wj � x

lh

◆

FK (t)(�3 j)

✓

t
lh

◆

dt. (3.6)

The following assumption is needed to verify Lyapunov’s condition when applying the Central Limit Theorem.

Assumption 3.4. For some  > 0, supj E
�

�Yj
�

�

2+
< 1, supj E

�

�Wj
�

�

(2+)/
< 1 and for some c > 0, c < E"2j < 1 for all j.
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We are now ready to state our main result on asymptotic normality of µ̂k.

Theorem 3. Suppose Assumptions 3.1–3.4 hold, and fix x such that fT (x) 6= 0. Let ⇣ (h) = exp(µ2h��2) and Mn,h =
h�2(↵+1)+a2�a3�1⇣ (h)p

n�m . Then, if Mn,h ! 0 and h ! 0 as n ! 1 we have

1
Mn,h

 

µ̂k(x) � Ed̂T ,k(x)

Ef̂T ,k(x)

!

d�!N

 

0,
✓

2kB0

⇡(k + 1)

◆2
µ2(x)�11 � 2µ(x)�12 + �22

f 2T (x)

!

, (3.7)

where B0 = A3A� (↵+1)
A2(�2µ2)↵+1 , � (↵) = R 1

0 u↵�1e�udu is the � -function and

⌃ =
✓

�11 �12
�12 �22

◆

= lim
n!1 V

✓✓

Z0
n,h(x)

Z1
n,h(x)

◆◆

with

Zp
n,h(x) = 1p

n � m

n
X

j=m+1



Yp
j cos

✓

Wj � x
h

◆

� EYp
j cos

✓

Wj � x
h

◆�

, for p = 0, 1. (3.8)

Remarks. 1. Theorem 3 reveals one more complicating feature of this class of estimators in comparison with the density
deconvolution estimator considered in [29]. In their deconvolution problem, the asymptotic distribution of the estimator
depends only on the asymptotic parameters through a constant similar to our constant B0. Theorem 3 reveals that when
dealing with nonparametric deconvolution for prediction the variance of the asymptotic distribution also depends on the
local properties of distributions (µ(x) and fT (x)).

2. The variance of the asymptotic distribution is proportional to
� k
1+k

�2, which is smallest for k = 1 and grows to 1
as k increases. Hence, it is minimized at k = 1. However, a byproduct of the proof of part (1) in Theorem 1 is that
�

�Eµ̂k(x) � µ(x)
�

� = O(hr). Since 2k > r , increasing the value of k accommodates larger values of r and faster decay of
the bias as n ! 1. The exact relationship of the order of the bias and k is theoretically unknown, but our Monte Carlo
simulations suggest that increases in k may produce significant bias reduction that more than compensates the increase in
variance suggested by Theorem 3 (see Section 4).
3. Under Assumptions 3.1–3.4 instead of upper bounds (2.8) one has exact orders

V (f̂T ,k(x)) = (1 + o(1))
✓

2kB0

⇡(k + 1)
Mn,h�11

◆2

, V (d̂T ,k(x)) = (1 + o(1))
✓

2kB0

⇡(k + 1)
Mn,h�22

◆2

.

4. A critical step in proving Theorem 2 is provided in Lemma 6. It solves a special case of a problem involving convergence
of a sequence of random variables to an improper random variable [23].

4. Monte Carlo simulations

In this section we conduct a simulation study to shed some light on the finite sample properties of µ̂k(x) for k > 1
and its performance relative to µ̃(x) = µ̂1(x). The main goal is to assess whether or not the desirable experimental
properties attained for density estimation byMynbaev andMartins-Filho [24] using the class {Mk}manifest themselves for a
deconvolution prediction in the context of the CDHmodel. In our simulations, we consider the casewhere themeasurement
errors Uj are of only two types and as in (3.1) we denote the first m errors by V1 ⇠ fV1 and the remaining n � m errors by
V2 ⇠ fV2 . We consider the following data generating processes (DGP),

1. case: g1(x) = 3x + 20p
2⇡

exp
��100(x � 0.5)2

�

, X ⇠ N(0.5, � 2
X ), � 2

X = 1/3.922 ✏ ⇠ N(0, 0.673)
2. case: g2(x) = sin(x⇡/2)/(1 + 2x2(sign(x) + 1)), X ⇠ N(0, � 2

X ), � 2
X = 1, ✏ ⇠ N(0, 0.09)

3. case: g3(x) =
⇢

0.5 for x  �1
|x| for �1 < x  0

2 + log(x) for x > 0
, X ⇠ N(0, � 2

X ), � 2
X = 1, ✏ ⇠ N(0, 0.09).

The first two DGPs were considered by CDH. The third involves a g that is not smooth, violating part of CDH’s assumption
(4.3) but none of our assumptions, as we do not require smoothness of g .

For each DGP we take UF ⇠ fV1 and consider three different error structures: (i) fV1 is N(0, � 2
1 ) and fV2 is L(0, �1/

p
2)

(Laplace) with � 2
1 = 0.2� 2

X (fV1 smoother than fV2 ); (ii) fV1 is N(0, � 2
1 ) and fV2 is N(0, � 2

1 /2) with � 2
1 = 0.2� 2

X (fV1 smoother
than fV2 ); (iii) fV1 is N(0, � 2

1 ) and fV2 is N(0, 2� 2
1 ) with � 2

1 = 0.1� 2
X (fV2 smoother than fV1 ). We draw 1000 samples from all

DGPs and obtain for each sample the root average squared error (RASE) for µ̃(x), µ̂2(x) and µ̂4(x) in equally spaced grids
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Table 1

Mean (M), Median (D), Interquartile range [q0.25, q0.75](I) for Root Average Squared Error with sample size n, mV1’s, kernel K and g1(x) = 3x +
20p
2⇡

exp
��100(x � 0.5)2

�

.

n m fV1 ⇠ N ,fV2 ⇠ L fV1 ⇠ N ,fV2 ⇠ N fV1 ⇠ N ,fV2 ⇠ N
K = K2 � 2

1 > � 2
2 , K = K2 � 2

1 < � 2
2 , K = K1

M D I M D I M D I

µ̃ 250 125 .455 .448 [.370, .531] .437 .437 [.359, .512] .493 .469 [.391, .574]
500 250 .357 .354 [.299, .413] .350 .345 [.295, .405] .365 .345 [.303, .451]

µ̂2 250 125 .412 .402 [.333, .484] .376 .365 [.301, .441] .518 .466 [.387, .600]
500 250 .321 .318 [.270, .368] .295 .289 [.246, .340] .366 .345 [.287, .425]

µ̂4 250 125 .412 .404 [.331, .478] .366 .353 [.289, .436] .532 .485 [.399, .609]
500 250 .306 .300 [.251, .356] .278 .271 [.228, .324] .378 .350 [.288, .437]

Table 2

Mean (M), Median (D), Interquartile range [q0.25, q0.75](I) for Root Average Squared Error with sample size n, mV1’s, kernel K and g2(x) = sin(x⇡/2)/(1 +
2x2(sign(x) + 1)).

n m fV1 ⇠ N ,fV2 ⇠ L fV1 ⇠ N ,fV2 ⇠ N fV1 ⇠ N ,fV2 ⇠ N
K = K2 � 2

1 > � 2
2 , K = K2 � 2

1 < � 2
2 , K = K1

M D I M D I M D I

µ̃ 250 125 .111 .110 [.088, .136] .116 .117 [.093, .138] .103 .097 [.077, .124]
500 250 .103 .104 [.083, .121] .107 .108 [.090, .123] .083 .078 [.063, .100]

µ̂2 250 125 .101 .098 [.075, .125] .108 .100 [.077, .124] .106 .099 [.076, .127]
500 250 .093 .094 [.073, .113] .095 .094 [.078, .112] .083 .077 [.060, .101]

µ̂4 250 125 .095 .091 [.070, .117] .098 .096 [.073, .120] .112 .101 [.075, .133]
500 250 .085 .084 [.065, .105] .089 .089 [.072, .108] .083 .078 [.058, .103]

with 41 points in (0, 1) for case 1, and 41 points in (�2, 2) for cases 2 and 3. Each estimator requires the selection of a kernel
(a seed kernel in the case of µ̂k(x)) and a bandwidth. We considered two kernels,

K1(x) = 1p
2⇡

exp(�0.5x2) and K2(x) = 48 cos(x)
⇡x4

✓

1 � 15
x2

◆

� 144 sin(x)
⇡x5

✓

2 � 5
x2

◆

.

K2 has a Fourier transform that is compactly supported in [�1, 1] and satisfies condition (4.2) in CDH and the kernel
requirements in our Assumptions 2.2 and 3.3. K1 does not have a compactly supported Fourier transform and therefore
does not satisfy (4.2) in CDH and neither does it satisfy our Assumption 3.3.

We follow CDH and select both a bandwidth h and a ridge parameter ⇢ by minimizing a cross validation criterion.
Representing the jackknifed version of each of the estimators considered generically by µ̇J(x), we minimize

CV (h, ⇢) =
m+1
X

j=1

(Yj � µ̇J(Wj))
2

with respect to (h, ⇢). The ridge parameter⇢ is necessary to avoid division by a number in the vicinity of zero in the definition
of the estimators. For each estimator, at grid points x where the denominator was smaller than ⇢, it was replaced by ⇢.
Throughout the simulations the sample sizes are n = 250, 500 and we always takem = n/2.

We note that in the two cases where fV1 is smoother than fV2 , a simpler version of the CDH estimator (see the estimator
defined in their Eq. (2.8)) is available that requires neither a bandwidth nor a kernel for its calculation. Here, since one of
our goals is to contrast the use of K and Mk in estimator performance, even in these cases we always considered the CDH
estimator as defined in our Eq. (2.5) calculatedwith a kernel K . In the casewhere fV2 is smoother than fV1 , the simpler version
of the CDH estimator is not available, and by necessity the estimator is given by (2.5). Tables 1–3 summarize the results of
our simulations for regressions g1(x), g2(x) and g3(x), respectively.

As expected from the asymptotic theory, the mean RASE decreases with the sample size n for all estimators considered
across all DGPs. Similarly, the median and the lower and upper boundaries for the interquartile range for all estimators
decrease with n for all DGPs.

For all cases inwhich fV1 is smoother than fV2 the estimators µ̂2 and µ̂4 outperform µ̃ in thatmean,median andboundaries
for the interquartile range of their RASE are closer to zero than those associated with µ̃. By the same standards, µ̂4 tends to
perform better than µ̂2 for the DGPs using g1 and g2. In the case where the DGP uses g3, the performances of µ̂2 and µ̂4 are
virtually the same. In all such cases, we have performed estimation using the kernel K2 for µ̃ and as a seed for µ̂2 and µ̂4.
Results are qualitatively similar when using K1.

As discussed in Remark 2 following Theorem 3we should expect an increase in variance with k. This is indeed the case in
our simulations (results on the variance are available upon request). However, the reduction in bias produced by increasing
kmore than compensates the increase in variance to produce smaller RASE for all cases in which fV1 is smoother than fV2 .
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Table 3

Table 3. Mean (M), Median (D), Interquartile range [q0.25, q0.75](I) for Root Average Squared Error with sample size n, mV1’s, kernel K and g3(x) =
8

<

:

0.5 for x  �1
|x| for �1 < x  0

2 + log(x) for x > 0
.

n m fV1 ⇠ N ,fV2 ⇠ L fV1 ⇠ N ,fV2 ⇠ N fV1 ⇠ N ,fV2 ⇠ N
K = K2 � 2

1 > � 2
2 , K = K2 � 2

1 < � 2
2 , K = K1

M D I M D I M D I

µ̃ 250 125 .139 .137 [.111, .162] .134 .132 [.117, .156] .172 .162 [.132, .202]
500 250 .116 .116 [.096, .135] .116 .115 [.099, .131] .134 .129 [.109, .156]

µ̂2 250 125 .112 .108 [.086, .132] .106 .101 [.084, .125] .196 .168 [.125, .227]
500 250 .091 .090 [.074, .107] .089 .089 [.074, .103] .133 .123 [.100, .156]

µ̂4 250 125 .120 .111 [.088, .142] .110 .100 [.083, .126] .215 .172 [.131, .240]
500 250 .093 .090 [.073, .109] .090 .089 [.074, .103] .140 .127 [.100, .166]

Fig. 1. Estimated densities for RASE of estimators µ̃, µ̂2 and µ̂4 using 1000 samples and n = 500. µ̃(x) -·-, µ̂2(x) –, µ̂4 –. Top panels: fV1 ⇠ N, fV2 ⇠ L;
middle panels: fV1 ⇠ N, fV2 ⇠ N , � 2

1 > � 2
2 ; bottom panels: fV1 ⇠ N, fV2 ⇠ N , � 2

1 < � 2
2 . Left panels for g1(x); center panels for g2(x); right panels for g3(x).

In the case where fV2 is smoother than fV1 the estimators perform very similarly in terms of mean and median RASE,
specially when the sample size is n = 500. The most pronounced difference in this case concerns the interquartile ranges
which are larger for the estimators µ̂2 and µ̂4 when n = 250. In this case, all estimations were performed using the kernel
K1 for µ̃ and as a seed for µ̂2 and µ̂4. Results are qualitatively similar when using K2.
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The simulations suggest, confirmingwhat [24] have found in the case of density estimation, that the use of theMk reduces
bias but increases variance. In addition, the impact of the choice of k on root average squared error seems to changewith the
family of distributions assumed for the measurement errors, complicating further the determination of an optimal choice
for k.

To provide a more vivid portrayal of the distribution of RASE across the simulated samples, we have estimated their
densities using the gamma kernel density estimator proposed by Chen [8]. Fig. 1 provides estimated densities associated
with the RASE of each estimator for n = 500 and all DGPs under consideration. The left side panels correspond to DGPs that
use the regression g1, the center panels correspond to DGPs that use the regression g2 and the right side panels correspond
to DGPs that use the regression g3. Top, middle and bottom panels correspond to error structure (i), (ii) and (iii), respectively.
It is apparent that the estimated densities for the RASE of estimators µ̂2 (dashed graph) and µ̂4 (solid graph) are closer to
the vertical axis and exhibit thicker tails to the left and thinner tails to the right if compared to the estimated density for the
RASE of µ̃ (dashed–dotted graph) in the top and middle panels. In the bottom three panels the densities are more similar,
but there seems to be evidence of thicker left and right tails for the estimated densities associated with µ̂2 and µ̂4.

5. Summary

The literature on nonparametric density and regression estimation in the presence of measurement error has shown
that the rates of convergence for kernel based deconvolution estimators are exceedingly slow. Carroll et al. [5] have shown
that when considering nonparametric prediction in the presence of heterogeneous measurement errors it is possible to
obtain much faster convergence of the prediction estimator. They propose an estimator that is consistent and appears to
have good finite sample properties. In this paper, we show that the consistency result they have obtained can be derived
under less restrictive assumptions on the kernel and on the underlying data generating process. In particular, we show how
kernels with non-compactly supported Fourier transforms can be constructed and substantially relax requirements on their
order and the smoothness of densities of the measurement errors. The gains come from using the class of kernels proposed
in [24] and alternative measures of smoothness of the underlying densities to construct a class of nonparametric prediction
estimators that includes the estimator proposed by Carroll et al. [5]. We have also obtained the asymptotic normality of
estimators in the class for a subset of super-smooth densities. Although our convergence in distribution result does not cover
all possible cases, it shows that the insights from [29] can be used to study the properties of the estimator. Lastly, our Monte
Carlo simulation shows that it might be beneficial in finite samples to use the kernels of [24] to construct deconvolution
type estimators. As pointed out in Section 3, future research on a comprehensive study of asymptotic normality is needed.

Appendix. Proofs

The following Lemmas 1 and 2 are part of the proof in [5]. We provide full proofs here just to show that the assumptions
from CDH that we omit are not required.

Lemma 1. Equations (2.7) are true.
Proof. (a) By the assumed independence the characteristic functions ofWj satisfy

�fWj
(t) = �fX (t)�fUj

(t), �fT (t) = �fX (t)�fUF (t). (A.1)

For a complex number a = b + ic let ā = b � ic denote its conjugate. From aā = |a|2, �̄fUj
(t) = �fUj

(�t) and (2.1) one has

n
X

j=1

 j(t)�fUj
(t) = 1,

n
X

j=1

�

� j(t)
�

�

2 = 1/
n

X

j=1

�

�

�

�fUj
(t)

�

�

�

2
. (A.2)

From (2.3) we have

Ef̃T (x) = 1
h

n
X

j=1

E
1
2⇡

Z

exp
✓

�it
x � Wj

h

◆

FK (t)�fUF

✓

t
h

◆

 j

✓

t
h

◆

dt

= 1
2⇡

Z

e�itxFK (ht)

"

n
X

j=1

EeitWj j (t)

#

�fUF (t) dt

(using (A.1))

= 1
2⇡

Z

e�itxFK (ht)

"

n
X

j=1

�fX (t)�fUj
(t) j (t)

#

�fUF (t) dt

(using (A.1) and (A.2))

= 1
2⇡

Z

e�itxFK (ht)�fX (t)�fUF (t) dt = 1
2⇡

Z

e�itxFK (ht)�fT (t) dt. (A.3)
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Note that FKh(t) = FK (ht) where Kh(·) = (1/h) K(·/h). Then,

Ef̃T (x) = 1
2⇡

Z

e�itxFKh(t)�fT (t)dt = 1
2⇡

Z

e�itxFKh⇤fT (t)dt = Kh ⇤ fT (x)

=
Z

1
h
K
✓

x � y
h

◆

fT (y)dy =
Z

K(z)fT (x � hz)dz

where Kh ⇤ fT (x) denotes the convolution of Kh and T .
(b) By independence of Xj, "j,UF the variables YjeitXj = (g(Xj) + "j)eitXj and UF are independent. Consequently,

(EYjeitXj)(EeitU
F
) = EYjeit(Xj+UF ) = EYjeitT

= ET [E(Yj|T = w)eitw] =
Z

µ(w)eitwfT (w)dw = FdT (t), (A.4)

using the law of iterated expectations and the definition of µ. Similarly, for theWj we have

EYjeitWj = (EYjeitXj)(EeitUj) = E(g(Xj) + "j)eitXj�fUj
(t)

= Eg(Xj)eitXj�fUj
(t) = EYjeitXj�fUj

(t).

Because of (A.2), this implies
n

X

j=1

EYjeitWj j(t) = Eg(Xj)eitXj = EYjeitXj . (A.5)

Now,

Ed̃T (x) = 1
h

n
X

j=1

E
1
2⇡

Z

Yje�it
x�Wj

h FK (t)�fUF

✓

t
h

◆

 j

✓

t
h

◆

dt

= 1
2⇡

Z

e�itxFK (ht)

"

n
X

j=1

EYjeitWj j (t)

#

�fUF (t) dt

= 1
2⇡

Z

e�itxFK (ht)EYjeitXj�UF (t) dt, by (A.5)

= 1
2⇡

Z

e�itxFK (ht)FdT (t) dt by (A.4).

The last expression is similar to the last expression in (A.3), hence by applying a similar argument, we have Ed̃T (x) =
1
h

R

K
� y
h

�

dT (x � y)dy = R

K(z)dT (x � hz)dz. ⇤

Lemma 2. Under Assumption 2.1 (2.8) is true. If v(h)/n = O(1) and
R

K(z)dT (x � hz)dz = O(1) then d̃T (x) = Op(1).

Proof. fn,j(x) is real-valued, so by (2.3)

V (fn,j(x))  E
�

fn,j(x)
�2

= 1
(2⇡)2

Z Z

e�i(s+t)xEei(s+t)WjFK (hs)�fUF (s) j(s)FK (ht)�fUF (t) j(t)dsdt

= 1
(2⇡)2

Z Z

e�i(s+t)xEei(s+t)Wj⌘h,j(s)⌘h,j(t)dsdt

where we denote ⌘h,j(s) = FK (hs)�fUF (s) j(s). By Assumption 2.1 and boundedness of the Fourier transform in L2

E
�

fn,j(x)
�2 = 1

(2⇡)2

Z Z

e�i(s+t)x
Z

ei(s+t)z fWj(z)dz⌘h,j(s)⌘h,j(t)dsdt

= 1
(2⇡)2

Z



Z

e�i(x�z)s⌘h,j(s)ds
� 

Z

e�i(x�z)t⌘h,j(t)dt
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fWj(z)dz

=
Z

h
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fWj(z)dz  c1
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F �1
⌘h,j
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�

�

2

2

 c2
Z

�

� j(t)
�

�

2
�

�

�

FKh(t)�fUF (t)
�

�

�

2
dt. (A.6)
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Using this bound and (A.2) we have

V (f̃T (x)) =
n

X

j=1

V (fn,j(x))  c2
n

X

j=1

Z

�

� j(t)
�

�

2
�

�

�

FKh(t)�fUF (t)
�

�

�

2
dt

= c2
Z

�

�

�

FK (ht)�fUF (t)
�

�

�

2
� n

X

j=1

�

�

�

�fUj
(t)

�

�

�

2
dt = v(h)

n
c2

which establishes the first equation in (2.8). Denoting E"2j = � 2
j and given the fact that the pair (Xj, "j) is independent of Uj,

we have

EY 2
j e

i(s+t)Wj = E
�

g2(Xj) + 2g(Xj)"j + "2j
�

ei(s+t)Wj =
⇣

Eg2(Xj)ei(s+t)Xj + � 2
j �fXj

(s + t)
⌘

�fUj
(s + t)

= Eg2(Xj)ei(s+t)Xj�fUj
(s + t) + � 2

j �fWj
(s + t).

Then,

E
�

dn,j(x)
�2 = E

✓

1
2⇡

Z

e�itxYjeitWj⌘h,j(t)dt
◆2

= 1
(2⇡)2

Z Z

e�i(s+t)xEY 2
j e

i(s+t)Wj⌘h,j(s)⌘h,j(t)dsdt

= 1
(2⇡)2

Z Z

e�i(s+t)xEg2(Xj)ei(s+t)Xj�fUj
(s + t)⌘h,j(s)⌘h,j(t)dsdt (A.7)

+ 1
(2⇡)2

Z Z

e�i(s+t)x� 2
j �fWj

(s + t)⌘h,j(s)⌘h,j(t)dsdt. (A.8)

Note that because EY 2
j = Eg2(Xj) + � 2

j , the condition supj EY 2
j < 1 contained in Assumption 2.1 implies supj �

2
j < 1.

Therefore, the required bound for (A.8) is obtained as (A.6). For (A.7) we proceed as follows:

1
(2⇡)2

Z Z

e�i(s+t)x
h

Eg2(Xj)ei(s+t)Xj�fUj
(s + t)

i

⌘h,j(s)⌘h,j(t)dsdt

=
Z

"

Z

✓

1
2⇡

Z

e�i(x�v�u)s⌘h,j(s)ds
◆2

fUj(u)du

#

g2(v)fX (v)dv

(using Assumption 2.1 and boundedness of the Fourier transform)

 c1
Z
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�

�

�
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�
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2
dt.

As a result, V (d̃T (x)) = Pn
j=1 V (dn,j(x))  c4

R
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�
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dt = c4 v(h)

n . Note that the bound

E
⇣

d̃T (x)
⌘2 = V

⇣

d̃T (x)
⌘

+
⇣

Ed̃T (x)
⌘2 

✓

Z

K(z)dT (x � hz)dz
◆2

+ c4v(h)/n

implies d̃T (x) = Op(1) when the terms on the right are O(1). ⇤

Proof of Theorem 1. By (2.12), Hölder’s inequality, changing variables and applying (2.14) we have

�

�

�

Ef̂T ,k(x) � fT (x)
�

�

�

= c
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�

�

�

�

Z
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2k
�ht fT (x)
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✓
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�ht fT (x)|

|ht|r
1

A

q

dt
|ht|

3

5

1/q

 chr
✓

Z
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◆1/q0

kfTkbr1,q
= O(hr). (A.9)
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Given that FMk(t) = Pk
l=1 �k,m(FK (tl) + FK (�tl)), following the same arguments used to bound V (f̃T ) in Lemma 2, and the

Cauchy–Schwarz inequality we obtain

V (f̂T ,k(x))  c

(

k
X

l=1

Z

|FK (hlt)|2
�

�

�

�fUF (t)
�

�

�

2
� n

X

j=1

�

�

�

�fUj
(t)

�

�

�

2
dt

)

⌘ c
n

k
X

l=1

v(hl).

Consequently, f̂T ,k(x) � Ef̂T ,k(x) = Op

⇣

(
Pk

l=1 v(hl)/n)1/2
⌘

. Thus,

f̂T ,k(x) =
⇣

f̂T ,k(x) � Ef̂T ,k(x)
⌘

+
⇣

Ef̂T ,k(x) � fT (x)
⌘

+ fT (x) = fT (x) + Op(mn,h)

where mn,h = hr + (
Pk

l=1 v(hl)/n)1/2. By Assumption 2.2 and (2.13) dT 2 Bs1,q. As above, d̂T ,k(x) = dT (x) + Op(mn,h). The
theorem follows from

µ̂k(x) � dT (x)
fT (x)

=
⇥

dT (x) + Op(mn,h)
⇤

fT (x) � ⇥

fT (x) + Op(mn,h)
⇤

dT (x)
fT (x)[fT (x) + Op(mn,h)] = Op(mn,h). ⇤

Proof of Theorem 2. 1. We define FK and then take its inverse Fourier transform to obtain K . Let

FK (s) = exp(�P(s)/2), |s| � c1.

For |s| < c1, FK (s) can be defined to be any function, as long as the condition FK (0) = 1 necessary for
R

K(t)dt = 1 is
met. We also need FK to be sufficiently smooth, including the sewing conditions at s = ±c1, for FK to belong to the Sobolev
spaceW 1

2 (R). Assumption 2.3 (c) provides the required ingredient for the domain |s| � c1:

kFKk2
W1

2 (|s|�c1)
=

Z

|s|�c1

✓

|FK (s)|2 +
�

�

�

F (1)
K (s)

�

�

�

2
◆

ds =
Z

|s|�c1
exp(�P(s))

⇣

1 + �

�P (1)(s)
�

�

2
/4

⌘

ds < 1.

Let K(x) = �

F �1FK
�

(x). Then, ixK(x) = F �1
F

(1)
K

(x). Since the inverse Fourier transform preserves the L2-norm (up to a

constant c), we have
Z

R

|K(x)|2 (1 + x2)dx = c
Z

R

✓

|FK (s)|2 +
�

�

�

F (1)
K (s)

�

�

�

2
◆

ds < 1.

By Hölder’s inequality
Z

R

|K(x)|dx 


Z

R

|K(x)|2 (1 + x2)dx
�1/2 ✓Z

R

dx
1 + x2

◆1/2

< 1

establishing that K 2 L1. Since FK 2 W 1
2 (R), FK is globally bounded (see [1], Theorem 4.12). By Assumption 2.3(a) the

product |FK |2�n is locally bounded. Therefore to check that v(h) < 1 for 0 < h < 1 it suffices to verify that the integral

I(h) ⌘
Z

|sh|�c1
|�K (sh)|2�n(s)ds =

Z

|sh|�c1
exp(�P(sh))�n(s)ds

is finite for 0 < h < 1. Using Assumption 2.3(a) we have

I(h)  c2
Z

|sh|�c1
exp(�P(sh))P(s)ds  c2

Z

|s|�c1
exp(�P(sh))P(s)ds.

Requiring the last integral to be finite for all 0 < h < 1 instead of J(h) < 1 would be enough for applications (and the
invertibility of P would not be needed). Note that exp(�P(sh)) is used here to suppress the effect of growth of P(s). Using
Assumption 2.3(b) and replacing t = P(s) we get by (d) the desired result

I(h)  2c2c3
Z

s�c1
exp(�P(sh))P 0(s)ds = 2c2c3J(h) < 1.

2. If v(h)  c for all 0 < h < 1, then obviously v(h)/n = o(1) with any choice of hn ! 0. Suppose v(h) is unbounded.
Take any positive sequence "n = o(1) such that "nn ! 1. Define hn by v(hn) = "nn (if there aremany such hn, take the least
of them). From the above proof we know that v(h) is bounded from above when h is bounded away from zero. Therefore
"nn ! 1 implies hn ! 0. Finally, v (hn) /n = "n = o(1). ⇤
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Proof (Representation for fn,j,k(x)). For j = m + 1, . . . , n the analysis of expressions defined in (3.6) is based on the
representation derived here. Denoting

�n(t) = 1
n � m

A3

A2
|t|a3�a2 exp(µ2 |t|�2 � µ3 |t|�3), (A.10)

write (3.5) as

(�3 j)(t) = (1 + un(t))�n(t), j = m + 1, . . . , n, (A.11)

where un(t) ! 0 as |t| ! 1. Fix " 2 (0, 1) and put ✓l = 2�k,l/(⇡ l),

s1n,j,k(x) =
k

X

l=1

✓l

h

Z "

0
cos

✓

t
Wj � x

lh

◆

FK (t)(�3 j)

✓

t
lh

◆

dt, (A.12)

s2n,j,k(x) =
k

X

l=1

✓l

h

Z 1

"

cos
✓

t
Wj � x

lh

◆

FK (t)


(�3 j)

✓

t
lh

◆

� �n

✓

t
lh

◆�

dt. (A.13)

Then from (3.6) we have

fn,j,k(x) = s1n,j,k(x) + s2n,j,k(x) +
k

X

l=1

✓l

h

Z 1

"

cos
✓

t
Wj � x

lh

◆

FK (t)�n
✓

t
lh

◆

dt. (A.14)

In the last integral, all values of cos
⇣

t Wj�x
lh

⌘

for t 2 (", 1) contribute to its value, which makes it difficult to analyze.

One of the main insights of Van Es and Uh was to approximate cos
⇣

t Wj�x
lh

⌘

with cos
⇣

Wj�x
lh

⌘

. From cos x � cos y =
�2 sin

� x+y
2

�

sin
� x�y

2

�

we get

cos
✓

t
Wj � x

lh

◆

� cos
✓

Wj � x
lh

◆

= �2 sin
✓

t + 1
2

Wj � x
lh

◆

sin
✓

t � 1
2

Wj � x
lh

◆

= Rj,l(t)

where the remainder Rj,l is defined by the right-hand side and, because |sin x|  |x|, we have

�

�Rj,l(t)
�

�  (|x| + �

�Wj
�

�)
1 � t
lh

. (A.15)

Letting s3n,j,k(x) = Pk
l=1

✓l
h

R 1
"
Rj,l(t)FK (t)�n

� t
lh

�

dt we rearrange (A.14) and write

fn,j,k(x) = s1n,j,k(x) + s2n,j,k(x) + s3n,j,k(x) +
k

X

l=1

✓l

h
cos

✓

Wj � x
lh

◆

Z 1

"

FK (t)�n
✓

t
lh

◆

dt. (A.16)

Next, let

Sp,dn,k (x) =
n

X

j=m+1

Yp
j s

d
n,j,k(x), p = 0, 1; d = 1, 2, 3. (A.17)

Now (A.16) and (3.8) yield

f̂ IIT ,k(x) � Ef̂ IIT ,k(x) =
3

X

d=1

h

S0,dn,k (x) � ES0,dn,k (x)
i

+
n

X
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k
X

l=1

✓l

h
(⇤j,l � E⇤j,l)

Z 1

"

FK (t)�n
✓

t
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◆

dt, (A.18)

d̂IIT ,k(x) � Ed̂IIT ,k(x) =
3

X

d=1

h

S1,dn,k (x) � ES1,dn,k (x)
i

+
n

X
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k
X

l=1

✓l

h
(Yj⇤j,l � EYj⇤j,l)

Z 1

"

FK (t)�n
✓

t
lh

◆

dt, (A.19)

where ⇤j,l = cos
⇣

Wj�x
lh

⌘

� E cos
⇣

Wj�x
lh

⌘

. Our goal will be to show that the first three terms in (A.18) and (A.19) are small
relative to the last ones, while the last terms are asymptotically normal, up to a factor that depends on n and h. ⇤

Lemma 3. For p = 0, 1 and " 2 (0, 1) one has, as n ! 1 and h ! 0,

Sp,1n,k (x) � ESp,1n,k (x) = Op



1p
n � m

ha2�a3�1⇣ (h)"
�2 (1+o(1))

�

.
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Proof. From (A.12) and (A.17) by independence of (Yj,Wj)

V
⇣

Sp,1n,k (x)
⌘


n

X

j=m+1

E

"

k
X

l=1
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h
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0
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✓

t
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◆
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✓

t
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◆
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(bounding cos by 1 and |FK | by kKkL1)

 "2
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X
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E
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✓
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�

�

�

�

#2

. (A.20)

For a sufficiently small h, the numbers "/(lh), l = 1, . . . , k, belong to the domain where (3.5) holds. By (3.5) and the
assumption �2 > �3, the product �3 j grows at infinity. Hence, the sup in (A.20) is attained at the boundary of |t|  "
and the max is attained at l = 1, so that

V
⇣

Sp,1n,k (x)
⌘
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h2 (n � m) sup

j
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�2 1
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⇢
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.

This bound proves the lemma. ⇤

Lemma 4. For p = 0, 1 and " 2 (0, 1) one has, as n ! 1 and h ! 0,

Sp,2n,k (x) � ESp,2n,k (x) = op


1p
n � m

ha2�a3�1⇣ (h) exp
��µ3h��3�

�

.

Proof. By (A.11) (�3 j)(t) � �n(t) = un(t)�n(t). For any � > 0 there exists t(�) > 0 such that |un(t)|  � for |t| � t(�).
Let |t| � " and h  "/(kt(�)). Then

�

�

�

�

t
lh

�

�

�

�

� "
kt(�)
l"

� t(�) and
�

�

�

�

un

✓

t
lh

◆

�

�

�

�

 �. (A.21)

By independence of (Yj,Wj), (A.13) and (A.17) imply

V
⇣

Sp,2n,k (x)
⌘


n

X

j=m+1

E

"

k
X

l=1

✓l

h
Y p
j

Z 1

"

cos
✓

t
Wj � x

lh

◆

FK (t)un

✓

t
lh

◆

�n

✓

t
lh

◆

dt

#2

(using (A.21))

 (n � m) sup
j

E
�

Yp
j
�2
�2

"

k
X

l=1

|✓l|
h

kKkL1 max
1lk

sup
t2(",1)

�n

✓

t
lh

◆

(1 � ")

#2

= c1
�2(n � m)

h2 max
1lk

sup
t2(0,1)

� 2
n

✓

t
lh

◆

.

Since �2 > �3, the function �n is U-shaped, the sup is attained at |t| = 1 and the max is attained at l = 1. Hence, by (A.10)

V
⇣

Sp,2n,k (x)
⌘

 c2
�2(n � m)

h2

1
(n � m)2

h2(a2�a3) exp(2µ2h��2 � 2µ3h��3)

= c2
�2

n � m
h2(a2�a3�1)⇣ 2(h) exp(�2µ3h��3) for h  "/(kt(�)).

Since � is arbitrarily close to zero, this bound proves the statement. This proof partially explains why " cannot be set to zero.
If t is not bounded away from zero, then (A.21) does not hold. In the proof of Theorem 3 the positivity of " is even more
important. ⇤

Lemma 5. Denote g(t) = g�(t) = �

(1 � t)� � 1
�

/t, where � > 0 and t 2 (0, 1). Then, g(t) = ��+ o(1) as t ! 0, and
(a) ��  g(t)  �1 in case � � 1,
(b) �1  g(t)  �� in case 0 < � < 1.
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Proof. The asymptotic behavior as t ! 0 follows from (1 � t)� = 1 � �t + o(t).
(a) Let � � 1. Obviously, (1 � t)�  1 � t which implies g(t)  �1. Let G(t) = 1 � �t , H(t) = (1 � t)�. Then

G(0) = H(0) = 1, G0(t) = ��  ��(1 � t)��1 = H 0(t).

Therefore

1 � �t = G(t) = G(0) +
Z t

0
G0(s)ds  H(0) +

Z t

0
H 0(s)ds = H(t) = (1 � t)�,

which implies g(t) � ��.
(b) Let 0 < � < 1. The inequality 1 � t  (1 � t)� is obvious, so g(t) � �1. In this case, the inequalities above are

reverted and H 0(t)  G0(t) and g(t)  ��. ⇤

The next lemma is similar to [29, Lemma 5].

Lemma 6. For " 2 (0, 1), � � 0 denote

I�(n, h) =
Z 1

"

(1 � t)�FK (t)�n
✓

t
h

◆

dt, B� = A3A� (↵ + � + 1)
A2(�2µ2)↵+�+1 .

Then

I�(n, h) = (1 + o(1))
B�

n � m
h�2(↵+�+1)+a2�a3⇣ (h).

If in the definition of I�(n, h), FK is replaced by |FK |, then the asymptotic behavior remains the same, with A replaced by |A|.
Proof. Let 1 � t = h�2v. Then, t = 1 � h�2v, dt = �h�2dv and by definition (A.10)

I�(n, h) = � h�2

n � m

Z 0

(1�")h��2
h��2v�

�K (1 � h�2v)
�

h�2v
�↵

�

h�2v
�↵ A3

A2

✓

1 � h�2v
h

◆a3�a2

⇥ exp

"

µ2

✓

1 � h�2v
h

◆�2

� µ3

✓

1 � h�2v
h

◆�3
#

dv

= A3

A2(n � m)
h�2(↵+�+1)+a2�a3 exp

�

µ2h��2 � µ3h��3�
Z (1�")h��2

0
�h(v)dv (A.22)

where the integrand�h(v) is defined by

�h(v) = v↵+� FK (1 � h�2v)
�

h�2v
�↵

�

1 � h�2v
�a3�a2 ⇥ exp



µ2
(1 � h�2v)�2 � 1

h�2v
v � µ3

(1 � h�2v)�3 � 1
h�2v

h�2��3v
�

.

We need to find the limit of �h(v), as h ! 0. The interval (0, (1 � ")h��2) expands to (0, 1). By Assumption 3.3,
FK (1�h�2 v)
⇣

h�2 v
⌘↵ ! A and by Lemma 5 (1�h�2 v)�2�1

h�2 v
! ��2 and (1�h�2 v)�3�1

h�2 v
! ��3. Hence,

�h(v) = (1 + o(1))Av↵+� exp
��µ2�2v + µ3�3h�2��3v

� = (1 + o(1))Av↵+� exp (�µ2�2v) . (A.23)

Next we need to find an integrable majorant for�h(v). By Assumption 3.3

sup
0<t<1

|FK (1 � t)|
t↵

< 1. (A.24)

Further,
�

1 � h�2v
�a3�a2  max

�

1, "a3�a2
 

for v 2 (0, (1 � ")h��2). (A.25)

By Lemma 5, in which we put t = h�2v,

exp


µ2
(1 � h�2v)�2 � 1

h�2v
v � µ3

(1 � h�2v)�3 � 1
h�2v

h�2��3v
�

= exp
⇥

µ2g�2(t)v � µ3g�3(t)h
�2��3v

⇤

 exp
⇥

µ2 max{�1, ��2}v + µ3 max{1, �3}h�2��3v
⇤

. (A.26)
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We can choose h0 so that for h  h0

µ3 max{1, �3}h�2��3  �1
2
µ2 max{�1, ��2}. (A.27)

Then for all 0 < h  h0 (A.24)–(A.27) imply

I(0,(1�")h��2 )�h(v)  cv↵+� exp


1
2
µ2 max{�1, ��2}v

�

. (A.28)

The function on the right is integrable on (0, 1). By the dominated convergence theorem, from (A.22), (A.23), (A.28) and
noting that exp

�

µ2h��2 � µ3h��3� = ⇣ (h) exp
��µ3h��3�, we have

I�(n, h) = (1 + o(1))A3A
A2(n � m)

h�2(↵+�+1)+a2�a3⇣ (h) exp
��µ3h��3�

⇥
Z 1

0
v↵+� exp (��2µ2v) dv

(replacing �2µ2v = u)

= (1 + o(1))A3A
A2(n � m)(�2µ2)↵+�+1 h

�2(↵+�+1)+a2�a3⇣ (h) exp
��µ3h��3�

⇥
Z 1

0
u↵+�e�udu,

which gives the desired result. If FK is replaced by |FK |, then in (A.23) A gets replaced by |A| ; everything else does not
change. ⇤

Lemma 7. The variable defined in (A.17) for d = 3 satisfies

Sp,3n,k (x) � ESp,3n,k (x) = Op



1p
n � m

h�2(↵+2)+a2�a3�2⇣ (h)
�

.

Proof. Using (A.15) we estimate one term in (A.17):

�

�Yp
j s

3
n,j,k(x)

�

� 
k

X

l=1

|✓l|
h

�

�Yp
j

�

�

|x| + �

�Wj
�

�

lh

Z 1

"

(1 � t) |FK (t)| �n
✓

t
lh

◆

dt

(by Lemma 6 with � = 1)

 c1
k

X

l=1

|✓l|
h

�

�Yp
j

�

�

|x| + �

�Wj
�

�

lh
(lh)�2(↵+2)+a2�a3

n � m
⇣ (lh).

Since ⇣ (lh) = o(⇣ (h)), we have

�

�Yp
j s

3
n,j,k(x)

�

�  c
�

�Yp
j

�

� (|x| + �

�Wj
�

�)
h�2(↵+2)+a2�a3�2

n � m
⇣ (h).

By Assumption 3.4 and Hölder’s inequality it follows that

V
�

Sp,3n (x)
� 

n
X

j=m+1

E
⇥

Yp
j s

3
n,j,k(x)

⇤2

 c
n

X

j=m+1

E
⇥

�

�Yp
j

�

� (|x| + �

�Wj
�

�)
⇤2



h�2(↵+2)+a2�a3�2

n � m
⇣ (h)

�2

 c1


h�2(↵+2)+a2�a3�2
p
n � m

⇣ (h)
�2

.

This proves the statement. ⇤

Lemma 8. The variables f̂ IT (x) and d̂IT defined in (3.3) satisfy

f̂ IT ,k(x) � Ef̂ IT ,k(x) = Op

✓

1
h
p
n � m

◆

, d̂IT ,k(x) � Ed̂IT ,k(x) = Op

✓

1
h
p
n � m

◆

.
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Proof. The product �3(t)�1(�t) |�2(t)|�2 is continuous and vanishes at infinity, as seen from (3.4) and the condition
�1 > �2. Hence, (3.4) implies

�

�(�3 j)(t)
�

�  c1
n�m and by Assumptions 3.3 and 3.4

V
⇣

d̂IT ,k(x)
⌘


m
X

j=1

E

"

k
X

l=1

|✓l|
h

|Yj| kKkL1
c1

n � m

#2

 c1m
h2(n � m)2

 c2
h2(n � m)

.

The bound for f̂ IT ,k(x) follows similarly. ⇤

Lemma 9. The variables from (3.8) converge in joint distribution
✓

Z0
n,h(x)

Z1
n,h(x)

◆

d�!N(0,⌃), (A.29)

where⌃ is from (3.8) and �11 = 1/2.

Proof. By the Cramér–Wold theorem it suffices, for each a 2 R2, to prove convergence in distribution of Sn = a1Z0
n,h(x) +

a2Z1
n,h(x) to N(0, a0⌃a). Denoting

�j = cos
✓

Wj � x
h

◆

, Xnj = 1p
n � m

⇥

(a1 + a2Yj)�j � E(a1 + a2Yj)�j
⇤

we can write Sn = Pn
j=m+1 Xnj. To prove convergence of Sn, we check the conditions of Lyapunov’s Theorem [4, Theorem

27.3]. Xnj are obviously independent and satisfy EXnj = 0. Further,

EX2
nj = 1

n � m
V
�

(a1 + a2Yj)�j
�

= 1
n � m

⇥

a21V (�j) + 2a1a2cov(�j, Yj�j) + a22V (Yj�j)
⇤

. (A.30)

By independence and the condition E"j = 0

cov(�j, Yj�j) = E
�

�j � E�j
� ⇥

(g(Xj) + "j)�j � E(g(Xj) + "j)�j
⇤

= E
�

�j � E�j
� ⇥

g(Xj)�j � Eg(Xj)�j
⇤

+ E
�

�j � E�j
� ⇥

"j�j � E"j�j
⇤ = cov(�j, g(Xj)�j).

Similarly,

V (Yj�j) = E(g(Xj) + "j)
2� 2

j � ⇥

E(g(Xj) + "j)�j
⇤2

= E(g2(Xj) + 2g(Xj)"j + "j)
2� 2

j � ⇥

Eg(Xj)�j
⇤2

= V (g(Xj)�j) + E"2j E�
2
j .

From the last three equations we obtain

EX2
nj = 1

n � m
⇥

a21V (�j) + 2a1a2cov(�j, g(Xj)�j)

+ a22(V (g(Xj)�j) + E"2j E�
2
j )

⇤

= 1
n � m

⇥

V ((a1 + a2g(Xj))�j) + a22E"
2
j E�

2
j
⇤

.

By van Es and Uh [29, p.477, line +9]

E� 2
j ! 1/2, E�j ! 0 as n ! 1. (A.31)

From the last two equations we conclude that lim infn!1(n � m)EX2
nj �

⇢

a22 lim infj!1 � 2
j /2, a2 6= 0;

a21/2, a2 = 0.
By independence, it

follows that

s2n = V (Sn) =
n

X

j=m+1

EX2
nj = 1

n � m

n
X

j=m+1

(n � m)EX2
nj � c. (A.32)
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Now, remembering that
�

��j
�

�  1, we estimate

�

E|Xnj|2+
�

1
2+ = 1p

n � m

⇥

E|(a1 + a2Yj)�j � E(a1 + a2Yj)�j|2+
⇤

1
2+

 2p
n � m

⇥

E|(a1 + a2Yj)�j|2+
⇤

1
2+

 c(a)p
n � m



1 + �

E|Yj|2+
�

1
2+

�

. (A.33)

Use (A.32) and (A.33) to check the Lyapunov condition for Sn:

1
s2+n

n
X

j=m+1

E|Xnj|2+  1
c
(n � m)

✓

c(a)p
n � m

◆2+
⇥



1 + sup
j

�

E|Yj|2+
�

1
2+

�2+
! 0, n ! 1.

The conclusion is that

Sn/sn
d�!N(0, 1). (A.34)

Since in our present notation Zp
n,h(x) = 1p

n�m

Pn
j=m+1

⇥

Yp
j �j � EYp

j �j
⇤

,⌃ is seen to be equal to

⌃ = lim
n!1

1
n � m

n
X

j=m+1

✓

V (�j) cov(�j, Yj�j)
cov(�j, Yj�j) V (Yj�j)

◆

.

This and (A.30) show that

lim
n!1 s2n = lim

n!1

n
X

j=m+1

EX2
nj = a0⌃a.

By (A.34) then Sn
d�!N(0, a0⌃a) which proves (A.29). ⇤

Lemma 10. Suppose n ! 1, h ! 0 in such a way that Mn,h ! 0. Then the following asymptotic representations hold:

f̂T ,k(x) = Ef̂T ,k(x) + 2kB0Mn,h

⇡(k + 1)
Z0
n,h(x) + op

�

Mn,h
�

,

d̂T ,k(x) = Ed̂T ,k(x) + 2kB0Mn,h

⇡(k + 1)
Z1
n,h(x) + op

�

Mn,h
�

.

Proof. We consider the proof for f̂T ,k(x) as an example, the other case being similar. First we bound a part of the last sum in
(A.18). Denoting

Tn,h(x) =
n

X

j=m+1

k
X

l=2

✓l

h
(⇤j,l � E⇤j,l)

Z 1

"

FK (t)�n
✓

t
lh

◆

dt

by independence and Lemma 6 we have

V (Tn,h(x)) 
n

X

j=m+1

E

 

k
X

l=2

✓l

h
(⇤j,l � E⇤j,l)

!2

I20 (n, lh)

=
n

X

j=m+1

k
X

t,s=2

✓s✓t E⇤j,s⇤j,t(1 + o(1))
✓

B0

n � m

◆2
⇥

(lh)�2(↵+1)+a2�a3�1⇣ (lh)
⇤2

 c
k

X

l=2

M2
n,lh = o(1)M2

n,h, h ! 0,
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where o(1) is uniform in n. This establishes that Tn,h(x) = op(Mn,h). This fact, (A.18) and Lemmas 3, 4, 6 and 7 give

f̂T ,k(x) � Ef̂T ,k(x) = Op



1p
n � m

ha2�a3�1⇣ (h)"
�2 (1+o(1))

�

+ op


1p
n � m

ha2�a3�1⇣ (h) exp
��µ3h��3�

�

+Op



1p
n � m

h�2(↵+2)+a2�a3�2⇣ (h)
�

+ op(Mn,h) + (1 + o(1))
2kB0Mn,h

⇡(k + 1)
Z0
n,h(x)

= 2kB0Mn,h

⇡(k + 1)
Z0
n,h(x) + op(Mn,h).

Here we used the fact that Z0
n,h(x) converges in distribution by Lemma 9 and is therefore Op(1). Due to the conditions

0 < " < 1 and �2 > 1 the expressions in the square brackets are op(Mn,h), as h ! 0. ⇤

Proof of Theorem 3. Below we shall use the facts that Ef̂T ,k(x) = fT (x) + o(1) (see (A.9)) and f̂T ,k(x) = fT (x) + op(1) (this
follows from (A.9) and Lemma 10) and similar facts for d̂T ,k(x). By Lemma 10

µ̂k(x) � Ed̂T ,k(x)

Ef̂T ,k(x)
= d̂T ,k(x)

f̂T ,k(x)
� Ed̂T ,k(x)

Ef̂T ,k(x)

=
h

Ed̂T ,k(x) + 2kB0Mn,h
⇡(k+1) Z1

n,h(x) + op
�

Mn,h
�

i

Ef̂T ,k(x)

f̂T ,k(x)Ef̂T ,k(x)

�
h

Ef̂T ,k(x) + 2kB0Mn,h
⇡(k+1) Z0

n,h(x) + op
�

Mn,h
�

i

Ed̂T ,k(x)

f̂T ,k(x)Ef̂T ,k(x)
.

After canceling out some terms and joining the terms of order op(Mn,h) this becomes

µ̂k(x) � Ed̂T ,k(x)

Ef̂T ,k(x)
=

2kB0Mn,h
⇡(k+1)

h

Z1
n,h(x)Ef̂T ,k(x) � Z0

n,h(x)Ed̂T ,k(x)
i

+ op
�

Mn,h
�

⇥

fT (x) + op(1)
⇤2

=
2kB0Mn,h
⇡(k+1)

⇥

Z1
n,h(x)fT (x) � Z0

n,h(x)dT (x)
⇤ + op

�

Mn,h
�

⇥

fT (x) + op(1)
⇤2 .

The last equation shows that the limit in distribution of the variable on the left side of (3.7) is the same as that of

⌦n,h = 2kB0

⇡(k + 1)
�

Z1
n,h(x) � Z0

n,h(x)µ(x)
�

/fT (x).

By the definition of⌃ (3.8)

V
�

⌦n,h
� =

✓

2kB0

⇡(k + 1)fT (x)

◆2
⇥

V
�

Z1
n,h(x)

� � 2µ(x)cov
�

Z1
n,h(x), Z

0
n,h(x)

�

+ µ2(x)V
�

Z0
n,h(x)

�⇤ !
✓

2kB0

⇡(k + 1)fT (x)

◆2

[�22 � 2µ(x)�12 + µ2(x)�11]. ⇤
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