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ABSTRACT

Estimators for derivatives associated with a density function can be useful
in identifying its modes and inflection points. In addition, these estimators
play an important role in plug-in methods associated with bandwidth selec-
tion in nonparametric kernel density estimation. In this paper, we extend
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592 KAIRAT MYNBAEV ET AL.

the nonparametric class of density estimators proposed by Mynbaev and
Martins-Filho (2010) to the estimation of m-order density derivatives. Con-
trary to some existing derivative estimators, the estimators in our proposed
class have a full asymptotic characterization, including uniform consistency
and asymptotic normality. An expression for the bandwidth that minimizes
an asymptotic approximation for the estimators’ integrated squared error is
provided. A Monte Carlo study sheds light on the finite sample performance
of our estimators and contrasts it with that of density derivative estimators
based on the classical Rosenblatt–Parzen approach.
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AMS-MS classifications: 62G07; 62G20

JEL classifications: C14; C18

1. INTRODUCTION

Let f be a density associated with a real random variable X and {Xj}nj=1 be an
independent and identically distributed random sample of size n from f . The
Rosenblatt–Parzen estimator for the density f evaluated at x ∈ R is given by

f̂RP (x) = 1
n

n∑

j=1

1
hn

K

(
x − Xj

hn

)
,

where hn > 0 is a global bandwidth and K is a kernel on R satisfying

∫ +∞

−∞
K(t)dt = 1. (1)

If f and K are m ∈ N times continuously differentiable, with f (m) and K(m) denot-
ing their mth order derivatives, the most commonly used estimator of f (m) at x ∈ R
(Bhattacharya, 1967) is given by f̂

(m)
RP (x) = 1

n

∑n
j=1

1
hm+1

n
K(m)

(
x−Xj

hn

)
.

Estimators for f (m) are important in various contexts. They can be used to
evaluate the location of modes and inflection points of f , to construct plug-in
bandwidths for kernel density estimation of f , and can be applied to the estima-
tion of scores in certain additive models (Härdle & Stoker, 1989). The asymptotic
properties of f̂

(m)
RP (x) have been studied by, among others, Bhattacharya (1967),

Schuster (1969), and Silverman (1978). Singh (1977, 1979, 1987) shows that it is
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Nonparametric Density Derivative Estimators 593

possible to reduce bias and improve the mean integrated squared error (MISE) of
f̂

(m)
RP (x) by considering restrictions on the class of kernels K used in its construc-

tion. Similar efforts have been undertaken by Muller (1984) and Henderson and
Parmeter (2012).

Recently, Mynbaev and Martins-Filho (2010) proposed a class of nonparametric
density estimators that attains bias reduction relative to f̂RP (x) by imposing global
higher order Lipschitz conditions on f . Usually, the order of the bias for f̂RP (x)
is established by requiring that f be r-times (r ∈ N) differentiable. They show that
r-times differentiability is stronger than a Lipschitz order r. Hence, although some
smoothness is still required to attain a suitable order for the bias, the constraint
on the class of densities containing f is milder than what is traditionally required.
In practice, certain discontinuous densities satisfy global Lipschitz conditions of
a certain order, but are not differentiable of the same order.1

In this paper, we propose a new class of estimators for f (m) by considering
m-order derivatives of the kernel density estimators in the class proposed in Myn-
baev and Martins-Filho (2010). We provide a full asymptotic characterization of
the new density derivative estimators, including uniform consistency, asymptotic
normality and give exact convergence rates. An important by-product of our results
is an expression and the exact order for the bias for the density estimators pro-
posed in Mynbaev and Martins-Filho (2010). There, they only provide the order
of the bound on the absolute bias. This is useful, since it allows for our discus-
sion of optimal bandwidth selection based on the minimization of an asymptotic
approximation for the integrated mean-squared error.

Besides this introduction, this paper contains four more sections. The next
section provides new estimators for f (m) based on a class of density estimators
proposed in Mynbaev and Martins-Filho (2010) and a fundamental integral rep-
resentation for their bias. The following section provides asymptotic properties
of our estimators and discusses optimal bandwidth selection. Then, we provide a
small Monte Carlo study that gives some evidence on the small sample properties
of our estimators and compares their performance to that of f̂

(m)
RP . Finally, the last

section provides a conclusion. All proofs and technical lemmas are collected in
the appendix.

2. A CLASS OF ESTIMATORS FOR f (m)(x)
AND THEIR BIAS

The properties of nonparametric density estimators are traditionally obtained
by imposing smoothness conditions on the underlying density f . Smoothness
can be regulated by finite differences, which can be defined as forward, back-
ward, or centered. The corresponding examples of finite first-order differences for
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594 KAIRAT MYNBAEV ET AL.

a function f (x) are f (x + h) − f (x), f (x) − f (x − h), and f (x + h) − f (x − h),
where h ∈ R. We will focus on centered even-order differences because, as will
soon become apparent, the resulting kernels are symmetric. Let Cl

2k = (2k)!
(2k−l)!l! ,

l = 0, . . . , 2k, k ∈ N be the binomial coefficients, ck,s = (−1)s+kCs+k
2k , s = −k,

. . . , k and

!2k
h f (x) =

k∑

s=−k

ck,sf (x + sh), h ∈ R. (2)

For example, taking k = 1, 2 we have !2
hf (x) = [f (x + h) − f (x)] − [f (x) −

f (x − h)] and!4
hf (x) = [f (x + 2h) − f (x + h)] − 3[f (x + h) − f (x)] + 3[f (x)

−f (x − h)] − [f (x − h) − f (x − 2h)].
We say that a function f (x) : R → R satisfies the Lipschitz condition of order 2k

if for any x ∈ R there exist H(x) > 0 and ε(x) > 0 such that
∣∣!2k

h f (x)
∣∣ ≤ H(x)h2k

for all h such that |h| ≤ ε(x). We call H(x) a Lipschitz constant and ε(x) a Lipschitz
radius.2 For a kernel K, Mynbaev and Martins-Filho (2010) define a class of kernels
{Mk(x)}k=1,2,3,... where

Mk(x) = − 1
ck,0

k∑

|s|=1

ck,s

|s| K
(x

s

)
. (3)

K is called a seed kernel for Mk. The main impetus for the definition of Mk(x) is
that it allows us to express the bias of our proposed estimator

f̂k(x) = 1
n

n∑

j=1

1
hn

Mk

(
x − Xj

hn

)
for k = 1, 2, . . .

in terms of centered even-order differences of f (x). Let λk,s = (−1)s+1(k!)2

(k+s)!(k−s)! ,
s = 1, . . . , k and since − ck,s

ck,0
= − ck,−s

ck,0
= λk,s, s = 1, . . . , k, (3) can also be writ-

ten as Mk(x) = ∑k
s=1

λk,s
s

(
K

(
x
s

)
+ K

(
− x

s

))
. It follows by construction that Mk

is symmetric, that is, Mk(x) = Mk(−x), x ∈ R. Since the coefficients ck,s satisfy∑k
|s|=0 ck,s = (1 − 1)2k = 0, we have − 1

ck,0

∑k
|s|=1 ck,s = 1 or

∑k
s=1 λk,s = 1

2 .

Consequently, Eqs. (1) and (3) imply that
∫ +∞
−∞ Mk(x)dx =∑k

s=1
λk,s
s

(∫ +∞
−∞ K

(
x
s

)

dx +
∫ +∞
−∞ K

(
− x

s

)
dx

)
= 1, establishing that {Mk(x)}k=1,2,··· is a class of kernels.

Tsybakov (2009) provides several choices for a seed kernel K, but perhaps the
most popular would be a Gaussian density. In this case, f̂k(x) has derivatives of all
orders. It should also be noted that when K is symmetric f̂1(x) is the traditional
Rosenblatt–Parzen density estimator. We define a new class of m = 1, 2, . . . order
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Nonparametric Density Derivative Estimators 595

nonparametric estimators for f (m) by

f̂
(m)
k (x) = 1

n

n∑

j=1

1
hm+1

n

M
(m)
k

(
x − Xj

hn

)
= 1

n

n∑

j=1

uj (4)

where uj = 1
hm+1

n
M

(m)
k

(
x−Xj

hn

)
and

M
(m)
k (x) = − 1

ck,0

k∑

|s|=1

ck,s

|s|sm
K(m)

(x

s

)
. (5)

It follows from the fact that {Xj}nj=1 is an independent and identically distributed
random sample that

E
(
f̂

(m)
k (x)

)
= 1

n

n∑

j=1

1
hm+1

n

E

(
M

(m)
k

(
x − Xj

hn

))
= 1

n

n∑

j=1

E(uj) = E(u1) (6)

and

V
(
f̂

(m)
k (x)

)
= V



1
n

n∑

j=1

1
hm+1

n

M
(m)
k

(
x − Xj

hn

)

 = 1
n2

n∑

j=1

V (uj)

= V (u1)
n

= 1
n

(E(u2
1) − E(u1)2). (7)

As in the existing literature, restrictions on K and f are needed to obtain a suitable
representation for the bias and variance of the density derivative estimators. Hence,
we assume that

Assumption 1.
(a) K is symmetric and belongs to the weighted Sobolev space with norm ‖K‖Wm

1
=∫

R
(
|K(t)| + |K(m)(t)|

)
|t|dt.

(b) max
{
|f (s)|, . . . , |f (m−1)(s)|

}
= O(s), |s| → ∞.

Assumption 1 is used to obtain an integral representation for the bias
B(f̂ (m)

k (x)) = E(f̂ (m)
k (x)) − f (m)(x) of f̂

(m)
k (x) in terms of centered even order

differences of f (m)(x). Most of other results depend on this representation.

Theorem 1. Under Assumption 1, for any hn > 0, B(f̂ (m)
k (x)) =

− 1
ck,0

∫ +∞
−∞ K(t)!2k

hntf
(m)(x)dt.
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596 KAIRAT MYNBAEV ET AL.

3. ASYMPTOTIC CHARACTERIZATION OF f̂
(m)
k (x)

3.1. Uniform Consistency and Orders for Bias and Variance

We start our investigation of the asymptotic behavior of f̂
(m)
k (x) by providing

conditions under which the estimator is asymptotically uniformly unbiased and
uniformly consistent. To establish the uniform consistency f̂

(m)
k (x), we make the

following assumption:

Assumption 2.
(a) The characteristic function φK of K satisfies

∫
R |smφK(s)|ds < ∞; (b) f (m)(x)

is bounded and uniformly continuous in R; (c) nh2m+2
n → ∞ as n → ∞.

Theorem 2. Suppose that Assumption 2(a) and (c) hold. Then,

lim
n→∞

E

(
sup
x∈R

|f̂ (m)
k (x) − E(f̂ (m)

k (x))|
)

= 0.

Let also Assumption 2(b) hold. Then f̂
(m)
k (x) is uniformly consistent.

We note that the rate of decay of the bandwidth in Assumption 2(c), needed for
the uniform consistency of f̂

(m)
k (x), could potentially be relaxed by, for example,

limiting uniform consistency to restricted (compact) subsets of R. In the following
theorem, we provide exact orders for the bias and variance of the estimators. As
a result, it can be promptly verified that the usual rate of decay of hn implied
by nh2m+1

n → ∞ as n → ∞ is sufficient for pointwise consistency. The theorem
depends on the following assumption.

Assumption 3.
(a) f (m)(x) is bounded and continuous in R; (b) there exist functions H2k,m(x) > 0

and ε2k(x) > 0 such that

∣∣!2k
h f (m)(x)

∣∣ ≤ H2k,m(x)h2k for all |h| ≤ ε2k(x); (8)

(c)
∫ ∞
−∞ |K(t)|t2kdt < ∞.

Theorem 3. Suppose that Assumptions 1 and 3 hold. Then, for all x ∈ R and
0 < hn ≤ ε2k(x)

∣∣∣B(f̂ (m)
k (x))

∣∣∣ ≤ ch2k
n

(
H2k,m(x) + ε−2k

2k (x)
)

(9)
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Nonparametric Density Derivative Estimators 597

where the constant c does not depend on x or hn. Suppose additionally that∫ ∞
−∞ |K(m)(t)|2(1 + |t|)dt < ∞ and there exist functions H1(x) > 0 and ε1(x) > 0

such that

|f (x) − f (x − h)| ≤ H1(x)|h| for all |h| ≤ ε1(x). (10)

Then, for all x ∈ R and 0 < hn ≤ min{ε2k(x), ε1(x)}

V (f̂ (m)
k (x)) = 1

nh2m+1
n

{
f (x)

∫ ∞

−∞

(
M

(m)
k (t)

)2
dt + R1(x, hn)

−hn[f (m)(x) + R2k(x, hn, m)]2
}

, (11)

where the residuals satisfy

|R1(x, hn)| ≤ c1|hn|(H1(x) + ε−1
1 (x)), |R2k(x, hn, m)| ≤ c2h

2k
n (H2k,m(x) + ε−2k

2k (x))
(12)

with constants c1 and c2 independent of x and hn.

3.2. Integrated Mean-Squared Error and Bandwidth Choice

We consider optimal choice of bandwidth by minimizing the Integrated Mean
Squared Error (IMSE),

IMSE(f̂ (m)(x)) =
∫

R

(
V (f̂ (m)(x)) + B(f̂ (m)(x))2

)
dx.

The precise value of IMSE, as a function of hn, is usually impossible to obtain. The
common approach is to derive asymptotic approximations of variance and bias, as
hn → 0, and plug those approximations into IMSE to obtain an approximation of
type IMSE ' ϕ(hn) where ϕ depends on hn, n and some well-defined constants.
Then minimization of ϕ over hn yields an expression of the optimal hn as a function
of the sample size. This is the approach we take up here. The result we formu-
late below, when m = 0, is better than Theorem 8 in Mynbaev and Martins-Filho
(2010). In the latter theorem, IMSE is bounded above by ϕ(hn), while here we
obtain the asymptotic expression for IMSE. Our results depend on two auxiliary
lemmas that are given in the appendix.

In the next theorem, we derive the exact order of bias, as hn → 0. The result is
stronger than the upper bound Eq. (9) and, correspondingly, it requires stronger
conditions. The result is also new for m = 0 as Mynbaev and Martins-Filho (2010)
did not derive the exact order of bias. We need the following assumption.
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598 KAIRAT MYNBAEV ET AL.

Assumption 4.
(a)

∫
|K(t)||t|2k+1dt = β2k+1(K) < ∞; (b) f (m+2k) is absolutely continuous,

bounded and satisfies the following Lipschitz condition: there exist positive
functions H1,m(x), ε(x) such that

∣∣f (m+2k)(x) − f (m+2k)(x − h)
∣∣ ≤ H1,m(x)|h| for all |h| ≤ ε(x). (13)

Theorem 4. Suppose that Assumptions 1 and 4 hold. Then

B(f̂ (m)(x)) = cf (m+2k)(x)h2k
n + O(h2k+1

n G(x)) (14)

where c = (−1)k+1α2k(K) (k!)2

(2k)! , α2k(K) =
∫

R K(t)t2kdt and G(x) = H1,m(x) +
2‖f (m+2k)‖C

ε(x) .

We note that if the Lipschitz condition in Eq. (13) is uniform on R, then we can
write B(f̂ (m)(x)) = cf (m+2k)(x)h2k

n + O(h2k+1
n ). In the next theorem, we obtain the

optimal bandwidth by minimizing the asymptotic expression for IMSE.

Theorem 5. In addition to the conditions imposed in Theorem 3 for validity
of Eq. (11), let us assume the conditions f (m), H1, ε−1

1 ∈ L1, H2k, ε−2k
2k ∈ L2

that provide integrability in x of the right side of Eq. (11). In addition to the
conditions of Theorem 4, suppose that f (m+2k), H , 1

ε
∈ L2 which makes sure that

the right side of Eq. (14) is square integrable. Then

IMSE = h4k
n

[
c2‖f (m+2k)‖2

L2
+ O(hn)

]
+ 1

nh2m+1
n

[
‖M(m)

k ‖2
L2

+ O(hn)
]
. (15)

where c is the constant from Theorem 4. Hence, the function ϕ(hn) = c1h
4k
n +

c2
1

nh2m+1
n

where c1 = c2‖f (m+2k)‖2
L2

and c2 = ‖M(m)
k ‖2

L2
approximates IMSE.

Minimization of ϕ yields the following optimal bandwidth:

hopt =
(

(2m + 1)c2

4knc1

)1/(4k+2m+1)

. (16)

3.3. Asymptotic Normality

In this section, we state a theorem that gives the asymptotic normality of our
estimator under suitable normalization. The proof is omitted as it follows closely
the proof of Theorem 9 in Mynbaev and Martins-Filho (2010).
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Nonparametric Density Derivative Estimators 599

Theorem 6. Suppose that Assumption 3(a) and (b) hold. Let
∫

R |K(m)(t)|2+δ

dt < ∞ for some δ > 0. If nhn → ∞ and nh4k+2m+1
n → 0, then

(nh2m+1
n )1/2(f̂ (m)(x) − f (m)(x))

d→ N

(
0, f (x)

∫

R

[
M

(m)
k (t)

]2
dt

)
. (17)

4. MONTE CARLO STUDY

We implement our estimator f̂
(m)
k with k = 1, 2, 3, 4, 8 for derivatives of order

m = 0, 1, 2. Our simulations were conducted for four different densities and three
different seed kernels (K) to construct Mk. Since the fit quickly worsens as the
derivative order grows, we did not consider m > 2. Note that if k = 1 and the
seed K is symmetric, the kernel Mk is just K, so results reported below for k = 1
are actually for Rosenblatt–Parzen estimators. Mynbaev and Martins-Filho (2010)
demonstrated that increasing k indeed improves estimation (they allowed k to take
values 2, 4, 8) of the density. In case of derivative estimation, considering large k is
technically more complex because the formula for the optimal bandwidth Eq. (16)
requires a derivative of order 2k + m of the density.

The four densities to be estimated were proposed in Marron and Wand
(1992) and are examples of normal mixtures. They are: (1) Gaussian (f1(x) ≡
N(1, 1)); (2) Bimodal (f2(x) ≡ 1

2N(−1, 1
9 ) + 1

2N(1, 1
9 )); (3) Separated-Bimodal

(f3(x) ≡ 1
2N(−1.5, 1

4 ) + 1
2N(1.5, 1

4 )), and (4) Trimodal (f4(x) ≡ 9
20N(− 6

5 , 9
25 ) +

9
20N( 6

5 , 9
25 ) + 1

10N(0, 1
16 )). These four densities were used by Mynbaev and

Martins-Filho (2010) for their simulations. They also considered one more den-
sity, whose second derivative is not continuous for all x but satisfies a Lipschitz
condition of order 2. We exclude this fifth density from consideration because the
optimal bandwidth we apply is not defined for the fifth density unless m = 0 and
k = 1 (this case has already been considered by Mynbaev & Martins-Filho, 2010).

The three seeds we consider are: (1) Gaussian, (2) t distribution with 5 degrees
of freedom, and (3) concentrated density. The concentrated density is defined
as exp (−x8)/c, where c = 2)( 9

8 ) is the normalization constant. Fig. 1 provides
a graph for the different seeds we use. The motivation for the name of the
concentrated density is clear from Fig. 1.

Note that the concentrated density has a flat top and nonexistent tails, while the
t distribution is sharper at the top than the Gaussian and has fat tails. We did not
use degrees of freedom larger than 5 for the t-distribution to avoid smoothing of
the density at the top. The reason to experiment with different seeds was motivated
by the fact that even with a very large number of observations (n = 100, 000) the
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600 KAIRAT MYNBAEV ET AL.
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0.7
Three seeds compared

StNormal
Concentr
t5

Fig. 1. Comparison of Three Seed Kernels.

−10 −5 0 5 10
−0.8

−0.6

−0.4
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0

0.2

0.4

0.6
Bimod, k = 3, m = 2, n−obs = 100,000

Estimated
Bimod

Fig. 2. Estimation of Second Derivative of Bimodal.

differences between the estimated density derivative and the true density derivative
at the peaks and troughs of the graph do not vanish (see Fig. 2).

We report first the results for the Gaussian seed and then indicate the variations
caused by replacing the seed. For each of the four densities 1,000 samples of size
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Table 1. Five Estimators with Optimal Bandwidth hopt .

Estimators f1(x) f2(x) f3(x) f4(x)

B MSE B MSE B MSE B MSE

n = 200
m = 0 f̂1 0.110 0.003 0.121 0.005 0.147 0.007 0.148 0.006

f̂2 0.107 0.002 0.129 0.004 0.140 0.005 0.158 0.008
f̂3 0.099 0.002 0.129 0.004 0.142 0.006 0.164 0.008
f̂4 0.102 0.002 0.125 0.005 0.130 0.006 0.176 0.009
f̂8 0.099 0.002 0.131 0.005 0.145 0.006 0.184 0.010

m = 1 f̂1 0.202 0.009 0.338 0.030 0.463 0.060 0.571 0.088
f̂2 0.177 0.008 0.293 0.026 0.428 0.055 0.666 0.123
f̂3 0.170 0.009 0.296 0.024 0.455 0.051 0.762 0.170
f̂4 0.176 0.007 0.301 0.022 0.443 0.052 0.841 0.203
f̂8 0.178 0.008 0.299 0.025 0.440 0.056 0.931 0.267

m = 2 f̂1 0.415 0.047 0.978 0.273 1.887 0.999 3.209 3.036
f̂2 0.041 0.037 0.930 0.258 1.775 0.844 4.185 5.345
f̂3 0.358 0.037 0.945 0.230 1.792 0.922 5.263 7.547
f̂4 0.407 0.043 0.928 0.228 1.950 0.980 6.045 10.842
f̂8 0.413 0.041 1.007 0.273 2.010 1.144 7.372 15.053

n = 400
m = 0 f̂1 0.086 0.002 0.101 0.003 0.114 0.004 0.111 0.004

f̂2 0.075 0.002 0.095 0.003 0.107 0.003 0.116 0.004
f̂3 0.077 0.001 0.093 0.003 0.107 0.003 0.123 0.004
f̂4 0.077 0.001 0.094 0.002 0.106 0.003 0.128 0.005
f̂8 0.075 0.001 0.097 0.003 0.106 0.003 0.130 0.005

m = 1 f̂1 0.159 0.007 0.267 0.020 0.385 0.043 0.459 0.065
f̂2 0.142 0.005 0.242 0.016 0.334 0.031 0.538 0.085
f̂3 0.138 0.005 0.246 0.016 0.343 0.032 0.585 0.099
f̂4 0.136 0.005 0.240 0.015 0.346 0.033 0.629 0.115
f̂8 0.132 0.006 0.238 0.015 0.350 0.032 0.681 0.135

m = 2 f̂1 0.343 0.032 0.848 0.194 1.621 0.741 2.840 2.421
f̂2 0.317 0.027 0.880 0.164 1.514 0.640 3.353 3.252
f̂3 0.305 0.024 0.773 0.160 1.480 0.604 4.068 4.688
f̂4 0.326 0.027 0.775 0.151 1.570 0.679 4.924 7.040
f̂8 0.322 0.025 0.791 0.165 1.534 0.651 5.472 8.532

n = 600
m = 0 f̂1 0.072 0.002 0.086 0.002 0.098 0.003 0.103 0.003

f̂2 0.069 0.001 0.083 0.002 0.091 0.002 0.102 0.003
f̂3 0.064 0.001 0.081 0.002 0.089 0.002 0.101 0.003
f̂4 0.065 0.001 0.080 0.002 0.091 0.002 0.106 0.003
f̂8 0.061 0.001 0.079 0.002 0.090 0.002 0.109 0.004

m = 1 f̂1 0.148 0.006 0.240 0.016 0.348 0.036 0.414 0.050
f̂2 0.129 0.004 0.210 0.013 0.302 0.025 0.457 0.060
f̂3 0.124 0.004 0.209 0.012 0.309 0.026 0.501 0.072
f̂4 0.130 0.004 0.206 0.011 0.305 0.024 0.547 0.084
f̂8 0.116 0.003 0.205 0.010 0.312 0.027 0.574 0.096

m = 2 f̂1 0.326 0.030 0.802 0.183 1.471 0.621 2.506 1.976
f̂2 0.293 0.022 0.695 0.132 1.350 0.508 2.986 2.579
f̂3 0.271 0.018 0.684 0.126 1.359 0.497 3.475 3.624
f̂4 0.281 0.019 0.677 0.120 1.329 0.474 4.029 4.733
f̂8 0.279 0.020 0.687 0.129 1.365 0.519 4.715 6.450
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602 KAIRAT MYNBAEV ET AL.

400 were generated. In our first set of simulations, five estimators were obtained
for each sample: f̂k(x) for k = 1, 2, 3, 4, 8 where, as stated earlier, f̂1(x) = f̂RP (x),
the Rosenblatt–Parzen estimator. For all estimators, the optimal bandwidth hopt in
Eq. (16) was used in our implementation. The usual caveat applies: in practice, this
bandwidth is infeasible given that f (x) is unknown. However, in the context of a
Monte Carlo study it is desirable since estimation performance is not impacted by
the noise introduced through a data-driven bandwidth selection. Table 1 provides
average absolute bias (B) and average mean-squared error (MSE) for each density
considered for n = 200, 400, 600 respectively. We observe the following general
regularities. As follows from the theory, increases in the values of k seem to
reduce average absolute bias and MSE, but this is not verified for all experiments.
Specifically, the step from k = 3 to k = 4 does not always improve B and MSE

in case of higher order derivatives or in case of densities that are more difficult
to estimate, i.e, f3 and f4. Further, density functions with larger curvature (in
increasing order of curvature f1, f2, f3, and f4) are more difficult to estimate both
in terms of bias and MSE for all estimators considered. Our proposed estimators
(f̂2, f̂3, f̂4) outperform the Rosenblatt–Parzen estimator both in terms of bias and
MSE, except when estimating f4.

For the other two seeds (concentrated and t distribution), we give a verbal
description of the simulation results (full tables are available on request). When
we use the concentrated distribution as a seed, the statistics behave the same
as one moves right along the table (they worsen when the density curvature
increases). The behavior along columns changes. For m = 0, the case k = 1 is
about as good as k = 2, except for f4 when the Rosenblatt–Parzen is the best.
In case m = 1, 2, the Rosenblatt–Parzen outperforms the others. This is true both
for B and MSE. With t distribution with 5 degrees of freedom as a seed, the
requirement

∫
K(t)t2kdt < ∞ implied by the definition of the optimal bandwidth

limits the value of k: k ≤ 2. For m = 1, 2 our estimator with k = 2 outperforms the
Rosenblatt–Parzen for all densities, except f4. For m = 0, our estimator is better
everywhere.

Finally, if we compare, for fixed k and m, the three seeds, the Gaussian is
the best of all, with the margins being the largest for f4, which is the most diffi-
cult to estimate. The Gaussian density seems to strike the right balance between
concentration and dispersion.

5. CONCLUSION

We have shown that taking derivatives of order m of the density estimators in the
class first proposed by Mynbaev and Martins-Filho (2010) produce estimators for
the m-order derivative of the densities that have desirable asymptotic properties.
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Nonparametric Density Derivative Estimators 603

In particular, these estimators are (uniformly) consistent and asymptotically nor-
mally distributed under suitable normalization. In addition, the reduction in the
order of the bias, relative to the classical Rosenblatt–Parzen density estimator, first
discovered in Mynbaev and Martins-Filho (2010) in the context of density estima-
tion, also manifests itself in the context of derivative estimation. These theoretical
results are supported by a small Monte Carlo study, but in agreement with previous
simulations we conducted in the case of density estimation, very large values of
k seem, in some contexts, to damage finite sample performance as measured by
MSE. An interesting extension of this research would be to develop a practical
criterion for the selection of k, viz., a criterion for the selection of an optimal
density or density derivative estimator in the class we have proposed. We leave
such efforts for future studies.

NOTES

1. For an example of one such density, see Mynbaev and Martins-Filho (2010, p. 232).
2. Theorem 1 in Mynbaev and Martins-Filho (2010) obtained expressions for H(x) and

ε(x) for the Gaussian and Cauchy densities.
3. This proof extends the arguments from Besov, Il’in, and Nikolskii (1975, p. 254).
4. Note that since x0 and 2k are fixed, the operator acts on the function g and the result

is a function of x.
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Nonparametric Density Derivative Estimators 605

APPENDIX A: LEMMAS AND PROOFS

Lemma 1. (a) Let γi =
k∑

s=−k

ck,ss
i for i = 0, . . . , 2k. Then, γ0 = · · · = γ2k−1 = 0,

γ2k = (−1)2k(2k)!; (b) Suppose K has finite moments αl(K) of orders l ≤ 2k.

Then Mk has moments αl(Mk) = 0 < l < 2k, α2k(Mk) = − γ2k

ck,0
α2k(K).

Proof. (a) The function φq(x) = (1 − x)q vanishes at x = 1 together with all
its derivatives of orders l < q. For the qth derivative, we have φ

(q)
q (x) =(

d
dx

)q
[φq(x)] = (− 1)qq!. Now, consider the linear operator

(
x d

dx

)
. By induction,

for l < q we have
(
x d

dx

)l
[φq(x)] = ∑l

j=1 aj,lx
jφ

(j)
q (x), where aj,l are constants

and al,l = 1. Now it is easy to see that

(
x

d

dx

)l

[φq(x)]|x=1 =
{

0 if l < q

(− 1)qq! if l = q
. (A.1)

Note that by the binomial theorem, φq(x) = ∑q
m=0 (− 1)mxmCm

q and we see that

(
x

d

dx

)l

[φq(x)] =
q∑

m=0

(− 1)mmlxmCm
q . (A.2)

Comparing (A.1) and (A.2) we have

q∑

m=0

(− 1)mmlCm
q =

{
0 if l < q

(− 1)qq! if l = q
. (A.3)

By the definition of ck,s and replacing s + k with m, we have

γi =
k∑

s=−k

(− 1)s+kCs+k
2k si =

2k∑

m=0

(− 1)mCm
2k(m − k)i

=
2k∑

m=0

(− 1)mCm
2k

i∑

j=0

C
j
i m

j( − k)i−j =
i∑

j=0

C
j
i ( − k)i−j

2k∑

m=0

(− 1)mCm
2km

j.
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606 KAIRAT MYNBAEV ET AL.

This identity and (A.3) prove statement (a).3 b) Replacing x/s = t we have

∫

R

Mk(x)xldx = − 1
ck,0

k∑

|s|=1

ck,s

|s| sl

∫

R

K
(x

s

) (x

s

)l

dx

= − 1
ck,0

k∑

|s|=1

slck,s

∫

R

K (t) tldx

= − 1
ck,0

k∑

s=−k

slck,sαl(K) = − 1
ck,0

γlαl(K)

which completes the proof. !

Lemma 2. Let I(x, g) = 1
(2k)!

∫ x

x0
(x − t)2kg(t)dt denote the (2k + 1)-fold inte-

gration operator for some fixed x0 and Assumption 1 hold.4 If the density f has
an absolutely continuous derivative f (m+2k), then the bias of f̂ (m)(x) has the
representation

B(f̂ (m)(x)) = − γ2k

ck,0

f (m+2k)(x0)
(2k)! h2kα2k(K) − 1

ck,0

∫

R
K(t)!2k

ht I(x, f (m+2k+1))dt

(A.4)
where α2k(K) =

∫
R K(t)t2kdt and x0 is arbitrary.

Proof. If g(2k) is absolutely continuous, then g(2k+1) is summable and by

Taylor’s theorem with remainder in integral form one has g(x) =
2k∑
i=0

g(i)(x0)
i!

(x − x0)i + 1
(2k)!

∫ x

x0
(x − t)2kg(2k+1)(t)dt.

Applying this formula to g = f (m) and recalling our notation for the
integration operator, we get

f (m)(x) =
2k∑

i=0

f (m+i)(x0)
i! (x − x0)i + I(x, f (m+2k+1)).

In view of Eq. (A.9), we need to consider

!2k
ht f

(m)(x) =
2k∑

i=0

f (m+i)(x0)
i! !2k

ht (x − x0)i + !2k
ht I(x, f (m+2k+1)) (A.5)
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Nonparametric Density Derivative Estimators 607

where the difference is applied with respect to the variable x, x0 being fixed.
By Lemma 1

!2k
ht (x − x0)i =

k∑

s=−k

ck,s(x + sht − x0)i =
k∑

s=−k

ck,s

i∑

j=0

C
j
i (x − x0)i−j(sht)j

=
i∑

j=0

C
j
i (x − x0)i−j(ht)j

k∑

s=−k

ck,ss
j =

{
0, i < 2k

γ2k(ht)2k, i = 2k
(A.6)

Under Assumption 1, combining Eqs. (A.9), (A.5), and (A.6) we finish the
proof of Eq. (A.4):

B(f̂ (m)(x)) = − 1
ck,0

∫

R
K(t)

[
f (m+2k)(x0)

(2k)! γ2k(ht)2k + !2k
ht I(x, f (m+2k+1))

]
dt

= − γ2k

ck,0(2k)!f
(m+2k)(x0)h2k

∫

R
K(t)t2kdt

− 1
ck,0

∫

R
K(t)!2k

ht I(x, f (m+2k+1))dt.

!

Theorem 1. Under Assumption 1, we show that max{|K(s)|, |K(1)(s)|, . . . , |
K(m−1)(s)|} = o

(
1
|s|

)
as |s| → ∞. Let s > 0. It is well-known that the

Sobolev space Wm
1 [0, 1] is embedded in Cj[0, 1] for j = 0, 1, . . . , m − 1,

that is, with some constant c independent of K one has ‖K(j)‖C[0,1] ≤
c
∫ 1

0

(
|K(t)| + |K(m)(t)|

)
dt. Applying this bound to the segment [s, s + 1] and

using the fact that |t/s| ≥ 1 for t ∈ [s, s + 1] we get

max
j

|K(j)(s)| ≤ c

∫ s+1

s

(
|K(t)| + |K(m)(t)|

)
dt

≤ c

|s|

∫ s+1

s

(
|K(t)| + |K(m)(t)|

)
|t|dt.

The case of s < 0 is treated similarly.
Under Assumption 1

∣∣K(j)(t)f (m−1−j)(x − shnt)
∣∣ = o

(
1
|t|

)
O(|x − shnt|) =

o
(∣∣ x−shnt

t

∣∣) = o(1), as |t| → ∞ for j = 0, . . . , m − 1, hn > 0. Therefore, we can
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608 KAIRAT MYNBAEV ET AL.

integrate by parts, and from Eq. (5) and a change of variables, we obtain

E(f̂ (m)
k (x)) = E(u1) = 1

hm+1
n

∫ +∞

−∞
M

(m)
k

(
x − t

hn

)
f (t)dt

= 1
hm

n

∫ +∞

−∞
M

(m)
k (l)f (x − hnl)dl

= − 1
ck,0

k∑

|s|=1

ck,s

|s|smhm
n

∫ +∞

−∞
K(m)

(
l

s

)
f (x − hnl)dl

= − 1
ck,0

k∑

|s|=1

ck,s

|s|sm

[
s

hm
n

K(m−1)
(

l

s

)
f (x − hnl)

∣∣∣∣
+∞

−∞

+ s

hm−1
n

∫ +∞

−∞
K(m−1)

(
l

s

)
f (1)(x − hnl)dl

]

= − 1
ck,0

k∑

|s|=1

ck,s

|s|sm

[
s2

hm−1
n

K(m−2)
(

l

s

)
f ′(x − hnl)

∣∣∣∣
+∞

−∞

+ s2

hm−2
n

∫ +∞

−∞
K(m−2)

(
l

s

)
f (1)(x − hnl)dl

]

= · · · = − 1
ck,0

k∑

|s|=1

ck,s

|s|sm

[
sm

hn

K

(
l

s

)
f (m−1)(x − hnl)

∣∣∣∣
+∞

−∞

+ sm

hn

hn

∫ +∞

−∞
K

(
l

s

)
f (m)(x − hnl)dl

]

= − 1
ck,0

k∑

|s|=1

ck,s

|s|

∫ +∞

−∞
K

(
l

s

)
f (m)(x − hnl)dl

= − 1
ck,0

[ −1∑

s=−k

ck,s

−s
(−s)

∫ +∞

−∞
K(−t)f (m)(x + shnt)dt

+
k∑

s=1

ck,s

s
s

∫ +∞

−∞
K(−t)f (m)(x + shnt)dt

]

= − 1
ck,0

k∑

|s|=1

ck,s

∫ +∞

−∞
K(−t)f (m)(x + shnt)dt. (A.7)
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Nonparametric Density Derivative Estimators 609

Hence, from Eqs. (1), (2), and (A.7) we obtain

B(f̂ (m)(x)) = − 1
ck,0

[ −1∑

s=−k

ck,s

∫ +∞

−∞
K(−t)f (m)(x + shnt)dt

+
k∑

s=1

ck,s

∫ +∞

−∞
K(−t)f (m)(x + shnt)dt

]

− ck,0

ck,0
f (m)(x) (A.8)

= − 1
ck,0




k∑

|s|=1

ck,s

∫ +∞

−∞
K(−t)f (m)(x + shnt)dt

+ck,0

∫ +∞

−∞
K(−t)f (m)(x + 0hnt)dt

]

= − 1
ck,0

∫ +∞

−∞
K(−t)!2k

hntf
(m)(x)dt

= − 1
ck,0

∫ +∞

−∞
K(t)!2k

hntf
(m)(x)dt, (A.9)

where the last equality follows from the symmetry of K. !

Theorem 2. (a) We denote ψj = x−Xj

hn
, then we can rewrite Eq. (4) as f̂

(m)
k (x) =

1
n

∑n
j=1

1
hm+1

n
M

(m)
k (ψj) and using Eq. (5), we get

M
(m)
k (ψj) = − 1

ck,0

k∑

|s|=1

ck,s

|s|sm
K(m)

(
ψj

s

)
. (A.10)

Under Assumption 2(a) the inversion theorem for Fourier transforms gives

K(m)
(

ψj

s

)
= (−i)(m)

2π

∫

R
exp

{−itψj

s

}
tmφK(t)dt. (A.11)

Using Eqs. (4), (5), (A.10), and (A.11) and by changing variables of integration,
we have
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610 KAIRAT MYNBAEV ET AL.

f̂
(m)
k (x) = 1

nhm+1
n

n∑

j=1

M
(m)
k

(
x − Xj

hn

)
= 1

nhm+1
n

n∑

j=1

M
(m)
k (ψj)

= − (−i)(m)

2πck,0

n∑

j=1

1
nhm+1

n

k∑

|s|=1

ck,s

|s|sm

∫

R
exp

{−itψj

s

}
tmφK(t)dt

= − (−i)(m)

2πck,0

n∑

j=1

1
nhm+1

n

k∑

|s|=1

ck,s

|s|sm

∫

R
exp

{
−it

(
x − Xj

sh

)}
tmφK(t)dt

= − (−i)(m)

2πck,0

n∑

j=1

1
n

k∑

|s|=1

ck,s

∫

R
exp{−iγx} exp{iγXj}γmφK(shnγ)dγ

= − (−i)(m)

2πck,0

∫

R
exp{−iγx}

n∑

j=1

1
n

exp{iγXj}
k∑

|s|=1

ck,sγ
mφK(shnγ)dγ

= − (−i)(m)

2πck,0

∫

R
exp{−iγx}φ̂n(γ)!(γ)dγ

where φ̂n(γ) = ∑n
j=1

1
n

exp{iγXj} is an unbiased estimator for the characteristic

function φf (t) of f and !(γ) = ∑k
|s|=1 ck,sγ

mφK(shnγ). Thus,

E(f̂ (m)
k (x)) = − (−i)(m)

2πck,0

∫

R
exp{−iγx}Eφ̂n(γ)!(γ)dγ

= − (−i)(m)

2πck,0

∫

R
exp{−iγx}φf (γ)!(γ)dγ

so that |f̂ (m)
k (x) − E(f̂ (m)

k (x))| ≤ c
∫

R |φ̂n(γ) − φf (γ)|| exp{−iγx}||!(γ)|dγ .
But since | exp{−iγx}| = 1,

sup
x∈R

|f̂ (m)
k (x) − E(f̂ (m)

k (x))| ≤ c

∫

R
|φ̂n(γ) − φf (γ)||!(γ)|dγ.

with no sup on the right-hand side because it does not depend on x. It follows
from Lemma 2.1 of Jennrich (1969) that sup | · | is measurable, its expectation
is well defined and

E

(
sup
x∈R

|f̂ (m)
k (x) − Ef̂

(m)
k (x)|

)
≤ c

∫

R
E

∣∣∣φ̂n(γ) − φf (γ)
∣∣∣ |!(γ)|dγ.
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Nonparametric Density Derivative Estimators 611

Now,

E
(
|φ̂n(γ) − φf (γ)|

)
= E





∣∣∣∣∣∣
1
n

n∑

j=1

exp{iγXj} − E( exp{iγXj})

∣∣∣∣∣∣





= E( |Y1 + iY2| ) = E|Y1| + E|Y2| = E[(Y 2
1 + Y 2

2 )]
1
2

≤ [E(Y 2
1 + Y 2

2 )]
1
2 ≤ (EY 2

1 )
1
2 + (EY 2

2 )
1
2

where 




Y1 = 1
n

n∑
j=1

( cos (γXj) − E( cos (γXj)))

Y2 = 1
n

n∑
j=1

( sin (γXj) − E( sin (γXj))).

Using the i.i.d. assumption, it is easy to see that

EY 2
1 = 1

n2

n∑

j=1

[
E cos2 (γXj) − (E cos (γXj))2]

= 1
n2

n∑

j=1

V
(
cos (γXj)

)
= 1

n
[V ( cos (γX1)]

EY 2
2 = 1

n2

n∑

j=1

[
E sin2 (γXj) − (E sin (γXj))2]

= 1
n2

n∑

j=1

V
(
sin (γXj)

)
= 1

n
[V ( sin (γX1))]

Consequently, (EY 2
1 )

1
2 + (EY 2

2 )
1
2 =

( 1
n
V ( cos (γX1)

) 1
2 +

( 1
n
V ( sin (γX1)

) 1
2 .

Since E cos2 (γX1) ≤ 1 and E sin2 (γX1) ≤ 1, V ( cos (γX1))
1
2 =

[
E cos2 (γX1)

−(E cos (γX1))2
] 1

2 ≤
[
E cos2 (γX1) + E cos2 (γX1)

] 1
2 ≤

√
2. V ( sin (γX1))

1
2

=
[
E sin2 (γX1) − (E sin (γX1))2

] 1
2 ≤

[
E sin2 (γX1) + E sin2 (γX1)

] 1
2

≤
√

2. (EY 2
1 )

1
2 + (EY 2

2 )
1
2 = 2

√
2√
n

. Hence, E
(∣∣∣φ̂n(γ) − φf (γ)

∣∣∣
)

≤ 2
√

2√
n

and

∫

R
|!(γ)|dγ ≤

k∑

|s|=1

|ck,s|
∫

R
|γm||φK(shnγ)|dγ

≤ 1
hm+1

n

k∑

|s|=1

|ck,s|
sm+1

∫

R
|tmφK(t)|dt = c

hm+1
n

∫

R
|tmφK(t)|dt.
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612 KAIRAT MYNBAEV ET AL.

Finally, E
(

supx∈R |f̂ (m)
k (x) − Ef̂

(m)
k (x)|

)
≤ c

hm+1
n

√
n

∫
R |tmφK(t)|dt which

tends to zero as n → ∞ under Assumption 2(c) (nh2m+2
n → ∞). Further, by

Markov’s inequality

P

(
sup

x
|f̂ (m)

k (x) − E(f̂ (m)
k (x))| > ε

)
→ 0 (A.12)

as n → ∞ for all ε > 0. Therefore, supx∈R |f̂ (m)
k (x) − Ef̂

(m)
k (x)| p→ 0. Note that

sup
x∈R

|f̂ (m)
k (x)−f (m)(x)|≤ sup

x∈R
|f̂ (m)

k (x)−Ef̂
(m)
k (x)|+ sup

x∈R
|Ef̂

(m)
k (x)−f (m)(x)|.

The first term on the right-hand side of the inequality is uniformly op(1) from
Eq. (A.12). The second term tends to zero by Eq. (A.7), Assumption 2(b)
and Theorem 5 (for the case where m = 0) in Mynbaev and Martins-
Filho (2010). We have limn→∞ supx∈R |f̂ (m)

k (x) − f (m)(x)| = 0. Consequently,
f̂

(m)
k (x) is uniformly consistent. !

Theorem 3. Assumption 3(c) implies for any N > 0

∫

|t|>N

|K(t)| dt ≤
∫

|t|>N

|K(t)|
∣∣∣

t

N

∣∣∣
2k

dt ≤ N−2k

∫ ∞

−∞
|K(t)| t2kdt. (A.13)

Then, using Eq. (A.9) and Assumption 3(b), we have

∣∣∣B(f̂ (m)
k (x))

∣∣∣ =
∣∣∣∣

1
ck,0

∣∣∣∣

∣∣∣∣

∫ ∞

−∞
K(t)!2k

hntf
(m)(x)dt

∣∣∣∣

≤ c1

(∫

|hnt|≤ε2k(x)
+

∫

|hnt|>ε2k(x)

)
|K(t)||!2k

hntf
(m)(x)|dt

≤ c2

[
H2k,m(x)

∫

|hnt|≤ε2k(x)
|K(t)|(hnt)2kdt

+ sup
x∈R

|f (m)(x)|
∫

|hnt|>ε2k(x)
|K(t)|dt

]
.

It remains to apply Eqs. (A.13) and (8) to obtain Eq. (9).
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Nonparametric Density Derivative Estimators 613

Now, we proceed with derivation of Eq. (11). According to Eq. (7) we need
to evaluate E(u2

1) and E(u1)2. By Eqs. (6) and (9),

Eu1 = E(f̂ (m)
k (x)) = f (m)(x) + B(f̂ (m)

k (x)) = f (m)(x) + R2k(x, hn, m) (A.14)

where R2k(x, hn) satisfies Eq. (12). Now, E(u2
1) =

(
1

hm+1
n

)2 ∫
R

[
M

(m)
k

(
x−t
hn

)]2

f (t)dt = 1
h2m+1

n

∫
R

[
M

(m)
k (t)

]2
f (x − hnt)dt. Consider

∫

R

[
M

(m)
k (t)

]2
f (x − hnt)dt − f (x)

∫

R

[
M

(m)
k (t)

]2
dt

=
∫

R

[
M

(m)
k (t)

]2
[f (x − hnt) − f (x)] dt

Then, similarly to Eq. (A.13), we have

∫

|t|>N

∣∣∣M(m)
k (t)

∣∣∣
2
dt ≤

∫

|t|>N

∣∣∣M(m)
k (t)

∣∣∣
2 ∣∣∣

t

N

∣∣∣ dt ≤ N−1
∫ ∞

−∞

∣∣∣M(m)
k (t)

∣∣∣
2
|t|dt.

(A.15)
Using Eqs. (10) and (A.15), we have

∣∣∣∣

∫ ∞

−∞

(
M

(m)
k (t)

)2
(f (x − hnt) − f (x))dt

∣∣∣∣

≤
(∫

|hnt|≤ε1(x)
+

∫

|hnt|>ε1(x)

) ∣∣∣M(m)
k (t)

∣∣∣
2
|f (x − hnt) − f (x)| dt

≤ H1(x)
∫

|hnt|≤ε1(x)

∣∣∣M(m)
k (t)

∣∣∣
2
|(hnt)|dt + sup

x∈R
|f (x)|

∫

|hnt|>ε1(x)

∣∣∣M(m)
k (t)

∣∣∣
2
dt.

Then using Eq. (10), we get

∫

R

[
M

(m)
k (t)

]2
f (x − hnt)dt = f (x)

∫

R

[
M

(m)
k (t)

]2
dt + R1(x, hn) (A.16)

where R1(x, hn) satisfies Eq. (12).
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614 KAIRAT MYNBAEV ET AL.

Now we show that
∫

R

[
M

(m)
k (t)

]2
dt < ∞. From Eq. (5), we have M

(m)
k (x) =

∑k
|s|=1 asK

(m)
(

x
s

)
, where as = − 1

ck,0

ck,s
|s| s(−m). Hence, by Hölder’s inequality

∫

R

(
M

(m)
k (x)

)2
dx =

∫

R

k∑

|s|,|t|=1

asatK
(m)

(x

s

)
K(m)

(x

t

)
dx

≤
k∑

|s|,|t|=1

|asat|
∫

R

∣∣∣K(m)
(x

s

)∣∣∣
∣∣∣K(m)

(x

t

)∣∣∣ dx

≤
k∑

|s|,|t|=1

|asat|
(∫

R

∣∣∣K(m)
(x

s

)∣∣∣
2
dx

)1
2
(∫

R

∣∣∣K(m)
(x

t

)∣∣∣
2
dx

)1
2

= c1

(∫

R

∣∣K(m)(t)
∣∣2

dt

)
< ∞

because K(m) ∈ L2(R).
Note that Eq. (11) is a consequence of Eqs. (A.14) and (A.16). In addition,

if f (x) ,= 0 and for small hn we can rewrite Eq. (11) as

V (f̂k
(m)

(x)) = 1
nh2m+1

n

[
f (x)

∫

R

(
M

(m)
k (t)

)2
dt + O(hn)

]
. (A.17)

!
Theorem 4. By Eq. (7) in Mynbaev and Martins-Filho (2010)

∣∣!2k
h g(x)

∣∣ ≤
h2k sup|x−t|≤k|h| |g(2k)(t)|. It is easy to verify that

(
d
dx

)2k
I(x, g) =

∫ x

x0
g(t)dt.

Hence, using the last equation and the preceding inequality, we have

∣∣!2k
ht I(x, f (m+2k+1))

∣∣ ≤ (ht)2k sup
|x−y|≤k|ht|

∣∣∣∣∣

(
d

dy

)2k

I(y, f (m+2k+1))

∣∣∣∣∣

= (ht)2k sup
|x−y|≤k|ht|

∣∣∣∣

∫ y

x0

f (m+2k+1)(z)dz

∣∣∣∣ .

Next, given that x0 is arbitrary, we set x0 = x and use Eq. (A.6) and Assumption
4(b) to obtain

∣∣!2k
ht I(x, f (m+2k+1))

∣∣ ≤ (ht)2k sup
|x−y|≤k|ht|

∣∣f (m+2k)(y) − f (m+2k)(x)
∣∣

≤
{

|ht|2k+1kH1,m(x) if k|ht| ≤ ε(x),
2(ht)2k‖f (m+2k)‖C if k|ht| > ε(x).
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Nonparametric Density Derivative Estimators 615

It follows that
∣∣∣∣

∫

R
K(t)!2k

ht I(x, f (m+2k+1))dt

∣∣∣∣ ≤ kh2k+1
n H1,m(x)

∫

k|ht|≤ε(x)
|K(t)||t|2k+1dt

+ 2h2k
n ‖f (m+2k)‖C

×
∫

k|ht|>ε(x)
|K(t)|t2kdt.

In the first integral on the right expand the domain of integration; in the sec-
ond one use the inequality 1 < k|ht|/ε(x) and then expand the domain. The
outcome is
∣∣∣∣

∫

R
K(t)!2k

ht I(x, f (m+2k+1))dt

∣∣∣∣ ≤ kh2k+1
n H1,m(x)β2k+1(K)

+ 2kh2k+1
n ‖f (m+2k)‖C

1
ε(x)

β2k+1(K)

≤ kh2k+1
n β2k+1(K)

[
H1,m(x) + 2‖f (m+2k)‖C

ε(x)

]
.

This equation and Eq. (A.4) prove the theorem. !
Theorem 5. Under the conditions imposed, Eq. (A.17) implies

∫

R
V (f̂ (m)(x))dx = 1

nh2m+1
n

[∫

R
f (x)dx‖M(m)

k ‖2
L2

+ O(hn)
]

,

while Eq. (14) gives
∫

R

[
B(f̂ (m)(x))

]2
dx = h4k

[
c2‖f (m+2k)‖2

L2
+ O(h)

]
. Sum-

ming the last two equations we get Eq. (15). The rest is obvious and

hopt =
{2m + 1

4knγ2
2k

∫
[M(m)

k (t)]2dt∫
[f (m+2k)]2dt(

∫
K(t)t2kdt)2

(
(2k)!
k!

)4} 1
4k+2m+1

. (A.18)

!
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