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We propose nonparametric estimators for conditional value-at-risk (CVaR) and con-
ditional expected shortfall (CES) associated with conditional distributions of a
series of returns on a financial asset. The return series and the conditioning
covariates, which may include lagged returns and other exogenous variables, are
assumed to be strong mixing and follow a nonparametric conditional location-scale
model. First stage nonparametric estimators for location and scale are combined
with a generalized Pareto approximation for distribution tails proposed by Pickands
(1975, Annals of Statistics 3, 119–131) to give final estimators for CVaR and CES.
We provide consistency and asymptotic normality of the proposed estimators under
suitable normalization. We also present the results of a Monte Carlo study that
sheds light on their finite sample performance. Empirical viability of the model and
estimators is investigated through a backtesting exercise using returns on future con-
tracts for five agricultural commodities.

1. INTRODUCTION

Conditional value-at-risk (CVaR) and conditional expected shortfall (CES) are
two of the most used synthetic measures of market risk in empirical finance
(see Duffie and Singleton, 2003; McNeil, Frey, and Embrechts, 2005; Daniels-
son, 2011). From a statistical perspective they have straightforward definitions.
Let {Yt } denote a stochastic process representing the returns1 on a given stock,
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24 CARLOS MARTINS-FILHO ET AL.

portfolio or market index, where t ∈ Z indexes a discrete measure of time,
and FYt |Xt=x denote the conditional distribution of Yt given Xt = x . The vector
Xt ∈ Rd normally includes lag returns {Yt−ℓ}1≤ℓ≤p, for some p ∈ N, as well as
other relevant conditioning variables that reflect economic or market conditions.
Then, for a ∈ (0,1), a-CVaR(x ) is defined to be the a-quantile associated with
FYt |Xt =x and a-CES(x ) is defined to be the conditional expectation of Yt given
that Yt exceeds a-CVaR(x ), i.e., a-CES(x )=E(Yt |Yt > a-CVaR(x ), Xt = x ).2

In this paper we consider the estimation of a-CVaR(x ) and a-CES(x ) for
processes {Yt } that admit a location-scale representation

Yt = m(Xt )+ h1/2(Xt )εt , (1)

where m and h > 0 are nonparametric functions defined on the range of Xt , εt
is independent of Xt , and {εt} is an independent and identically distributed (IID)
innovation process with E(εt ) = 0, V (εt ) = 1 and distribution function F be-
longing to a suitably restricted class (see Section 2). This representation can be
viewed as a nonparametric generalization of certain autoregressive conditionally
heteroscedastic (ARCH) structures and has been studied by Masry and Tjøstheim
(1995), Härdle and Tsybakov (1997), Masry and Fan (1997) and Fan and Yao
(1998), among others.3 Under (1) we have

a-CVaR(x ) ≡ qYt |Xt=x (a) = m(x )+ h1/2(x )q(a) (2)

and

a-CES(x ) ≡ E
(
Yt |Yt > qYt |Xt =x (a), Xt = x

)
= m(x )+h1/2(x )E(εt |εt > q(a)), (3)

where qYt |Xt=x (a) denotes the conditional a-quantile associated with FYt |Xt=x and
q(a) is the a-quantile associated with F .

In insurance and empirical finance, where regulators and portfolio managers
are interested in high levels of risk, with a in the vicinity of 1 (Chernozhukov
and Umantsev, 2001; Tsay, 2010), an important concern for inference is that con-
ventional asymptotic theory does not apply sufficiently far in the tails of FYt |Xt=x
(see Chernozhukov, 2005, p. 807). Hence, we focus on proposing and charac-
terizing the asymptotic behavior of nonparametric estimators for a-CVaR(x ) and
a-CES(x ) when a → 1. In the conditional quantile (regression) literature this is
commonly referred to as extreme quantile regression (Chernozhukov, 2005) and
in empirical finance the corresponding notion is that of extreme CVaR, see e.g.,
Embrechts, Kluppelberg, and Mikosh (1997, p. 349) and Chernozhukov and
Umantsev (2001, p. 273).

Nonparametric estimators of a-CVaR and a-CES for the non-extreme case,
where a is fixed in (0,1), have been proposed and studied in several papers.
Since a-CVaR(x ) is a conditional quantile, estimation can naturally proceed using
nonparametric regression quantiles as in Yu and Jones (1998), Cai (2002), Cosma,
Scaillet, and von Sachs (2007) or Cai and Wang (2008). These estimators for
a-CVaR(x ) can then be used to produce nonparametric estimators for a-CES(x )
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NONPARAMETRIC ESTIMATION OF CVaR AND CES 25

as in Scaillet (2005), Cai and Wang (2008), Kato (2012) and Linton and Xiao
(2013). Also, for the non-extreme case, there exists a large literature on nonpara-
metric estimation of unconditional value-at-risk and expected shortfall, see e.g.,
Scaillet (2004), Chen and Tang (2005), Chen (2008), Linton and Xiao (2013) and
Hill (2015), that is indirectly related to our work.

We propose a two-stage estimation procedure for a-CVaR and a-CES. First,
motivated by (1), nonparametric estimators for m and h are obtained and used
to produce standardized residuals. Second, these residuals are used to obtain
estimators for q(a) and E(εt |εt > q(a)) using a likelihood procedure to estimate
the parameters of a Generalized Pareto Distribution (GPD) that approximates the
upper right tail of F . This stage is motivated by Theorem 7 in Pickands (1975) and
extends the work of Smith (1987). These estimators for q(a) and E(εt |εt > q(a))
are then combined with the first stage estimators for m and h to produce estima-
tors for a-CVaR(x ) and a-CES(x ). To our knowledge, this two stage estimation
approach was first proposed by McNeil and Frey (2000) in the case where m and h
are indexed by a finite dimensional parameter. They provided no asymptotic char-
acterization or finite sample properties for the resulting estimators of conditional
value-at-risk or expected shortfall. However, their backtesting exercise on sev-
eral time series of selected market indexes provided encouraging evidence of the
estimators’ performance. Martins-Filho and Yao (2006) generalized the estima-
tion framework of McNeil and Frey to the case where m and h are nonparametric
functions. They demonstrated via an extensive Monte Carlo simulation, and
through backtesting, that accounting for nonlinearities in m and h can be impor-
tant in improving the estimators’ finite sample performance. Martins-Filho, Yao,
and Torero (2015) provide an asymptotic characterization of the two stage estima-
tion procedure for a-CVaR when a → 1 in a model with constant and unknown
variance (h(Xt ) = θ ) and a process {(Yt ,XT

t )}t∈Z (x T indicates the transposition
of the vector x ) that is IID. Their results, however, are of limited use in empirical
finance where the IID assumption is untenable and h cannot be adequately mod-
eled as a constant function of Xt . Furthermore, by restricting attention to the case
where Xt ∈R, i.e., a scalar, they failed to elucidate the restrictions that the dimen-
sion d may impose on nonparametric estimation of conditional value-at-risk and
expected shortfall.

Here, we extend Martins-Filho et al. (2015) in three important directions: a) we
relax the assumption that {(Yt ,XT

t )}t∈Z is an IID process and instead consider the
case where the process is strictly stationary and strong mixing of a suitable order.
This allows for the presence of lagged values of Yt in the conditioning vector Xt ,
a possibility not covered in our earlier paper and of significant practical interest;
b) we allow the conditional variance h to be a non-constant function of Xt ; and
c) we consider the estimation of a-CVaR(x ) and a-CES(x ). We first establish con-
sistency and asymptotic normality of the estimators for q(a) and E(εt |εt > q(a))
based on the maximum likelihood estimators for the parameters of the (approx-
imating) GPD using residuals from the first stage estimation. From a technical
perspective, this extends the results in Smith (1987) to the case where only
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26 CARLOS MARTINS-FILHO ET AL.

residuals, rather than the actual sequence {εt}, are observed. These results are used
to obtain consistency and asymptotic normality of our proposed estimators for
a-CVaR(x ) and a-CES(x ). Estimators, like ours, that rely on tail approximations
based on the GPD are normally asymptotically biased and require bias correction
for valid inference. Hence, we provide bias-corrected versions of our estimators
that can be easily used for inference as their asymptotic distributions are correctly
centered.

Besides this introduction, this paper has five more sections and two appendices.
Section 2 provides a discussion of the main restrictions we impose on F , as
well as a motivation, description, and discussion of the estimation procedure.
Section 3 contains a list of assumptions needed to study the estimators for m and h
and the main theorems that describe the asymptotic behavior of our estimators.
Section 4 contains a Monte Carlo study that sheds light on the finite sample
behavior of our estimators and contrasts their performance with the estimators
proposed by Cai and Wang (2008). Section 5 provides an empirical application in
which a-CVaR and a-CES are estimated using time series of returns on future con-
tracts for five widely traded agricultural commodities. A backtesting exercise is
also conducted for each of the time series. Section 6 provides concluding remarks
and gives some directions for future research. Tables and figures associated with
the Monte Carlo study and the empirical exercise are provided in Appendix A.
The proofs for Theorems 2 through 5 are provided in Appendix B. Supporting
lemmas and their proofs, as well as the proof of Theorem 1, can be found in
the online supplement to this article available at Cambridge Journals Online
(journals.cambridge.org/ect).

2. ESTIMATION OF a-CVaR AND a-CES

As stated in the introduction, our estimation procedure has two stages. In the
first stage we produce a sequence of standardized nonparametric residuals based
on the estimation of m and h. Given a sample {(Yt ,XT

t )}n
t=1, we consider a

local linear (LL) estimator for m, denoted by m̂(x ) ≡ β̂0, where (β̂0, β̂) ≡
argmin
β0,β

∑n
t=1

(
Yt −β0 − (XT

t − x T )β
)2 K1

(
Xt−x
h1n

)
, K1(·) is a multivariate kernel

function and h1n > 0 is a bandwidth. For the estimation of h, we follow the
procedure proposed in Fan and Yao (1998), where we obtain a sequence {Ût ≡
Yt − m̂(Xt )}n

t=1 and define ĥ(x ) ≡ η̂, where (η̂, η̂1) ≡ argmin
η,η1

∑n
t=1

(
Û2

t − η−

(XT
t − x T )η1

)2K2

(
Xt−x
h2n

)
, K2(·) is a multivariate kernel function and h2n > 0 is

a bandwidth, both potentially different from those used in the definition of m̂.4

The estimators m̂(x ) and ĥ(x ) are used to produce a sequence of standardized
nonparametric residuals {ε̂t}n

t=1, where

ε̂t =
{

Yt −m̂(Xt )

ĥ1/2(Xt )
, if ĥ(Xt ) > 0

0, if ĥ(Xt ) ≤ 0
, for t = 1, . . . ,n. (4)
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NONPARAMETRIC ESTIMATION OF CVaR AND CES 27

In the second stage, we use these residuals to construct estimators for q(a) and
E(εt |εt > q(a)), appearing in (2) and (3), which are combined with m̂(x ) and ĥ(x )
to produce our estimators for a-CVaR(x ) and a-CES(x ). Whereas to motivate the
first stage of estimation, the only restrictions imposed on F were that it has mean
zero and variance one, the motivation for the second stage requires additional
restrictions. First, we assume

Assumption FR1. a) F is strictly monotonic and absolutely continuous with
positive density f such that for some k0 < 0, lim

x→∞
x f (x)

1−F(x) = − 1
k0

; b) f is such

that
∫

|ε|4+ϵ f (ε)dε < ∞ for some ϵ > 0; c) f is m1 ≥ 2-times continuously

differentiable with
∣∣∣ d j

du j f (u)
∣∣∣ < C for some constant C and j = 1, . . . ,m1.

Remarks on FR1. 1. By Proposition 1.15 in Resnick (1987), if F satisfies
FR1 a), then it belongs to the maximum domain of attraction of a Fréchet distri-
bution with parameter −1/k0, denoted here by F ∈ D('−1/k0).

5 This, in turn,
is equivalent to L(x) = (1 − F(x))x−1/k0 being slowly varying as x → ∞ (see
Gnedenko, 1943). Thus, any F satisfying FR1 a) is such that (1− F(x))x−1/k0 is
slowly varying at infinity.
2. The restriction that F belongs to the domain of attraction of a Fréchet distribu-
tion is not entirely arbitrary. There are only two other possibilities: a) F belongs
to the domain of attraction of a (reverse) Weibull distribution, in which case
F has a finite right endpoint, a restriction that is not commonly placed on the
innovation associated with location-scale models; b) F belongs to the domain of
attraction of a Gumbel distribution, in which case, when F has an infinite right
endpoint 1− F is rapidly varying at infinity (Resnick, 1987), a case we must avoid
to derive the asymptotic properties of our estimators. Thus, distribution functions
where 1 − F(x) decays exponentially fast as x → ∞ are ruled out by FR1 a).
3. We note that Assumptions FR1 a) and b) imply that −1/(4+ ϵ) < k0 < 0. This
ensures that the (right) tail 1 − F(x) decays sufficiently fast as x → ∞. It rules
out distribution functions with right tails that are “too thick” in the sense of k0 ≤
−1/4. Hence, F is in a class of distributions that can have thick tails, but not so
thick as to prevent the existence of moments slightly larger than four. The restric-
tion is critical for the asymptotic results we derive and can be empirically binding
in that many financial time series appear to have heavy tails with k0 ≤ −1/2
(Embrechts et al., 1997).
4. FR1 c) is needed to provide asymptotic characterizations of our proposed
estimators (see, e.g., the proof of Lemma 5), but is not required to provide a
motivation for their definition.

Theorem 7 in Pickands (1975) shows that if F ∈ D('−1/k0 ), then its extreme
upper tail is uniformly close to a generalized Pareto distribution (GPD). Formally,
for k0 < 0 and some function σ0(ξ) > 0 with ξ ∈ R,

F ∈ D('−1/k0) ⇐⇒ lim
ξ→∞

sup
ξ<ξ+u<∞

∣∣Fξ (u)− G(u; σ0(ξ),k0)
∣∣ = 0, (5)
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28 CARLOS MARTINS-FILHO ET AL.

where Fξ (u) = F(u+ξ )−F(ξ )
1−F(ξ ) and G(u; σ,k) = 1−(1−ku/σ )1/k with 0 < u < ∞.

As in Davis and Resnick (1984, p. 1471) and Smith (1987, p. 1176), we use the
equivalence in (5) to motivate our estimator for q(a). To this end, let Nn be a
nonstochastic subsequence on n such that Nn → ∞ and Nn

n → 0 as n → ∞.
For notational simplicity put N ≡ Nn and define aN = 1 − N

n . Then, aN → 1
and q(aN ) → ∞ as n → ∞. Since (5) is valid for any sequence ξ → ∞, we
put ξ ≡ q(aN ) and note that by strict monotonicity of F , 1 − F(q(aN )) = N/n.
Then, putting a ≡ F(u +q(aN )) and noting that 1−F(u+q(aN ))

1−F(q(aN )) = 1− Fq(aN )(u) we
have n

N (1 − a) = 1 − Fq(aN )(u), where u = q(a)− q(aN) > 0 provided aN < a.
Note that since aN → 1, we have a → 1 as n → ∞. By (5) we have that for

n sufficiently large n
N (1 − a) ≈

(
1 − k0

σ0(q(aN )) (q(a)− q(aN))
)1/k0

. Rearranging
the terms, we have

q(a) ≈q(aN )+ σ0(q(aN ))

k0

(
1 −

( n
N

(1 − a)
)k0

)
, (6)

which motivates our proposed estimator for q(a). We first use the residuals {ε̂t}n
t=1

to estimate F by integrating a Rosenblatt kernel estimator for the density f , i.e.,

F̃(u) = 1
nh3n

n∑

t=1

∫ u

−∞
K3

(
ε̂t − y

h3n

)
dy, (7)

where K3(·) is a univariate kernel and h3n > 0 is a bandwidth. Then, we define
the estimator q̃(aN ) for q(aN ) as the solution for F̃(q̃(aN )) = aN . We note
that a simpler estimator is q̂n(aN ), the aN -quantile associated with the empirical
distribution of the nonparametric residuals {ε̂t}n

t=1. We prefer q̃(aN ) because it
is well known from the unconditional distribution and quantile estimation litera-
ture (Azzalini, 1981; Falk, 1985; Yang, 1985; Bowman, Hall, and Prvan, 1998;
Martins-Filho and Yao, 2008) that smoothing beyond that attained by the empiri-
cal distribution can produce significant gains in finite samples with no impact on
asymptotic rates of convergence.

To estimate k0 and σ0(q(aN )) we follow the maximum likelihood procedure
suggested by Smith (1987) using the approximation provided by
G(u; σ0(q(aN )),k0). To this end we define the ascending order statistics {ε̂(t)}n

t=1

and construct a sequence of exceedances {Z̃i}Ns
i=1 ≡

{
ε̂(n−Ns+i) − q̃(aN )

}Ns
i=1,

which are used to obtain maximum likelihood estimators for σ0(q(aN )) and
k0 based on the density g(z; σ,k) = 1

σ

(
1 − kz

σ

)1/k−1
associated with the GPD.

Here, it is important to note that the number of residuals that exceed q̃(aN ), i.e.,
Ns is stochastic and generally different from N . Our estimators are a solution
(σ̃q̃(aN ), k̃) for the likelihood equations

∂

∂σ
L̃ N (σ,k) = 0 and

∂

∂k
L̃ N (σ,k) = 0, (8)
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NONPARAMETRIC ESTIMATION OF CVaR AND CES 29

where L̃ N (σ,k) = 1
N

∑Ns
i=1 log g(Z̃i ; σ,k). Then, based on (6) our estimator q̂(a)

for q(a) is given by

q̂(a) = q̃(aN )+ σ̃q̃(aN )

k̃

(
1 −

( n
N

(1 − a)
)k̃

)
. (9)

To motivate our estimator for E(εt |εt > q(a)) we place the following additional
restriction on F :

Assumption FR2. For L(x) = (1 − F(x))x−1/k0 we have L(t x)
L(x) = 1 +

k(t)φ(x)+ o(φ(x)) for each t > 1, where 0 < φ(x) → 0 as x → ∞ is regularly
varying with index ρ < 0 and k(t) = tρ−1

ρ .
If the exceedances over the quantile q(a) were distributed exactly as

g(z; σ0,k0), then integration by parts gives E(εt |εt > q(a)) = q(a)
1+k0

(
1 + σ0

q(a)

)

(Embrechts et al., 1997, p. 165). In the general case where the exceedances are
not distributed as g(z; σ,k), but F satisfies Assumptions FR1 a), b) and FR2 it can
be easily shown (see Lemma 8 in the online supplement) that E(εt |εt > q(a)) =
q(a)
1+k0

(1+o(1)). This motivates our proposed estimator for E(εt |εt > q(a)) which
is given by

Ê(εt |εt > q(a)) = q̂(a)

1 + k̃
. (10)

Remarks on FR2. 1. Assumption FR2 is equivalent to requiring that the error
in approximating the tail 1− F(x) by a Pareto distribution be given by φ(x)

( 1
ρ +

o(1)
)

as x → ∞ (see Theorem 2.2.2, in Goldie and Smith, 1987, p. 48). As-
sumptions on how the approximating error decays are necessary for an asymptotic
characterization of estimators for the parameters of the GPD. Our FR2 is similar
to the condition SR2 in Smith (1987), whereas a stronger version of it is assumed
by Hall (1982). Goldie and Smith (1987) provide a comprehensive discussion of
these second order assumptions on the characterization of estimators that, like
ours, depend on Extreme Value Theory.
2. FR2 is necessary in providing a first order approximation for the expected value
of the score associated with the likelihood procedure, which is used in character-
izing and correcting the asymptotic bias. For example, in the case of the parameter
k0 (see Appendix B)

E
(
∂

∂k
log g(Z ; σ0(q(aN )),k0)

)
= k−1

0 φ(q(aN ))

(−k−1
0 −ρ)(1 − k−1

0 −ρ)
+ o(φ(q(aN )),

(11)

providing a handle on how the asymptotic bias of the estimators we propose
depends on k0 and ρ.
3. A zero-mean and suitably scaled (to have variance 1) Student-t distribution with
degrees of freedom v > 4 satisfies Assumptions FR1, FR2 and the restrictions
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30 CARLOS MARTINS-FILHO ET AL.

on the innovation in our location-scale model. In this case, FR1 is satisfied with
k0 = −v−1.

Combining the estimators m̂, ĥ, (9) and (10) into equations (2), (3),
we define the estimators q̂Yt |Xt=x (a) = m̂(x ) + ĥ1/2(x )q̂(a) and
Ê

(
Yt |Yt > qYt |Xt=x (a),Xt = x

)
= m̂(x )+ ĥ1/2(x )Ê(εt |εt > q(a)) for a-CVaR(x )

and a-CES(x ) associated with the series {Yt } and the conditioning set {Xt = x }.
In the next section we study the asymptotic behavior of these estimators.

3. ASYMPTOTIC CHARACTERIZATION OF THE PROPOSED
ESTIMATORS

3.1. Assumptions and Existence of σ̃q̃(aN ) and k̃

We begin the study of the asymptotic behavior of our estimators by establishing
that a solution for equation (8) exists and corresponds to a local maximum of
the likelihood function. Our strategy is to show that score functions associated
with L̃ N (σ,k) = 1

N

∑Ns
i=1 log g(Z̃i ; σ,k) are uniformly asymptotically equivalent

in probability to those associated with L ′
N (σ,k) = 1

N
∑N1

i=1 log g(Z ′
i ; σ,k), where

Z ′
i = ε(n−N1+i) − q(aN ), {ε(t)}n

t=1 are ascending order statistics associated with
{εt }n

t=1 and N1 is the stochastic number of exceedances over the nonstochastic
threshold q(aN ).

This is accomplished in two steps. First, we show in Lemma 1 (see online
supplement) that the score functions associated with L ′

N (σ,k) are uniformly
asymptotically equivalent in probability to those associated with L N (σ,k) =
1
N

∑N
i=1 log g(Zi ; σ,k) where {Zi}N

i=1 = {
ε(n−N+i) − qn (aN )

}N
i=1, and qn(a) ={

ε(na) if na ∈ N
ε([na]+1) if na /∈ N

. That is, qn(aN ) is the quantile of order aN associated with

the empirical distribution Fn(u) = 1
n
∑n

t=1χu(εt ), where χu(ε) =
{

1 if ε ≤ u
0 if ε > u

.

This, together with Lemma 5 in Smith (1985), establishes the important result that
Theorem 3.2 in Smith (1987) is valid for the case where a stochastic threshold, in
this case qn(aN ), is used in conjunction with our nonstochastic N .6

Second, we show in the proof of Theorem 1 that the score functions associated
with L̃ N (σ,k) and L N (σ,k) are uniformly asymptotically equivalent in probabil-
ity. This, in combination with Lemma 5 in Smith (1985), establishes the existence
of σ̃q̃(aN ) and k̃, and characterizes them as a local maximum for L̃ N (σ,k). Since
establishing this equivalence involves the nonparametric residuals {ε̂t }n

t=1 that
appear in L̃ N (σ,k), additional assumptions are needed to ensure that the non-
parametric estimators m̂(x ) and ĥ(x ) converge uniformly in probability to m(x )
and h(x ) at suitable rates.

We adopt the following notation in our assumptions and proofs: a) 0 < C < ∞
will represent an inconsequential and arbitrary constant taking different values;
b) G denotes a compact subset of Rd ; c) [x] denotes the integer part of x ∈ R;
d) P(A) denotes the probability of event A associated with a probability space
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NONPARAMETRIC ESTIMATION OF CVaR AND CES 31

(.,F , P) or a probability measure, depending on the context; e) for any function
m : Rd → R whose s order partial derivatives exist, we denote by Di m(x ) :
Rd →R the first order partial derivatives of m with respect to its i th argument for
i = 1, . . . ,d and the s-order partial derivatives are denoted by Di1...is m(x ) : Rd →
R for i1, . . . , is = 1, . . . ,d . The gradient of the function m is denoted by m(1)(x )
and its Hessian by m(2)(x ); f) the joint density of the vector of conditioning
variables Xt is denoted by fX. For a vector j ∈ Rd with components ji that are

non-negative integers, we write x j =
d∏

i=1
x ji

i and |j| =
d∑

i=1
ji .

Assumption A1. K (x ) : Rd →R is a product kernel K (x ) = ∏d
j=1K(xj ) with

K(x) : R → R such that: 1)
∣∣K(x)x j

∣∣ ≤ C for all x ∈ R and j = 0,1,2,3;
2)

∫
|x jK(x)|dx ≤ C for j = 0,1,2,3; 3)

∫
K(x)dx = 1,

∫
x jK(x)dx = 0 for

j = 1, . . . ,s − 1,
∫

xsK(x)dx = µK,s < ∞; 4) K(x) is continuously differen-
tiable on R with |x j d

dxK(x)| ≤ C for all x ∈ R and j = 0,1,2,3; 5) The kernel
K3 is symmetric and twice continuously differentiable in R with |K3(x)| ≤ C ,∫

|K3(x)|dx ≤ C ,
∫

K3(x)dx = 1,
∫

x j K3(x)dx = 0 for j = 1, . . . ,m1,
∫ |xm1+1 K3(x)|dx ≤ C ,

∫ ∣∣ d
dx K3(x)

∣∣dx ≤ C ,
∣∣∣ d2

dx2 K3(x)
∣∣∣ ≤ C , and m1 ≥ 2.

The kernel K(x) is used to construct Ki (x ) : Rd → R where
Ki (x ) = ∏d

j=1K(xj ) for i = 1,2. Furthermore, for j = 1, . . . ,d we have∫
Rd Ki (x )dx = 1,

∫
xl

j Ki (x )dx = 0 for l = 1, . . . ,s − 1,
∫

xs
j Ki (x )dx = µK,s

and
∫

xi1 · · · xir Ki (x )dx = 0 whenever r < s or i j ̸= ik for some j,k ≤ s. The
order s for K1 and K2 is needed to establish that the biases for m̂ and ĥ are,
respectively, of order O(hs

in ) for i = 1,2 in Lemmas 3 and 4. The order m1 for
K3 is necessary in the proof of Lemma 5. All other assumptions are common
in the nonparametric estimation literature and are easily satisfied by a variety of
commonly used kernels.

Assumption A2. 1) {Xt }t=1,2,... is a strictly stationary α-mixing process with
α(l) ≤ C l−B for some B > 2; 2) fX(x ) and all of its partial derivatives of order
< s are differentiable and uniformly bounded on Rd ; 3) 0 < inf

x ∈G
fX(x ).

A2 1) implies that for some δ > 2 and a > 1− 2
δ ,

∑∞
j=1 j aα( j)1− 2

δ < ∞, a fact
that is needed in our proofs. We note that α-mixing is the weakest of the mixing
concepts (Doukhan, 1994) and its use here is only possible due to Lemma A.2 in
Gao (2007), which plays a critical role in the proof of Lemma 5.

Assumption A3. 1) m(x ) and all of its partial derivatives of order < s are
differentiable on Rd . The partial derivatives are uniformly bounded on Rd ;
2) 0 < h(x ) and all of its partial derivatives of order < s are differentiable and
uniformly bounded on Rd ; 3) E(h(X)ζ ) ≤ C for some ζ > 2.

The degree of smoothness s of m, h and fX (in A2 and A3), the dimension d and
the mixing size B are, as expected, tightly connected with the speed at which m̂
and ĥ converge (uniformly) to m and h. These parameters also interact in specific
ways to determine the asymptotic behavior of q̂(a) and Ê(εt |εt > q(a)).
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32 CARLOS MARTINS-FILHO ET AL.

A3 3) and FR1 b) imply, by the cr -Inequality, that E
(
|Yt |4+ϵ) < ∞. Linton

and Xiao (2013) and Hill (2015) have proposed nonparametric estimators for
unconditional expected shortfall (ES) and studied their asymptotic behavior for
fixed a ∈ (0,1) for cases where E(|Yt |) < ∞ and V (Yt ) = ∞. Our model is more
restrictive regarding tail behavior than theirs, but in contrast we are able to study
conditional VaR and ES when a → 1.

Assumption A4. 1) The joint density of Xi ,Xt ,εi , denoted by
fXi ,Xt ,εi (Xi ,Xt ,εi ) is continuous; 2) The joint density of Xi ,Xj ,Xt ,εi ,εj ,εt ,
denoted by fXi ,Xj ,Xt ,εi ,εj ,εt (Xi ,Xj ,Xt ,εi ,εj ,εt ) is continuous.

Assumption A4 is necessary in Lemma 5 and is directly related to the verifica-
tion of the existence of bounds required to use Lemma A.2 in Gao (2007).

Assumption A5. h1n ∝ n− 1
2s+d , h2n ∝ n− 1

2s+d , h3n ∝ n− s
2(2s+d) +δ , N ∝ n

2s
2s+d −δ

for some δ > 0 and s ≥ 2d .
The following Theorem 1 establishes the existence of σ̃q̃(aN ) and k̃ and char-

acterizes them as a local maximum. It will be convenient to re-parametrize the
likelihood functions and represent arbitrary values σ as σN (1 + τ1δN ), where
σN ≡ σ0(q(aN )), and k as k0 + τ2δN for τ1,τ2 ∈ R with δN → 0 as N → ∞.
Note that these arbitrary values belong to a shrinking neighborhood (δN → 0 as
N → ∞) of the true values k0 and σ0(q(aN )). Hence, we write L̃T N (τ1,τ2) =
1
N

∑Ns
i=1 log g(Z̃i ; σN (1 + τ1δN ),k0 + τ2δN ).

THEOREM 1. Assume FR1, FR2, and A1–A5. Let τ1,τ2 ∈ R, 0 < δN → 0,
δN N1/2 → ∞, N1/2φ(q(aN )) = O(1) as N → ∞ and denote arbitrary σ and
k by σN (1 + τ1δN ) and k0 + τ2δN , respectively. We define the log-likelihood
function L̃T N (τ1,τ2) = 1

N

∑Ns
i=1 log g(Z̃i ; σN (1 + τ1δN ),k0 + τ2δN ), where

Z̃i = ε̂(n−Ns+i) − q̃(aN ), aN , q̃(·) and ε̂(n−Ns +i) are as defined in Section 2. Then,
as n → ∞ (and consequently N → ∞), 1

δ2
N

L̃T N (τ1,τ2) has, with probability

approaching 1, a local maximum (τ ∗
1 ,τ ∗

2 ) on ST = {(τ1,τ2) : τ 2
1 + τ 2

2 < 1} at
which 1

δ2
N

∂
∂τ1

L̃T N (τ ∗
1 ,τ ∗

2 ) = 0 and 1
δ2

N

∂
∂τ2

L̃T N (τ ∗
1 ,τ ∗

2 ) = 0.

The vector (τ ∗
1 ,τ ∗

2 ) implies values σ̃q̃(aN ) and k̃ which are solutions for the
likelihood equations

∂

∂σ

1
N

Ns∑

j=1

log g(Z̃ j ; σ̃q̃(aN ), k̃) = 0 and
∂

∂k
1
N

Ns∑

j=1

log g(Z̃ j ; σ̃q̃(aN ), k̃) = 0.

Hence, there exists, with probability approaching 1, a local maximum (σ̃q̃(aN ) =
σN (1 + τ ∗

1 δN ), k̃ = k0 + τ ∗
2 δN ) on SR = {(σ, k) : ∥( σσN

− 1, k − k0)∥E < δN } that
satisfies the first order conditions in equation (8).

The proof of Theorem 1 (see online supplement) depends critically on two sets
of results. First, since εt is unobserved and is estimated by ε̂t , we must obtain
convergence of both m̂(x ) and ĥ(x ) to the true m(x ) and h(x ) uniformly in G at
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NONPARAMETRIC ESTIMATION OF CVaR AND CES 33

suitable rates. This is addressed in Lemmas 3 and 4. Second, Lemma 5 shows that
q̃(aN ) is asymptotically close to qn(aN ) by satisfying q̃(aN )−qn(aN )

q(aN ) = Op(N−1/2).
It is in this lemma that the stochasticity of the estimated threshold q̃ is explicitly
handled and where the full set of restrictions in FR1 and FR2 on the class of func-
tions to which F belongs are needed. It is also in Lemma 5 that the stochasticity of
Ns , and the fact that it may differ from N in finite samples, is handled by showing
that Ns −N

N1/2 = Op(1).
We note that, as in Smith (1987), we require N1/2δN → ∞ and

N1/2φ(q(aN )) = O(1). The restriction that N1/2δN → ∞ is for convenience
and places no stochastic constraint on our model, whereas N1/2φ(q(aN )) = O(1)
is necessary to provide first order approximations for the expected value of the
scores associated with the likelihood function (see, e.g., equation (12) below).

The influence of the dimension d of the conditioning space manifests itself
on the asymptotic results in a strong manner via the requirement that the degree
of smoothness of the functions m and h be such that s ≥ 2d . We believe that
alleviation of this strong requirement can only result from further constraints on
the class of functions containing m and h.

3.2. Asymptotic Normality of γ̃ = (σ̃q̃(aN ), k̃)T

The following theorem shows that, under suitable normalization, γ̃ is asymptoti-
cally distributed as a bivariate normal random vector. The theorem has two parts.
Part a) shows that γ̃ carries a bias that does not decay to zero at the rate

√
N ,

a problem that is similar to that encountered in Theorem 3.2 in Smith (1987).
Inspired by Peng (1998), who proposed a moments based bias corrected version
of the traditional Hill (1975) estimator, we provide in part b) a bias corrected
version of γ̃ , which we denote by

(
σ̃ (b)

q̃(aN ), k̃(b)
)T .

It will be useful to make two clarifying comments before stating Theorem 2.
First, by Theorem 3.4.5(b) in Embrechts et al. (1997) and Theorem 7 in Pickands
(1975), σ0(q(aN )) ≡ σN is a function satisfying σN

q(aN ) → −k0 as N → ∞. Hence,
as in Smith (1987) we set, without loss of generality, σN

q(aN ) = −k0. Second, since
the only requirements on φ(x) in FR2 are that it decays to zero and be regu-
larly varying at infinity with ρ < 0, a full characterization of the limiting normal
distribution of (σ̃q̃(aN ), k̃) requires, as in Smith (1987), that

√
Nφ(q(aN )) have a

limit. Given FR2 and the expectation of the scores associated with L̃ N (see, e.g.,
equation (11)) we set
√

Nφ(q(aN ))

−k−1
0 −ρ

→ µ ∈ R, (12)

for some µ ∈ R. As a limit, µ is unique for given φ, but since there exist many
φ that satisfy FR2 for a given pair (ρ,k0), there correspondingly exist many µ
associated with such a pair. Thus, the bias we encounter due to approximating the
upper right tail of F by a GPD is, as a result of Assumption FR2, a function of µ,
ρ, and k0.
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THEOREM 2. Assume FR1, FR2, A1–A5 and µ as defined in (12). Then, for
σN = −k0q(aN ) we have

a)
√

N

(σ̃q̃(aN )

σN
− 1

k̃ − k0

)
d→ N

((µ(1−k0)(1+2k0ρ)
1−k0+k0ρ

µ(1−k0)k0(1+ρ)
1−k0+k0ρ

)

, H −1(k0)V2(k0)H −1(k0)

)

,

where

H (k0) = 1
(1−2k0)(1− k0)

(
1− k0 −1
−1 2

)
, and V2(k0) =

⎛

⎜⎝

k2
0 −4k0+2
(2k0−1)2

−1
k0(k0−1)

−1
k0(k0−1)

2k3
0 −2k2

0+2k0−1
k2

0 (k0−1)2(2k0−1)

⎞

⎟⎠.

b) Let k̂(Ns) = − 1
Ns

∑Ns
t=1 log

(
ε̂(n−Ns +t)

q̃(aN )

)
, Mn(Ns ) =

1
Ns

∑Ns
t=1

(
log

(
ε̂(n−Ns +t)

q̃(aN )

))2
, ρ̂ be a consistent estimator for ρ and

define

k̃(b) = k̃ − Mn(Ns)−2(k̂(Ns))2

(1 − k̃−1 − ρ̂)d̂

(
0 1

)
H−1(k̃)

(
1

k̃−1(−k̃−1 − ρ̂)−1

)
,

σ̃ (b)
q̃(aN ) = σ̃q̃(aN )

(

1 − Mn(Ns)−2(k̂(Ns))2

(1 − k̃−1 − ρ̂)d̂

(
1 0

)
H−1(k̃)

(
1

k̃−1(−k̃−1 − ρ̂)−1

))

,

where d̂ = 2k̃4ρ̂
(1+ρ̂k̃)2 , an estimator for d = 2k4

0ρ

(1+ρk0)2 . Then,

√
N

⎛

⎝
σ̃ (b)

q̃(aN )

σN
− 1

k̃(b) − k0

⎞

⎠ d→ N
((

0
0

)
, H −1(k0)V (b)

2 (k0,ρ)H −1(k0)

)
,

where V (b)
2 (k0,ρ) = A(k0,ρ)V (b)(k0)A(k0,ρ)T with

V (b)(k0) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1−2k0

− 1
(1−k0)(1−2k0)

0
4k2

0−2k3
0

(1−k0)2 − k0
1−k0

− 1
(1−k0)(1−2k0)

2
(1−k0)(1−2k0)

0
4k3

0−6k2
0

(1−k0)2
k0

1−k0

0 0 k2
0 0 0

4k2
0−2k3

0
(1−k0)2

4k3
0−6k2

0
(1−k0)2 0 20k4

0 −4k3
0

− k0
1−k0

k0
1−k0

0 −4k3
0 k2

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

A(k0,ρ) =

⎛

⎝
1 0 1−k0

k0(1−2k0)
+ (1+2k0)(1+ρk0)

2

k3
0ρ((1−ρ)k0−1)

− (1+ρk0)
2

2k3
0ρ((1−ρ)k0−1)

− 2(1+ρk0)
2

k2
0ρ((1−ρ)k0−1)

0 1 − 1
(1−k0)(1−2k0)

− (1+2k0)(1+ρk0)
k3

0ρ((1−ρ)k0−1)
(1+ρk0)

2k3
0ρ((1−ρ)k0−1)

2(1+ρk0)
k2

0ρ((1−ρ)k0−1)

⎞

⎠.
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NONPARAMETRIC ESTIMATION OF CVaR AND CES 35

Remark. Part b) of Theorem 2 calls for a consistent estimator of ρ, which we
now provide. For an arbitrary constant c > 0 we let N(c) = cN log(n), aN (c) =
1 − N(c)

n and define

ρ̂ = − 1

k̂(N(c))log(2)
log

(
Mn(N(c/2))− 2k̂(N(c/2))2

Mn(N(c))− 2k̂(N(c))2

)

.

Lemma 9 shows that ρ̂
p→ ρ.

It is instructive to compare Theorem 2 to Theorem 3.2 in Smith (1987). There,
he obtains

√
N

( σ̂q(aN )

σN
− 1

k̂ − k0

)
d→ N

(( µ(1−k0)(1+2k0ρ)
1−k0+k0ρ

µ(1−k0)k0(1+ρ)
1−k0+k0ρ

)

, H −1(k0)

)

,

where σ̂q(aN ) and k̂ maximize L N (σ,k). Part a) shows that the use of Z̃i instead
of Zi to define the exceedances used in the estimation of the parameters of the
GPD impacts the variance of the asymptotic distribution. It is easy to verify that
H −1(k0)V2(k0)H −1(k0) − H −1(k0) is positive definite, implying a (expected)
loss of efficiency that results from estimating εt nonparametrically. However, any
additional bias introduced by the nonparametric estimation is of second order
effect as the asymptotic bias derived in Smith (1987) is precisely the same as the
one we obtain in part a) of Theorem 2. The presence of such bias manifests itself
in other estimation procedures for k0 that rely on Extreme Value Theory (Hill,
1975; Pickands, 1975). Also, as in Peng (1998), bias correction may increase
the variance of the asymptotic distribution. Hence, although our bias correction
produces correctly centered asymptotic distributions, the cost may be an increase
in the variance of the asymptotic distribution. In our Monte Carlo experiment, we
compare the root mean squared error of the uncorrected and bias corrected esti-
mators (see Table 1). There, it is seen that the benefits from bias correction are far
larger than any cost associated with variance increase.

3.3. Asymptotic Normality of q̂(a), Ê(εt |εt > q(a)), a-CVaR(x ), and
a-CES(x )

The asymptotic distributions of the ML estimators given in parts a) and b) of
Theorem 2 are the basis for obtaining the asymptotic distributions of q̂(a) and
Ê(εt |εt > q(a)). First, in the case of q̂(a), we rely on the asymptotic properties
of q̃(an) and Theorem 2 parts a) and b). Second, since Ê(εt |εt > q(a)) = q̂(a)

1+k̃
,

its asymptotic distribution can be derived directly from the results for q̂(a) and k̃.
The estimators q̂(a) and Ê(εt |εt > q(a)) inherit an asymptotic bias that derives
from the result in part a) of Theorem 2. Hence, Theorems 3 and 4 include bias-
corrected versions of the estimators we propose, which we denote by q̂(b)(a) and
Ê (b)(εt |εt > q(a)). It is important to emphasize, as mentioned in Section 2, that
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in Theorems 3, 4, and 5 both aN and a approach 1 as n → ∞ with aN < a.
We also note that we assume that n(1 − a) ∝ N with N → ∞. In the extreme
(regression) quantile literature this is called the “intermediate order” type asymp-
totics (Chernozhukov, 2005, p. 809) and in the extreme CVaR literature this is
described as asymptotics for “high quantiles within the sample” (Embrechts et al.,
1997, p. 349).

THEOREM 3. Assume FR1, FR2, A1–A5, and µ as defined in (12). Then, for
σN = −k0q(aN ) and for some Z > 0, if n(1 − a) ∝ N we have

a)
√

N
(

q̂(a)
q(a) − 1

)
d→ N (µ1,41(k0)), where

µ1 = k0µ

(

(−k−1
0 −ρ)

(Zρ −1)

ρ
+ 1

1− k−1
0 −ρ

cT
b H −1(k0)

(−k−1
0 −ρ
k−1

0

))

,

41(k0) = k2
0

(

cT
b H −1(k0)cb + k2

0

(
cT

b H −1(k0)

(
b1
b2

))2

+2k0Z−1cT
b H −1(k0)

(
b1
b2

)
+Z−2

)

,

b1 = −(1− k0)

k0(2k0 −1)
,b2 = −1

(1− k0)(1−2k0)
and

cT
b =

(
−k−1

0 (Z−1 −1)k−2
0 log(Z)+ k−2

0 (Z−1 −1)
)

b) Let q̂(b)(a) = q̃(aN )

(

1 + σ̃ (b)
q̃(aN )

k̃(b)q̃(aN )

(
1 −

(
N

n(1−a)

)−k̃(b)

(1 + B̂q)−k̃(b)
))

,

where B̂q = Ẑ ρ̂−1
ρ̂d̂

(Mn(Ns ) − 2(k̂(Ns ))2) and Ẑ = q̂(a)
q̃(aN ) . Then,

√
N

(
q̂(b)(a)

q(a) − 1
)

d→ N
(

0,4(b)
1 (k0,ρ)

)
, where 4(b)

1 (k0,ρ) =
cT

q V (b)(k0)cq , cT
q = k0cT

b H −1(k0)A(k0,ρ)+ v(k0,ρ) and

v(k0,ρ) =
(

0 0 Z−1 + (Zρ −1)
(1+2k0)(1+ρk0)2

k3
0ρ

2 −(Zρ −1)
(1+ρk0)2

2k3
0ρ

2 −2(Zρ −1)
(1+ρk0)2

k2
0ρ

2

)
.

Remark. Under the assumption that n(1 − a) ∝ N , the constant Z is the limit
of q(a)/q(aN) as N → ∞. Thus, it captures the variation of the quantile asso-
ciated with F as we approach its endpoint, which in this case is infinity. Bias
correction in part b) of the theorem requires a consistent estimator Ẑ for Z .

THEOREM 4. Assume FR1, FR2, A1–A5, and µ as defined in (12). Then, for
σN = −k0q(aN ) and for some Z > 0, if n(1 − a) ∝ N we have

a)
√

N
(

Ê(εt |εt>q(a))
q(a)
1+k0

− 1
)

d→ N (µ2,42(k0)), where

µ2 = µk0

(
(Zρ −1)(−k−1

0 −ρ)

ρ
+

(
1

1− k−1
0 −ρ

cT
b −

(
0 1

k0(1+k0)(1−k−1
0 −ρ)

))

× H−1(k0)

(
−k−1

0 −ρ
k−1

0

))

,
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42(k0) =
(

k0ηT − 1
1+k0

θT
)

V1(k0)
(

k0η− 1
1+k0

θ
)
,

ηT =
(

cT
b H−1(k0) cT

b H−1(k0)

(
b1
b2

)
+ (k0Z)−1

)
,

θT =
((

0 1
)

H−1(k0)
(

0 1
)

H−1(k0)

(
b1
b2

))
,

V1(k0) =

⎛

⎜⎝

1
1−2k0

− 1
(k0−1)(2k0−1) 0

− 1
(k0−1)(2k0−1)

2
(k0−1)(2k0−1) 0

0 0 k2
0

⎞

⎟⎠,

and cb, b1 and b2 are as defined in Theorem 3.

b) Let Ê (b)(εt |εt > q(a)) = q̂(b)

1+k̃(b) , then
√

N
(

Ê(b)(εt |εt>q(a))
q(a)/(1+k0)

− 1
)

d→
N

(
0,4(b)

2 (k0,ρ)
)

, where

4(b)
2 (k0,ρ) =

(
cT

q − 1
1 + k0

(
0 1

)
H −1(k0)A(k0,ρ)

)

×V (b)(k0)

(
cT

q − 1
1 + k0

(
0 1

)
H −1(k0)A(k0,ρ)

)T

,

cq is as defined in Theorem 3, and A(k0,ρ) and V (b)(k0) are defined in
Theorem 2.

From Theorems 3 and 4 we obtain our main results, the asymptotic normality
and consistency of q̂Yt |Xt=x (a) and Ê(Yt |Yt > qYt |Xt=x (a),Xt = x ). Since these
estimators also inherit an asymptotic bias, we present only results for estimators
of a-CVaR(x ) and a-CES(x ) that are constructed using q̂(b)(a) and Ê (b)(εt |εt >

q(a)), respectively. So we define, q̂(b)
Yt |Xt=x (a)) = m̂(x ) + ĥ1/2(x )q̂(b)(a) and

Ê (b)(Yt |Yt > qYt |Xt=x (a),Xt = x ) = m̂(x ) + ĥ1/2(x )
(
Ê (b)(εt |εt > q(a))+ B̂E

)
,

where B̂E =
q̂(b)(a)Ẑ ρ̂

(
M(Ns )−2(k̂(Ns ))2

)

d̂(1+k̃−1+ρ̂)(1+k̃−1)
, M(Ns ), k̂(Ns), d̂ , ρ̂ are as defined in

Theorem 2 and Ẑ and q̂(b)(a) are as defined in Theorem 3.

THEOREM 5. Assume FR1, FR2, A1–A5, and µ as defined in (12). Then, for
σN = −k0q(aN ) and for some Z > 0, if n(1 − a) ∝ N we have

a)
√

N
(

q̂(b)
Yt |Xt =x (a)

qYt |Xt =x (a) − 1
)

d→ N
(

0,4(b)
1 (k0,ρ)

)
, where 4(b)

1 (k0,ρ) is defined

in Theorem 3.

b)
√

N
(

Ê(b)(Yt |Yt>qYt |Xt =x (a),Xt=x )
E(Yt |Yt >qYt |Xt =x (a),Xt=x ) − 1

)
d→ N

(
0,4(b)

3 (k0,ρ)
)

, where
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4(b)
3 (k0,ρ) =

(
cT

q − 1
1 + k0

(
0 1

)
H −1(k0)A(k0,ρ)+υ1(k0,ρ)

)
V (b)(k0)

×
(

cT
q − 1

1 + k0

(
0 1

)
H −1(k0)A(k0,ρ)+υ1(k0,ρ)

)T

,

υ1(k0,ρ) =
(

0 0 Zρk0(−2−4k0)

d(ρ+k−1
0 +1)

k0Zρ

d(ρ+k−1
0 +1)

4k2
0Zρ

d(ρ+k−1
0 +1)

)
, cq is defined in

Theorem 3, A(k0,ρ), V (b)(k0) and d are defined in Theorem 2.

As we have observed following Theorem 2, it is also the case that bias cor-
rection in Theorems 3, 4, and 5 has an impact on the variance of the asymptotic
distribution of the estimators. The following corollary to Theorem 5 shows that
the benefit of bias correction, in terms of asymptotic mean squared error, depends
critically on the parameters k0 and ρ, and how they relate to the constants µ and
Z , of which µ is not uniquely determined by F .7 The corollary is most useful
for given φ, in which case the value of µ is fixed. This theoretical indetermi-
nacy manifests itself in our simulations (see Section 4). For example, when F is a
Student-t distribution with v = 6 degrees of freedom, k0 = −1/6 and ρ = −2
(Ling and Peng, 2015), the benefit of bias reduction in the estimation of the
parameters of the GPD seems quite clear. In contrast, bias reduction in the
estimation qYt |Xt=x (a) and E(Yt |Yt > qYt |Xt=x (a),Xt = x ) is not apparent, at least
from the point of view of reduced root mean squared error. These simulation
results suggest that |µ| satisfies threshold levels for reduced MSE under bias cor-
rection for the estimators in Theorem 2 but not for those in Theorem 5. Evidently,
alternative data generating processes may produce different results.

COROLLARY 1. Assume the conditions of Theorem 5 hold. Let M SE(νn)
denote the mean squared error of the estimator νn. Then,

lim
N→∞

M SE
(

q̂(b)
Yt |Xt =x (a)

qYt |Xt =x (a)

)

M SE
(

q̂Yt |Xt =x (a)
qYt |Xt =x (a)

)

⎧
⎨

⎩

> 1 if |µ| < C1(k0,ρ,Z),
= 1 if |µ| = C1(k0,ρ,Z),
< 1 if |µ| > C1(k0,ρ,Z),

where C1(k0,ρ,Z) = (4(b)
1 (k0,ρ)−41(k0))1/2

−k0

∣∣∣∣∣∣

(
−k−1

0 −ρ
)
Zρ−1
ρ + 1

1−k−1
0 −ρ

cT
b H−1(k0)

⎛

⎝−k−1
0 −ρ
k−1

0

⎞

⎠

∣∣∣∣∣∣

, and

lim
N→∞

M SE
(

Ê(b)(Yt |Yt >qYt |Xt =x (a),Xt=x )
E(Yt |Yt>qYt |Xt =x (a),Xt=x )

)

M SE
(

Ê(Yt |Yt>qYt |Xt =x (a),Xt=x )
E(Yt |Yt>qYt |Xt =x (a),Xt=x )

)

⎧
⎨

⎩

> 1 if |µ| < C2(k0,ρ,Z),
= 1 if |µ| = C2(k0,ρ,Z),
< 1 if |µ| > C2(k0,ρ,Z),

where C2(k0,ρ,Z)= (4
(b)
3 (k0 ,ρ)−42(k0))1/2

−k0

∣∣∣∣∣∣∣∣∣∣∣

(
−k−1

0 −ρ
)
Zρ−1
ρ +

(
cT
b −

(
0 1

k0(1+k0)

))
H−1(k0)

⎛

⎜⎜⎜⎜⎜⎝

−k−1
0 −ρ

1−k−1
0 −ρ

k−1
0

1−k−1
0 −ρ

⎞

⎟⎟⎟⎟⎟⎠
+

k−1
0 +ρ

1+k−1
0 +ρ

Zρ

∣∣∣∣∣∣∣∣∣∣∣

.
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NONPARAMETRIC ESTIMATION OF CVaR AND CES 39

Theorem 5 provides the basis for inference regarding extreme CVaR(x ) and
CES(x ). The covariance matrices depend on k0, ρ, and Z which can be consis-
tently estimated as described in Theorem 3 and Lemma 9. In Section 4 we im-
plement these estimators, construct confidence intervals and report on empirical
coverage probabilities. As a direct consequence of Theorem 5 we have
q̂(b)

Yt |Xt =x (a)

qYt |Xt =x (a) = 1+op(1)and Ê(b)(Yt |Yt>qYt |Xt =x (a),Xt=x )
E(Yt |Yt >qYt |Xt =x (a),Xt=x ) = 1+op(1) as n(1−a)→∞,

therefore establishing consistency of the estimators.

4. MONTE CARLO STUDY

We perform a Monte Carlo study to investigate the finite sample properties of
the parameter estimator γ̃ = (σ̃q̃(aN ), k̃)T , the a-CVaR(x ) estimator q̂Yt |Xt=x (a),
the a-CES(x ) estimator Ê(Yt |Yt > qYt |Xt=x (a),Xt = x ), as well as their bias-
corrected versions given by γ̃ (b) = (σ̃ (b)

q̃(aN ), k̃(b))T , q̂(b)
Yt |Xt=x (a) and Ê (b)(Yt |Yt >

qYt |Xt=x (a),Xt = x ). To simplify the notation, we put q̂Yt |Xt=x (a) ≡ q̂, Ê(Yt |Yt >

qYt |Xt=x (a),Xt = x ) ≡ Ê , q̂(b)
Yt |Xt=x (a) ≡ q̂(b), and Ê (b)(Yt |Yt > qYt |Xt=x (a),

Xt = x ) ≡ Ê (b) with corresponding true values given by q and E . The underlying
values of a and x will be clear in context.

We generate data from the following location-scale model

Yt = m(Yt−1)+ h(t)1/2εt , t = 1, . . . ,n. (13)

We choose m(Yt−1) to be sin(0.5Yt−1) and consider h(t) = hi (Yt−1)+ θh(t −1)
for i = 1,2, where h1(Yt−1) = 1 + 0.01Y 2

t−1 + 0.5sin(Yt−1) and h2(Yt−1) =
1 − 0.9ex p(−2Y 2

t−1). The quadratic type heteroskedasticity function h1(·) was
considered in Cai and Wang (2008), where we add the sin(·) function to make the
nonlinearity more prominent, and h2(·) has been considered in Martins-Filho and
Yao (2006). θ is set to be 0 or 0.5.8 Our estimators are based on a model where
θ = 0, but the model with θ = 0.5 and h1(·) without the sin(·) function corre-
sponds to the popular GARCH model, and it would be interesting to investigate
the performance of our estimators under this structure. Note also that h1 is
unbounded, therefore violating Assumption A3. Initial values of Yt and h(t) are
set to be zero and Yt is generated recursively according to equation (13). We dis-
card the first 1,000 observations so that the samples are not heavily influenced by
the choice of initial values.

We generate εt independently from a Student-t distribution with v degrees
of freedom. It can be easily shown that k0 = − 1

v , so we have k0 = −1/3 for
v = 3 and k0 = −1/6 for v = 6. We note that only the case where v = 6
conforms to the assumptions needed to establish asymptotic normality of our
estimators, but we consider the other case to investigate the behavior of the
estimators when our asymptotic results may not hold. Here, the variance of εt
is larger with v = 3 and we expect that in this case estimation will be relatively
more difficult. In contrast, when v = 6 the Student-t distribution resembles the
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40 CARLOS MARTINS-FILHO ET AL.

normal distribution. For identification purposes, we standardize εt so that it has
unit variance.9

Implementation of our estimator requires the choice of bandwidths h1n , h2n ,
and h3n . Since h1n and h2n are utilized to estimate the conditional mean and
variance, we select them using the rule-of-thumb data driven plug-in method of
Ruppert, Sheather, and Wand (1995) and denote them by ĥ1n and ĥ2n . Specifically,
ĥ1n and ĥ2n are obtained from the following regressand and regressor sequences
{Yt ,Yt−1}n

t=1 and {(Yt −m̂(Yt−1))2,Yt−1}n
t=1, respectively. We select h3n by using

the rule-of-thumb bandwidth ĥ3n = 0.79R(Yt−1)n−1/5+δ as in (2.52) of Pagan and
Ullah (1999), where R(Yt−1) is the sample interquartile range of Yt−1, and we set
δ = 0.01 so that it satisfies our assumption on the bandwidth. The second order
Epanechnikov kernel is used for our estimators.

In estimating the parameters, we consider our estimators γ̃ = (σ̃q̃(aN ), k̃)T ,
our bias-corrected estimators γ̃ (b) = (σ̃ (b)

q̃(aN ), k̃(b))T , Smith type estimators γ̂ =
(σ̂qn (aN ), k̂)T and Smith type bias-corrected estimators γ̂ (b) = (σ̂ (b)

qn(aN ), k̂(b))T ,

where the bias correction is conducted as in γ̃ (b). Both γ̂ and γ̂ (b) utilize the true
conditional mean m(·), variance h(·), and εt available in the simulation. Without
having to estimate m(·) and h(·), we expect that Smith’s estimators (γ̂ and γ̂ (b))
will perform best and serve as a benchmark to evaluate our estimators. In estimat-
ing the conditional value-at-risk (q) and expected shortfall (E), we include our
estimators (q̂, Ê), our bias-corrected estimators (q̂(b), Ê (b)), the Smith type esti-
mators (qs, Es ), the Smith type bias-corrected estimators (qs(b), Es(b)), where the
bias correction is performed as in (q̂(b), Ê (b)), and the estimators (q̇, Ė) proposed
by Cai and Wang (2008). We follow their instructions for implementation and
utilize the theoretical optimal bandwidths available in the simulation for (q̇, Ė) to
minimize the noise.

Figure 1 plots the true and estimated conditional value-at-risk and expected
shortfall evaluated at the sample mean of Yt−1 for values of a between 0.95
and 0.999, since we are interested in higher order quantiles. The estimation
utilizes 1,000 sample data points generated from equation (13) with h1(Yt−1) =
1 + 0.01Y 2

t−1 + 0.5sin(Yt−1), θ = 0 and Student-t distributed εt with v = 3
degrees of freedom. We use N = round(c ∗ 10000.8−0.01) = 164 in constructing
our estimates, where c = 0.7 and round(·) gives the nearest integer. We note that
all estimators are smooth functions of a, and they seem to capture the shape of the
true value-at-risk and expected shortfall well. It seems more difficult to estimate
expected shortfall than value-at-risk as the gap between the estimates and the true
value is noticeably larger for expected shortfall.

The performance of our estimators is fairly robust to our choice of N in the
simulations for n = 1,000,2,000, and 4,000. In the expression for N , we set
c = 0.7 so that we use less than 20% of the total number of observations as
tail observations in the second stage estimation, giving N = 164,284, and 491,
respectively. Thus, with n being doubled, the effective sample size N in the second
stage of our estimation is less than doubled, as required by the assumption on N .
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NONPARAMETRIC ESTIMATION OF CVaR AND CES 41

Each experiment is repeated 2,000 times. We summarize the performance of all
parameter estimators in terms of their bias (B), standard deviation (S) and root
mean squared error (R) in Table 1 for θ = 0.

We consider the performance of the a-conditional value-at-risk and expected
shortfall estimators for a = 0.95,0.99, and 0.999 evaluated at Yn , the most
recent observation in the sample. Specifically, the performances in terms of the
bias (B), standard deviation (S) and relative root mean squared error (R) for θ = 0
are detailed in Tables 2 and 3 for v = 3 and 6, respectively. To facilitate compar-
ison, we report the relative root mean squared error as the ratio of the root mean
squared error of each estimator over that of the estimator with the smallest root
mean squared error in each experiment design. To reduce the impact of extreme
experiment runs, we truncate the smallest and largest 2.5% estimates from the
repetitions for all estimators. We give the 95% empirical coverage probability for
the bias-corrected estimators q(b), qs(b), E (b), and Es(b) in Table 4 for θ = 0. As
the results for n = 2,000 are qualitatively similar, we only report detailed results
for n = 1,000 and n = 4,000.

To implement the bias-corrected estimators, we need the second order param-

eter ρ, which is estimated by ρ̂ = − 1
k̂(N(c))log(2)

log( Mn(N((c/2)))−2(k̂(N((c/2))))2

Mn(N(c))−2(k̂(N(c)))2 ),

where k̂(N(c)), Mn(N(c)) are as defined in Theorem 2. Here aN (c) = 1 − N(c)
n

and we choose N(c) = cN log(n) for some positive constant c. We let
c = 0.25 so that for the sample sizes and N considered, N(c) and N((c/2))
are less than n. The moments based estimator k̂(Ns) is utilized to construct
the bias-corrected parameter estimate γ̃ (b), which is then used to construct
q̂(b) and Ê (b). We use the asymptotic distributions of q̂(b) and Ê (b) to
construct confidence intervals, since they are asymptotically unbiased.
Specifically, we estimate the 95% confidence interval for the a-CVaR(x )

as

⎛

⎝q̂(b)

(

1 + Z0.975

√
4(b)

1 (k̂(Ns ),ρ̂)
N

)−1

, q̂(b)

(

1 − Z0.975

√
4(b)

1 (k̂(Ns ),ρ̂)
N

)−1
⎞

⎠,

where Z0.975 is the 97.5% quantile for the standard normal distribution.
For the a-CES(x ), its 95% confidence interval estimates are⎛

⎝Ê (b)

(

1 + Z0.975

√
4(b)

3 (k̂(Ns ),ρ̂)
N

)−1

, Ê (b)

(

1 − Z0.975

√
4(b)

3 (k̂(Ns ),ρ̂)
N

)−1
⎞

⎠,

where Z is estimated by Ẑ = q̂(a)/q̃(aN ).
In the case of estimating parameters, we notice that both γ̂ and γ̃ overestimate

(σN ,k0), while the bias-corrected estimators γ̂ (b) and γ̃ (b) often underestimate
(σN ,k0). As the sample size increases, all estimators’ performance improves, in
the sense that B, S, and R decrease, with a few exceptions for B of γ̂ (b) and
γ̃ (b). This confirms the asymptotic results in Section 3. When k0 is decreased
(smaller v in Table 1), we generally find that all estimators exhibit smaller B,
larger S, and smaller R, since the drop in B dominates the increase in S, with a few
exceptions in the case of estimating σN . We think that this is related to the bias and
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variance trade-off for the parameter estimation. As mentioned above, the variance
of εt without standardization is larger with smaller k0, and the distribution of εt
exhibits heavier tail behavior, thus the more representative extreme observations
have a larger probability to show up in a sample, which explains the lower bias.
It is generally harder to estimate σN than k0 when using γ̂ and γ̃ , as estimates of
σN exhibit larger R. However, under this criterion, it is harder to estimate k0 than
σN , when using γ̂ (b) and γ̃ (b). In terms of relative performance, we notice that
γ̂ (b) and γ̃ (b) are much better than γ̂ and γ̃ , as they exhibit much lower B and
R. Thus, the bias-corrected parameter estimators significantly reduce B without
inflating S. When v = 3, γ̂ , γ̂ (b) generally outperform γ̃ , γ̃ (b), respectively, in
terms of smaller B, S, and R, though the difference diminishes with larger sample
sizes. When v = 6, γ̃ , γ̃ (b) frequently perform better than γ̂ , γ̂ (b) respectively,
especially in estimating σN . Again the difference is fairly small and diminishes
with larger sample sizes. The results suggest that our proposed estimators γ̃ and
γ̃ (b) are well supported by the nonparametric kernel estimators for the functions
m(Yt−1) and h(Yt−1).

In the case of estimating conditional value-at-risk and expected shortfall, we
observe that performances of all estimators generally improve with the sample
sizes in terms of smaller B, S, and R, with some exceptions for B. This confirms
the consistency of our estimators for conditional value-at-risk and expected short-
fall. In the case of estimating conditional value-at-risk, q̂ and qs carry positive
bias for a = 0.95 and 0.99, but exhibit negative bias for a = 0.999. q̇ is fre-
quently positively biased, while q̂(b) and qs(b) are negatively biased. In the case
of estimating expected shortfall, all estimators are generally negatively biased.
There is mixed evidence on the impact an increase in k0 has on the S of (qs, Es ),
(qs(b), Es(b)), (q̂, Ê) and (q̂(b), Ê (b)), especially for larger a values. This is
expected since the distribution of εt exhibits less heavy tails with larger k0. The
performance of (q̇, Ė) does not seem to depend on k0 in a clear fashion. With a
few exceptions on B, we notice that it is more difficult to estimate the conditional
expected shortfall relative to the value-at-risk, judged by the larger B, S, and R
for all estimators across different experiment designs. It is also harder to estimate
higher order conditional value-at-risk and expected shortfall, as demonstrated by
the larger B, S, and R for all estimators, with some exceptions for B.

Across all experiment designs, the best estimator for q in terms of R is qs and
the best estimator for E is either Es or Es(b), where the latter is often the best
when sample sizes are large and v = 3. Thus, the root mean squared errors are
constructed for the other estimators relative to qs, Es , or Es(b). For the estima-
tion of the a-CVaR(x ), we notice that the biases of (qs(b), q̂(b)) do not seem to be
smaller than those of (qs , q̂). As expected, S for qs and qs(b) are smallest, fol-
lowed by that of q̂ and q̂(b), with exceptions when v = 6 and h1(Yt−1), where the
S for q̂ is smaller than that for qs(b). q̇ always carries the largest S. In terms of
R, qs is the best estimator, followed in order by q̂, qs(b), q̂(b), and q̇ , with excep-
tions for v = 3 and h2(Yt−1). In these cases the performance of qs(b) is better than
that of q̂. For the estimation of the a-CES(x ), we notice that the bias-corrected
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NONPARAMETRIC ESTIMATION OF CVaR AND CES 43

estimators (Es(b), Ê (b)) exhibit smaller B than their counterparts (Es, Ê), though
with a cost of larger S. When a > 0.95, the best estimators in terms of R are
either Es(b) or Es , followed in order by Ê , Ê (b), and Ė . When a = 0.95, Es(b)

is the best estimator, followed by Ê (b) or Es , and then by Ê . Ė does not always
carry the largest R, on occasions it performs better than Ê . Thus, in terms of
estimation performance, our proposed estimators (q̂, Ê) and (q̂(b), Ê (b)) can offer
finite sample improvement over (q̇, Ė). We notice that the improvement could be
sizable when a > 0.95. To illustrate, we plot in Figure 2 the relative root mean
squared error of q̇ and q̂

(
q̇
q̂

)
, and Ė and Ê

(
Ė
Ê

)
across sample sizes 1,000 and

4,000 for θ = 0 and a = 0.999. We observe that the relative root mean squared
errors are all greater than one. Furthermore, as the sample size increases, the rel-
ative root mean squared error generally becomes larger, illustrating that the finite
sample improvement of (q̂, Ê) over (q̇, Ė) gets magnified with sample sizes. As v
is increased, the advantage of (q̂, Ê) over (q̇, Ė) is more prominent. For example,
in the case of estimating q , the relative root mean squared error of q̇

q̂ is over 1.9
for v = 6, so the reduction in the root mean squared error of q̂ over q̇ is more than
47%. In the case of estimating E , the relative root mean squared error Ė

Ê
is over

2.4 for v = 6, so the reduction in the root mean squared error of Ê over Ė is more
than 58%.

We conclude that our estimators (q̂, Ê) have good finite sample performance
and can be especially useful when estimating higher order conditional value-at-
risk and expected shortfall. (q̂(b), Ê (b)) provide reasonable alternatives and their
asymptotic distributions are bias free, which enable us to construct confidence
intervals. The 95%-empirical coverage probability (ECP) in Table 4 gives an
indication of the performance of the confidence interval estimates. The ECP
seems to improve when v is decreased for all estimators at least when h1(Yt−1)
is considered. The ECP for the bias-corrected estimators (q̂(b), Ê (b)) is simi-
lar to that for (qs(b), Es(b)), indicating that the estimation of m and h does
not pose a significant challenge in constructing confidence intervals. The ECP
for the a-CES(x ) seems to be closer to the target of 95%. The ECP for the
a-CVaR(x ) can be relatively far from the target for lower values of a, but it gets
much closer to the target when a is larger.

The simulation results for the estimators do not change qualitatively across
different values of θ , which suggests that accounting for the nonlinearity in the
conditional mean and variance functions is important for estimating high order
q and E . Overall, the study suggests that utilizing Extreme Value Theory and
properly accounting for nonlinearities seems to pay off in finite samples.

The choice of N could be an important issue because the number of residuals
exceeding the threshold is based on q̃(aN ). We need to choose a large q̃(aN ) to
reduce the bias from approximating the tail distribution with a GPD, but we need
to keep N large (or q̃(aN ) small) to control the variance of the estimates.10 We
suggested earlier that our estimators are relatively robust to the choice of N , and
here we specifically illustrate the impact from different N’s on the performance of
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our estimators for the 99% conditional value-at-risk and expected shortfall with
a simulation. We set n = 1,000, σ 2

1 (Yt−1) = 1 + 0.01Y 2
t−1 + 0.5sin(Yt−1), θ = 0

and use a Student-t distributed εt with v = 3. We graph the bias and root mean
squared error of q̂ and Ê against N = 20,25, . . . ,300 in the left panel of Figure 3,
and plot those of q̂(b) and Ê (b) in the right panel. The other experiment designs
give graphs of similar general pattern. We observe that q̂ carries a small posi-
tive bias and Ê is generally negatively biased. As we have mentioned above, it is
harder to estimate the conditional expected shortfall than the value-at-risk, judged
by the larger bias and root mean squared error of Ê . The performance of q̂ is fairly
robust in the range of N considered, with slight improvement when N is greater
than 20. The bias of Ê seems to be smallest when N is between 30 and 50, but its
magnitude increases with smaller N , and grows steadily with larger N . The root
mean squared error of Ê decreases sharply from N = 20 to 60 and drops gradu-
ally until N = 160. It remains fairly stable for a wide range of N and eventually
increases slowly for N greater than 220.

The performance of the bias-corrected estimators q̂(b) and Ê (b) could depend
on the choice of N in a delicate fashion, since it requires the estimation of the
second order parameterρ. From our discussion above, the estimation of ρ depends
on a fine-tune parameter c, which assures that for N and n, N(c) and N((c/2)) are
less than n. We adopt the same ρ estimate described above for all N considered, so
that we can focus attention on the impact of N from the bias correction made other
than the estimation of ρ. We observe that q̂(b) and Ê (b) are generally negatively
biased. Again, it is harder to estimate conditional expected shortfall than value-
at-risk, judged by the larger B and R of Ê (b). The B and R of q̂(b) are smallest
for N between 20 and 60, beyond which they start to increase but remain fairly
small until N = 180. Their performances start to deteriorate quickly for N larger
than 180. On the other hand, the bias of Ê (b) remains small for N = 30 to 100,
beyond which it starts to increase. The root mean squared error drops sharply
from N = 20 to 30, then it remains low for a wide range (30 ≤ N ≤ 220), beyond
which it starts to increase. Thus, we conclude that the performance of q̂, Ê , q̂(b),
and Ê (b) is fairly robust in a wide range of values for N . Relative to q̂ and Ê , the
choice of N is more crucial for the bias-corrected estimators, especially for q̂(b).

5. EMPIRICAL ILLUSTRATION WITH BACKTESTING

We illustrate the empirical applicability of our estimators using five historical
daily series {Yt } on the following log returns of future prices (contracts expiring
between 1 and 3 months): (1) Maize from August 10, 1998 to July 28, 2004.
(2) Rice from August 1, 2002 to July 18, 2008. (3) Soybean from July 25, 2006 to
July 6, 2012. (4) Soft wheat from August 15, 1996 to July 31, 2002. The data are
obtained from the Chicago Board of Trade. We also obtain (5) Hard wheat from
August 1, 1996 to July 18, 2002 from Kansas City Board of Trade.

To backtest on a data set {Y1,Y2, . . . ,Ym}, we utilize the previous n obser-
vations {Yt−n+1,Yt−n+2, . . . ,Yt } to estimate the a-CVaR by q̂Y |X=Yt (a) and the
a-CES by Ê(Y |Y > qY |X=Yt (a), X = Yt ) for a = 0.95,0.99, and 0.995, where
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0 < n < m, t ∈ T = {n,n + 1, . . . ,m − 1}. We fix m = 1,500, n = 1,000, let
N = round(n0.8−0.01) = 234 and implement our estimators as in the simula-
tion study. We provide in Figure 4 the plot of log returns of Maize futures prices
against time together with the 95% conditional value-at-risk and expected short-
fall estimates. Clearly our estimates respond quickly to changing prices.

To backtest the a-CVaR estimator, we define a violation as the event {Yt+1 >
qY |X=Yt (a)}. Under the null hypothesis that the dynamics of Yt are correctly
specified, It ≡ χ{Yt+1>qY |X=Yt (a)} ∼ Bernoulli(1 − a) where χA is the indicator
function. Consequently, W = ∑

t∈T It ∼ Binomial(m − n,1 − a). We perform
a two sided test with the alternative hypothesis that the quantile is not correctly
estimated with too many or too few violations. Since qY |X=Yt (a) is not observed,
we estimate it with q̂Y |X=Yt (a) and construct the empirical version of the test
statistic as Ŵ = ∑

t∈T χ{Yt+1>q̂Y |X=Yt (a)}. Under the null hypothesis, the standard-

ized test statistic Ŵ−(m−n)(1−a)√
(m−n)(1−a)a

is distributed asymptotically as a standard normal.
We report the violation numbers together with the p-values based on the normal
distribution for our estimator on the left part of Table 5. For all five daily series
and across all values of a considered, the actual number of violations is fairly
close to the expected number, with large p-values indicating no rejection of the
null hypothesis. The only relatively large deviation of the violation numbers from
expected is for a = 0.95 on Maize, but its p-value is still larger than 0.1.

If the dynamics of Yt are correctly specified, the violation sequences are
expected to be independent and have a correct conditional coverage. The above
coverage test and the first-order Markov test proposed by Christoffersen (1998)
on the independence of the violation sequences are shown to have relatively small
power in Christoffersen and Pelletier (2004) and Christoffersen, Berkowitz, and
Pelletier (2009). The duration based likelihood ratio tests (Tind and Tcc) proposed
by Christoffersen and Pelletier (2004) have considerably better power in many
cases. The tests are based on the duration of days between the violations of the
value-at-risk. The first test statistic Tind corresponds to the independence assump-
tion under the null, and the durations have an exponential distribution (memory-
free distribution) but with a rate parameter that can be different from 1/(1 − a),
where 1 − a denotes the value-at-risk coverage rate. The second test statistic Tcc
corresponds to the conditional coverage assumption under the null, and the dura-
tions have an exponential distribution with a rate parameter equal to 1/(1 − a).
We implement the two duration based tests11 constructed with our q̂Y |X=Yt (a)
estimate and provide the corresponding p-values in the middle part of Table 5.
With exceptions on Rice and Soybean for a = 0.99 and 0.995, the p-values are
reasonably large, indicating that the violations constructed with our q̂Y |X=Yt (a)
estimate exhibit reasonable conditional coverage and independence.

To backtest the a-CES we consider the normalized difference between Yt+1 and
E(Y |Y > qY |X=Yt (a), X = Yt ) as rt+1 = Yt+1−E(Y |Y>qY |X=Yt (a),X=Yt )

h1/2(Yt )
= εt+1 −

E(ε|ε > q(a)). If the return dynamics are correctly specified, given that Yt+1 >
qY |X=Yt (a), rt+1 is independent and identically distributed with mean zero. Since
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E(Y |Y > qY |X=Yt (a), X = Yt ) is not observed, we use the estimated residuals

{r̂t+1 : t ∈ T and Yt+1 > q̂Y |X=Yt (a)}, where r̂t+1 = Yt+1−Ê(Y |Y>qY |X=Yt (a),X=Yt )

ĥ1/2(Yt )
.

Without making specific distributional assumptions on the residuals, we perform a
one-sided bootstrap test as described in Efron and Tibshirani (1993, pp. 224–227)
to test the null hypothesis that the mean of the residuals is zero against the
alternative that the mean is greater than zero, since underestimating a-conditional
expected shortfall is likely to be the direction of interest. The p-values of the test
for the five series across all values of a are provided on the right part of Table 5.
Given a 5% significance level for the test, the null hypothesis for our a-conditional
expected shortfall estimator is not rejected for a = 0.99 and 0.995 for all series,
but it is rejected for a = 0.95. The empirical results seem to confirm our Monte
Carlo study, in that our estimators can be especially useful in estimating higher
order conditional value-at-risk and expected shortfall.

6. SUMMARY AND CONCLUSION

The estimation of conditional value-at-risk and conditional expected shortfall has
been the subject of much interest in both empirical finance and theoretical econo-
metrics. Perhaps the interest is driven by the usefulness of these measures for
regulators, portfolio managers and other professionals interested in an effective
and synthetic tool for measuring risk. Most stochastic models and estimators pro-
posed for conditional value-at-risk and expected shortfall are hampered in their
use by tight parametric specifications that most certainly impact performance
and usability. In this paper we have proposed fully nonparametric estimators for
value-at-risk and expected shortfall, showed their consistency and obtained their
asymptotic distributions. Our Monte Carlo study has revealed that our estimators
outperform those proposed by Cai and Wang (2008) indicating that the use of the
approximations provided by Extreme Value Theory may indeed prove beneficial.

We see an important direction for future research related to the contribution in
this paper. The fact that we require s ≥ 2d presents a strong requirement on the
smoothness of the location and scale functions. This perverse manifestation of
the curse of dimensionality requires a solution. Perhaps restricting m and h to
belong to a class of additive functions, such that m(x ) = ∑d

u=1 mu(xu) and h(x ) =∑d
u=1 hu(xu) may be sufficient to substantially relax the restriction that s ≥ 2d .

NOTES

1. Let Pt denote the price of a financial asset at time t . In this paper a “return” is defined as
Yt = −log Pt

Pt−1
. We adopt this definition because in practice, regulators, portfolio, and risk managers

are mostly concerned with the distribution of losses, i.e., negative values of log Pt
Pt−1

.
2. For a ∈ (0,1) and an arbitrary distribution function F , we define the a-quantile associated with

F as inf{s : F(s) ≥ a}.
3. We rule out more general innovation processes, such as those appearing in semi-strong GARCH

processes, that are simply stationary, ergodic with {ε2
t } satisfying a martingale difference condition.

See, e.g., Drost and Nijman (1993), Escanciano (2009), and Linton, Pan, and Wang (2010).
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4. Since Xt may contain up to p lagged values of Yt , the effective sample size used in the estimation
of m̂(x ) and ĥ(x ) is n − p. However, for notational ease, we assume that Y0,Y−1, . . . are observed as
needed to define the relevant sums of length n.

5. See Leadbetter, Lindgren, and Rootzen (1983), Resnick (1987), or Embrechts et al. (1997) for
the definition of maximum domains of attraction.

6. Smith (1987, pp. 1180–1181) observes that the use of Theorem 3.2 normally involves taking
either N or q(aN ) as being stochastic and the other as being nonstochastic. Throughout this paper
we take N as nonstochastic and let thresholds be sample dependent (stochastic). The validity of
Theorem 3.2 for stochastic thresholds was discussed in Smith (1987, pp. 1180–1181), but no formal
proof was given.

7. Corollary 2.1 in Peng (1998, p. 109) gives a similar result for a much simpler model. But even
in his model, as in the case for the estimators in our Theorem 2, the benefits of bias reduction depend
on the interplay of model parameters and his constant λ (playing the same role as our µ), which varies
with his A (playing the same role as our φ). See the discussion following our equation (12).

8. We only report results for θ = 0. All results for θ = 0.5 are available from the first author upon
request. However, in the text we discuss the results for θ = 0.5 and highlight the differences when
needed.

9. We have also performed our study using the log-gamma distribution, a density that is also in the
domain of attraction of the Fréchet distribution. Since its support is bounded from below, it is much
less commonly used to model financial returns. Though the relative rankings regarding estimators’
performances change somewhat in specific experiment designs, we do not report these results to save
space and focus on the more popular Student-t distribution and a more detailed exposition.

10. Note that the number of exceedances Ns over q̃(aN ) is asymptotically of the same order as N ,

since
√

N
(

Ns−N
N

)
= Op(1) (Lemma 5).

11. We use the Matlab code by C. Hurlin available at http://www.runshare.org/CompanionSite/
site.do?siteId=68. Note the p-value entries for Tind and Tcc in Table 5 for Soybean are not available
at a = 0.995 since with only two violations, and one being at the end of the evaluation sample, the
log-likelihood can not be evaluated numerically.
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Appendix A: Figures and Tables

FIGURE 1. Plots of true and estimated conditional value-at-risk (q) and expected short-
fall (E) evaluated at the sample mean across different a, with n = 1,000, h1(Yt−1) =
1+0.01Y 2

t−1 +0.5sin(Yt−1), θ = 0 and Student-t distributed εt with v = 3.
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FIGURE 2. Relative root mean squared error of q̇
q̂ (left) and Ė

Ê
(right) across sample sizes

1,000 and 4,000 for θ = 0, Student-t distributed εt with v degrees of freedom, hi (Yt−1)
for i = 1,2 and a = 0.999.

FIGURE 3. Bias (B) and root mean squared error (R) of 99% conditional value-at-risk
and expected shortfall estimators against N , for n = 1,000, h1(yt−1), θ = 0 and Student-t
distributed εt with v = 3. Left panel: (q̂, Ê). Right panel: (q̂(b), Ê (b)).
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FIGURE 4. Log returns for Maize future prices from August 1, 2002 to July 28,
2004, together with the 95% conditional value-at-risk (q̂) and expected shortfall (Ê)
estimates.

TABLE 1. Bias (B), standard deviation (S) and root mean squared error
(R) for parameter estimators with sample size n(×1,000) and θ = 0, where
k0 = −1/v

h1(Yt−1) = 1 +0.01Y 2
t−1 +0.5sin(Yt−1) h2(Yt−1) = 1 −0.9exp(−2Y 2

t−1)

σN k0 σN k0

v n B S R B S R B S R B S R

γ̂ 3 1 0.294 0.062 0.300 0.126 0.102 0.162 0.294 0.061 0.300 0.126 0.101 0.162
γ̃ 3 1 0.320 0.084 0.331 0.127 0.107 0.166 0.274 0.073 0.283 0.133 0.110 0.173
γ̂ (b) 3 1 −0.019 0.059 0.062 −0.030 0.081 0.087 −0.019 0.060 0.063 −0.030 0.083 0.088
γ̃ (b) 3 1 −0.011 0.055 0.057 −0.028 0.088 0.092 −0.043 0.049 0.065 −0.024 0.095 0.098
γ̂ 3 4 0.251 0.037 0.253 0.091 0.057 0.107 0.250 0.036 0.252 0.088 0.057 0.105
γ̃ 3 4 0.266 0.052 0.271 0.087 0.061 0.106 0.211 0.048 0.217 0.085 0.069 0.109
γ̂ (b) 3 4 0.002 0.038 0.038 −0.035 0.041 0.054 0.004 0.038 0.039 −0.037 0.041 0.056
γ̃ (b) 3 4 0.010 0.034 0.035 −0.038 0.045 0.059 −0.030 0.032 0.044 −0.041 0.054 0.068
γ̂ 6 1 0.466 0.073 0.472 0.161 0.097 0.188 0.464 0.068 0.469 0.161 0.093 0.186
γ̃ 6 1 0.464 0.072 0.470 0.169 0.097 0.195 0.415 0.068 0.420 0.163 0.096 0.189
γ̂ (b) 6 1 0.025 0.058 0.063 −0.050 0.080 0.094 0.025 0.055 0.060 −0.051 0.076 0.092
γ̃ (b) 6 1 0.026 0.054 0.060 −0.043 0.081 0.091 0.009 0.049 0.049 −0.047 0.080 0.093
γ̂ 6 4 0.407 0.038 0.409 0.124 0.052 0.134 0.408 0.038 0.409 0.124 0.051 0.134
γ̃ 6 4 0.404 0.038 0.405 0.125 0.052 0.136 0.363 0.036 0.364 0.121 0.052 0.132
γ̂ (b) 6 4 0.051 0.034 0.061 −0.059 0.040 0.072 0.051 0.034 0.061 −0.059 0.039 0.070
γ̃ (b) 6 4 0.051 0.031 0.059 −0.058 0.040 0.070 0.033 0.029 0.043 −0.060 0.040 0.072
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TABLE 2. Bias (B), standard deviation (S) and relative root mean squared error
(R) for conditional value-at-risk (q) and expected shortfall (E) estimators with
v = 3, sample size n(×1,000), and θ = 0

h1(Yt−1) a = 0.95 a = 0.99 a = 0.999

n B S R B S R B S R

qs 1 0.008 0.067 1 0.018 0.219 1 −0.400 1.052 1
q̂ 1 0.024 0.132 1.991 0.043 0.321 1.472 −0.354 1.259 1.162
qs(b) 1 −0.183 0.086 2.999 −0.499 0.336 2.732 −1.043 1.482 1.610
q̂(b) 1 −0.183 0.143 3.446 −0.505 0.414 2.967 −1.056 1.659 1.748
q̇ 1 0.036 0.296 4.428 0.148 0.578 2.710 −0.144 1.659 1.480
qs 4 0.002 0.035 1 0.030 0.110 1 −0.219 0.565 1
q̂ 4 0.013 0.089 2.581 0.064 0.195 1.800 −0.116 0.735 1.228
qs(b) 4 −0.081 0.036 2.544 −0.277 0.160 2.810 −0.517 0.790 1.558
q̂(b) 4 −0.075 0.094 3.455 −0.261 0.244 3.136 −0.451 0.960 1.751
q̇ 4 −0.004 0.195 5.605 0.056 0.444 3.929 0.139 1.270 2.108

Es 1 −0.481 0.221 1.293 −0.636 0.616 1 −1.705 2.188 1
Ê 1 −0.467 0.290 1.342 −0.609 0.743 1.085 −1.648 2.489 1.076
Es(b) 1 −0.288 0.291 1 −0.590 0.870 1.187 −0.920 3.247 1.217
Ê (b) 1 −0.292 0.369 1.147 −0.601 1.003 1.320 −0.926 3.604 1.341
Ė 1 0.088 0.484 1.200 −0.150 1.125 1.281 −0.902 3.744 1.388
Es 4 −0.428 0.134 2.348 −0.514 0.342 1.163 −1.307 1.246 1.028
Ê 4 −0.406 0.202 2.375 −0.455 0.458 1.217 −1.137 1.510 1.076
Es(b) 4 −0.135 0.135 1 −0.290 0.444 1 −0.276 1.735 1
Ê (b) 4 −0.116 0.209 1.249 −0.246 0.565 1.162 0.127 2.039 1.163
Ė 4 0.089 0.368 1.982 −0.088 0.793 1.504 −0.564 2.658 1.547

h2(Yt−1) a = 0.95 a = 0.99 a = 0.999

n B S R B S R B S R

qs 1 0.004 0.035 1 0.009 0.112 1 −0.211 0.553 1
q̂ 1 0.007 0.160 4.500 0.018 0.338 3.020 −0.203 0.995 1.717
qs(b) 1 −0.106 0.060 3.448 −0.282 0.208 3.124 −0.587 0.817 1.701
q̂(b) 1 −0.111 0.177 5.898 −0.298 0.398 4.431 −0.649 1.169 2.260
q̇ 1 0.021 0.285 8.062 0.238 0.586 5.639 0.183 1.348 2.301
qs 4 0.001 0.018 1 0.018 0.058 1 −0.092 0.300 1
q̂ 4 0.003 0.143 7.976 0.042 0.279 4.649 −0.017 0.725 2.308
qs(b) 4 −0.050 0.025 3.118 −0.156 0.100 3.056 −0.275 0.428 1.619
q̂(b) 4 −0.048 0.150 8.783 −0.144 0.309 5.615 −0.238 0.808 2.680
q̇ 4 −0.003 0.198 11.013 0.216 0.516 9.217 0.501 1.220 4.197

Es 1 −0.252 0.146 1.234 −0.333 0.343 1 −0.896 1.190 1
Ê 1 −0.258 0.320 1.744 −0.337 0.647 1.526 −0.900 1.811 1.357
Es(b) 1 −0.167 0.166 1 −0.340 0.480 1.231 −0.542 1.731 1.217
Ê (b) 1 −0.177 0.338 1.619 −0.371 0.744 1.739 −0.635 2.268 1.580
Ė 1 −0.084 0.358 1.559 −0.754 0.657 2.091 −1.914 2.469 2.097
Es 4 −0.216 0.099 2.181 −0.251 0.196 1.096 −0.625 0.687 1
Ê 4 −0.215 0.274 3.203 −0.221 0.501 1.884 −0.516 1.274 1.479
Es(b) 4 −0.078 0.076 1 −0.162 0.241 1 −0.139 0.919 1.001
Ê (b) 4 −0.064 0.257 2.435 −0.129 0.520 1.842 −0.037 1.439 1.549
Ė 4 −0.062 0.315 2.946 −0.654 0.559 2.959 −1.825 1.799 2.758
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TABLE 3. Bias (B), standard deviation (S) and relative root mean squared error
(R) for conditional value-at-risk (q) and expected shortfall (E) estimators with
v = 6, sample size n(×1,000), and θ = 0

h1(Yt−1) a = 0.95 a = 0.99 a = 0.999

n B S R B S R B S R
qs 1 0.007 0.063 1 0.024 0.144 1 −0.167 0.497 1
q̂ 1 0.007 0.111 1.738 0.004 0.199 1.364 −0.241 0.543 1.134
qs(b) 1 −0.322 0.115 5.364 −0.731 0.304 5.426 −1.209 0.842 2.811
q̂(b) 1 −0.324 0.154 5.629 −0.743 0.337 5.597 −1.254 0.855 2.895
q̇ 1 0.099 0.417 6.716 0.363 0.695 5.376 0.320 1.083 2.154
qs 4 −0.003 0.032 1 0.026 0.072 1 −0.073 0.257 1
q̂ 4 −0.004 0.069 2.167 0.018 0.118 1.543 −0.100 0.306 1.208
qs(b) 4 −0.167 0.049 5.430 −0.469 0.152 6.401 −0.745 0.453 3.269
q̂(b) 4 −0.168 0.089 5.913 −0.473 0.194 6.634 −0.757 0.489 3.380
q̇ 4 0.074 0.364 11.580 0.327 0.658 9.535 0.549 1.011 4.314

Es 1 −0.586 0.158 1.227 −0.643 0.331 1 −1.035 0.841 1
Ê 1 −0.601 0.210 1.288 −0.688 0.381 1.087 −1.147 0.876 1.082
Es(b) 1 −0.527 0.255 1.184 −0.885 0.558 1.446 −1.227 1.394 1.393
Ê(b) 1 −0.546 0.289 1.249 −0.922 0.582 1.507 −1.321 1.382 1.434
Ė 1 0.002 0.494 1 −0.540 1.061 1.647 −1.218 3.194 2.563
Es 4 −0.543 0.114 1.643 −0.561 0.191 1 −0.830 0.477 1
Ê 4 −0.548 0.160 1.692 −0.577 0.247 1.059 −0.867 0.535 1.065
Es(b) 4 −0.313 0.126 1 −0.558 0.294 1.064 −0.673 0.764 1.063
Ê(b) 4 −0.320 0.163 1.063 −0.569 0.330 1.110 −0.699 0.794 1.105
Ė 4 0.030 0.380 1.128 −0.418 0.937 1.729 −1.162 2.343 2.731

h2(Yt−1) a = 0.95 a = 0.99 a = 0.999

n B S R B S R B S R
qs 1 0.002 0.038 1 0.010 0.088 1 −0.112 0.296 1
q̂ 1 −0.014 0.147 3.822 −0.014 0.244 2.768 −0.146 0.507 1.665
qs(b) 1 −0.201 0.093 5.741 −0.450 0.232 5.731 −0.747 0.551 2.929
q̂(b) 1 −0.213 0.191 7.433 −0.467 0.359 6.665 −0.772 0.718 3.327
q̇ 1 0.066 0.352 9.294 0.398 0.614 8.282 0.574 0.991 3.614
qs 4 −0.002 0.019 1 0.015 0.044 1 −0.045 0.154 1
q̂ 4 −0.017 0.117 6.239 −0.000 0.183 3.957 −0.055 0.345 2.171
qs(b) 4 −0.107 0.044 6.103 −0.290 0.127 6.835 −0.457 0.294 3.381
q̂(b) 4 −0.115 0.139 9.555 −0.296 0.257 8.480 −0.459 0.472 4.098
q̇ 4 0.065 0.292 15.803 0.418 0.586 15.551 0.784 0.939 7.610

Es 1 −0.352 0.152 1.022 −0.389 0.240 1 −0.633 0.548 1
Ê 1 −0.374 0.280 1.243 −0.419 0.420 1.298 −0.675 0.785 1.236
Es(b) 1 −0.327 0.185 1 −0.549 0.374 1.454 −0.774 0.852 1.375
Ê(b) 1 −0.346 0.300 1.220 −0.572 0.516 1.685 −0.806 1.032 1.564
Ė 1 −0.291 0.467 1.464 −0.846 0.756 2.481 −1.839 1.752 3.034
Es 4 −0.323 0.125 1.592 −0.333 0.156 1 −0.492 0.322 1
Ê 4 −0.337 0.236 1.892 −0.347 0.323 1.290 −0.498 0.551 1.263
Es(b) 4 −0.196 0.095 1 −0.347 0.199 1.088 −0.425 0.449 1.051
Ê(b) 4 −0.206 0.210 1.354 −0.352 0.347 1.345 −0.417 0.639 1.297
Ė 4 −0.232 0.425 2.228 −0.718 0.669 2.672 −1.565 1.544 3.738
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TABLE 4. 95%−Empirical coverage probability for bias corrected a-conditional
value-at-risk (q) and expected shortfall (E) estimators with sample size
n(×1,000), θ = 0

h1(Yt−1) v = 3 v = 6

n a = 0.95 0.99 0.999 0.95 0.99 0.999

qs(b) 1 0.439 0.849 0.986 0.210 0.850 0.999
q̂(b) 1 0.438 0.811 0.963 0.255 0.860 0.995
qs(b) 4 0.413 0.593 0.979 0.030 0.138 0.999
q̂(b) 4 0.391 0.582 0.935 0.096 0.159 0.991
Es(b) 1 0.995 0.996 1 0.999 1 1
Ê (b) 1 0.962 0.981 0.967 0.987 0.997 0.998
Es(b) 4 0.995 0.999 1 0.997 1 1
Ê (b) 4 0.955 0.966 0.964 0.984 0.997 0.999

h2(Yt−1) v = 3 v = 6

n a = 0.95 0.99 0.999 0.95 0.99 0.999

qs(b) 1 0.395 0.829 0.989 0.179 0.847 0.999
q̂(b) 1 0.383 0.682 0.933 0.371 0.801 0.989
qs(b) 4 0.304 0.538 0.973 0.017 0.102 1
q̂(b) 4 0.149 0.397 0.776 0.155 0.359 0.966
Es(b) 1 0.999 0.996 0.999 1 1 1
Ê (b) 1 0.920 0.949 0.942 0.988 0.995 0.991
Es(b) 4 0.999 0.998 1 1 1 1
Ê (b) 4 0.761 0.852 0.905 0.964 0.988 0.992

TABLE 5. Backtest results for a-conditional value-at-risk (q) and expected short-
fall (E) on m − n = 500 observations, expected violations = (m − n)(1 − a).
q: Number of violations and p-value (in parentheses). Duration based tests for
q: p-value for Tind and Tcc. E : p-value for exceedance residuals to have zero
mean

q q E

a = 0.95 0.99 0.995 0.95 0.99 0.995 0.95 0.99 0.995

Expected violations Duration based tests
25 5 2.5 Tind Tcc Tind Tcc Tind Tcc

Maize 18 (0.151) 5 (1) 2 (0.751) 0.176 0.096 0.173 0.356 0.619 0.494 0 0.161 0.735
Rice 29 (0.412) 4 (0.653) 2 (0.751) 0.052 0.126 0.040 0.076 0.018 0.033 0 0.081 0.248
Soybean 21 (0.412) 3 (0.369) 2 (0.751) 0.199 0.259 0.012 0.014 − − 0 0.302 0.244
Soft wheat 30 (0.305) 6 (0.653) 2 (0.751) 0.839 0.717 0.283 0.562 0.712 0.523 0.001 0.339 0.273
Hard wheat 25 (1) 5 (1) 2 (0.751) 0.294 0.566 0.055 0.142 0.739 0.529 0 0.082 0.239
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Appendix B: Proofs

We rely, throughout the proofs, on results from Smith (1985) and Smith
(1987). For a nonstochastic positive sequence q(aN ) → ∞ as N → ∞ and

σN = σ (q(aN )), k0 < 0 we have E
(
σN

∂
∂σ log g(Z ; σN ,k0)

)
= φ(q(aN ))

(1−k−1
0 −ρ)

+

o(φ(q(aN ))), E
(
∂
∂k log g(Z ; σN ,k0)

)
= k−1

0 φ(q(aN ))

(−k−1
0 −ρ)(1−k−1

0 −ρ)
+ o(φ(q(aN )),

E
(
σ 2

N
∂2

∂σ 2 log g(Z ; σN ,k0)
)

= −k−1
0

2−k−1
0

+ O(φ(q(aN ))), E
(
∂2

∂k2 log g(Z ; σN ,

k0)

)
= − 2k−2

0
(1−k−1

0 )(2−k−1
0 )

+ O(φ(q(aN ))), and E
(
σN

∂2

∂σ∂k log g(Z ; σN ,k0)
)

=
−k−2

0
(1−k−1

0 )(2−k−1
0 )

+ O(φ(q(aN ))), where all expectations are taken with respect to the

unknown distribution Fq(aN ). Evidently, these approximations are based on a sequence of
thresholds q(aN ) that approach the end point of the distribution F as N → ∞.

Proof of Theorem 2. a) Let r̃N = σ̃q̃(aN )

σN
= 1+ δN τ

∗
1 , k̃ = k0 + δN τ

∗
2 and note that

⎛

⎝
1
δ2

N

∂
∂τ1

LT N (τ∗
1 ,τ∗

2 )

1
δ2

N

∂
∂τ2

LT N (τ∗
1 ,τ∗

2 )

⎞

⎠= 1
δN N

(∑N
i=1

∂
∂rN

log g(Z̃i ; r̃NσN , k̃)
∑N

i=1
∂
∂k log g(Z̃i ; r̃NσN , k̃)

)

=
(

0
0

)
. (B.1)

For some λ1, λ2 ∈ (0,1) let k∗ = λ2k0 + (1−λ2)k̃, r∗
N = λ1 + (1−λ1)r̃N ,

HN (r∗
N ,k∗) = − 1

N

N∑

i=1

⎛

⎝
∂2

∂r2
N

log g(Z̃ j ; r∗
NσN ,k∗) ∂2

∂k∂rN
log g(Z̃i ; r∗

NσN ,k∗)

∂2

∂k∂rN
log g(Z̃i ; r∗

NσN ,k∗) ∂2

∂k2 log g(Z̃i ; r∗
NσN ,k∗)

⎞

⎠ and

vN (1,k0) =
√

N

(
1
N

∑N
i=1

∂
∂rN

log g(Z̃i ; σN ,k0)
1
N

∑N
i=1

∂
∂k log g(Z̃i ; σN ,k0)

)

=
√

N
(
δN ( Ĩ1N − I1N )+ δN I1N
δN ( Ĩ4N − I4N )+ δN I4N

)
,

where Ĩ1N , I1N , Ĩ4N , I4N are as defined in Theorem 1. By a Taylor’s expansion of the
first order condition in (B.1) around (1,k0) we have

HN (r∗
N ,k∗)

√
N

(
r̃N −1
k̃ −k0

)
= vN (1,k0). (B.2)

We start by investigating the asymptotic properties of vN (1,k0). Let b1 = 1−k0
k0(1−2k0)

,

b2 = − 1
(1−k0)(1−2k0)

and observe that from Theorem 1, Lemma 5 and the fact that
qn(aN )
q(aN ) −1 = op(1) we have

vN (1,k0) =

⎛

⎝
b1

√
N
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√
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⎞
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By Lemma 6 and the fact that N1 − N = Op(N1/2)

(√
NδN I1N√
NδN I4N

)
=

⎛

⎝
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N qn(aN )−q(aN )

q(aN ) + 1√
N

∑N
i=1

∂
∂σ log g(Z ′

i ; σN ,k0)σN +op (1)

b2
√

N qn(aN )−q(aN )
q(aN ) + 1√

N

∑N
i=1

∂
∂k log g(Z ′

i ; σN ,k0)+op (1)

⎞

⎠,
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where Z ′
i = εi − q(aN ) for εi > q(aN ). Hence, by letting

bσ = E
(
∂
∂σ log g(Z ′

i ; σN ,k0)σN

)
and bk = E

(
∂
∂k log g(Z ′
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)

we have
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=
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(B.3)

Note that we can write

1√
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Also, from Lemma 5,
√

N q̃(aN )−q(aN )
q(aN ) is distributed asymptotically as

k0
n∑

t=1
(n(1 − F(yn)))−1/2(q1n − E(q1n)) + op(1) =

n∑
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Zt3 + op(1) where

q1n = 1
h3n
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−∞ K3

(
y−εt
h3n

)
dy and yn = q(aN )(1 + N−1/2z) for arbitrary z.

It can be easily verified that E(Zt1) = E(Zt2) = E(Zt3) = 0. In addition,

V (Zt1) = 1
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∂
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)2
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n
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1
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)
, where the

last equality follows from the results listed in Section 3.1. Using similar arguments we
obtain V (Zt2) = 1

n
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2
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and from Lemma 5 we have that V (Zt3) =
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since N1/2φ(ε(n−N)) = O(1). Now, from Smith (1987) we have that
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we have that E
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log
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)(
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Combined with the orders obtained for the other components of the
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from Lemma 5, E(q1n) = F(yn) + O(hm+1
3n ) = O(1) and since (n(1 − F(yn)))−1/2 is

asymptotically equivalent to N−1/2, the second term in the covariance expression is of

order
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term in the covariance expression. Since (n(1− F(yn)))−1/2 is asymptotically equivalent
to N−1/2, we have by the Cauchy–Schwartz inequality
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n o(1). Hence,

nV (Ztn) = λT V1λ + o(1), where V1(k0) =

⎛

⎜⎜⎝

1
1−2k0

− 1
(k0−1)(2k0−1) 0

− 1
(k0−1)(2k0−1)

2
(k0−1)(2k0−1) 0

0 0 k2
0

⎞

⎟⎟⎠.

By Liapounov’s CLT
n∑

t=1
Ztn

d→ N (0,λT V1(k0)λ) provided that
n∑

t=1
E(|Ztn |3) → 0. To

verify this condition, it suffices to show that

(i)
n∑

t=1
E(|Zt1|3) → 0; (ii)

n∑

t=1
E(|Zt2|3) → 0; (iii)

n∑

t=1
E(|Zt3|3) → 0. (ii i) was verified

in Lemma 5, so we focus on (i) and (ii). For (i), note that
n∑

t=1
E(|Zt1|3) ≤

1√
N

E
(∣∣∣(1/k0 −1)(1−k0 Z ′

t /σN )−1k0 Z ′
t/σN −1

∣∣∣
3
)

→ 0 provided E(−(1 −
k0 Z ′

t/σN )−3(k0 Z ′
t/σN )3) < C , which is easily verified by noting that −(1−k0 Z ′

t /σN )−3

(k0 Z ′
i/σN )3 < −(1−k0 Z ′

t/σN )−3(1−k0 Z ′
t/σN )3 = 1. Lastly,

n∑

i=1

E(|Zt2|3)

≤ 1√
N

E
(∣∣∣−(1/k2

0)log(1− k0 Z ′
t/σN )+ (1/k0)(1−1/k0)(1− k0 Z ′

t/σN )−1k0 Z ′
t/σN

∣∣∣
3
)

→ 0
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provided E
(

log(1−k0 Z ′
t /σN )3

)
< C given the bound we obtained in case (i). By FR1

a) and integrating by parts we have

E

(

log
(

1−k0
Z ′

t
σN

)3)

= −
∫ ∞

0
log

(
1−k0

z
σN

)3
d Fε(n−N) (z)

= −
1− F(ε(n−N) (1+ z

ε(n−N)
))

1− F(ε(n−N) )

(
log(1+ z

ε(n−N)
)

)3
|∞0

+
∫ ∞

0

L(ε(n−N)(1+ z/ε(n−N)))

L(ε(n−N))
(1+ z/ε(n−N))

1/k0

×3(log(1+ z/ε(n−N)))
2

× (1+ z/ε(n−N))
−1(1/ε(n−N))dz = τ1n + τ2n .

Three repeated applications of L’Hôpital’s rule and Proposition 1.15 in Resnick (1987)
give τ1n = 0. For τ2n we have that given FR 1 a) and again integrating by parts and letting
t = 1+ z/ε(n−N) ,

τ2n =
∫ ∞

1
3(log(t))2t

1
k0

−1dt +φ(ε(n−N))

∫ ∞

1
3(log(t))2t

1
k0

−1 1
ρ

(tρ −1)dt +o(φ(ε(n−N))).

It is easy to verify that
∫ ∞

1 3(log(t))2t
1

k0
−1

dt = −6k3
0 and consequently

τ2n = −6k3
0 + O(φ(ε(n−N))) which verifies (ii). By the Cramer-Wold theorem

we have that ψn
d→ N (0,V1(k0)). Consequently, for any vector γ ∈ R2

we have γ T
(

vN (1,k0)−
√

N
(

bσ
bk

))
d→ N (0,γ T V2(k0)γ ) where V2(k0) =

⎛

⎜⎝

k2
0−4k0+2
(2k0−1)2 − 1

k0(k0−1)

− 1
k0(k0−1)

2k3
0−2k2

0+2k0−1
k2

0 (k0−1)2(2k0−1)

⎞

⎟⎠. Again, by the Cramer-Wold theorem

(
vN (1,k0)−

√
N

(
bσ
bk

))
d→ N (0,V2(k0)). Hence, given equation (B.2), provided

that HN (r∗
N ,k∗)

p→ H(k0) we have

√
N

(
r̃N −1
k̃ −k0

)
− H−1(k0)

√
N

(
bσ
bk

)
= H−1(k0)

(
vN (1,k0)−

√
N

(
bσ
bk

))

d→ N
(

0, H−1(k0)V2(k0)H−1(k0)
)
.

To see that HN (r∗
N ,k∗)

p→ H(k0), first observe that whenever (τ1,τ2) ∈ ST we have
(r̃N , k̃) ∈ SR = {(σ, k) : ∥( σσN

− 1, k − k0)∥E < δN } and consequently (r∗
N ,k∗) ∈ SR . In

addition, from Theorem 1 and the results from Smith (1987) we have HN (r̃N , k̃)
p→ H(k0)

uniformly on SR . By Theorem 21.6 in Davidson (1994) we conclude that HN (r∗
N ,k∗)

p→
H(k0).
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b) Let r̃ (b)
N =

σ̃ (b)
q̃(aN )

σN
and note that using (B.2) we can write

(
r̃ (b)

N −1

k̃(b) −k0

)

= H−1
N (r∗

N ,k∗)

×

⎛

⎝ 1√
N

vN (1,k0)− (Mn (Ns )−2(k̂(Ns ))
2)

⎛

⎝
1

(1−k̃−1−ρ̂)d̂
1

k̃(−k̃−1−ρ̂)(1−k̃−1−ρ̂)d̂

⎞

⎠

⎞

⎠.

Since ρ̂−ρ = op(1), k̃ −k0 = op(1), and r̃N −1 = op(1), we have

⎛

⎝
1

(1−k̃−1−ρ̂)d̂
1

k̃(−k̃−1−ρ̂)(1−k̃−1−ρ̂)d̂

⎞

⎠ p→
⎛

⎝
1

(1−k−1
0 −ρ)d
1

k0(−k−1
0 −ρ)(1−k−1

0 −ρ)d

⎞

⎠,

where d = 2k4
0ρ

(1+k0ρ)2 . In addition, using the arguments in the proof of part a) we have

√
N(k̂(Ns )−k0) = k0Qn −

√
N P1n +k0

√
N
φ(q(aN ))

(−k−1
0 −ρ)

+op (1) and

√
N (Mn(Ns )−2k2

0) = −2k0 Qn +
√

N P2n +2

(
1

(k−1
0 +ρ)2

− k2
0

)
√

N
φ(q(aN ))

ρ
+op(1),

where Qn =
n∑

t=1
(n(1 − F(yn)))−1/2(q1n − E(q1n)), P1n =

1
N1

n∑

t=1

(
log

(
εt

q(aN ) +k0 +k0
φ(q(aN ))

(−k−1
0 −ρ)

))
χ{εt>q(aN )}, and P2n =

1
N1

n∑

t=1

(
log2

(
εt

q(aN )

)
−2k2

0 −2φ(q(aN ))
ρ ( 1

(k−1
0 +ρ)2

−k2
0)

)
χ{εt>q(aN )}. As a conse-

quence, we obtain

√
N(Mn(Ns )−2(k̂(Ns ))

2) = −2(1+2k0)k0 Qn +4k0
√

N P1n +
√

N P2n

+
2k4

0ρ

(1+k0ρ)2

√
Nφ(q(aN ))

+
√

Nφ(q(aN ))op(1)+op (1). (B.4)

We rewrite (B.3) as 1√
N

vN (1,k0) =
⎛

⎝
bσ +b1

k0√
N

Qn + P3n

bk +b2
k0√

N
Qn + P4n

⎞

⎠ + op(N−1/2)

where P3n = 1
N

(∑N
i=1

∂
∂σ log g(Z ′

i ; σN ,k0)σN −bσ
)

and P4n =
1
N

(∑N
i=1

∂
∂k log g(Z ′

i ; σN ,k0)−bk

)
. Since, bσ = φ(ε(n−N))

1− 1
k0

−ρ + o(φ(ε(n−N))) and
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bk = φ(ε(n−N))

k0(− 1
k0

−ρ)(1− 1
k0

−ρ)
+o(φ(ε(n−N))), we have

√
N

(
r̃ (b)

N −1
k̃(b) − k0

)

= H−1
N (r∗

N ,k∗)

×
√

N

⎛

⎜⎜⎝
− 2(1+ρk0 )2

k2
0 ρ((1−ρ)k0−1)

P1n − (1+ρk0)2

2k3
0ρ((1−ρ)k0−1)

P2n + P3n +
(

1−k0
k0(1−2k0 ) + (1+2k0)(1+ρk0 )2

k3
0ρ((1−ρ)k0−1)

)
k0√

N
Qn

2(1+ρk0)
k2

0 ρ((1−ρ)k0−1)
P1n + (1+ρk0 )

2k3
0ρ((1−ρ)k0−1)

P2n + P4n −
(

1
(1−k0 )(1−2k0) + (1+2k0)(1+ρk0 )

k3
0ρ((1−ρ)k0−1)

)
k0√

N
Qn

⎞

⎟⎟⎠.

(B.5)

Note that
√

N P3n =
n∑

t=1
Zt1,

√
N P4n =

n∑

t=1
Zt2, k0 Qn =

n∑

t=1
Zt3 from part a). We put

√
N P2n =

n∑

t=1
Zt4,

√
N P1n =

n∑

t=1
Zt5 and observe that,

√
N P1n = (1+op(1))

1√
N

n∑

t=1

(

log
(

εt

q(aN )

)
+ k0 + k0

φ(q(aN ))

(−k−1
0 −ρ)

)

χ{εt >q(aN )}

= 1√
N

n∑

t=1

(
log

(
εt

q(aN )

)
− E

(
log

(
εt

q(aN )

)))
χ{εt >q(aN )} +op(1),

√
N P2n = (1+op(1))

1√
N

n∑

t=1

(

log2
(

εt

q(aN )

)
−2k2

0 −2
φ(q(aN ))

ρ

(
1

(k−1
0 +ρ)2

− k2
0

))

χ{εt >q(aN )}

= 1√
N

n∑

t=1

(
log2

(
εt

q(aN )

)
− E

(
log2

(
εt

q(aN )

)))
χ{εt >q(aN )} +op(1),

where the second equalities in both expressions follow from the fact that√
No(φ(q(aN ))) = o(1), and thus E(Zt4) = E(Zt5) = 0. Using arguments similar to

those in part a) of the proof we obtain, V (Zt4) = 1
n (20k4

0 + o(1)), V (Zt5) = 1
n (k2

0 +
o(1)), E(Zt4Zt5) = 1

n (−4k3
0 + o(1)), E(Zt1Zt4) = 1

n (
4k2

0−2k3
0

(1−k0)2 + o(1)), E(Zt1 Zt5) =
1
n (− k0

1−k0
+ o(1)), E(Zt2Zt4) = 1

n (
4k3

0−6k2
0

(1−k0)2 + o(1)), E(Zt2Zt5) = 1
n ( k0

1−k0
+ o(1)),

E(Zt3 Zt4) = E(Zt3Zt5) = 1
n o(1) and E(Zt4Zt5) = 1

n (−4k3
0 +o(1)).

Now, integrating by parts E
(

log6
(

εt
q(aN )

))
= 720k6

0 + O(φ(q(aN ))) < ∞.

Consequently,
n∑

t=1
E |Zt4|3 ≤ C√

N
E

(∣∣∣log2
(

εt
q(aN )

)∣∣∣
3
)

= o(1) and
n∑

t=1
E |Zt5|3 ≤

C√
N

E
(∣∣∣log

(
εt

q(aN )

)∣∣∣
3
)

= o(1). Consequently, by Liapounov’s CLT and the Cramer-Wold

device we have

√
N

⎛

⎝
σ̃ (b)

q̃(aN )

σN
−1

k̃(b) −k0

⎞

⎠ d→ N
((

0
0

)
, H−1(k0)V (b)

2 (k0,ρ)H−1(k0)

)
,

since H−1
N (r∗

N ,k∗)
p→ H−1(k0). !

6 C6 B 7 DB6 2 2: 23 6 2C CC B  42 3 :586 8 4 6 C6 B CC B 5 : 8  0
. 2565 7 CC B  42 3 :586 8 4 6 1 : 6 B:C 7 25 , D 56 /2 2C BD3 64C C C 6 2 3 :586



NONPARAMETRIC ESTIMATION OF CVaR AND CES 61

Proof of Theorem 3. a) Let a ∈ (0,1), aN < a and write q(a) = q(aN )ZN,a . By
assumption 1−a

1−aN
= C , where C is an arbitrary constant satisfying 0 < C < 1, which we

set at C = Z1/k0 for Z > 0. Then, if u(x) = q(1− x−1) for x > 1, by FR2 lim
n→∞

q(a)
q(aN ) =

lim
n→∞

u(1/(1−a))
u(1/(1−aN )) = lim

n→∞
u
(
Z−1/k0 1

1−aN

)

u
(

1
1−aN

) = Z. Consequently, ZN,a → Z as n → ∞.

Now, we write

q̂(a)

q(a)
−1 = 1

ZN,a

(
1+ q̃(aN )

q(aN )
−1

)

×
(

1+
(
σ̃q̃(aN )

k̃q̃(aN )
− σN

k0q(aN )
+ σN

k0q(aN )

)(

1−
(

n(1−a)

N

)k̃
))

−1.

By Theorem 2 and the fact that n(1−a)
N = Z1/k0 we have

(
n(1−a)

N

)k̃
=

(
n(1−a)

N

)k0
(

1+ (k̃ −k0)log
n(1−a)

N
+op (N−1/2)

)
. (B.6)

Let h(σ,k,q) = log(1 − σ
kq ), and since σN = −k0q(aN ), we have

σ̃q̃(aN )

k̃q̃(aN )
− σN

k0q(aN ) =

−2
(

exp
(

h(σ̃q̃(aN ), k̃, q̃(aN ))−h(σN ,k0,q(aN ))
)

−1
)

. By the MVT, there exists

(σ ∗,k∗,q∗) such that

h(σ̃q̃(aN ), k̃, q̃(aN ))−h(σN ,k0,q(aN ))

=
(
σN D1h(σ ∗,k∗,q∗) D2h(σ ∗,k∗,q∗) q(aN )D3h(σ ∗,k∗,q∗)

)

×

⎛

⎜⎝
r̃N −1
k̃ −k0

q̃(aN )
q(aN ) −1

⎞

⎟⎠.

Since σN D1h(σ ∗,k∗,q∗) =
(

1+ σ ∗/σN
k∗q∗/k0q(aN )

)−1 q(aN )k0
k∗q∗

p→ 1
2 , D2h(σ ∗,k∗,q∗)

p→
− 1

2k0
and q(aN )D3h(σ ∗,k∗,q∗)

p→ −1/2 by the MVT, Theorem 2 and Lemma 5, we
have

σ̃q̃(aN )

k̃q̃(aN )
− σN

k0q(aN )
=

(
−1 1/k0 1

)
⎛

⎜⎝
r̃N −1
k̃ −k0

q̃(aN )
q(aN ) −1

⎞

⎟⎠+op(N−1/2). (B.7)

Letting h1(k,c) = k log(1 + c) for c ≥ 0, we have by FR2, Theorem 2, the MVT and the
fact that ZN,a → Z,

1
ZN,a

(
n(1−a)

N

)k0
= 1+k0k(Z)φ(q(aN ))+o(φ(q(aN )))+op (N−1/2). (B.8)

Using equations (B.6), (B.7), and (B.8) we write,

q̂(a)

q(a)
−1 = Z−1

(
q̃(aN )

q(aN )
−1

)
+k0cT

b

(
r̃N −1
k̃ −k0

)

+k0k(Z)φ(q(aN ))+o(φ(q(aN )))+op(N−1/2),
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where cT
b =

(
−k−1

0 (Z−1 −1) k−2
0 log(Z)+k−2

0 (Z−1 −1)
)

. From the proof of Lemma 5
we have that

Z−1√
N

(
q̃(aN )

q(aN )
−1

)
= Z−1k0

n∑

t=1

1√
n(1− F(yn ))

(q1n − E(q1n))+op(1)

= Z−1
n∑

t=1

Zt3 +op(1).

In addition, from the proof of Theorem 2 (adopting its notation) we have that

√
N

(
r̃N −1
k̃ −k0

)
− H−1(k0)

√
N

(
bσ
bk

)
= H−1(k0)

(
1 0 b1
0 1 b2

)
ψn +op(1),

where ψn =
n∑

t=1
(Zt1, Zt2, Zt3)

T . Hence, letting ηT =
(

cT
b H−1(k0) cT

b H−1(k0)

(
b1
b2

)
+ (Zk0)−1

)
we can write

√
N

(
q̂(a)
q(a) −1−k0k(Z)φ(q(aN ))−k0cT

b H−1(k0)

(
bσ
bk

))
= k0η

Tψn + op(1),

where k0η
Tψn

d→ N (0,k2
0η

T V1(k0)η). Since k0k(Z)
√

Nφ(q(aN )) →
k0k(Z)µ(−k−1

0 − ρ) and k(Z) = Zρ−1
ρ we have that k0k(Z)

√
Nφ(q(aN )) →

k0µ(−k−1
0 − ρ)Z

ρ−1
ρ . Hence, given the structure of V1(k0), we

conclude
√

N
(

q̂(a)
q(a) −1

)
− µ1

d→ N (0,41(k0)), where 41(k0) =

k2
0

(

cT
b H−1(k0)cb + k2

0

(
cT

b H−1(k0)

(
b1
b2

))2
+ 2k0Z−1cT

b H−1(k0)

(
b1
b2

)
+ Z−2

)

and µ1 = k0

(
µ(−k−1

0 −ρ)Z
ρ−1
ρ +cT

b H−1(k0) lim
n→∞

√
N

(
bσ
bk

))
.

b) Since Ẑ = q̂(a)
q̃(aN )

p→ Z, ρ̂ − ρ = op(1) and d̂ − d = op(1), we have

Ẑ ρ̂−1
ρ̂d̂

p→ Zρ−1
ρd . From equation (B.4) we can write B̂q = k(Z)φ(q(aN )) +

Zρ−1
ρd

(
(−2−4k0)k0

Qn√
N

+ P2n +4k0 P1n

)
+ op(N−1/2). Using the MVT as in part a)

we have

(1+ B̂q)−k0

(1+ k(Z)φ(q(aN))+o(φ(q(aN))))−k0
= 1− k0

(
Zρ −1
ρd

)(
(−2−4k0)k0

Qn√
N

+ P2n +4k0 P1n

)

+op(N−1/2). (B.9)

Also, from part a), substituting k̃ by k̃(b) in equation (B.6) we have
(

n(1−a)

N

)k̃(b)

=
(

n(1−a)

N

)k0
(

1+ (k̃(b) −k0)log
n(1−a)

N
+op(N−1/2)

)
. (B.10)

Now, since B̂q = Op(N−1/2), by the MVT

(1+ B̂q )−k̃(b)

(1+ B̂q )−k0
= 1− (k̃(b) −k0)log(1+ B̂q )+op (N−1/2). (B.11)
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By equations (B.9) and (B.11), and since log(1+ B̂q ) = Op(N−1/2) we have

(1+ B̂q )−k̃(b)

(1+k(Z)φ(q(aN ))+o(φ(q(aN ))))−k0
= 1−k0

(
Zρ −1
ρd

)(
(−2−4k0)k0

Qn√
N

+ P2n +4k0 P1n

)

+op(N−1/2) (B.12)

and consequently we have (1+ B̂q )−k̃(b) p→ 1. Now, we write

q̂(b)(a)

q(a)
−1 = 1

Z N,a

(
1+ q̃(aN )

q(aN )
−1

)(

1+
(
σ̃q̃(aN )

k̃q̃(aN )
− σN

k0q(aN )
+ σN

k0q(aN )

)(

1−
(

n(1−a)

N

)k̃(b)

× (1+ B̂q)−k̃(b)
))

−1.

Using equations (B.7), (B.10), and (B.12) we have

√
N

(
q̂(b)(a)

q(a)
−1

)

=
(

N
n(1−a)

)k0 √
N

(
q̃(aN )

q(aN )
−1

)
+ k0cT

b

√
N

(
r̃ (b)

N −1
k̃(b) − k0

)

−k0

(
Zρ −1
ρd

)(
(−2−4k0)k0 Qn +

√
N P2n +4k0

√
N P1n

)
+op(1).

Given equation (B.5) and the fact that
√

N
(

q̃(aN )
q(aN ) −1

)
= k0 Qn + op(1) we have,

using the notation in Theorem 2, that for ⨿T
n =

( n∑

t=1
Zt1

n∑

t=1
Zt2

n∑

t=1
Zt3

n∑

t=1
Zt4

n∑

t=1
Zt5

)
,

√
N

(
q̂(b)(a)

q(a) −1
)

= cT
q ⨿n +op (1) where cT

q = k0cT
b H−1(k0)A(k0,ρ)+v(k0,ρ) and

v(k0,ρ) =
(
0 0 Z−1 + (Zρ −1) (1+2k0)(1+ρk0)2

k3
0ρ

2 −(Zρ −1) (1+ρk0)2

2k3
0ρ

2 −2(Zρ −1) (1+ρk0)2

k2
0ρ

2

)
.

Since from part b) of Theorem 2, ⨿n
d→ N (0,V (b)(k0)) the proof is complete. !

Proof of Theorem 4. a) We write Ê(εt |εt>q(a))
q(a)/(1+k0)

− 1 =
(

q̂(a)
q(a) −1

)(
k0−k̃
1+k̃

)
+

q̂(a)
q(a) − 1 + k0−k̃

1+k̃
. From part a) of Theorems 2 and 3 we have k̃−k0

1+k̃
= Op(N−1/2)

and q̂(a)
q(a) − 1 = Op(N−1/2). Hence,

√
N

(
q̂(a)/(1+k̃)
q(a)/(1+k0)

−1
)

=

(
1 −(1+k0)−1 )

⎛

⎝
√

N
(

q̂(a)
q(a) −1

)

√
N

(
k̃ −k0

)

⎞

⎠+ op(1). From part a) of Theorem 3 we have

√
N

(
q̂(a)
q(a) −1−k0k(Z)φ(q(aN ))−k0cT

b H−1(k0)

(
bσ
bk

))
= k0η

Tψn + op(1),

and from part a) of Theorem 2,
√

N(k̃ − k0) −
√

N
(

0 1
)

H−1(k0)

(
bσ
bk

)
=

((
0 1

)
H−1(k0)

(
0 1

)
H−1(k0)

(
b1
b2

))
ψn + op(1), where ψn =

( n∑

t=1
Zt1

n∑

t=1
Zt2

n∑

t=1
Zt3

)T
. Hence,
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⎛

⎜⎜⎝

√
N

(
q̂(a)
q(a) −1−k0k(Z)φ(q(aN ))−k0cT

b H−1(k0)

(
bσ
bk

))

√
N

(
k̃ −k0 −

(
0 1

)
H−1(k0)

(
bσ
bk

))

⎞

⎟⎟⎠=
(

k0η
T

θT

)
ψn +op (1),

for θT =
((

0 1
)

H−1(k0)
(

0 1
)

H−1(k0)

(
b1
b2

))
. From Theorem 3 part a) ψn

d→
N (0,V1(k0)), hence we conclude that

√
N

(
q̂(a)/(1 + k̃)
q(a)/(1 + k0)

−1

)

− (
1 −(1 + k0)−1)

⎛

⎜⎜⎝

√
N

(
k0k(Z)φ(q(aN ))+ k0cT

b H −1(k0)

(
bσ
bk

))

√
N

(
0 1

)
H −1(k0)

(
bσ
bk

)

⎞

⎟⎟⎠

d→ N

(

0,
(
1 −(1 + k0)−1)

(
k0ηT

θT

)
V1(k0)

(
k0ηT

θT

)T (
1 −(1 + k0)−1)T

)

.

Additional algebra, gives

√
N

(
q̂(a)/(1+ k̃)

q(a)/(1+ k0)
−1

)
d→ N

(

k0
(Zρ −1)µ(−k−1

0 −ρ)

ρ
+ k0cT

b H−1(k0) lim
n→∞

√
N

(
bσ
bk

)

− 1
1+ k0

(
0 1

)
H−1(k0) lim

n→∞
√

N
(

bσ
bk

)
,42(k0)

)
,

where 42(k0) =
(

k0η
T − 1

1+k0
θT

)
V1(k0)

(
k0η− 1

1+k0
θ
)

.

b) As in part a) we write Ê(b)(εt |εt>q(a))
q(a)/(1+k0)

− 1 =
(

q̂(b)(a)
q(a) −1

)(
k0−k̃(b)

1+k̃(b)

)
+ q̂(b)(a)

q(a) − 1 +
k0−k̃(b)

1+k̃
. From part b) of Theorems 2 and 3 we have k̃(b)−k0

1+k̃(b)
= Op(N−1/2) and q̂(b)(a)

q(a) −
1 = Op(N−1/2). Hence,

√
N

(
q̂(b)(a)/(1+ k̃(b))

q(a)/(1+k0)
−1

)

=
(

1 −(1+k0)−1 )
⎛

⎜⎝

√
N

(
q̂(b)(a)

q(a) −1
)

√
N

(
k̃(b) −k0

)

⎞

⎟⎠+op(1).

From parts b) of Theorems 2 and 3 we have
√

N
(

q̂(b)(a)
q(a) −1

)
=

cT
q ⨿n + op(1) and

√
N

(
k̃(b) −k0

)
=

(
0 1

)
H−1(k0)A(k0,ρ)⨿n +

op(1). Hence, since ⨿n
d→ N (0,V (b)(k0)), we conclude that,

√
N

(
Ê(b)(εt |εt>q(a))

q(a)/(1+k0)
−1

)
d→ N

(
0,4(b)

2 (k0,ρ)
)

, where 4(b)
2 (k0,ρ) =

(
cT

q − 1
1+k0

(
0 1

)
H−1(k0)A(k0,ρ)

)
V (b)(k0)

(
cT

q − 1
1+k0

(
0 1

)
H−1(k0)A(k0,ρ)

)T
. !
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Proof of Theorem 5. a) Since q̂(b)
Yt |Xt =x (a) = m̂(x )+h1/2(x )q̂(b)(a), we write

q̂(b)
Yt |Xt=x (a)

qYt |Xt=x (a)
−1 = m̂(x )−m(x )

m(x )+h1/2(x )q(a)
+

(
ĥ1/2(x )−h1/2(x )

)

(
m(x )
q(a) +h1/2(x )

) q̂(b)(a)

q(a)

+ h1/2(x )(
m(x )
q(a) +h1/2(x )

)
(

q̂(b)(a)−q(a)

q(a)

)

.

From Lemma 3, the fact that q(a) → ∞ as n → ∞ and Assumption A3 2),
we have m̂(x )−m(x )

m(x )+h1/2(x )q(a)
= op(L1n). Given A5 and n(1 − a) ∝ N we have

√
n(1−a) m̂(x )−m(x )

m(x )+h1/2(x )q(a)
= op(1). By Corollary 1 (in the online supplement), A5 and

the fact that m(x ) is bounded for fixed x we have
√

n(1−a)

(
ĥ1/2(x )−h1/2(x )

)

(
m(x )
q(a) +h1/2(x )

) =

op(1). From part b) of Theorem 3 we have q̂(b)(a)
q(a) = 1 + op(1), which gives

√
n(1−a)

(
ĥ1/2(x )−h1/2(x )

)

(
m(x )
q(a) +h1/2(x )

) q̂(b)(a)
q(a) = op(1). Lastly, since q(a) → ∞ as n → ∞, for fixed

x we have h1/2(x )(
m(x )
q(a) +h1/2(x )

) → 1 and by part a) of Theorem 3
√

n(1−a)

(
q̂(b)(a)−q(a)

q(a)

)
d→

N (0,4
(b)
1 (k0,ρ)).

b) We write

Ê (b)
(
Yt |Yt > qYt |Xt =x (a),Xt = x )

)

E
(
Yt |Yt > qYt |Xt =x (a),Xt = x )

) −1

= m̂(x )−m(x )

m(x )+h1/2(x )E(εt |εt > q(a))
+ ĥ1/2(x )−h1/2(x )(

m(x )
E(εt |εt>q(a)) +h1/2(x )

)

× (Ê (b)(εt |εt > q(a))+ B̂E)− E(εt |εt > q(a))

E(εt |εt > q(a))
+ h1/2(x )(

m(x )
E(εt |εt>q(a)) +h1/2(x )

)

×
(

Ê (b)(εt |εt > q(a))+ B̂E − E(εt |εt > q(a))

E(εt |εt > q(a))

)

+ E(εt |εt > q(a))(ĥ1/2(x )−h1/2(x ))

m(x )+h1/2(x )E(εt |εt > q(a))
.

As in part a), since m(x ) + h1/2(x )E(εt |εt > q(a)) → ∞ as n → ∞,
given Lemma 3 and A5 and n(1 − a) ∝ N , m̂(x )−m(x )

m(x )+h1/2(x )E(εt |εt>q(a))
=

op(N−1/2). Similarly, E(εt |εt>q(a))(ĥ1/2(x )−h1/2(x ))
m(x )+h1/2(x )E(εt |εt>q(a))

= op(N−1/2) and

ĥ1/2(x )−h1/2(x )(
m(x )

E(εt |εt >q(a)) +h1/2(x )
) (Ê(b)(εt |εt>q(a))+B̂E)−E(εt |εt>q(a))

E(εt |εt>q(a)) = op(N−1/2). Now,

consider
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Ê(b)(εt |εt > q(a))+ B̂E − E(εt |εt > q(a))

E(εt |εt > q(a))
=

(
Ê(b)(εt |εt > q(a))

q(a)
1+k0

−1

)(
E(εt |εt > q(a))

q(a)
1+k0

)−1

−

((
φ(q(a))

(ρ+k−1
0 +1)(1+k−1

0 )
+o (φ(q(a)))

)
q(a)− B̂E

)

E(εt |εt > q(a))

= Î b
1 − Î b

2 .

By Lemma 8, E(εt |εt>q(a))
q(a)
1+k0

= 1 + o(1) and by part b) of Theorem 4,

√
N

(
Ê(b)(εt |εt>q(a))

q(a)
1+k0

−1

)

=
(

cT
q − 1

1+k0

(
0 1

)
H−1(k0)A(k0,ρ)

)
⨿n +op(1), which is

asymptotically N (0,4(b)
2 (k0,ρ)). Hence

√
N Î b

1
d→ N (0,4(b)

2 (k0,ρ)). We note that if ρ̂,

Ẑ , d̂ and k̃ are as defined in Theorem 2, then Ẑ ρ̂

d̂(ρ̂+k̃−1+1)(1+k̃−1)
= Zρ

d(ρ+k−1+1)(1+k−1)
+

op(1). Since, E(εt |εt > q(a)) = q(a)
1+k0

+ q(a)

(
φ(q(a))

(ρ+k−1
0 +1)(1+k−1

0 )
+o (φ(q(a)))

)
we

write Î b
2 =

q(a)

(
φ(q(a))

(ρ+k−1
0 +1)(1+k−1

0 )
+o(φ(q(a)))

)

−B̂E

q(a)
1+k0

+q(a)

(
φ(q(a))

(ρ+k−1
0 +1)(1+k−1

0 )
+o(φ(q(a)))

) . Given that q̂(b)(a)
q(a) = 1+ Op(N−1/2)

we have that

B̂E
q(a)

= Zρ

d(ρ+k−1
0 +1)(1+k−1

0 )

×
(

(−2−4k0)k0
Qn√

N
+ P2n +4k0 P1n +dφ(q(aN ))+op (N−1/2)

)
.

Furthermore, as in Theorem 3, q(a) = q(aN )ZN,a with ZN,a → Z and φ(q(a))
φ(q(aN )) =

φ(q(aN )ZN,a )
φ(q(aN )) . Since, φ is regularly varying with index ρ < 0, φ(q(aN )ZN,a )

φ(q(aN )) → Zρ as

n → ∞, hence φ(q(aN ))Zρ

(ρ+k−1+1)(1+k−1
0 )

= φ(q(a))

(ρ+k−1
0 +1)(1+k−1

0 )
(1+op (1)). Consequently,

B̂E

q(a)
= φ(q(a))

(ρ+ k−1
0 +1)(1+ k−1)

+ Zρ(−2−4k0)k0

d(ρ+ k−1
0 +1)(1+ k−1

0 )

Qn√
N

+ Zρ

d(ρ+ k−1
0 +1)(1+ k−1

0 )
P2n

+ 4k0Zρ

d(ρ+ k−1
0 +1)(1+ k−1

0 )
P1n +op(N−1/2), and

√
N Î b

2 = −(1+ k0)

(
Zρ(−2−4k0)k0

d(ρ+ k−1
0 +1)(1+ k−1

0 )
Qn + Zρ

d(ρ+ k−1
0 +1)(1+ k−1

0 )

√
N P2n

+ 4k0Zρ

d(ρ+ k−1
0 +1)(1+ k−1

0 )

√
N P1n +op(1)

)

.

Thus, letting υ1(k0,ρ) =
(

0 0 Zρk0(−2−4k0)

d(ρ+k−1
0 +1)

k0Zρ

d(ρ+k−1
0 +1)

4k2
0Zρ

d(ρ+k−1
0 +1)

)
we have
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√
N

(
Ê (b)

(
Yt |Yt > qYt |Xt=x (a),Xt = x )

)

E
(
Yt |Yt > qYt |Xt=x (a),Xt = x )

) −1

)
d→ N

(
0,4(b)

3 (k0,ρ)
)

, where

4
(b)
3 (k0,ρ) =

(
cT

q − 1
1+k0

(
0 1

)
H−1(k0)A(k0,ρ)+υ1(k0,ρ)

)T
V (b)(k0)

×
(

cT
q − 1

1+k0

(
0 1

)
H−1(k0)A(k0,ρ)+υ1(k0,ρ)

)
. !
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